
Machines that can Output Empty Words

Christian Glaßer and Stephen Travers∗

Theoretische Informatik
Julius-Maximilians Universität Würzburg

Am Hubland,
97074 Würzburg, Germany

Abstract

We propose the e-model for leaf languages which generalizes the known balanced and unbalanced
concepts. Inspired by the neutral behavior of rejecting paths of NP machines, we allow transducers
to output empty words.

The paper explains several advantages of the new model. A central aspect is that it allows us to
prove strong gap theorems: For any class C that is definable in the e-model, either coUP ⊆ C or
C ⊆ NP. For the existing models, gap theorems, where they exist at all, only identify gaps for the
definability by regular languages. We prove gaps for the general case, i.e., for the definability by
arbitrary languages. We obtain such general gaps for NP, coNP, 1NP, and co1NP. For the regular
case we prove further gap theorems for ΣP

2
, ΠP

2
, and ∆P

2
. These are the first gap theorems for ∆P

2
.

This work is related to former work by Bovet, Crescenzi, and Silvestri, Vereshchagin, Hertrampf et
al., Burtschick and Vollmer, and Borchert et al.

1 Introduction

Bovet, Crescenzi, and Silvestri [BCS92] and Vereshchagin [Ver93] independently introduced leaf lan-
guages. This concept allows a uniform definition of many interesting complexity classes like NP and
PSPACE. The advantage of such an approach is obvious: It allows to prove quite general theorems
in a concise way. For example, Glaßer et al. [GOP+05] recently showed that if C is a class that is
balanced-leaf-language definable by a regular language, then all many-one complete problems of C are
polynomial-time many-one autoreducible. This general theorem answered several open questions, since
classes like NP, PSPACE, and the levels of the PH are definable in this way.

Moreover, leaf languages allow concise oracle constructions. The background is the BCSV-theorem
[BCS92, Ver93] that connects polylog-time reducibility (plt-reducibility) with the robust inclusion of
two complexity classes (i.e., the inclusion with respect to all oracles). This connection reduces oracle
constructions to their combinatorial core. In particular, neither do we have to care about the detailed
stagewise construction of the oracle, nor do we have to describe the particular coding of the single

∗Emails: {glasser, travers}@informatik.uni-wuerzburg.de

1

Electronic Colloquium on Computational Complexity, Report No. 147 (2005)

ISSN 1433-8092

stages. As an example, Lemma 5.6 below presents a short proof for the existence of an oracle relative to
which UP ∨ UP 6⊆ 1NP. A direct oracle construction would be substantially longer.

In this paper we offer a useful generalization of the known leaf-language concepts. Despite of its broader
definition, the new concept is convenient and has the nice features we appreciate with traditional leaf
languages. It even combines certain advantages of single known concepts. We summarize the benefit of
the new notion:

1. contains the traditional concepts

2. works with balanced computation trees

3. admits a BCSV-theorem [BCS92, Ver93]

4. establishes a tight connection between the polynomial-time hierachy and the Straubing-Thérien
hierarchy (the quantifier-alternation hierarchy of the logic FO[<] on words)

The new e-model of leaf languages is inspired by the observation that rejecting paths of nondeterministic
computations act as neutral elements. In this sense we allow nondeterministic transducers not only to
output single letters, but also to output the empty word ε which is the neutral element of Σ∗. More
precisely, we consider nondeterministic polynomial-time-bounded Turing machines M such that on
every input, every computation path stops and outputs an element from Σ ∪ {ε}. Let M(x) denote
the computation tree on input x, and define βM (x) as the concatenation of all outputs of M(x). For
any language B, let Leafpε (B) (the e-class of B) be the class of languages L such that there exists a
nondeterministic polynomial-time-bounded Turing machine M as above such that for all x,

x ∈ L ⇐⇒ βM (x) ∈ B.

If we demand that M never outputs ε, then this defines Leafpu (B) (the u-class of B). If we demand
that M is balanced and never outputs ε, then this defines Leafpb (B) (the b-class of B). (M is balanced
if there exists a polynomial-time computable function that on input (x, n) computes the n-th path of
M(x).) The notions e-class, u-class, and b-class are extended from a single language B to a class of
languages C in the standard way: Leafp

ε (C) (the e-class of C) is the union of all Leafp
ε (B) where B ∈ C.

For a survey on the leaf-language approach we refer to Wagner [Wag04].

It is immediately clear that the u-model and the b-model are restrictions of the e-model.

Leafpb (B) ⊆ Leafpu (B) ⊆ Leafpε (B)

Moreover, it is intuitively clear that the presence of the neutral element ε gives the class Leaf p
ε (B) some

inherent nondeterministic power which makes Leafp
ε (B) seemingly bigger than P. We will discuss this

issue and we will identify UP ∩ coUP as a lower bound (we obtain stronger bounds if we restrict to
regular languages B). The advantage of the e-model over the u-model is its simplicity: In the e-model
we can assume balanced computation trees which in turn leads to easy plt-reductions. The advantage
over the b-model is the established tight connection between the polynomial-time hierarchy and the
Straubing-Thérien hierarchy, a well-studied hierarchy of regular languages. Glaßer [Gla05] shows that
such a connection does not hold for the b-model. This connection within the e-model makes it possible
to exactly characterize leaf-language classes in the environment of NP.

In order to describe our results we have to define the levels of the Straubing-Thérien hierarchy (STH). In
the scope of this paper it suffices to summarize that the STH is a hierarchy of levels that contain regular
languages. We use a notation that already suggests a connection to the polynomial-time hierarchy (PH).

2

A language belongs to level ΣFO
k if it can be defined by a sentence of the logic FO[<] on words such

that the sentence starts with an existential quantifier and has at most k − 1 quantifier alternations. ΠFO
k

denotes the level of the complements of elements in ΣFO
k . ∆FO

k+1 denotes the intersection of ΣFO
k and

ΠFO
k . The formal definition can be found in the preliminaries.

Results: We start with observations that let us easily transfer the known BCSV-theorem to the new
notion. Along these lines we show that the polynomial-time hierarchy (PH) is connected with the
Straubing-Thérien hierarchy in the following sense: The e-class of level ΣFO

k of the STH equals level ΣP
k

of the PH. Note that this leaves room for the possibility that languages outside ΣFO
k form e-classes that

are still contained in ΣP
k . So even the e-class of a superset of ΣFO

k might be equal to ΣP
k . For the lower

levels, however, we are able to rule out this possibility. This proves a substantially tighter connection
between both hierarchies. For instance, under the reasonable assumption coUP 6⊆ NP, we show that
the languages in ΣFO

1 are the only languages whose e-classes are contained in NP. Hence, under this
assumption, a language belongs to ΣFO

1 if and only if its e-class is contained in NP. This connects ΣFO
1

and NP in the strongest possible way. We obtain several other strong relationships of this type, they are
summarized in Table 1. In particular, we prove the first gap theorem for ∆P

2 (Corollary 4.9). This is
possible by the e-model’s tight connection to the STH, by the forbidden-pattern characterization of ΣFO

2

which was proved by Pin and Weil [PW97], and by the equality Leaf p
u (ΣFO

2) = ∆P
2 which was showen

by Borchert, Schmitz, and Stephan [BSS99] and Borchert et al. [BLS+04].

Some comments about the results in Table 1 are appropriate. First, they can be interpreted as gap
theorems for leaf-language definability. For instance, the row about ΣFO

1 tells us that any e-class either
is contained in NP or contains at least coUP. Hence, once an e-class becomes bigger than NP, its
complexity jumps to at least NP ∪ coUP. Second, there exist several evidences that classes in the
columns 3–5 are not contained in the corresponding class of column 2. In any case there exist oracles
relative to which this non-containment holds. Third, all classes in the first column are decidable, i.e., on
input of a finite automaton A we can decide whether the language accepted by A belongs to the class.
This allows a decidable and precise classification of e-classes under the assumption that the classes in the
4th column are not contained in the respective class in the 2nd column. On input of a regular language
B (via its finite automaton) we can determine whether or not B’s e-class is contained in the classes of
the 2nd column.

With U we identify the class of all languages whose e-class is (robustly) contained in 1NP. A language
belongs to U if and only if membership of a word can be expressed in terms of a unique occurrence of
a substring and in terms of forbidden substrings. This shows that U is a class of regular languages. We
prove a decidable characterization of U, a so-called forbidden-pattern characterization. It exactly reveals
the structure in a finite automaton that is responsible for shifting a language outside U.

