
Grid Graph Reachability Problems

Eric Allender∗ David A. Mix Barrington† Tanmoy Chakraborty‡ Samir Datta§

Sambuddha Roy¶

Abstract

We study the complexity of restricted versions of st-
connectivity, which is the standard complete problem
for NL. Grid graphs are a useful tool in this regard,
since

• reachability on grid graphs is logspace-
equivalent to reachability in general planar
digraphs, and

• reachability on certain classes of grid graphs
gives natural examples of problems that are hard
for NC

1 under AC
0 reductions but are not known

to be hard for L; they thus give insight into the
structure of L.

In addition to explicating the structure of L, another of
our goals is to expand the class of digraphs for which
connectivity can be solved in logspace, by building on
the work of Jakoby et al. [11], who showed that reach-
ability in series-parallel digraphs is solvable in L.

Our main results are:

• Many of the natural restrictions on grid-graph
reachability (GGR) are equivalent under AC

0

∗Department of Computer Science, Rutgers, the State Univer-
sity of NJ. Supported in part by NSF Grant CCF-0514155. email:
allender@cs.rutgers.edu.

†Computer Science Dept., University of Massachusetts
Amherst. Supported in part by NSF Grant CCR-9988260. e-mail:
barring@cs.umass.edu.

‡Chennai Mathematical Institute, Chennai, India. e-mail:
tanmoych1985@gmail.com.

§Chennai Mathematical Institute, Chennai, India. e-mail:
sdatta@cmi.ac.in.

¶Department of Computer Science, Rutgers, the State Univer-
sity of NJ. Supported in part by NSF Grant CCF-0514155. email:
samroy@paul.rutgers.edu.

reductions (for instance, undirected GGR, out-
degree-one GGR, and indegree-one-outdegree-
one GGR are all equivalent). These problems are
all equivalent to the problem of determining if a
completed game position in HEX is a winning po-
sition, as well as to the problem of reachability in
mazes studied by Blum and Kozen [5].

• Series-Parallel digraphs are a special case of
single-source-single-sink planar dags; reachabil-
ity for such graphs logspace reduces to single-
source-single-sink acyclic grid graphs. We show
that reachability on such grid graphs AC

0 re-
duces to undirected GGR.

• We build on this to show that reachability for
single-source multiple-sink planar dags is solv-
able in L.

1 Introduction

Graph reachability problems have long played a
fundamental role in complexity theory. The general st-
connectivity problem in directed graphs is the standard
complete problem for NL, while the st-connectivity
problems for directed graphs of outdegree 1 [9, 7] and
undirected graphs [13] are complete for L. It follows
from [3] that reachability in directed graphs of width
O(1) (or even width five, with outdegree 1) is com-
plete for NC

1.
Grid graphs are a special class of planar graphs

whose vertices are located on grid points, and whose
vertices are adjacent only to their immediate horizon-
tal or vertical neighbors. Barrington et al. showed
[4] that st-connectivity in width k (directed or undi-
rected) graphs is complete for depth k AC

0 under first-

1

Electronic Colloquium on Computational Complexity, Report No. 149 (2005)

ISSN 1433-8092




order projections. In this paper we study grid graphs
without any width restrictions. The general grid-graph
reachability problem (GGR) is equivalent to the st-
connectivity problem in directed planar graphs (and
graphs of genus one) under logspace reducibility [1].
The best upper bound known for GGR is NL, although
a slightly better upper bound is known for so-called
“layered” grid graphs (LGGR): LGGR ∈ UL ∩ coUL
[1].

Our focus in this paper is primarily on classes of
grid graphs whose reachability problem is solvable
in logspace. Reachability in undirected grid graphs
(UGGR) was studied by Blum and Kozen [5]; they
showed that UGGR is solvable in logspace (which
was superseded a quarter-century later by the work of
Reingold [13]). Buss has studied UGGR in connec-
tion with tautologies arising from the game of HEX
[6] (namely, the tautology that every completed game
board of HEX has a winner); he credits Barrington
with the observation that UGGR is equivalent to the
problem of determining if a given completed HEX
board position is a win for one player. Reachability
in grid graphs of outdegree one (1GGR) is another re-
striction on GGR that is clearly solvable in logspace.

