
The Directed Planar Reachability Problem

Eric Allender1, Samir Datta2, and Sambuddha Roy3

1 Department of Computer Science, Rutgers University, Piscataway, NJ 08855,
allender@cs.rutgers.edu

2 Chennai Mathematical Institute, Chennai, TN 600 017, India sdatta@cmi.ac.in
3 Department of Computer Science, Rutgers University, Piscataway, NJ 08855,

samroy@paul.rutgers.edu

Abstract. We investigate the s-t-connectivity problem for directed planar graphs,
which is hard for L and is contained in NL but is not known to be complete. We
show that this problem is logspace-reducible to its complement, and we show that
the problem of searching graphs of genus 1 reduces to the planar case.
We also consider a previously-studied subclass of planar graphs known as grid
graphs. We show that the directed planar s-t-connectivity problem reduces to the
reachability problem for directed grid graphs.
A special case of the grid-graph reachability problem where no edges are directed
from right to left is known as the “layered grid graph reachability problem”. We
show that this problem lies in the complexity class UL.

1 Introduction

Graph reachability problems play a central role in the study and understanding of sub-
classes of P. The s-t-connectivity problem for directed graphs (STCONN) is complete
for nondeterministic logspace (NL); the restriction of this problem to undirected graphs,
called USTCONN, has recently been shown to be complete for logspace (L) [Rei05];
thus this problem has the same complexity as the s-t-connectivity problem for graphs
of outdegree 1 (and even for graphs of indegree and outdegree at most 1 [Ete97]).

Grid graphs are an important restricted class of graphs for which the reachability
problem has significant connections to complexity classes. (The vertices in a grid graph
are a subset of IN × IN, and all edges are of the form (i, j) → (i + b, j) or (i, j) →
(i, j + b), where b ∈ {1,−1}.) In most settings (and in particular in all of the results
we will present in this paper) it is sufficient to restrict attention to grid graphs where the
start vertex s lies in the first column, and the terminal vertex t lies in the final column.
In [BLMS98], Barrington et al showed that the reachability problem in (directed or
undirected) grid graphs of width k captures the complexity of depth k AC0. Barrington
also considered general grid graphs without the width restriction, calling this the Grid
Graph Reachability problem (GGR) [Bar02]. The construction of [BLMS98, Lemma
13] shows that GGR reduces to its complement via uniform projections. (The problems
STCONN and USTCONN also reduce to their complements via uniform projections, as a
consequence of [Imm88,Sze88,Rei05,NTS95].) Reachability problems for grid graphs
have proved easier to work with than the corresponding problems for general graphs.
For instance, the reachability problem for undirected grid graphs was shown to lie in L

Electronic Colloquium on Computational Complexity, Report No. 148 (2005)

ISSN 1433-8092

in the 1970’s [BK78], although more than a quarter-century would pass before Reingold
proved the corresponding theorem for general undirected graphs.

Barrington also defined what we will refer to as the layered grid graph reachability
problem LGGR, in which no edges are directed from right to left in the grid. (That
is, there is no edge of the form (i, j) → (i, j − 1); we use the convention that ver-
tex (i, j) refers to the point in row i and column j.) Barrington originally called these
graphs “acyclic” grid graphs, because this is a simple syntactic condition guaranteeing
that a grid graph will have no cycles. (However, this terminology was confusing be-
cause there are grid graphs without cycles that do not meet this syntactic criterion.) In
personal communication, Barrington suggested the name “layered”, with the following
justification. It is shown in [Bar02] that this problem is equivalent to the special case
where all edges are directed from left to right or from top to bottom. Thus without loss
of generality, the start node is in the top left corner. If such a grid graph is rotated 45
degrees counterclockwise, one obtains a graph whose “columns” correspond to the di-
agonals of the original graph, where s is the only node in the first “column”, and all
edges in one column are directed “northeast” or “southeast” to their neighbors in the
following column. This is consistent with the usual usage of the word “layered” in graph
theory.

Barrington showed that GGR and LGGR are hard for NC1 under uniform pro-
jections [Bar02], but the best upper bound that was identified by Barrington for these
problems is NL.

Our focus in this paper is the restriction of STCONN to planar (directed) graphs
PLANAR.STCONN. This problem is hard for L under uniform projections, as a conse-
quence of [Ete97], and it lies in NL. Nothing else has been published regarding its com-
putational complexity. Thus the class of problems ≤log

m -reducible to PLANAR.STCONN

can be viewed as a complexity class lying between L and NL. We show that this class
is closed under complement, by presenting a ≤log

m reduction of PLANAR.STCONN to its
complement; we do not know if this reduction can be accomplished by uniform projec-
tions or even by NC1 reductions; in contrast to the case for STCONN, USTCONN, and
GGR. We also show that this class contains the s-t-connectivity problem for graphs of
genus 1; the generalization for graphs of higher genus remains open.

We have two separate proofs of closure under complement. We present a direct
proof in Section 3. In Section 4 we present a reduction showing PLANAR.STCONN

≤log
m GGR. This also proves closure under complement, because [BLMS98, Lemma

13] shows that GGR reduces to its complement.