Gap theorems for leaf-language definability are rather rare. With the following theorem we summarize
the known results.

Theorem 1.1 Let B be a nontrivial regular language.

1. [Bor95] The u-class ofB either is contained in P, or contains at least one of the following classes:
NP, coNP, MODpP for some prime p.

2. [BKS99] The u-class of B either is contained in NP, or contains at least one of the following
classes: coNP, co1NP, MODpP for some prime p.

1Some remarks about notations: C ∨ D (resp., C ∨
·
D) is the class of unions (resp., disjoint unions) of some L1 ∈ C and

some L2 ∈ D. From this, the operators ∧ and ∧· are derived via DeMorgan’s law. AUΣP
2 and AUΠP

2 denote levels of the
unambiguous polynomial-time hierarchy. More details can be found in the preliminaries section.

3

C Leafpε (C) = if B /∈ C then
Leafpε (L) contains

if B ∈ REG − C then
Leafpε (L) contains

if B ∈ SF − C then
Leafpε (L) contains

∅ ∅ UP or coUP NP, coNP, or
MODpP for a prime p

NP or coNP

ΣFO
1 NP coUP coNP, co1NP, or

MODpP for a prime p
coNP or co1NP

ΠFO
1 coNP UP NP, 1NP, or MODpP

for a prime p
NP or 1NP

U 1NP UP ∨ UP or
UP∨· coUP

UP ∨ UP or
UP∨· coUP

UP ∨ UP or
UP∨· coUP

coU co1NP coUP ∧ coUP or
UP∧· coUP

coUP ∧ coUP or
UP∧· coUP

coUP ∧ coUP or
UP∧· coUP

∆FO
2 ∆P

2 – AUΣP
2 or AUΠP

2 AUΣP
2 or AUΠP

2

ΣFO
2 ΣP

2 – AUΠP
2 AUΠP

2

ΠFO
2 ΠP

2 – AUΣP
2 AUΣP

2

Table 1: Summary of the obtained gap theorems where B is a language different from ∅ and Σ∗.1

3. [Sch01] The u-class of B either is contained in ΣP
2 , or contains AUΠP

2 .

4. [Gla05] The b-class ofB either is contained in P, or contains at least one of the following classes:
NP, coNP, MODpP for some prime p.

5. [Gla05] The b-class of B either is contained in NP, or contains at least one of the following
classes: coNP, co1NP, MODpP for some prime p.

2 Preliminaries

2.1 Basic Notions

We denote with NL, P, NP, coNP and PSPACE the standard complexity classes whose definitions can be
found in any textbook on computational complexity (cf. [Pap94], for example). The class UP is the class
of decision problems solvable by an NP machine such that if the input belongs to the language, exactly
one computation path accepts and if the input does not belong to the language, all computation paths
reject. Contrary, the class 1NP is the class of decision problems solvable by an NP machine such that
the input belongs to the language if and only if exactly one computation path accepts.2 For any k > 1,
MODkP is the class of decision problems solvable by an NP machine such that the number of accepting
paths is divisible by k if and only if the input does not belong to the language. The characteristic function
of a set A is denoted as χA. We will always assume that our alphabet Σ contains at least 2 letters.

2Observe that in contrast to UP, a machine can legally have more than one accepting path.

4

Let � denote the usual subword relation, i.e. v�w if v = v1 . . . vn for letters v1, . . . , vn and w ∈
Σ∗v1Σ

∗v2 . . .Σ
∗vnΣ∗. We write v≺w if v�w and v 6= w. For k ≥ 0 we write v�k w if v is a

nonempty word that appears precisely k-times as a subword of w. In addition we define ε�1 w for
every word w. For k ≥ 0 we write v�≥k w if there exists l ≥ k such that v�l w. For k ≥ 0 and a finite
set B of words v1, . . . , v|B| we write B�k w if k can be written as k = k1 + · · · + k|B| such that

v1 �k1 w, v2 �k2 w, . . . , v|B|�k|B|
w.

So v�w if and only if there exists k ≥ 1 such that v�k w. Also, v 6�w if and only if v�0w.

We call a language B nontrivial if B 6= ∅ and B 6= Σ∗. If L,K ⊆ Σ∗ are disjoint languages, we also
write (L,K) ⊆ Σ∗, i.e. whenever we talk about a pair (L,K) ⊆ Σ∗ of languages, we assume that L
and K are disjoint.

Definition 2.1 Let K,M be complexity classes. We define

K ∨M =def {A ∪B
∣

∣A ∈ K, B ∈ M}, K ∧M =def co(coK ∨ coM),

K∨· M =def {A ∪B
∣

∣A ∈ K, B ∈ M, A ∩B = ∅}, K∧· M =def co(coK∨· coM).

Definition 2.2 For any language L ⊆ Σ∗ and a 6∈ Σ, we define La ⊆ (Σ ∪ {a})∗ as

La =def {a
m0w1a

m1w2a
m2 . . . amn−1wna

mn
∣

∣m0, . . . ,mn ≥ 0, w1w2 . . . wn ∈ L}.

2.2 The Unambiguous Alternation Hierarchy

Niedermeier and Rossmanith [NR98] introduced the unambiguous alternation hierarchy. For its defini-
tion we use Hemaspaandra’s characterization in terms of unambiguous alternating quantifiers. For any
complexity class C, define ∃u·C as the class of languages L such that there exist a polynomial p and
L′ ∈ C such that for all x,

x ∈ L ⇒ there exists exactly one y ∈ Σ=p(|x|) such that (x, y) ∈ L′

x /∈ L ⇒ there exists no y ∈ Σ=p(|x|) such that (x, y) ∈ L′.

Analogously, ∀u·C is the class of languages L such that there exist a polynomial p and L′ ∈ C such that
for all x,

x ∈ L ⇒ for all y ∈ Σ=p(|x|), (x, y) ∈ L′

x /∈ L ⇒ there exists exactly one y ∈ Σ=p(|x|) such that (x, y) /∈ L′.

Definition 2.3 (attributed to unpublished work of Hemaspaandra [NR98])

AUΣP
0 = AUΠP

0 =def P

AUΣP
k+1 =def ∃u·AUΠP

k for k ≥ 0

AUΠP
k+1 =def ∀u·AUΣP

k for k ≥ 0.

It is expected that level n of the unambiguous alternation hierarchy is not contained in level n − 1 of
the polynomial-time hierarchy. Spakowski and Tripathi [ST04] construct an oracle relative to which for
every n ≥ 1, level n of the unambiguous alternation hierarchy is not contained in ΠP

n .

5

2.3 Straubing-Thérien Hierarchy

Starfree languages are regular languages that can be build from single letters by using Boolean operations
and concatenation. Let SF denote the class of starfree languages. Brzozowski and Cohen [CB71, Brz76]
introduced the dot-depth hierarchy which measures the complexity of starfree languages in terms of
necessary alternations between Boolean operations and concatenation in the definition of the language.
Straubing and Thérien [Str81, Thé81, Str85] introduced a modification that is more appropriate for the
algebraic theory of languages, but still covers the important aspects of the dot-depth hierarchy. This
hierarchy is called Straubing-Thérien hierarchy (STH).

Perrin and Pin [PP86] proved a logical characterization of the STH. We use this characterization as
definition, since it uses an easy logic on words and it shows nice parallels to the definition of the
polynomial-time hierarchy. Formulas of the first-order logic FO[<] consist of first-order quantifiers,
Boolean operators, the binary relation symbol <, and unary relation symbols πa for each letter a. A sen-
tence φ is satisfied by a word w if φ evaluates to true where variables are interpreted as positions in w
and πax is interpreted as “letter a appears at position x in w”. A language B is FO[<] definable if there
exists a sentence φ such that for all words w, w ∈ L if and only if φ is satisfied by w. A ΣFO

k -sentence
(resp., ΠFO

k -sentence) is a sentence of FO[<] that is in prenex normal form, that starts with an existential
(resp., universal) quantifier, and that has at most k− 1 quantifier alternations. A language belongs to the
class ΣFO

k (resp., ΠFO
k) of the STH if it can be defined by a ΣFO

k -sentence (resp., ΠFO
k -sentence). ∆FO

k+1

denotes the intersection of ΣFO
k and ΠFO

k .