One of our theorems is that UGGR and 1GGR are
equivalent under AC

0 reductions (and even under first-
order projections). We show that these problems are
hard for NC

1, and thus this gives a cluster of natural
problems that are candidates for having complexity in-
termediate between NC

1 and L, since even the general
GGR problem is not known to be hard for L under AC

0

reductions.
Jakoby, Liskiewicz, and Reischuk showed that

reachability in series-parallel digraphs is solvable in
logspace [11], thus solving the reachability question
for an important subclass of planar directed graphs.
Series-parallel digraphs are a special case of planar di-
rected acyclic graphs having a single source and single
sink. Motivated by a desire to solve the reachability
problem for a larger class of planar DAGs, we intro-
duce the following three classes of DAGs:

• Single-Source Single-Sink Planar DAGs
(SSPDs): the class of DAGs having one vertex of
indegree zero and one vertex of outdegree zero.
Reachability in SSPDs generalizes the problem
of reachability in series-parallel digraphs studied
in [11].

• Single-Source Multiple-Sink Planar DAGs
(SMPDs): the class of DAGs having one vertex
of indegree zero. Reachability in such graphs
is clearly equivalent to reachability in Multiple-
Source Single Sink DAGs (MSPDs) by simply
reversing all of the edges.

• Multiple-Source Multiple-Sink Planar DAGs
(MMPD). This is simply the class of all planar
DAGs.

We show that the SMPD reachability problem (and
hence also that for MSPD) lies in logspace. In addi-
tion, reachability in SSPDs, restricted to grid graphs,
is reducible to UGGR. Our algorithmic approach for
SMPD extends to certain classes of graphs that are not
acyclic. This is discussed in more detail in Section 5.

The rest of the paper is organized as follows. In
Section 2 we introduce the various grid graph prob-
lems that we will be considering, and present reduc-
tions showing how these problems relate to each other.
In Section 3 we present a generic reduction showing
that, for many of the problems we consider, it is no
loss of generality to assume that s and t appear on the
external boundary of the graph. Our hardness results
are presented in Section 4. Our logspace algorithms
for SSPD and SMPD are presented in Section 5. We
conclude with open questions in Section 6.

2 Versions of the GGR Problem

We begin by defining and exploring a number of
special cases of the GGR problem, based on a variety
of restrictions on the grid graphs and on the vertices s
and t.

2.1 Classes and Reductions

We assume familiarity with the following important
subclasses of nondeterministic logspace (NL): L, NC

1,
TC

0, and AC
0. When defining notions of reducibility

and completeness in order to investigate the structure
of such small complexity classes, some form of AC

0

reducibility is usually employed. We will frequently
make use of the terminology and notation employed
by Immerman [10], which exploits the close connec-
tions between AC0 and first-order logic. In particular,

2



AC0-Turing reducibility (≤AC0

T
) to a set A can be de-

fined equivalently in terms of AC0 circuits augmented
with “oracle gates” for A, or in terms of first-order for-
mulae with A as a built-in predicate symbol applied
to a structure defined in first-order. For details refer
to [10]. For this reason, we sometimes refer to ≤AC0

T

reductions as FO reductions. The class of problems
≤AC0

T
reducible to A is sometimes denoted as FO+A.

Immerman also gives good motivation for study-
ing a restricted form of ≤AC0

m reductions called first-
order projections (≤FO

proj). These can be visualized as
many-one reductions computed by first-order uniform
circuits having no gates (other than NOT gates); thus
each bit of the output is either a constant or is a copy
(or a negated copy) of one bit of the input.

2.2 Nine Problems

We first consider two restrictions on the global
structure of a GGR problem, and two local restrictions:

• The problem GGR-B is the set of tuples (G, s, t)
where G is a directed grid graph, s and t are ver-
tices on the boundary of G, and there is a path
from s to t in G.

• The problem LGGR is the set of tuples (G, s, t)
where G is a layered directed grid graph, having
only east and south edges, and there is a path
from s to t.

• The problem 1GGR is the set of tuples (G, s, t)
where G is a directed grid graph of out-degree at
most 1 and there is a path from s to t.