Our final technical contribution is to show that LGGR lies in the complexity class
UL. This must be viewed as a slight improvement, since it is shown in [ARZ99] that
NL = UL if there is any problem in DSPACE(n) that requires circuits of exponential
size, and it is shown in [RA00] that NL/poly = UL/poly (unconditionally). We actually
show that LGGR lies in UL∩coUL, although (in contrast to all of the other reachability
problems we consider) it remains open if LGGR reduces to its complement. (Note also
that it remains open if UL = coUL.) Some other examples of reachability problems in
UL were presented by Lange [Lan97]; these problems are obviously in UL (in the sense
that the positive instances consist of certain graphs that contain only one path from s to
t), and the main contribution of [Lan97] is to present a completeness result for a natural

subclass of UL. In contrast, positive instances of LGGR can have many paths from s

to t. We know of no reductions (in either direction) between LGGR and the problems
considered in [Lan97].

Series-parallel graphs are an important and well-studied subclass of planar directed
graphs. Jakoby, Liskiewicz, and Reischuk showed in [JLR01] that s-t-connectivity in
series-parallel graphs can be computed in logspace (and in fact is complete for L). They
also show the much stronger result that counting the number of paths between s and t

can be computed in logspace for series-parallel graphs. Very recently, in joint work with
David Mix Barrington and Tanmoy Chakraborty, we have identified some even larger
classes of planar directed graphs for which s-t-connectivity can be solved in logspace;
these results will be described in a subsequent paper.

2 Reduction to a Special Case

In this section we present a reduction showing that it is sufficient to consider the special
case where the vertices s and t both lie on the external face of the planar graph. This
was useful in our direct proof of closure under complement, but it is also useful in
presenting our reduction to grid-graph reachability.

Let G be a directed graph. Testing if G is planar reduces to the undirected s-t-
connectivity problem [AM04] and thus can be done in logarithmic space [Rei05]. Fur-
thermore, if a graph is planar then a planar combinatorial embedding (i.e., a cyclic
ordering of the edges adjacent to each vertex) can be computed in logarithmic space
[AM04]. Given a combinatorial embedding, it is easy to check if two vertices lie on
the same face. (The vertices on each face adjacent to a vertex v can be enumerated by
starting at some (undirected) edge adjacent to v and starting a walk from v along that
edge; each time a new vertex w is entered along some edge e the walk continues along
the edge that succeeds e in the cyclic ordering of edges around w.) Thus in logspace we
can check if s and t lie on the same face. If so, then the graph G is already in the desired
form, since we can consider any face to be the “external” face in the embedding.

If s and t do not lie on the same face, then by use of the undirected connectivity
algorithm we can determine if there is an undirected path from s to t. If there is no such
path, then clearly there is no directed path, either. Otherwise (as observed in [AM04])
we can find a simple undirected path P = (s, v1, v2, . . . , vm, t) in logspace. First, we
construct a new face with s and t on it, by “cutting” along the path P . (That is, we
replace each vertex vi on P by vertices vi,a and vi,b. For any vertex vi on P , let u

and x be the vertices appearing before and after vi on P ; that is, u ∈ {s, vi−1} and
x ∈ {t, vi+1}. Let e1, . . . , eda

be the edges embedded “above” the edges connecting vi

to u and x in the cyclic ordering around vi, and let e′1, . . . , e′db
be the edges embedded

“below” the edges between vi and u and x. That is, if the undirected path from s to
t moves from left to right, edges e1, . . . , eda

appear on the left side of this path, and
edges e′1, . . . , e′db

appear on the right side. Let L be the set of all edges adjacent to P
embedded on the left side, and let R be the set of all edges adjacent to P embedded on
the right side. In the new graph, the edges in L that were connected to vi are connected
to vi,a and those in R are connected to vi,b. Edges between vi and {vi+1, vi−1 are
duplicated, with edges between vi,c and {vi+1,c, vi−1,c} for c ∈ {a, b}. Similarly, edges

between s and v1 (and t and vm) are duplicated, with edges between s and v1,a and v1,b

(and edges between t and vm,a and vm,b, respectively). This is illustrated in Figure 1.)

G’

ts

Fig. 1. Cutting along a st path

This new graph G′ is planar, and has vertices s and t on the same face (the only new
face created). Since we can embed any planar graph such that any specific face is the
outer face, we re-embed our graph G′ such that s and t are now on the outer face. From
now on we assume G′ has this embedding.

In the process of going from G to G′ we have changed the connectivity of the
graph; s and t might have been connected in G but they might not be connected in
G′. In particular, any directed path in G from s to t that uses edges from both L and
R is not replicated in G′. We solve this problem by pasting together copies of the
graph G′, as follows. The outer face of G′ consists of two undirected paths from s to
t: s, v1,a, v2,a, . . . , vm,a, t and s, v1,b, v2,b, . . . , vm,b, t. The operation of “pasting” two
copies of G′ together consists of identifying the vertices v1,a, v2,a, . . . , vm,a in one
copy with the vertices v1,b, v2,b, . . . , vm,b in the other copy. (Note that this amounts to
“sewing together” two copies of the path that were “cut apart” in creating G′ from G.)
The graph G′′ consists of 2n + 1 copies of G′ pasted together in this way: the “original
copy” in the middle, and n copies pasted in sequence to the top boundary of the outer
face, and n copies pasted in sequence to the bottom boundary.

G′′ has (the original copies of) s and t on the outer face. A simple inductive argu-
ment shows that there is a directed path from s to t in G if and only there is a directed
path from (the original copy of) s to one of the copies of t in G′′. A pathological exam-
ple showing that many copies of G′ are needed is shown in Figure 2. To complete the
reduction, we construct a graph H that consists of G′′ along with a new vertex t′′ with
directed edges from each copy of t to t′′. The vertices s and t′′ appear on the external
face of H , and there is a directed path from s to t in G if and only if there is a directed
path from s to t′′ in H .

s t

G

P

Fig. 2. A pathological case

3 Closure Under Complement

.
In this subsection we reduce the s-t-connectivity problem for directed planar graphs

with s and t on the outer face to the complement of the s-t-connectivity problem for
directed planar graphs.