3 Machines with Computation Trees Having ε-Leaves

We introduce the e-model of leaf languages which is inspired by the observation that rejecting paths of
nondeterministic computations act as neutral elements. We allow nondeterministic transducers not only
to output single letters, but also to output the empty word ε. After the formal definition we introduce pte-
reducibility which allows us to formulate and prove an analogon of the BCSV-theorem. Furthermore,
we show that the e-model connects the polynomial-time hierarchy with the Straubing-Thérien hierarchy.

For a finite alphabet Σ and a 6∈ Σ, we define a homomorphism hΣ,a : (Σ∪{a})∗ → Σ∗ by hΣ,a(b) =def b
for b ∈ Σ and hΣ,a(a) =def ε.

Definition 3.1 Let (L,K) ⊆ Σ∗. The class Leafpε (L,K) consists of all languages A for which there
exists a nondeterministic polynomial time transducer M producing on every computation path a symbol
from Σ or the empty word ε such that the following holds:

x ∈ A ⇒ βM (x) ∈ L,

x 6∈ A ⇒ βM (x) ∈ K.

For (L,K) ⊆ Σ∗, if K = Σ∗ − L, we will often use Leafpε (L) as abbreviation for Leafp
ε (L,K). In

these cases, we will make clear what alphabet we use for L. Notice the it makes no difference whether
we use balanced or unbalanced computation trees. So for convenience we may assume that paths not
only can output single letters, but arbitrary words.

Example 3.2 1. Leafpε (11∗, ε) = Leafpε (0∗1(0 ∨ 1)∗, 0∗) = NP.
2. Let L =def {1} ⊆ {0, 1}∗ . Then Leafpε (L) = 1NP.
3. Leafpε (1, ε) = UP.

6

A function g is computable in polylogarithmic time if there exists k ≥ 1 such that g(x) can be computed
in time O(logk|x|) by a Turing-machine which accesses the input as an oracle.

Definition 3.3 Let (L,K) ⊆ Σ∗
1, (L

′,K ′) ⊆ Σ∗
2 and a 6∈ Σ∗

1 ∪ Σ∗
2. Then (L,K)≤pte

m (K,K ′) if and
only if there exists a function f : (Σ1 ∪ {a})∗ → (Σ2 ∪ {a})∗ such that

• there exist functions g : (Σ1 ∪ {a})∗ → Σ2 ∪ {a}, h : (Σ1 ∪ {a})∗ → N computable in polyloga-
rithmic time such that for all x ∈ (Σ1 ∪ {a})∗, f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)),

• for all x ∈ (Σ1 ∪ {a})∗,
(

hΣ1,a(x) ∈ L⇒ hΣ2,a(f(x)) ∈ L′
)

,

• for all x ∈ (Σ1 ∪ {a})∗,
(

hΣ1,a(x) ∈ K ⇒ hΣ2,a(f(x)) ∈ K ′
)

.

If (L,K)≤pte
m (L′,K ′) holds and K = Σ∗

1 − L and K ′ = Σ∗
2 − L′, we will often use L≤pte

m K as
abbreviation.

Lemma 3.4 For (L,K) ⊆ Σ∗
1, (L′,K ′) ⊆ Σ∗

2 where a 6∈ Σ1 ∪ Σ2, it holds that (L,K)≤pte
m (L′,K ′) if

and only if (La,Ka)≤
plt
m (L′

a,K
′
a).

Proof This is an immediate consequence of the definition of ≤pte
m : Let (L,K) ⊆ Σ∗

1, (L′,K ′) ⊆ Σ∗
2

and a 6∈ Σ1 ∪ Σ2. Observe that for the if-part, it suffices to modify the reducing function such that it
outputs ε instead of a. For the only if-part, it is the other way round. 2

Lemma 3.5 For (L,K) ⊆ Σ∗ and a 6∈ Σ, Leafpε (L,K) = Leafpb (La,Ka) = Leafpu (La,Ka) =
Leafpε (La,Ka).

Proof It suffices to show that Leafpε (L,K) ⊆ Leafpu (La,Ka) and Leafpε (La,Ka) ⊆ Leafpε (L,K). For
the first inclusion, let A ∈ Leafpε (L,K) via the nondeterministic transducer M , which outputs symbols
from Σ∪{ε}. M can easily be transformed into a transducer M ′ which proves that A ∈ Leafpb (La,Ka):
M ′ works likeM , but whenever M outputs ε,M ′ outputs a. For the second inclusion, let againM be the
nondeterministic transducer which proves A ∈ Leafp

ε (La,Ka). Observe that letters a in the leafstring
of M on an input x have no influence on whether x belongs to A or not. Hence, we can transform M
into a machine M ′ that outputs ε whenever M outputs a. Hence, A ∈ Leafp

ε (L,K). 2

We obtain the following BCSV-theorem for the e-model.

Theorem 3.6 Let (L,K) ⊆ Σ∗
1 and (L′,K ′) ⊆ Σ∗

2. Then the following statements are equivalent:

1. (L,K)≤pte
m (L′,K ′).

2. For all oracles O it holds that Leafp
ε (L,K)O ⊆ Leafpε (L′,K ′)O.

7

Proof Let L,K ⊆ Σ∗
1, L ∩K = ∅, L′,K ′ ⊆ Σ∗

2, L
′ ∩K ′ = ∅ and a 6∈ Σ1 ∪ Σ2. Then the following

equivalences hold:

(L,K)≤pte
m (L′,K ′)

I.
⇔ (La,Ka)≤

plt
m (L′

a,K
′
a),

II.
⇔ ∀O,Leafpb

B
(La,Ka) ⊆ Leafpb

B
(L′

a,K
′
a),

III.
⇔ ∀O,Leafpε

B(L,K) ⊆ Leafpε
B(L′,K ′).

Note that I. holds because of Lemma 3.4, II. holds because of [BCS92, Ver93], and III. holds because
Lemma 3.5 is relativizable. 2

The next theorem shows a connection between the STH and the PH via the e-model. A similar connec-
tion for the existing b- and u-models was proved by Hertrampf et al. [HLS+93], Burtschick and Vollmer
[BV98], and Borchert et al. [BLS+04].

Theorem 3.7 Let k ≥ 1.

1. Leafpε (ΣFO
k) = ΣP

k

2. Leafpε (ΠFO
k) = ΠP

k

3. Leafpε (∆FO
k) = ∆P

k

Proof Let B ⊆ Σ∗ and choose a new letter a /∈ Σ. We show: if B ∈ ΣFO
k , then Ba ∈ ΣFO

k . Let φ
be a ΣFO

k -sentence defining B. Assume φ = Q1i1Q2i2 · · ·Qnin ψ where the Q’s are quantifiers, the i’s
are variables, and ψ is quantifier-free. Now replace the quantifiers Qn, . . . , Q1 and the formulas α they
range on:

∃i α is replaced by ∃i (¬πai ∧ α)

∀i α is replaced by ∀i (πai ∨ α)

Denote the resulting formula by φ′. Observe that φ′ defines Ba and that φ′ can be converted to a ΣFO
k -

sentence. Hence Ba ∈ ΣFO
k . The same argument shows (i) if L ∈ ΠFO

k , then La ∈ ΠFO
k and (ii) if

L ∈ ∆FO
k , then La ∈ ∆FO

k .

If we consider the u-model instead of the e-model, then the statements of the theorem are known [BV98,
BSS99, BLS+04]. By Leafpu (B) ⊆ Leafpε (B), it suffices to argue for the inclusions from left to right.
Let L ∈ Leafpε (ΣFO

k), i.e., there exists B ∈ ΣFO
k such that L ∈ Leafpε (B). By Lemma 3.5, L ∈

Leafpu (Ba) where a is a new letter. As argued above, Ba ∈ ΣFO
k and therefore, L ∈ Leafpu (ΣFO

k) ⊆ ΣP
k .

The inlucions Leafpε (ΠFO
k) ⊆ ΠP

k and Leafpε (∆FO
k) ⊆ ∆P

k follow analogously. 2

4 Gap Theorems for NP, ∆P

2
, and Σ

P

2

In this section we use existing forbidden-pattern characterizations to obtain lower bounds for certain
e-classes. From this we derive gap theorems for NP, ∆P

2 , and ΣP
2 . A summary of these results can be

found in Table 1.