• The problem 11GGR is the set of tuples (G, s, t)
where G is a directed grid graph of in-degree and
out-degree at most 1 and there is a path from s
to t.

It is obvious that 11GGR is a special case of 1GGR.
LGGR is a special case of GGR-B because given a lay-
ered graph with vertices s and t, we can clearly restrict
our attention to the rectangle with s at its northwest
corner and t at its southeast corner – if there is no such
rectangle, there can be no path from s to t. The lo-
cal and global restrictions are orthogonal, so that the
three global conditions (general, boundary, and lay-
ered) and three local conditions (general, out-degree 1,

GGR

11LGGR

1LGGR11GGR-B

11GGR LGGR1GGR-B

GGR-B1-GGR

Figure 1. Nine GGR problems.

both degrees 1) give us nine special cases of the GGR
problem: GGR, 1GGR, 11GGR, GGR-B, 1GGR-B,
11GGR-B, LGGR, 1LGGR, and 11LGGR. Even the
easiest of these problems, 11LGGR, is non-trivial, as
we will show in Section 4 that it is hard for the class
TC

0.
There are other natural ways to define a layered

graph. We could forbid only one of the four directions
of edges rather than two. Or we could allow diago-
nal edges but force them to go only northeast, east, or
southeast, making each north-south column a layer ac-
cording to the standard definition. But it is an easy ex-
ercise to construct a first-order projection from a graph
satisfying any one of these restrictions to one satisfy-
ing any of the others.

2.3 Undirected GGR

One of the most natural local restrictions on a graph
is undirectedness. Long before Reingold[13] showed
that the undirected reachability problem is in L, Blum
and Kozen [5] showed that the UGGR problem, testing
reachability in undirected grid graphs, is in L. Here
we show that UGGR is equivalent to four of the nine
versions of GGR we have just defined:

Theorem 2.1. The problems UGGR, UGGR-B,
1GGR, 1GGR-B, 11GGR, and 11GGR-B are all
equivalent under first-order projections.

3



Proof. (of Theorem 2.1) We will show that
1GGR≤FO

projUGGR≤FO
proj UGGR-B ≤FO

proj 11GGR-B
≤FO

proj1GGR, appealing to Section 3 for the second
reduction and observing that the last reduction is
trivial.

Lemma 2.2. 1GGR≤FO
projUGGR

Proof. The well-known general reduction from out-
degree one reachability to undirected reachability
works without modification for grid graphs. Given an
out-degree one grid graph G and vertices s and t, cre-
ate an undirected graph H by modifying G to delete
the edge (if any) out of t and change each directed arc
to an undirected edge. Since the vertices with paths
to t in G form a directed tree, the corresponding ver-
tices in H are simply t’s connected component. So s
has a directed path to t in G if and only if it has an
undirected path to t in H . The reduction is clearly a
first-order projection.

Lemma 2.3. UGGR-B≤FO
proj11GGR-B

Proof. We merely have to formalize the familiar
“right-hand rule” for exploring mazes – if we place
our right hand on the wall and keep walking with our
hand on the wall, we will return to our starting place
having gone completely around the connected compo-
nent of wall to our right. If both our starting place and
our goal are on the boundary of the entire maze, they
are on the boundary of their connected component.

More formally, given an undirected grid graph G
and vertices s and t on its boundary, we define a grid
graph H of in-degree and out-degree at most 1 as fol-
lows. The vertices of H will be points (a/3, b/3)
where a and b are integers – when both coordinates
are integers we identify this vertex of H with the cor-
responding vertex of G. (Note that the positive x di-
rection is east, and the positive y direction is south.)
The directed edges of H will have the property that
there is an edge of G 1/3 unit to their right in their
direction of travel, unless they are turning a corner:

• If there is an edge in G between (u, v) and (u +
1, v), then there are directed arcs in H from (u +
1/3, v − 1/3) to (u + 2/3, v − 1/3) and from
(u + 2/3, v + 1/3) to (u + 1/3, v + 1/3).

t’

s’

t

s

Figure 2. An undirected grid graph and its in-
1-out-1 graph.