First, however, we define some terms more carefully. As observed in the preceding
subsection, it is easy in logspace to enumerate all of the vertices that appear on a given
face of a planar combinatorial embedding. Note however that the edges that connect
these vertices around the face might not constitute a simple (undirected) cycle. How-
ever, for any bounded face F of a planar embedding, there is always a simple undirected
cycle called the boundary of F . Observe that the edges appearing on the boundary of F

can also be enumerated in logspace (because they are the only edges that are traversed
in only one direction while enumerating all of the vertices that appear on the face F).
With this observation in hand, we proceed with our discussion of the special case.

We are given a directed graph G embedded in the plane with the source and sink
vertices s and t on the outer face. The basic intuition is that if there is no directed path
between s and t in G then there is a proof of this fact, consisting of a geometric curve C
slicing across G with s on one side of C and t on the other side, where all of the edges
crossing C are directed away from t; thus no path can start at s and reach t. We give
a formal definition of such a curve (which we call a separating cut), and observe that
there is a separating cut if and only if there is not a path from s to t in G. Then we show
how to construct a directed planar graph H such that there is a separating cut for G if
and only if there is a directed path from s′ to t′ in H .

Definition 3.1. A separating cut for G is a simple closed curve C in the plane, with s

embedded in the interior of C, and t embedded in the exterior of C, where C intersects
no vertex of G, and all edges of G that intersect C are directed from the exterior to the
interior of C.

Lemma 3.2. Given a planar directed graph G with vertices s and t on the outer face,
there is a separating cut if and only if if there is no directed path from s to t in G.

Proof. It is obvious that if there is a path from s to t then there is no separating cut. We
will show that the converse holds.

We are assuming that the directed graph G does not have a path from s to t. Since s

and t are on the external face, the external face consists of two (undirected) paths from
s to t. Call one of these paths the upper boundary, and call the other path the lower
boundary of the graph. (We will consider s to be embedded to the left of t, so traversing
the upper boundary from s to t is in a clockwise direction, and traversing the lower
boundary from s to t proceeds counterclockwise. Note also that certain edges might
appear on both the top and bottom boundaries.) Let u and v be two adjacent vertices
on the upper boundary, such that u is reachable from s via a directed path (possibly
not using edges from the upper boundary) and none of the vertices between v and t are
reachable from s. (Such a pair must exist, since t is not reachable, and s is.) See Figure
3.

0

x
w

1e

e
v

u

ts

Fig. 3. Graph G with u, v

Clearly the edge e0 between u and v is directed from v to u. Except for the trivial
case where e0 lies on both the upper and lower boundaries, the edge e0 forms part of
the boundary of some bounded face F0, and is directed in a counterclockwise direction
around F0. Since u and v both lie on the boundary of F0, and u is reachable from s and
v is not, there is some pair of adjacent vertices w and x on the boundary of F0 such that
x is not reachable from s, and all of the vertices between w and u are reachable from
s. Clearly the edge e1 between w and x is directed from x to w and thus is directed
clockwise around the boundary of F0.

We now define a separating cut C that starts in the external face and crosses over e0

into F0 and leaves F0 over edge e1. We now find ourselves either in the external face
or in some other bounded face F1, where e1 is oriented counterclockwise around the
boundary of F1. This is illustrated by the dotted line in Figure 3.

We will establish some invariants regarding the curve C, and for this it will be nec-
essary to talk about the right side and the left side of C. Just as a river has a right bank
and a left bank, so also C passes vertices to its right and left as it proceeds away from the

upper boundary. Thus u and w are on the right side of C and v and x are on the left side.
Note that for each edge ei that C crosses, the vertex on the right side of C is reachable
from s and the vertex on the left side is not. Also, for each bounded face Fi that C en-
ters, the edge ei is oriented counterclockwise around Fi, and ei+1 is oriented clockwise
around Fi, and all vertices to the right of C on the boundary of Fi are reachable from s.

Using these invariants, it is clear how to define e2. We continue curve C over F1

to cross over e2, where we now find ourselves either in the external face or in some
bounded face F2. In this way, we define e3, F3, etc., and extend C across them. We
claim that C never crosses itself, and that in a finite number of steps the curve C reaches
the external face by crossing an edge on the lower boundary. When we do, we continue
through the external face around s and close the curve where we started above the upper
boundary. Thus the proof will be complete once we establish this claim.

In order to prove that that C never crosses itself, consider the first time C revisits
some face Fi. (That is, consider any i and the least j > i such that Fi = Fj .) Assume
also that up to this point C has not crossed the same edge twice, nor crossed itself. We
will show that C can continue on without crossing itself or crossing the same edge twice.
This is illustrated in Figures 4 and 5. The previous time that C crossed Fi it entered
across edge ei and exited across edge ei+1. Our invariants tell us that all of the vertices
on the boundary of Fi in the region running counterclockwise between ei and ei+1 are
reachable from s, and also that, when curve C comes back to Fi = Fj by crossing
edge ej , one of the endpoints of ej is not reachable from s. Thus ej must appear in
the region running clockwise between ei and ei+1 (and hence the situation illustrated
in Figure 4 cannot arise). The edge ei+1 is not equal to ej (because they are oriented
in opposite directions) and by induction ei 6= ej . Edge ej+1 is found by proceeding
counterclockwise around Fj from ej and stopping when a vertex is encountered that is
not reachable from s. Thus ej+1 will be found in the region strictly between ej and ei,
and thus C can cross from ej to ej+1 without intersecting its earlier traversal from ei to
ei+1.

s t

u
v

e

e1
w

x

y
z

F0

0

Fig. 4. C crossing itself from left.

s t

u
v

e

e
w

x
y

z

F

0

1

e
2

1

Fig. 5. C crossing itself from right.