Pin and Weil [PW97] proved the following forbidden-pattern characterization of level ΣFO
1 of the STH.

8

s1 s2

wp−1

w

? ?

+ −

z z

*

�

Figure 1: Forbidden pattern for SF where p is prime.

Proposition 4.1 ([PW97]) The following are equivalent for any language A.

1. A ∈ ΣFO
1

2. ∀v, w ∈ Σ∗[v�w ⇒ χA(v) ≤ χA(w)]

3. ∀v, w ∈ Σ∗∀a ∈ Σ[χA(vw) ≤ χA(vaw)]

This characterization enables us to prove lower bounds for the e-class of languages outside ΣFO
1 . In

combination with Theorem 3.7 we obtain a gap theorem for NP (Corollary 4.3).

Theorem 4.2 Let A be an arbitrary language.

1. If A /∈ ΣFO
1 , then coUP ⊆ Leafpε (A).

2. If A ∈ REG−ΣFO
1 , then Leafpε (A) contains at least one of the following classes: coNP, co1NP,

MODpP for a prime p.

3. If A ∈ SF − ΣFO
1 , then Leafpε (A) contains at least one of the following classes: coNP, co1NP.

Proof If A /∈ ΣFO
1 , then by Proposition 4.1, there exist words v, w and a letter a such that vw ∈ A

and vaw /∈ A. Let L ∈ coUP, i.e., there exists a nondeterministic polynomial-time machine M such
that on input x /∈ L, M has exactly one accepting path, and input x ∈ L, M has no accepting path.
We modify M such that accepting paths output a, rejecting paths output ε, an additional path on the left
outputs v, and an additional path on the right outputs w. It follows that for inputs x ∈ L the generated
leaf word is vw, and for inputs x /∈ L the generated word is vaw. This shows L ∈ Leaf p

ε (A) and hence
coUP ⊆ Leafpε (A).

Now assume A ∈ REG − ΣFO
1 .

Case 1: A /∈ SF. By Sch ützenberger [Sch65] and McNaughton and Papert [MP71], A’s minimal
automaton contains the counting pattern (Fig. 1). So there exist words y, w, z and a prime p such that for
all i, ywipz ∈ A and ywip+1z /∈ A. We show MODpP ⊆ Leafpε (A). Let L ∈ MODpP and let M be a
nondeterministic polynomial-time machine such that x ∈ L if and only if the number of accepting paths
of M on input x is ≡ 0(mod p). Without loss of generality we may assume that if x /∈ L, then the latter
number is ≡ 1(mod p). (If not, then simulate M ’s computation p − 1 times in a row, which takes the

9

number of accepting paths to the power of p−1 and hence, by Fermat’s theorem, results in a number that
either is ≡ 0(mod p) or is ≡ 0(mod p).) We modify M such that accepting paths output w, rejecting
paths output ε, an additional path on the left outputs y, and an additional path on the right outputs z.
Hence, for inputs x ∈ L the generated leaf word is of the form ywipz, and for inputs x /∈ L the generated
leaf word is of the form ywip+1z. This shows L ∈ Leafpε (A) and hence MODpP ⊆ Leafpε (A).

Case 2: A ∈ SF − ΣFO
1 . By Proposition 4.1, there exist words v, w and a letter a such that vw ∈ A and

vaw /∈ A. By the pumping lemma, there exist j, n ≥ 1 such that for all i, vajw ∈ A ⇔ vaj+inw ∈ A.
Choose the smallest such n. By Sch ützenberger [Sch65] and McNaughton and Papert [MP71], A ∈ SF
implies that A’s minimal automaton does not contain the counting pattern (Fig. 1). Therefore, n must
be equal to 1 and it follows that vaja∗w either is a subset of A or is a subset of A.

Assume vaja∗w ⊆ A. Hence vw ∈ A and v(aj)+w ⊆ A. We show coNP ⊆ Leafpε (A). Let
L ∈ coNP and let M be a nondeterministic polynomial-time machine that accepts L. We modify M
such that accepting paths output aj , rejecting paths output ε, an additional path on the left outputs v,
and an additional path on the right outputs w. If x ∈ L, then the modified machine produces the leaf
word vw; otherwise it produces a leaf word from v(aj)+w. This shows L ∈ Leafpε (A) and hence
coNP ⊆ Leafpε (A).

Assume vaja∗w ⊆ A. Choose the smallest k ∈ [1, j) such that vaka+w ⊆ A. Hence vakw /∈ A.
We show co1NP ⊆ Leafpε (A). Let L ∈ co1NP and let M be a nondeterministic polynomial-time
machine such that x /∈ L if and only if M on x produces exactly one accepting path. We modify M
such that accepting paths output ak, rejecting paths output ε, an additional path on the left outputs v,
and an additional path on the right outputs w. If x ∈ L, then the modified machine produces a leaf word
in vaka+w ∪ {vw}; otherwise it produces the leaf word vakw. This shows L ∈ Leafpε (A) and hence
co1NP ⊆ Leafpε (A). 2

Corollary 4.3 Let B be a nontrivial language.

1. The e-class of B either is contained in NP, or contains coUP.

2. If B ∈ REG, then the e-class of B either is contained in NP, or contains at least one of the
following classes: coNP, co1NP, MODpP for a prime p.

3. IfB ∈ SF, then the e-class ofB either is contained in NP, or contains at least one of the following
classes: coNP, co1NP.

Proof Follows from Theorems 3.7 and 4.2. 2

Now we can prove general lower bounds for e-classes. In particular, no complexity class below UP is
definable with this concept.

Corollary 4.4 Let A be a nontrivial language.

1. Leafpε (A) contains at least one of the following classes: UP, coUP.

2. If A ∈ REG, then Leafpε (A) contains at least one of the following classes: NP, coNP, MODpP
for a prime p.

10

s1 s2

= =

v v

-

w

??

+ −

z z

Figure 2: Forbidden pattern for ΣFO
2 where w� v.

3. If A ∈ SF, then Leafpε (A) contains at least one of the following classes: NP, coNP.

Proof By assumption there exist a word in A and a word not in A. If ε ∈ A, then by Proposition 4.1,
A /∈ ΣFO

1 ; otherwise A /∈ ΣFO
1 . It follows from Theorem 4.2 that coUP ⊆ Leafp

ε (A) or coUP ⊆
Leafpε (A) = coLeafpε (A). Hence, UP ⊆ Leafpε (A) or coUP ⊆ Leafpε (A).

If A additionally belongs to REG, then Leafp
ε (A) or Leafpε (A) contains at least one of the following

classes: coNP, co1NP, MODpP for a prime p. Hence Leafpε (A) contains at least one of the following
classes: NP, coNP, MODpP for a prime p. If A even belongs to SF, then the same argument shows
that Leafpε (A) contains at least one of the following classes: NP, coNP. 2

Under reasonable assumptions that there is no regular A such that A’s e-class lies strictly between coNP
and 1NP. By symmetry, the same holds for NP and co1NP.

Corollary 4.5 Let A ∈ REG be a nontrivial language. Assume NP 6⊆ 1NP and MODpP 6⊆ 1NP for
all primes p. Then the following implication holds.

Leafpε (A) (1NP ⇒ Leafpε (A) ⊆ coNP.

Proof If Leafpε (A) 6⊆ coNP, then A /∈ coL1/2. By Theorem 4.2, Leafpε (A) contains at least one of the
following classes: NP, 1NP, MODpP for a prime p. 2

Starting with a forbidden-pattern characterization for ΣFO
2 [PW97] (Figure 2) we develop a lower bound

for the e-class of ΣFO
2 . Again, this yields a gap theorem, this time for ΣP

2 (Corollary 4.7).

Theorem 4.6 If A ∈ REG − ΣFO
2 , then AUΠP

2 ⊆ Leafpε (A).

Proof Pin and Weil [PW97] proved the following forbidden pattern characterization of ΣFO
2 : A regular

language belongs to ΣFO
2 if and only if the transition graph of its minimal automaton does not contain

the subgraph shown in Figure 2. So by assumption, A’s minimal automaton contains this graph.