• If there is an edge in G between (u, v) and (u, v+
1), then there are directed arcs in H from (u −
1/3, v + 2/3) to (u − 1/3, v + 1/3) and from
(u + 1/3, v + 1/3) to (u + 1/3, v + 2/3).

• If (u, v) is a vertex of G with no edge in G to
(u + 1, v), then H has edges from (u + 1/3, v −
1/3) to (u + 1/3, v) and from (u + 1/3, v) to
(u + 1/3, v + 1/3).

• If (u, v) is a vertex of G with no edge in G to
(u− 1, v), then H has edges from (u− 1/3, v +
1/3) to (u − 1/3, v) and from (u − 1/3, v) to
(u− 1/3, v − 1/3).

• If (u, v) is a vertex of G with no edge in G to
(u, v + 1), then H has edges from (u + 1/3, v +
1/3) to (u, v + 1/3) and from (u, v + 1/3) to
(u− 1/3, v + 1/3).

• If (u, v) is a vertex of G with no edge in G to
(u, v − 1), then H has edges from (u− 1/3, v −
1/3) to (u, v − 1/3) and from (u, v − 1/3) to
(u + 1/3, v − 1/3).

We define vertices s′ and t′ in H by moving 1/3
unit away from the rest of G from s and t respectively.
It is clear that H has both in-degree and out-degree at
most one, and that there is a directed path from s′ to t′

in H if and only if there is an undirected path from s to
t in H . Figure 2 shows the result of this construction
on a small undirected graph.

Thus all these versions of the problem are equiva-
lent under first-order projections.

2.4 Five Problems

The results of the preceding section and of Section 3
reduce our nine problems to five. If we close each un-

4



UGGR LGGR

1LGGR

11LGGR

GGR

Figure 3. The five surviving GGR problems.

der first-order reductions, we get a hierarchy of com-
plexity classes within NL and (as we shall see in Sec-
tion 4) above TC

0. Since each problem has a number
of interesting alternate formulations, we spend some
time looking at each in turn:

2.4.1 GGR

The general GGR problem is in NL, of course, but we
have no better upper bound. As shown by Allender et
al.[1], it is equivalent under logspace reductions to the
general planar reachability problem. (Our argument
in Section 3 that GGR and GGR-B are equivalent is
in fact a simplification of the argument there that gen-
eral planar reachability reduces to its boundary special
case.)

There is an easy (first-order projection) reduction
from GGR-B to its complement, grid-graph non-
reachability with s and t on the boundary. This is be-
cause there is no path from s to t in a grid graph G iff
there is a path, from some boundary vertex on one path
from s to t to a boundary vertex on the other path, in
the complement-dual grid graph. (For details see [4].)

The reachability problem for general graphs reduces to
its complement by the Immerman-Szelepcsenyi theo-
rem [8, 15], but this much simpler reduction provides
some weak evidence that GGR is not complete for NL.

2.4.2 UGGR

We found above that UGGR, undirected grid graph
reachability, has a number of equivalent formulations
including its boundary version UGGR-B. To these we
may add the problem of determining the winner in a
completed game of HEX[6], because a hexagonal grid
can easily be mapped by a projection reduction to the
Euclidean grids we have defined here. Like GGR-B,
UGGR-B projection-reduces directly to its comple-
ment by taking a complement-dual graph. This gives
it another robustness property:

Proposition 2.4. A language is in the class FO +
UGGR iff it projection-reduces to UGGR.

Proof. (of Proposition 2.4) We show that the set of lan-
guages that projection-reduce to UGGR-B, and hence
(by Section 3) to UGGR, is closed under ≤AC0

T
reduc-

tions. We give an inductive argument on the depth
of the circuits computing the ≤AC0