C might return yet again to Fi = Fj = Fk , entering Fi along some edge ek. Retain-
ing our inductive hypothesis, the same argument as above shows that ek cannot appear
between ei and ei+1 or between ej and ej+1, and it cannot appear between ei+1 and
ej because this would require C to cross itself, contrary to our inductive hypothesis.
Thus ek must appear in the segment of the boundary of Fi running counterclockwise
between ej+1 and ei. The same argument as with ej+1 shows that ek+1 must appear in
the segment of the boundary of Fi running counterclockwise between ek and ei, and
thus C can enter Fi across ek and exit over ek+1 without crossing itself. An inductive
argument shows that no matter how many times C returns to face Fi, the edges it uses
to enter and exit Fi form a sequence running counterclockwise around the boundary.

We have now established that the curve C never crosses itself, and it never crosses
the same edge twice. Since the graph contains only a finite number of edges, it is clear
that C will enter the external face after a finite number of steps. In order to establish
our claim and complete the proof, it remains only to show that when C does enter the
external face, it must happen on the lower boundary.

If C were to enter the external face along the upper boundary, then it cannot happen
between t and e0, because none of the vertices in that segment of the upper boundary
are reachable from s, whereas each edge that C is adjacent to a vertex that is reachable
from s. On the other hand, if C were to enter the external face along the upper boundary
between s and e0, then C could be extended to return to its starting point, with the
property that for each directed edge (u, v) that crosses C, the vertex v on the left side of
C (the exterior) is not reachable from s, but the vertex u on the right side (the interior)
of C is reachable from s. This is a contradiction, since every path from s to the interior
of C would have to pass through a vertex that is not reachable from s. (See Figure 6.)
This completes the proof of the claim, and hence the lemma is proved.

We can now present the details of our reduction.
We are given a directed graph G embedded in the plane with the source and sink

vertices s and t on the outer face. In logspace, we can check if there is an edge that
appears on both the upper and lower boundaries of G that is directed away from t and
toward s on these boundaries. If this is the case, then clearly there is no path from s to

s t

u
v

e

e
w

x

y
z

x1
w1

0

1

Fig. 6. Curve C returning to the upper boundary

t. If this is not the case, then we construct the graph H with vertices {s′, t′}∪ {F : F

is a bounded face of the planar embedding of G}. There are directed edges of the form
(s′, F) for all vertices F such that F contains an edge on the upper boundary of G that
is directed away from t. There are directed edges of the form (F, t′) for all vertices F

such that F contains an edge on the lower boundary of G that is directed away from t.
There are directed edges (F, F ′) if there is an edge e that is directed clockwise around
the boundary of F and counterclockwise around the boundary of F ′.

It is clear that H is a planar graph, because (except for s′ and t′) it is a subgraph of
the dual of G.

The proof is completed by showing

– Given G, an encoding of H can be constructed in logarithmic space.
– There is a path from s′ to t′ in H if and only if there is no path from s to t in G.

In order to construct an encoding for H , it is necessary to have a scheme for assign-
ing names to faces of G. Given any edge e in G, there can be at most two bounded faces
F1 and F2 of G adjacent to e. There must also be some vertex v that is on the boundary
of F1 and not of F2 (and vice-versa). Thus any such pair (e, v) can serve as a “name”
for F . We let the lexicographically least such pair serve as the name of F . Given any
vertex v of G, it is easy in logspace to enumerate all of the names of the faces that are
adjacent to v.

We have already observed that it is easy to enumerate the upper and lower bound-
aries of G. Thus, it is easy to enumerate all of the edges adjacent to s′ and t′ in H . In
order to determine if there is an edge (F, F ′) in H , it is necessary to determine the ori-
entation of each edge around each face of G. For faces adjacent to the upper and lower
boundaries of G, this is easy to compute in logspace. We can build an (undirected)
bipartite graph with vertices of the form (e, F, c) where c ∈ {clockwise, counterclock-
wise}. If e appears on the boundary of F and F ′, then there are undirected edges:

((e, F,clockwise),(e, F ′,counterclockwise)) and
((e, F ′,clockwise),(e, F,counterclockwise)).

Since we are assuming that no edge appears on both the upper and lower boundaries of
G, knowing the orientation of the edges on the upper and lower boundaries completely

determines the orientation of all other edges of G. Thus, to determine which way e is
oriented around face F , it suffices to apply the logspace algorithm for undirected s-t
connectivity to determine the (unique) value of c such that (e, F, c) is in the same con-
nected component as some triple (e′, F ′, c′) giving the correct information about some
edge e′ on the upper boundary.