11

Let L ∈ AUΠP
2 , i.e., there exist B ∈ P and polynomials p and q such that for all x,

x ∈ L ⇒ ∀y ∈ Σp(|x|),∃!z ∈ Σq(|x|)[(x, y, z) ∈ B],

x /∈ L ⇒ there exists y ∈ Σp(|x|) such that the following holds:

(i) ∀z ∈ Σq(|x|)[(x, y, z) /∈ B],

(ii) ∀u ∈ Σp(|x|) − {y},∃!z ∈ Σq(|x|)[(x, u, z) ∈ B].

We describe a nondeterministic machine M on input x: First, M nondeterministically guesses y ∈
Σp(|x|). Now M splits into |v| paths which we associate with the letters of v. Consider the first occur-
rence of w as a subword of v. The paths that are associated with the positions involved in this occurrence
output the respective letters of v and stop. On all other paths (i.e., those which are not involved in the
first occurence of w in v) the computation is continued as follows: Assume we are on a path that is
assiciated with letter c in v. M nondeterministically guesses z ∈ Σq(|x|). If (x, y, z) ∈ B, then output ε
and stop. Otherwise, output c and stop.

In order to determine the leaf string βM (x) we first consider certain factors of this string. More precisely,
let βu be the leaf string that is produced by the paths that guess y = u. Note that

βM (x) = β0β1 · · · β2p(|x|) .

Assume u ∈ Σp(|x|) such that ∃!z ∈ Σq(|x|)[(x, u, z) ∈ B]. Consider the path where M guesses y = u.
In the next steps, M splits into |v| paths associated with the letters of v. The paths involved in the
first occurrence of w in v will output the respective letters from v. Each remaining path continues the
computation. By assumption, there exists exactly one z such that [(x, y, z) ∈ B]. The path guessing that
z will output the respective letter in v, while all other paths will output ε. Therefore, βu = v.

Assume u ∈ Σp(|x|) such that ∀z ∈ Σq(|x|)[(x, u, z) /∈ B]. Consider the path where M guesses y = u.
AgainM splits into |v| paths. The paths involved in the occurrence of w will output the respective letters
from v. However, now there is no z such that [(x, y, z) ∈ B] and therefore, all remaining paths output
ε. It follows that βu = w.

Now let us consider βM (x). If x ∈ L, then for all u, ∃!z ∈ Σq(|x|)[(x, u, z) ∈ B]. Therefore, all u,
βu = v and it follows that βM (x) ∈ v∗. Otherwise, x /∈ L. So there exists y ∈ Σp(|x|) such that (i)
∀z ∈ Σq(|x|)[(x, y, z) /∈ B] and (ii) for all u 6= y, ∃!z ∈ Σq(|x|)[(x, u, z) ∈ B]. Therefore, (i) βy = w
and (ii) for all u 6= y, βu = v. It follows that βM (x) ∈ v∗wv∗. So we obtained:

x ∈ L ⇒ βM (x) ∈ v∗

x /∈ L ⇒ βM (x) ∈ v∗wv∗

Let y be a word leading from the initial state to s1 in the minimal automaton of A. Let M ′ be the
modification of M that on the left additionally outputs y and on the right additionally outputs z. Hence,
x ∈ L if and only if βM ′(x) ∈ A. This shows L ∈ Leafpε (A). 2

Corollary 4.7 Let B be a nontrivial, regular language. The e-class of B either is contained in ΣP
2 , or

contains AUΠP
2 .

Proof Follows from Theorems 3.7 and 4.6. 2

In addition, Theorem 4.6 gives us a lower bound for the e-class of ∆FO
2 :

12

Corollary 4.8 If A ∈ REG − (ΣFO
2 ∩ coL3/2), then Leafpε (A) contains at least one of the following

classes: AUΠP
2 , AUΣP

2 .

Proof By assumption, A or A is outside ΣFO
2 . By Theorem 4.6, AUΠP

2 ⊆ Leafpε (A) or AUΠP
2 ⊆

coLeafpε (A). The latter is equivalent to AUΣP
2 ⊆ Leafpε (A). 2

Note that the following is the first gap theorem for ∆P
2 . It holds for both the u-model and the e-model.

Corollary 4.9 Let B be a nontrivial, regular language.

1. The e-class of B either is contained in ∆P
2 , or contains at least one of the following classes:

AUΣP
2 , AUΠP

2 .

2. The u-class of B either is contained in ∆P
2 , or contains at least one of the following classes:

AUΣP
2 , AUΠP

2 .

Proof The first statement is an immediate consequence of Theorem 3.7 and Corollary 4.8. For the
second statement, let B3/2 denote level 3/2 of the dot-depth hierarchy [CB71, PW97]. Schmitz [Sch01]
showed that ifA ∈ REG−(B3/2∩coB3/2), then Leafpu (A) contains at least one of the following classes:
AUΣP

2 , AUΠP
2 . Borchert et al. [BLS+04] mention that Leafpu (B3/2 ∩ coB3/2) = ∆P

2 can be obtained
by an extension of their method. 2

5 A Gap Theorem for 1NP

In view of the gap theorems for NP and coNP (Corollary 4.3) it becomes evident that the classes 1NP
and MODpP play an important role, since they appear as lower bounds. In this section we analyze 1NP
in detail and prove a gap theorem for this class. This case is more challenging since we cannot utilize
an existing forbidden-pattern characterization. With Theorem 5.10 we give such a characterization for
the class of languages corresponding to 1NP. Additionally, this theorem shows that with this class we
have in fact identified all languages whose e-class is robustly contained in 1NP. This lets us derive a
gap theorem for 1NP. For a given language L, we define the following conditions:

P1: There exist words u ∈ L, v /∈ L, and w ∈ L such that u� v�w.

P2: There exist k ≥ 2 and nonempty words u, v, w ∈ L such that {u, v}�k w and
(∀x)[x≺ u or x≺ v ⇒ x /∈ L].3

We interpret the patterns P1 and P2 as forbidden patterns and define a class of languages U of languages
which neither fulfill P1 nor P2:

U =def {L : P1 and P2 fail for L}

We will later on see that U is in fact a class of regular languages, and, more important, precisely charac-
terizes the class 1NP in the e-model of leaf-languages. The next two lemmas show that the e-class of a
language which fulfills P1 or P2 is already quite powerful.

3Note that in P2, the words u and v can be the same.

13

Lemma 5.1 Let L ⊆ Σ∗ such that L satisfies P1. Then

Leafpε (L) ⊇ UP∨· coUP.

Proof Let L ⊆ Σ∗ such that there exist words u ∈ L, v /∈ L, and w ∈ L such that u� v�w, i.e. L
satisfies pattern P1. Furthermore, let A ∈ UP∨· coUP. Hence A = B ∪ C where B ∈ UP, C ∈ coUP,
and B ⊆ C. Let MB be the UP-machine accepting B, and let MC be the coUP-machine accepting C .
Observe that whenever MB on an input x produces an accepting path (and thus accepts the input in an
UP-sense), MC also produces an accepting path and hence rejects (in an coUP-sense).

In order to prove Leafpε (L) ⊇ UP∨· coUP, we show how to construct a nondeterministic polynomial-
time Turing machine M such that the following holds for all x:

x 6∈ A =⇒ βM (x) = v

x ∈ B =⇒ βM (x) = w

x ∈ C =⇒ βM (x) = u

Since u� v�w = w1 . . . wk, we can mark the letters of one fixed occurrence of u in w, we do the same
with one fixed occurrence of v in w. Let Iu ({1, . . . , l} be the indices of letters in w that are marked
to belong to u, and let Iv ({1, . . . , l} be the indices of letters in w that are marked to belong to v. Note
that #Iv = |v|, #Iu = |u|, and Iu (Iv .

For 1 ≤ i ≤ k, we construct Turing machines Mi as follows:

• If i ∈ Iu, Mi develops only one path and outputs wi on this path.

• If i ∈ Iv\Iu, Mi simulates machine MC on the same input. On every rejecting path of MC , Mi

outputs ε, if an accepting path exists, this path outputs wi.

• If i 6∈ Iv , Mi simulates machine MB on the same input. On every rejecting path of MB , Mi

outputs ε, if an accepting path exists, this path outputs wi.