T
reduction (where

without loss of generality the circuits for different
lengths have the same structure, and all gates on the
same level are of the same type). The inductive hy-
pothesis is that the value of each wire w leading into a
top-level gate can be represented as the answer to the
question of whether or not a graph Gw is in UGGR-B
where Gw is a projection of the input graph G. This
is clearly true if the only gates are NOT gates, which
establishes the basis for the induction. If the top-level
gate is an AND gate, then it suffices to connect the
graphs Gw in series. Similarly, if the top-level gate is
an OR gate, then it suffices to connect the graphs Gw

in parallel. If the top level gate is a NOT gate, then
as we observed above, the complement-dual graph lets
us represent the negation of a UGGR-B problem as
the OR of polynomially many UGGR-B problems (and
thus again we can connect these graphs in parallel.) If
the top level gate is an oracle gate g, then we can re-
place each wire w (representing an edge (x, y) in the
encoding of the grid graph H presented as input to g)
by a small sub-grid encoding the graph Gw, identify-
ing the source vertex as x and the sink vertex as y. The

5



cable turning corner
cable straight into 

shift insertvertex

Figure 4. The Construction of Proposition 2.5

details are straightforward to fill in; by simple padding
we may assume that all of the graphs Gw are the same
size.

In its incarnation as 11GGR, UGGR can be seen to
have the following counting property:

Proposition 2.5. If G is a grid graph of in-degree and
out-degree each at most one, the following predicate
projection-reduces to UGGR: DIST(s, t, k) ↔ the
path out of s reaches t in exactly k steps.

Proof. (of Proposition 2.5) We first note that we can
determine in FO + UGGR whether a given vertex, or
a given edge, is on the path from s to t. Then we can
define a graph Hs,t,k where each vertex along the path
is replaced by k + 1 copies, in a diagonal line from
northeast to southwest, and each edge along this path
is replaced by a “cable” of k+1 parallel straight paths.
The copies of each vertex and edge are numbered so
that copy k is to the left and copy 0 is to the right
in the direction of the path’s travel. Finally, on each
incoming cable, we insert a shift component so that
the path forming the i’th copy of each edge now con-
nects the i’th copy of its source to the i + 1’st copy
of its destination. (See Figure 4.) Note that this graph
H also has in-degree and out-degree at most 1. Then
DIST(s, t, k) is true iff there is a path in H from copy
0 of s to copy k of t. We can define H in FO+UGGR,
and thus by Proposition 2.4 we can define H as a first-
order projection of G.

In Section 5 we will be interested in the depth-first
search of a directed tree embedded in a grid graph. If
we convert the directed tree to an undirected tree and

then to a graph of in-degree and out-degree one by the
constructions of this section, we produce a tour of the
vertices of the tree that exactly follows the order in
which they are visited by the depth-first search. Be-
cause we can count the length of paths in this final
graph, we conclude:

Theorem 2.6. Let T be a directed tree embedded in
a grid graph and consider the depth-first search of T
that visits children of a node in the left-to-right order
given by the embedding. Then the following properties
of the search are each computable in FO + UGGR:
start time of a vertex, finish time of a vertex, depth of
a vertex, and whether one vertex is an ancestor of an-
other.

2.4.3 LGGR

The most interesting question regarding LGGR is
whether it is any easier than general GGR. It seems
plausible that searching for a path that must always
make progress in a given direction would be easier
than searching for one that could double back upon
itself arbitrarily. But the evidence we have for this is
rather thin. Allender et al.[1], following the method
of Reinhardt and Allender [14], show that LGGR is in
the class UL – it is the language of a nondeterministic
logspace machine that never has more than one accept-
ing run on the same input. But it is known [14] that the
non-uniform versions of UL and NL are the same, and
it is entirely plausible that the classes themselves are
the same.

Another interesting question is the relationship, if
any, between LGGR and reachability for general grid
graphs that happen to be acyclic. The two restrictions
seem similar, but nothing is known.

It is not clear whether LGGR is closed under com-
plementation. The complement-dual of a grid graph
whose edges go only east and south is a grid graph that
contains all possible north and east edges, and some
edges going south and west. There may be a way to
reduce this problem to LGGR, but we don’t know of
one.

LGGR is also a special case of evaluating a layered
monotone planar circuit, where the circuit has only
OR gates and constant 0 gates. Limaye et al. [12] give
a nice survey of the various versions of this problem
along with some new results.

6



2.4.4 1LGGR

The 1LGGR problem has a useful alternate form:

Lemma 2.7. 1LGGR is equivalent to the reachability
problem on directed grid graphs that have some east
edges, all possible south edges, and no north or west
edges.