We have now shown that an encoding of H can be constructed in logspace.
If there is no path from s to t in G, then there is a separating cut. As shown in

the proof of Lemma 3.2, this cut starts above the upper boundary (in the position of
s′) and enters a sequence of faces F0, F1, . . . entering each Fi across an edge that
is oriented counterclockwise around Fi, and departing across an edge that is oriented
clockwise around Fi, before finally crossing the lower boundary. It is clear that this
yields a directed path s′, F0, . . . , t′ in H .

Conversely, assume that there is a directed path from s′ to t′ in H . Thus there is
a simple path s′, F0, F1, . . . , Fr, t

′ where each Fi is distinct. We can describe a curve
starting above the upper boundary of G and crossing into F0, and from there into F1

etc., eventually reaching the lower boundary. We then continue the curve around s and
back to its starting point above the upper boundary. Clearly this is a simple curve, and
all edges that cross the curve are directed from the exterior to the interior; thus it is a
separating cut, demonstrating that there is no edge from s to t in G.

4 Grid Graphs

In this section, we present a ≤log
m reduction of PLANAR.STCONN to GGR.

Using the reduction of Section 2, we may assume that we are given a planar graph G

with s and t on the external face. By applying the reachability algorithm on undirected
graphs, we can merge all vertices that are joined by bidirected edges, and thus we can
assume that all edges are unidirectional; note that the graph remains planar after this
transformation. We may also assume without loss of generality that G has no vertex of
degree (indegree + outdegree) greater than 3, and that s has degree two. (To see this,
observe that if v is a vertex of degree d > 3, then we may replace v with d vertices
arranged in a directed cycle, with each one adjacent to one of the d edges that were
connected to v. In order to compute this transformation it is important to note that we
can compute the planar embedding in logspace. If the vertex s has degree three, then an
additional vertex of degree two can be inserted into this cycle, and re-named s.)

We can compute an (undirected) spanning tree T of G in logspace. The vertex s is
a vertex of T , and we can consider it to be the root of T ; without loss of generality s

has two children in T . By our assumptions on G, the tree T is a binary tree; the planar
embedding of G imposes an ordering on the children of each node in T . As observed in
[AM04], we can compute the height h(v) of each node v in T in logspace (by counting
the number of vertices that are ancestors of v). For notational convenience, define the
height of the root s to be 1, and if v has child u then h(u) = h(v) + 1.

At this point, we are ready to assign each vertex of G to a grid point. Our grid graph
will consist of a “fine grid” and a “coarse grid”. The coarse grid consists of points placed
at the corners of large squares (of size (4n + 1) × (4n + 1)) of the fine grid. (The fine
grid will be used to route non-tree edges between vertices placed on the coarse grid.)

For any node x, define w(x) to be the number of leaves of T that appear strictly to the
left of x; w(x) can be computed easily in logspace by traversing T . Each vertex x is
assigned to the point (h(x), w(x) + 1) in the coarse grid; note that the root s is placed
at the top left corner (1, 1). If node x is at position (i, j) in the coarse grid, then the
tree edge from x to its left child is embedded as a vertical path to point (i + 1, j) in the
coarse grid. If x also has a right child y, then this edge is embedded as a horizontal path
to location (i, w(y) + 1) followed by a vertical path to location (i + 1, w(y) + 1) in the
coarse grid. This is illustrated in Figure 7.

w(e)w(e)

ss

w(e)

u

v

e

e

u v

Fig. 7. Embedding a graph on the grid. Edges used in the spanning tree are shown as dashed lines;
non-tree edges are solid.

For every non-tree edge e in the tree we can find the number w(e) of non-tree edges
enclosed by the unique cycle formed by adding e to the tree. (For edge e = (u, v), w(e)
can be computed by finding the least common ancestor y of u and v and determining
for each non-tree edge connected to a descendant of y if it is embedded to the right or
left of the paths between y and u and v.) For any non-tree edge e = (u, v), note that
u and v have degree at most two in the tree T , and thus there is no tree edge attached
horizontally adjacent to u or v. The embedding determines if the path representing e

should be attached to the east or west sides of u and v. If the embedding goes around
a leaf z of the tree T , then the path is routed horizontally from u to a location w(e)
fine grid points to the east or west of the column containing z, and vertically down to
a point w(e) fine grid points below the level of the leaf of maximum height, and from
there horizontally to a point w(e) fine grid points east or west of the column containing
v, then vertically to the level of v, and then horizontally to attach to v. If the embedding

does not go around a leaf, then a simpler path can be drawn: horizontally to a point w(e)
fine grid points east or west of v, then vertically to the level of v, and then horizontally
to connect to v. It is easy to verify that no paths collide in this way. See Figure 7 for an
example.

Thus we have the following theorem.

Theorem 4.1. PLANAR.STCONN≤log
m GGR

Observe that this result, combined with [BLMS98, Lemma 13], provides an alter-
nate construction of a ≤log

m reduction of PLANAR.STCONN to its complement.

5 More Closure Properties

Different types of logspace reductions were introduced and studied by Ladner and
Lynch [LL76], who showed that logspace Turing and truth-table reducibilities coincided
(A≤log

T B iff A≤log
tt B). They also introduced a more restrictive version of logspace-

computable truth-table reducibility, known as logspace Boolean formula reducibility
≤log

bf−tt . A≤log
bf−ttB if there is a logspace computable function f such that f(x) =

(q1, q2, . . . , qr, φ) where each qi is a query and φ is a Boolean formula with r variables
y1, . . . , yr, such that x ∈ A if and only if φ evaluates to 1 when the variables yi are
assigned the truth value of the statement “qi ∈ B”. Additional results about this type of
reducibility can be found in [BST93,BH91].