Turing machine M is constructed as follows: On input x, M branches into k nondeterministic paths.
On path i, M then simulates Mi on input x. Notice that M can only produce leafstrings from {u, v, w}.
It is easy to see that M satisfies the above condition: It holds that x ∈ A ⇔ βM (x) ∈ L, and hence
A ∈ Leafpε (L). 2

Lemma 5.2 Let L ⊆ Σ∗ such that L satisfies P2. Then

Leafpε (L) ⊇ UP ∨ UP.

Proof Let L ⊆ Σ∗ such that there exists k ≥ 2 and nonempty words u, v, w = w1 . . . wl ∈ L such that
{u, v}�k w and (∀x)[x≺u or x≺ v ⇒ x /∈ L]. If u�0w we set u := v, if v�0w we set v := u. We
obtain {u, v}�k w and u�w, v�w. Observe that since L satisfies P2, the empty word ε cannot be in
L, which has to have nonempty minimal words. Furthermore, let A ∈ UP ∨ UP. Hence A = B ∪ C
where B ∈ UP and C ∈ UP. Let MB be the UP-machine accepting B, and let MC be the UP-machine
accepting C .

14

In order to prove Leafpε (L) ⊇ UP∨UP, we show how to construct a nondeterministic polynomial-time
Turing machine M such that the following holds for all x:

x 6∈ A =⇒ βM (x)≺u

x ∈ B \ C =⇒ βM (x) = u

x ∈ C \B =⇒ βM (x) = v

x ∈ B ∩ C =⇒ βM (x) = w

Observe that no proper subword of u can be in L, since P2 requests that u and v are minimal words
in L. Consequently, constructing a machine M as above yields x ∈ A ⇔ βM (x) ∈ L and hence
A ∈ Leafpε (L).

Since u�w and v�w, we can mark the letters of one fixed occurrence of u in w, we do the same with
one fixed occurrence of v in w.4 Let Iu ({1, . . . , l} be the indices of letters in w that are marked to
belong to u, and let Iv ({1, . . . , l} be the indices of letters in w that are marked to belong to v. Observe
that Iu 6= Iv and hence #(Iu ∩ Iv) < min(|u|, |v|).

For 1 ≤ i ≤ l, we construct Turing machines Mi as follows:

I. If i ∈ Iu ∩ Iv , Mi develops only one path and outputs wi on this path.

II. If i ∈ Iu\Iv , Mi simulates machine MB on the same input. On every rejecting path of MB , Mi

outputs ε, if an accepting path exists, this path outputs wi.

III. If i ∈ Iv\Iu, Mi simulates machine MC on the same input. On every rejecting path of MC , Mi

outputs ε, if an accepting path exists, this path outputs wi.

IV. If i 6∈ Iu ∪ Iv, Mi produces an accepting path if and only if MB and MC (running on the same
input as Mi) produce an accepting path. Rejecting paths of Mi output ε.

Turing machine M is constructed as follows: On input x, M branches into l nondeterministic paths. On
paths i for 1 ≤ i ≤ l, M then simulates Mi on input x.

We consider the four different possibilities for the behavior of M on an input x. We do this by analyzing
the behavior of the machines M consists of. Notice that depending on u, v, w, there might not be any
machines of types I and IV.

Case 1: x 6∈ A. Hence, UP-machines MB and MC do not accept x, i.e. both produce only rejecting
paths. Clearly, all machines of type II, III, and IV only output empty words. If Iu ∩ Iv 6= ∅, precisely
those letters of w are output that belong simultaneously to the marked occurrence of u and to the marked
occurrence v. Let i1 < i2 < . . . < i#(Iu∩Iv) be the elements of Iu∩Iv, then βM (x) = wi1 . . . wi#(Iu∩Iv)

.
As we then have βM (x)≺u, we can conclude that βM (x) 6∈ L, since no subword of u is element of L.
If Iu ∩ Iv = ∅, βM (x) = ε. Again, we conclude βM (x) 6∈ L since ε 6∈ L.

Case 2: x ∈ B \C , i.e. MB produces an accepting path on input x whereas MC produces only rejecting
paths. This means all machines of type III and IV output empty words. Recall that letters belonging to u
and v simultaneously are created by machines of type I regardless of the input. So we obtain βM (x) = u
and βM (x) ∈ L.

Case 3: x ∈ C \ B. Analogous to case 2.

4If u = v, we fix two different occurrences of u in w.

15

Case 4: x ∈ B∩C , i.e. MB and MC both produce an accepting path on input x. If Iu∪Iv = {1, . . . , k},
it is clear that βM (x) = w ∈ L. Iu ∪ Iv ({1, . . . , k}, the missing letters of w are produced by the
machines of type IV. We again obtain βM (x) = w ∈ L.

From the above case differentiation, we obtain x ∈ A⇔ βM (x) ∈ L which proves A ∈ Leafpε (L). 2

The next lemma gives simple languages that define the classes 1NP and UP∨· coUP in terms of leaf-
languages.

Lemma 5.3 1. Leafpε (1, (ε ∨ 111∗)) = 1NP.
2. Leafpε ((ε ∨ 12), 2) = UP∨· coUP.
3. Leafpε ((1 ∨ 2 ∨ 12), ε) = UP ∨ UP.

Proof 1. For ⊇, simply modify the 1NP-machine such that every accepting path outputs 1 and every
rejecting path outputs ε. For ⊆, modify the ε-machine such that every path that outputs ε then rejects,
and every path that outputs 1 then accepts.

2. ⊇: Let A ∈ UP∨· coUP, that means A = B ∪ C where B,C ∈ UP and B ⊆ C . Let MB ,MC be
the UP-machines that prove B,C ∈ UP. As B ⊆ C , it holds for all inputs x that whenever MB on
input x produces an accepting path MC on input x also produces an accepting path. We now construct a
nondeterministic Turing-machine M as follows: In input x, M first branches nondeterministically. On
the left path, M simulates MB on input x, on the right path, it simulates MC on input x. All rejecting
paths of these simulations output ε, the accepting path of MB (if existent) outputs 1, the accepting path
of MC (if existent) outputs 2. It is easy to see that the following now holds:

∀x, βM (x) ∈ {ε, 2, 12},

x ∈ B ⇒ βM (x) = 12,

x ∈ C ⇒ βM (x) = ε,

x 6∈ A ⇒ βM (x) = 2.

This proves A ∈ Leafpε ((ε ∨ 12), 2).

⊆: Let A ∈ Leafpε ((ε∨ 12), 2) via the nondeterministic ε-machine M . Observe that A = B ∪C, where
B =def {x

∣

∣ βM (x) = 12} and C =def {x
∣

∣ 2�βM (x)}. Clearly, B,C ∈ UP and B ⊆ C . Hence,
A ∈ UP∨· coUP.

3. Analogous. 2

In order to show that for any language L, fulfillment of P1 suffices for the class Leafpε (L) to be not ro-
bustly contained in 1NP, we first prove that languages characterizing UP∨· coUP cannot be pte-reduced
to languages characterizing 1NP.

Lemma 5.4 ((ε ∨ 12), 2)6≤pte
m (1, (ε ∨ 111∗)).

Proof We assume that (L,K)≤pte
m (L′,K ′). Due to Lemma 3.4, this is equivalent to

(L0,K0)≤
plt
m (L′

0,K
′
0). Recall that (L0,K0) =def ((0∗ ∨ 0∗10∗20∗), 0∗20∗) and (L′

0,K
′
0) =def

(0∗10∗, (0∗ ∨ 0∗10∗1(0 ∨ 1)∗)). Say (L0,K0)≤
plt
m (L′

0,K
′
0) holds via plt-reduction f .

16

This means there exist functions g, h which are computable in time c · logk fur suitable c, k ≥ 0 such
that f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) and the following holds:

x ∈ L0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ L′
0,

x ∈ K0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ K ′
0.

Let Mg be the deterministic polylog-time machine that computes g within the above time bound. We
choose n sufficiently large such that n > 2 · c · logk(n+ c logk n) + 2 and consider the input w =def 0n.
Since w ∈ L0, there exists precisely one 1 ≤ i ≤ h(w) such that g(w, i) = 1. Hence, Mg on input
(w, i) outputs 1, while it outputs 0 on input (w, k) for all other k. Since n > 2 · g(n, h(n)) + 2, Mg

on input (w, i) cannot have queried all positions in w. Let j be a position that is not queried by Mg

on input (w, i). We then set v =def 0j−120n−j . Notice that Mg still outputs 1 when ran on input
(v, i) since w and v only differ on a position not queried by Mg on input (w, i). As v ∈ K0, f has to
output a word from K ′

0. Since g(v, i) = 1, there has to be another i′ such that g(v, i′) = 1. Due to
n > 2 · c · logk(n+ c logk n)+ 2, we can easily find a position j′ < j such that Mg neither queries j ′ on
input (v, i) nor on input (v, i′). Let u =def 0j′−110j−j′+120n−j . As we still have g(u, i) = g(u, i′) = 1,
f(u) ∈ K ′

0 although u ∈ L0. By this contradiction, we have shown that no such f can exist. 2

Lemma 5.5 There exists an oracle O such that UP∨· coUP 6⊆ 1NPO.

Proof This follows directly from Leafp
ε ((ε ∨ 12), 2) = UP∨· coUP, Leafpε (1, (ε ∨ 111∗)) = 1NP

(Lemma 5.3), ((ε ∨ 12), 2)6≤pte
m (1, (ε ∨ 111∗)) (Lemma 5.4) and Theorem 3.6. 2

Similarly to the above note, we prove that languages characterizing UP ∨ UP cannot be pte-reduced to
languages characterizing 1NP. This is a step towards showing that for any language L, fulfillment of P2
suffices for the class Leafpε (L) not to be robustly contained in 1NP.

Lemma 5.6 ((1 ∨ 2 ∨ 12), ε)6≤pte
m (1, (ε ∨ 111∗)).

Proof We assume that (L,K)≤pte
m (L′,K ′). Due to Lemma 3.4, this is equivalent to

(L0,K0)≤
plt
m (L′

0,K
′
0). Recall that (L0,K0) =def ((0∗10∗∨0∗10∗20∗∨0∗20∗), 0∗) and (L′

0,K
′
0) =def

(0∗10∗, (0∗ ∨ 0∗10∗1(0 ∨ 1)∗)). Say (L0,K0)≤
plt
m (L′

0,K
′
0) holds via plt-reduction f .

This means there exist functions g, h which are computable in time c · logk fur suitable c, k ≥ 0 such
that f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) and the following holds:

x ∈ L0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ L′
0,

x ∈ K0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ K ′
0.

Let Mg be the deterministic polylog-time machine that computes g within the above time bound.
We choose n sufficiently large such that n

2 > 2 · c · logk(2n + c logk 2n) and consider words
xi, yi, zi,j ∈ {0, 1, 2}2n: For i, j ∈ {1, . . . , n}, we define xi =def 0i−110n−i0n, yi =def 0n0i−120n−i,
and zi,j =def 0i−110n−i0j−120n−j . Observe that for i, j ∈ {1, . . . , n}, xi, yi, and zi,j are all in L0 and
hence f(xi), f(yi), and f(zi,j) are all in L′

0. Therefore, we have

∀a ∈ {x, y}∀i ∈ {1, . . . , n}∃!j : g(ai, j) = 1.

17

For 1 ≤ i ≤ n, we define

d(i) =def l, where g(xi, l) = 1,

B(i) =def {l ∈ {1, . . . , 2n}
∣

∣Mg on input (xi, d(i)) queries position l in xi}

e(i) =def l, where g(yi, l) = 1,

C(i) =def {l ∈ {1, . . . , 2n}
∣

∣Mg on input (yi, e(i)) queries position l in xi}

Claim: There exist i, j ∈ {1, . . . , n} such that i 6∈ C(j) and n+ j 6∈ B(i).

Proof of the claim: Assuming that our claim is wrong, we conclude that for all (i, j) ∈ {1, . . . , n}2, it
holds that i ∈ C(j) or n+j ∈ B(i). Without loss of generality, we can assume that i ∈ C(j) holds
for at least half of all (i, j), i.e. for at least n2

2 tuples.5 Observe that there now exists 1 ≤ j ≤ n such

that among these n2

2 tuples, there are tuples (i1, j), (i2, j), . . . , (in/2, j) such that i1 < i2 < . . . < in/2.
Hence, it holds that i1 ∈ C(j), i2 ∈ C(j), . . . in/2 ∈ C(j). This in turn implies that Mg on input
(yj, e(j)) queries at least n

2 positions in yj . Since we have chosen n sufficiently large such that n
2 >

2 · g(2n, h(2n)), Mg cannot query all these positions. So we have contradicted our assumption and thus
proven the claim.

By this, we know that there exist i, j ∈ {1, . . . , n} such that i 6∈ C(j) and n + j 6∈ B(i). Using a
standard technique, we can show that d(i) 6= e(j).

Let us assume for a moment that d(i) = e(j). This means that on input (xi, d(i)), Mg does not query
position n+j in xi, and on input (yj , d(i)), Mg does not query position i in yj . Recall that xi and yi only
differ on positions i and n+ j. Since Mg cannot distinguish between (xi, d(i)) and (yj, d(i)) until it has
queried either position i or position n+ j (and may not be allowed to do so, depending on whether it is
running on (xi, d(i)) or (yj, d(i))), the only way to get out of the dilemma is to neither query position i
nor position n+ j. However, this implies that g(xi, d(i)) = g(yj , e(j)) = g(02n, d(i)) = 1. Moreover,
Mg cannot distinguish whether it is running on input (xi, d(i)), (yj, d(i)), or (02n, d(i)). Since 0n ∈ K,,
there exists (at least one) e′ 6= d(i) such that g(02n, e′) = 1. Let p be a position in 02n such that Mg

neither queries pwhen running on input (02n, d(i)), nor when running on input (02n, e′). Such a position
exists since n

2 > 2·g(2·n, h(2·n)). Consequently, g(0p−1102n−p, d(i)) = 1 and g(0p−1102n−p, e′) = 1.
Hence, f(0p−1102n−p) ∈ K ′ although 0p−1102n−p ∈ L. This is a contradiction, hence d(i) 6= e(j).

Since i 6∈ C(j) and n + j 6∈ B(i) it follows that g(xi, d(i)) = g(yj , e(j)) = g(zi,j , d(i)) =
g(zi,j , e(j)) = 1. From d(i) 6= e(j), we can then conclude that f(zi,j) ∈ 0∗10∗10∗ and thus f(zi,j) ∈
K ′ although zi,j ∈ L. This contradiction proves that no such f can exist; hence (L,K) 6≤pte

m (L′,K ′). 2

Lemma 5.7 There exists an oracle O such that UP ∨ UP 6⊆ 1NPO.

Proof This follows directly from Leafp
ε ((1 ∨ 2 ∨ 12), ε) = UP ∨ UP (Lemma 5.3.3), Leafp

ε (1, (ε ∨
111∗)) = 1NP (Lemma 5.3), ((1 ∨ 2 ∨ 12), ε)6≤pte

m (1, (ε ∨ 111∗)) (Lemma 5.6) and Theorem 3.6. 2

We now know that e-classes of languages outside U are not in 1NP. The next theorem will enable us
to better understand the languages inside U. As it turns out, we can avail ourselves of a well-known
algebraic property of Σ∗ to obtain a convenient characterization of U.

5Otherwise, n+j ∈ B(i) has to hold for at least n2

2
tuples. The reasoning is analog.

18

Definition 5.8 A partial ordering is a well-partial ordering if it contains no infinite descending sequence
and no infinite antichain (i.e., a set of pairwise incomparable elements).

Theorem 5.9 ([Hig52]) (Σ∗,�) is a well-partial ordering.

The following theorem gives the announced characterization of U, the class that precisely corresponds
to 1NP in the e-model.

Theorem 5.10 The following statements are equivalent for any language L ⊆ Σ∗.

1. L ∈ Rpte(1), the pte-closure of {1}.

2. For all oracles O it holds that Leafp
ε (L)O ⊆ 1NPO.

3. L ∈ U, that means both conditions, P1 and P2, fail for L.

4. There exist finite sets A,B ⊆ Σ∗ such that

L = {w
∣

∣A�1 w and (∀v ∈ B)[v 6�w]}.6 (1)

Proof 1 ⇔ 2 : This is an immediate consequence of Theorem 3.6, since for all oraclesO, Leaf p
ε (1)O =

1NPO.