Corollary 5.1. A≤log
m PLANAR.STCONN if and only if A≤log

bf−ttPLANAR.STCONN.

Proof. One direction is trivial; thus assume that A≤log
bf−tt PLANAR.STCONN. For a

given input x, let f(x) = (q1, q2, . . . , qr, φ) be the result of applying the reduction to
x. Without loss of generality, the formula φ has negation operations only at the leaves
(since it is easy in logspace to apply DeMorgan’s laws to rewrite a formula). Using clo-
sure under complementation, we can even assume that there are no negation operations
at all in the formula. By the results of Section 2, we can assume that each graph qi is
a planar graph with s and t on the external face. Given two such graphs G1, G2, note
that both G1 and G2 are in PLANAR.STCONN if and only if the graph with the terminal
vertex of G1 connected to the start vertex of G2 is in PLANAR.STCONN, and thus it is
easy to simulate an AND gate. Similarly, an OR gate can be simulated by building a
new graph with start vertex s connected to the start vertices of both G1 and G2, and with
edges from the terminal vertices of G1 and G2 to a new vertex t. These constructions
maintain planarity, and they also maintain the property that s and t are on the external
face. Simulating each gate in turn involves only a constant number of additional vertices
and edges, and it is easy to see that this gives rise to a ≤log

m reduction.

6 Higher Genus

In this section we prove that the s-t-connectivity problem for graphs of genus 1 reduces
to the planar case. Throughout this section, we will assume that we are given an em-
bedding Π of a graph G onto a surface of genus 1. (Unlike the planar case, it does

not appear to be known if testing if a graph has genus g > 0 can be accomplished in
logspace, even for g = 1 [MV00].) Given such an embedding, using [AM04], we can
check in logspace if the minimal genus of the graph is 1.

We introduce here some terminology and definitions relating to graphs on surfaces.
It will be sufficient to give informal definitions of various notions; the interested reader
can refer to [MT01] for more rigorous definitions.

A closed orientable surface is one that can be obtained by adding handles to a sphere
in 3-space. The genus of the resulting surface is equal to the number of handles added;
see also the text [GT87]. Given a graph G, the genus of the graph is the genus of the
(closed orientable) surface of least genus on which the graph can be embedded.

Given a graph G embedded on a closed orientable surface, and a cycle of the graph
embedded on the surface, there are two (possibly intersecting) subgraphs, called the
two sides of the cycle with respect to the embedding. Informally, a side of a cycle is
the set of vertices of the graph that are path-connected (via a path in the graph, each
edge of the graph being considered regardless of direction) to some vertex on the cycle,
such that this path does not cross the cycle itself. (In the considerations below, we are
concerned only with genus 1 graphs for which this notion of path-connectivity suffices.)
A cycle thereby has two sides, which are called the left and the right sides. If the left
and right sides of a cycle have nonempty intersection, then we call the cycle a surface-
nonseparating cycle. Note that a graph embedded on a sphere (i.e., a planar graph) does
not have any surface-nonseparating cycles. Also, it is easy to see that a facial cycle (one
that forms the boundary of a face in the embedding of the graph on the surface) cannot
be surface-nonseparating. Given a cycle C in an embedded graph, it is easy to check in
logspace, if C is surface-nonseparating or not: merely check if there is a vertex v ∈ G,
such that v is path-connected to both sides of C (on the embedding).

Lemma 6.1. Let G be a graph of genus g > 0, and let T be a spanning tree of G. Then
there is an edge e ∈ E(G) such that T ∪ {e} contains a surface-nonseparating cycle.

Proof. The proof follows ideas from [Tho90] which introduces the “3-path condition”:

Definition 6.2. Let K be a family of cycles of G as follows. We say that K satisfies the
3-path condition if it has the following property. If x, y are vertices of G and P1, P2, P3

are internally disjoint paths joining x and y, and if two of the three cycles Ci,j = Pi∪Pj

(1 ≤ i < j ≤ 3) are not in K, then also the third cycle is not in K.

We quote the following from [MT01].

Proposition 6.3. (Proposition 4.3.1 of [MT01]) The family of Π-surface-nonseparating
cycles satisfies the 3-path condition.

Suppose, that ∀e, (T ∪ {e}) does not have a surface-nonseparating cycle. We will
prove that no cycle C in the graph G can be surface-nonseparating, by induction on the
number k of non-tree edges in C. This contradicts the fact that every non-planar graph
has a surface-nonseparating cycle ([MT01, Lemma 4.2.4 and the following discussion])
and thus suffices to prove the claim.

The basis (k = 1) follows from the above supposition.
For the inductive step from k− 1 to k, let a cycle C be given with k edges not in T .

Take any non-tree edge e = (x, y) on C. Consider the tree path P between x and
y. If P never leaves the cycle C, then C is a fundamental cycle and we are done by
the assumption for k = 1. Otherwise, we can consider a maximal segment S of P not
in C. Let S lie between vertices u and v of C. Now, we have three paths between u

and v : the two paths between u and v on C (call these C1, C2), and path S. Note that
both S ∪ C1 and S ∪ C2 have less than k non-tree edges. Hence they are not surface-
nonseparating cycles by the induction assumption. So, by the 3-path condition, neither
is C = C1 ∪ C2.

This completes the induction, and the proof.

At this point we are able to describe how to reduce the s-t-connectivity problem for
graphs of genus 1 to the planar case.

Given a graph G of genus 1 and an embedding Π of G onto the torus, construct an
(undirected) spanning tree T of G. (It follows from [NTS95,Rei05] that spanning trees
can be constructed in logspace.) For each edge e of G that is not in T , determine if the
unique cycle Ce in T ∪ {e} is surface-nonseparating, as follows.

Let Ce = {v1, v2, · · · , vr}. Let Ge be the graph obtained from G by cutting along
the cycle Ce (as described in [MT01, p. 105]). (For the purposes of visualization, it
is useful to imagine cycles as embedded on an inner tube. Cutting along a surface-
separating cycle amounts to cutting a hole in the inner tube (resulting in two pieces).
In contrast, if Ce is surface-nonseparating, then it is embedded either like a ribbon tied
around the tube, or like a whitewall painted on the inner tube. In the former case, cut-
ting along Ce turns the inner tube into a bent cylinder with a copy of Ce on each end;
in the latter case cutting along Ce results in a flat ring with one copy of Ce around
the inside and one around the outside. In this latter case, the graph is again topolog-
ically equivalent to a cylinder with a copy of Ce on each side.) More formally, the
graph Ge has two copies of each of the vertices {v1, v2, · · · , vr}, which we denote by
{v1,1, v2,1, · · · , vr,1}, and {v1,2, v2,2, · · · , vr,2}. For every edge (u, vj) (or (vj , u)) on
the right side of Ce (according to Π), Ge has the edge (u, vj,1) ((vj,1, u), respectively),
and for every edge (u, vj) ((vj , u),respectively) on the left side of Ce we have the edge
(u, vj,2) (or (vj,2, u)) in Ge. The graph Ge also has two copies of the cycle Ce, which
we denote by Ce,1 and Ce,2. That is, we have edges between vj,b and vj+1,b for each
b ∈ {1, 2} and each 1 ≤ j ≤ r, directed as in Ce. An important property of cutting
along the cycle Ce is that if Ce was surface-nonseparating, then the resulting graph Ge

is planar, and the the cycles Ce,1 and Ce,2 are facial cycles ([MT01, p. 106,Lemma
4.2.4]). (Otherwise, Ge will not be planar.) Thus in logspace we can determine if Ce is
surface-nonseparating.

By Lemma 6.1, we are guaranteed to find a surface-nonseparating cycle by test-
ing each edge e that is not in T . The graph Ge does not have the same connectivity
properties as G; s and t might have been connected in G but not in Ge. In particular,
any directed path in G from s to t that uses edges from both the right and left sides
of Ce is not replicated in Ge. As in Section 2, we solve this problem by pasting to-
gether copies of the graph Ge, as follows. The operation of “pasting” two copies of
Ge together consists of identifying the vertices v1,1, v2,1, . . . , vr,1 in one copy with
the vertices v1,2, v2,2, . . . , vm,2 in the other copy. (Note that this amounts to “sewing
together” two copies of the path that were “cut apart” in creating Ge from G.)

Now construct the graph G′ consisting of 2n + 1 copies of Ge pasted together in
this way: the “original copy” in the middle, and n copies along each side, forming one
long cylinder. Since this cylinder has genus zero, it is easy to see that G′ is planar.

As in Section 2, a simple inductive argument shows that there is a directed path from
s to t in G if and only there is a directed path from (the original copy of) s to one of
the copies of t in G′. Thus we have presented a logspace-computable disjunctive truth-
table reduction to the planar directed s-t-connectivity problem. We obtain a many-one
reduction by appeal to Corollary 5.1 Thus we have proved the following theorem.

Theorem 6.4. The s-t-connectivity problem for graphs of genus one is ≤log
m reducible

to the planar directed s-t-connectivity problem.

7 Layered Grid Graphs

Theorem 7.1. LGGR ∈ UL.

Proof. Let G be a layered n × n grid graph, with vertex s in column 1 and vertex t in
column n. We define a weight function w on the edges of G as follows. If e is directed
vertically (that is, from (i, j) to (i′, j) for i′ ∈ {i + 1, i − 1}), then e has weight zero.
Otherwise, e is directed horizontally and is of the form (i, j) → (i, j + 1). In this case,
the weight of e is i. This weight function induces a natural weight function on paths; the
weight of a path is the sum of the weights of its edges. (It is a helpful approximation to
think of the weight of a path as the number of boxes of the grid that lie above the path.)

The minimal-weight simple path from s to any vertex v is unique. This is because
if there are two paths P1 and P2 from s to v that have the same weight, there must be
some column in which P1 is higher than P2 and another column in which P2 is higher
than P1. Since G is a layered grid graph, this means that there is some point in between
these two columns in which the two paths intersect. The path from s to v that follows
the two paths until they diverge, and then follows the path closer to the top of the grid
until they next intersect, and continues in this way until v is reached, will have smaller
weight than either P1 or P2, and thus they cannot have had minimal weight.

At this point, we are able to mimic the argument of [RA00].
Let Ck be the set of all vertices in column k that are reachable from s. Let ck = |Ck|.