2 ⇒ 3 : Assume that relative to all oracles, Leafp
ε (L) ⊆ 1NP. From Lemmas 5.1, 5.5 and Lemmas 5.2,

5.7, we know that if L satisfies P1 or P2, we can construct an oracle O such that Leafpε (L)O 6⊆ 1NPO.
This contradicts our assumption. Therefore, L neither satisfies P1 nor P2.

3 ⇒ 4 : Let
A = {v ∈ L

∣

∣ (∀v′≺ v)[v′ /∈ L]}.

Observe thatA can be seen as the set of minimal words inL. Furthermore, the elements inA are pairwise
incomparable with respect to �. From Theorem 5.9 and Definition 5.8 it follows that A is finite. Let

B = {w /∈ L
∣

∣ (∃v ∈ A)[v�w and ∀w′[v�w′ ≺w ⇒ w′ ∈ L]]}.

This set can be thought of as the set of minimal words outside L that have predecessors in A. We claim
that B is finite as well: Otherwise, since A is finite, there exists v ∈ A such that the following subset of
B is infinite.

B′ = {w /∈ L
∣

∣ v�w and ∀w′[v�w′ ≺w ⇒ w′ ∈ L]}.

Observe that the elements in B ′ are pairwise incomparable with respect to �. Again, from Theorem 5.9
and Definition 5.8 it follows that B is finite.

We are going to show equation (1). Let w ∈ L. So there exists v ∈ A such that v�w. Assume there
exist different v1, v2 ∈ A such that v1 �w and v2 �w. It follows that v1, v2, and w are nonempty. This
implies that L satisfies condition P2 which contradicts our assumption. Therefore, there exists exactly
one v ∈ A such that v�w. If v�k w for some k ≥ 2, then L satisfies condition P2 which again is a
contradiction. So v�1w and hence A�1 w.

6B can be thought of as the set of forbidden subwords, i.e., events that may not occur in words from L. Contrary, A

represents the set of events such that every word in L triggers exactly one such event.

19

Assume now that there exists v ∈ B such that v�w. By B’s definition, there exists v′ ∈ A such
that v′ � v and for all w′, [v′ �w′ ≺ v ⇒ w′ ∈ L]. In particular, v′� v�w and v′ ∈ L, v /∈ L, and
w ∈ L. Hence L satisfies condition P1 which contradicts our assumption. So there does not exist such
v ∈ B and therefore, w belongs to the right-hand side of equation (1). This shows the inclusion ⊆ in
equation (1).

Let w be an element of the right-hand side of (1). Hence there exists precisely one v ∈ A such that
v�w. Assume w /∈ L and choose a shortest word u /∈ L such that v�u�w. It follows that u ∈ B.
Together with u�w this implies that w is not an element of the right-hand side of (1). This contradiction
shows w ∈ L and finishes the proof of equation (1).

4 ⇒ 2 : Let A = {u1, . . . , um} and B = {v1, . . . , vn} where m = |A| and n = |B|. Let
L′ ∈ Leafpε (L). So there exists a polynomial-time Turing machine M whose computation paths output
symbols from Σ ∪ {ε} such that x ∈ L′ ⇔ βM (x) ∈ L. Define a nondeterministic machine N that
works as follows on input x. First, N splits into m+ n paths p1, . . . , pm and q1, . . . , qn. If ui = ε, then
path pi outputs 1. If ui 6= ε, then on path pi the machine nondeterministically guesses an occurrence
of ui (by guessing the positions of ui’s letters) in the leaf string βM (x). If such a guess is successful,
then N outputs 1, otherwise it outputs ε. Similarly, on path qi the machine nondeterministically guesses
an occurrence of vi in βM (x). If such a guess is successful, then N outputs 11 (by producing two
neighbouring paths with output 1), otherwise it outputs ε. From (1) it follows that

x ∈ L′ ⇔ βM (x) ∈ L ⇔ βN (x) = 1.

Hence L′ ∈ Leafpε (1) and therefore Leafpε (L) ⊆ Leafpε (1). Finally, observe that our argumentation is
relativizable. 2

Observe that due to the characterization of U given by Theorem 5.10.4, we immediately obtain that U
only contains regular languages. We can now formulate the new gap theorem.

Theorem 5.11 Let L be a nontrivial language.

1. If L ∈ U, then the e-class of L is contained in 1NP.

2. If L 6∈ U, then the e-class of L contains UP∨· coUP or UP ∨ UP.

Proof Follows from Theorem 5.10 and the fact that the Lemmas 5.2 and 5.1 are relativizable. 2

Acknowledgments

We thank Bernd Borchert, Victor Selivanov, and Klaus W. Wagner for very interesting discussions and
many helpful suggestions.

20

References

[BCS92] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes.
Theoretical Computer Science, 104:263–283, 1992.

[BKS99] B. Borchert, D. Kuske, and F. Stephan. On existentially first-order definable languages and
their relation to NP. Theoretical Informatics and Applications, 33:259–269, 1999.

[BLS+04] B. Borchert, K. Lange, F. Stephan, P. Tesson, and D. Thérien. The dot-depth and the polyno-
mial hierarchy correspond on the delta levels. In Developments in Language Theory, pages
89–101, 2004.

[Bor95] B. Borchert. On the acceptance power of regular languages. Theoretical Computer Science,
148:207–225, 1995.

[Brz76] J. A. Brzozowski. Hierarchies of aperiodic languages. RAIRO Inform. Theor., 10:33–49,
1976.

[BSS99] B. Borchert, H. Schmitz, and F. Stephan. Unpublished manuscript, 1999.

[BV98] H.-J. Burtschick and H. Vollmer. Lindstr öm quantifiers and leaf language definability. In-
ternational Journal of Foundations of Computer Science, 9:277–294, 1998.

[CB71] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of Computer and
System Sciences, 5:1–16, 1971.

[Gla05] C. Glaßer. Polylog-time reductions decrease dot-depth. In Proceedings 22nd Symposium
on Theoretical Aspects of Computer Science, volume 3404 of Lecture Notes in Computer
Science. Springer Verlag, 2005.

[GOP+05] C. Glaßer, M. Ogihara, A. Pavan, A. L. Selman, and L. Zhang. Autoreducibility, mitoticity,
and immunity. In Proceedings 30th International Symposium on Mathematical Foundations
of Computer Science, volume 3618 of Lecture Notes in Computer Science, pages 387–398.
Springer-Verlag, 2005.

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. In Proc. London Math. Soc.,
volume 3, pages 326–336, 1952.

[HLS+93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power
of polynomial time bit-reductions. In Proceedings 8th Structure in Complexity Theory, pages
200–207, 1993.

[MP71] R. McNaughton and S. Papert. Counterfree Automata. MIT Press, Cambridge, 1971.

[NR98] R. Niedermeier and P. Rossmanith. Unambiguous computations and locally definable ac-
ceptance types. Theoretical Computer Science, 194(1-2):137–161, 1998.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.

[PP86] D. Perrin and J. E. Pin. First-order logic and star-free sets. Journal of Computer and System
Sciences, 32:393–406, 1986.

[PW97] J. E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of computing
systems, 30:383–422, 1997.

21

[Sch65] M. P. Sch ützenberger. On finite monoids having only trivial subgroups. Information and
Control, 8:190–194, 1965.

[Sch01] H. Schmitz. The Forbidden-Pattern Approach to Concatenation Hierarchies. PhD thesis,
Fakult ät f ür Mathematik und Informatik, Universit ät W ürzburg, 2001.

[ST04] H. Spakowski and R. Tripathi. On the power of unambiguity in alternating machines. Tech-
nical Report 851, University of Rochester, 2004.

[Str81] H. Straubing. A generalization of the Sch ützenberger product of finite monoids. Theoretical
Computer Science, 13:137–150, 1981.

[Str85] H. Straubing. Finite semigroups varieties of the form V * D. J. Pure Appl. Algebra, 36:53–
94, 1985.

[Thé81] D. Thérien. Classification of finite monoids: the language approach. Theoretical Computer
Science, 14:195–208, 1981.

[Ver93] N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial theory
of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993. In Russian.

[Wag04] K. W. Wagner. Leaf language classes. In Proceedings International Conference on Ma-
chines, Computations, and Universality, volume 3354 of Lecture Notes in Computer Sci-
ence. Springer Verlag, 2004.

22

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