Let Σk be the sum, over all v ∈ Ck of the minimal weight path from s to v. Exactly as
in [RA00], there is a UL algorithm that, given (G, k, ck, Σk, v), can determine if there
is a path from s to v or not. (We emphasize the words “or not”; if there is no path,
the UL machine will determine this fact; the algorithm presented in [RA00] has this
property.) Furthermore, this algorithm has the property that, if v is reachable from s,
then the UL machine can compute the weight of the minimal-weight path from s to v.
(Informally, the machine tries each vertex x in column k in turn, keeping a running tally
of the number of vertices that have been found to be reachable, and the total weight of
the guessed paths. For each vertex x, the machine guesses whether there is a path from
s to x; if it guesses there is a path, then it tries to guess the path, and increments its
running totals. If x = v, then it remembers the weight of the path that was guessed. At
the end, if the running totals do not equal ck and Σk, then the machine concludes that

it did not make good guesses and aborts. By the properties of the weight function, there
will be exactly one path that makes the correct guesses and does not abort.)

It suffices now to show that a UL machine can compute the values ck and Σk.
Observe first of all that c1 is easy to compute (by simply walking up and down column
1 from s and counting how many vertices are reachable), and Σ1 = 0.

Assuming that the values ck and Σk are available, the numbers ck+1 and Σk+1 can
be computed as follows. Initialize ck+1 and Σk+1 to zero. For each vertex v in column
k + 1, for each edge of the form x → y to a vertex y in column k + 1 such that there
is a path in column k + 1 from y to v, if x ∈ Ck via a minimal-weight path of weight
wx, then compute the weight w′

x of the path to v through x. Let wv be the minimum of
all such x. Increment ck+1 by one (to indicate that v is reachable) and increase Σk+1

by wv . (This algorithm is actually more general than necessary; it is easy to show that
the minimal-weight path to v will always be given by the “topmost” vertex x ∈ Ck for
which there is an edge x → y to a vertex y that can reach v in column k + 1.)

This completes the proof.

We observe that we have shown that a UL algorithm can also determine if there is
not a path from s to t, and thus LGGR is in UL ∩ coUL.

Acknowledgments

We acknowledge many people for sharing with us their thoughts about what was al-
ready known about this problem, including David Mix Barrington, Til Tantau, Omer
Reingold, Paul Beame, Pierre McKenzie, Jeff Edmunds, Anna Gal, Vladimir Trifonov,
K.V. Subrahmanyam, Meena Mahajan, and Tanmoy Chakraborty. The first and third
authors acknowledge the support of NSF Grant CCF-0514155. We also acknowledge
the helpful comments provided to us by the program committee.

References

[AM04] Eric Allender and Meena Mahajan. The complexity of planarity testing. Information
and Computation, 189:117–134, 2004.

[ARZ99] E. Allender, K. Reinhardt, and S. Zhou. Isolation, matching, and counting: Uniform
and nonuniform upper bounds. Journal of Computer and System Sciences, 59(2):164–
181, 1999.

[Bar02] David A. Mix Barrington. Grid graph reachability problems. Talk presented at
Dagstuhl Seminar on Complexity of Boolean Functions, Seminar number 02121,
2002.

[BH91] Samuel R. Buss and Louise Hay. On truth-table reducibility to SAT. Inf. Comput.,
91(1):86–102, 1991.

[BK78] Manuel Blum and Dexter Kozen. On the power of the compass (or, why mazes are
easier to search than graphs). In IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 132–142, 1978.

[BLMS98] David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum.
Searching constant width mazes captures the AC0 hierarchy. In 15th International
Symposium on Theoretical Aspects of Computer Science (STACS), number 1373 in
Lecture Notes in Computer Science, pages 73–83. Springer, 1998.

[BST93] Harry Buhrman, Edith Spaan, and Leen Torenvliet. The relative power of logspace
and polynomial time reductions. Computational Complexity, 3:231–244, 1993.

[Ete97] Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space.
Journal of Computer and System Sciences, 54(3):400–411, Jun 1997.

[GT87] Jonathan Gross and Thomas Tucker. Topological Graph Theory. John Wiley and
Sons, New York, 1 edition, 1987.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM Jour-
nal on Computing, 17:935–938, 1988.

[JLR01] A. Jakoby, M. Liskiewicz, and R. Reischuk. Space efficient algorithms for series-
paralle graphs. In 18th International Symposium on Theoretical Aspects of Computer
Science (STACS), number 2010 in Lecture Notes in Computer Science, pages 339–
352. Springer, 2001. To appear in J. Algorithms.

[Lan97] Klaus-Jörn Lange. An unambiguous class possessing a complete set. In 14th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS), number
1200 in Lecture Notes in Computer Science, pages 339–350. Springer, 1997.

[LL76] R. Ladner and N. Lynch. Relativization of questions about log space reducibility.
Mathematical Systems Theory, 10:19–32, 1976.

[MT01] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. John Hopkins University
Press, Maryland, 1 edition, 2001.

[MV00] Meena Mahajan and Kasturi R. Varadarajan. A new NC-algorithm for finding a per-
fect matching in bipartite planar and small genus graphs. In ACM Symposium on
Theory of Computing (STOC), pages 351–357, 2000.

[NTS95] N. Nisan and A. Ta-Shma. Symmetric Logspace is closed under complement. Chicago
Journal of Theoretical Computer Science, 1995.

[RA00] K. Reinhardt and E. Allender. Making nondeterminism unambiguous. SIAM Journal
of Computing, 29:1118–1131, 2000.

[Rei05] O. Reingold. Undirected st-connectivity in log-space. In Proceedings 37th Symposium
on Foundations of Computer Science, pages 376–385. IEEE Computer Society Press,
2005.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata.
Acta Informatica, 26:279–284, 1988.

[Tho90] C. Thomassen. Embeddings of graphs with no short noncontractible cycles. J. Comb.
Theory Ser. B, 48(2):155–177, 1990.

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