Proof. (of Lemma 2.7) We first reduce this new prob-
lem to 1LGGR. Let G be a layered grid graph with
some east and all south edges. Without loss of gener-
ality let s be the northwest corner and t the southeast
corner. Define an out-degree one layered grid graph H
as follows. The vertices of H are the same as those of
G. If vertex v has an east edge out of it in G, it has
an east edge out of it in H . Otherwise it has a south
edge out of it in H . Clearly H has out-degree one. It
is easy to show by induction that the path out of s in H
reaches or passes directly north of every vertex reach-
able in G. Either this path ends at a vertex on the south
boundary that has no east edge, or it reaches the east
boundary and thus goes south to t. So the path in G
exists iff the path in H does.

For the other reduction, we first assume that G is a
layered grid graph with out-degree exactly one, except
at the boundary. Define H to be a copy of G with all
possible south edges added. Define GT to be the lay-
ered grid graph obtained from G by reflecting about
the northwest-to-southeast diagonal, and let H ′ be a
copy of GT with all possible south edges added. Fi-
nally, let I be a series connection of H and H ′ – a
layered grid graph, with all south edges present, ob-
tained by placing H in the northwest quarter and H ′

in the southeast quarter of a single graph, identifying
the southeast corner of H with the northwest corner of
H ′. It is easy now to verify that there is a path from
the northwest corner of I to the southeast corner iff the
unique path from s in G reaches t, rather than some
other sink on the boundary of G.

It remains to show that 1LGGR, where each ver-
tex has degree at most one, reduces to the special case
treated above. Let G be a layered grid graph with out-
degree at most one. We make a new graph H from G
by making two copies v1 and v2 of each vertex v, with
v1 situated to the northeast of v2. We replace each
edge (u, v) of G by a pair of parallel edges (u1, v1)
and (u2, v2), preserving the out-degree of one. If v is

a sink in G, we connect both v1 and v2 to w2, where w
is the vertex to the east of v. Then there is a path from
s to t in G iff there is a path from s1 to t1 in H , and H
has out-degree exactly one except at the boundary.

The language of problems projection-reducible
to 1LGGR is closed under complement. The
complement-dual of a layered grid graph with some
east edges and all south edges has all possible north
and east edges, some south edges, and no west edges.
But the north edges are of no additional use in making
a path from north to south, so this is equivalent to a
problem with some south and all east edges, clearly
isomorphic to the problem with all south and some
east. As with UGGR-B, we can use series and par-
allel connection to show that any language first-order
reducible to 1LGGR is projection-reducible to it.

As we will see in Section 4, the complexity class of
problems first-order reducible to 1LGGR lies some-
where between L and NC

1. These two classes ex-
emplify one contrast between sequential computation
(L) and parallel computation (NC

1). The question of
whether L = NC

1 is the question of whether sequential
computations using only log space can be parallelized
to a certain extent.

Here is a problem that looks inherently sequential,
in that a polynomial number of operations appear to
be necessary in sequence. Let A be an n by n boolean
array and consider the following Java code fragment:

int count = 0;
for (int i=0; i < n; i++)

if (A[i,count]) count++;

Determining whether the value of count at the end
of this fragment is some value k is easily projection-
reduced to 1LGGR. If 1LGGR ∈ NC

1, then this code
can be parallelized in some way that is not readily ap-
parent.

2.4.5 11LGGR

The easiest problem in our hierarchy, 11LGGR, has an
interesting alternate formulation. By expanding each
layer into up to n layers (where n is the width of
a layer), we can projection-reduce a 11LGGR prob-
lem to one where the edges in each layer divide into
two consecutive intervals, one of south edges and one

7



of east edges, with a source or a sink between these
two intervals. We can recast this latter problem in
terms of the following data structure: a varying num-
ber n of items are in locations from 0 to n − 1, and
our operations are insert(i), which places a new ele-
ment in location i and moves the higher-numbered el-
ements up, and delete(i), which removes the element
in location i and moves the higher-numbered elements
down. Determining whether a sequence of such inserts
and deletes removes a particular element with its last
delete is complete for the class of problems first-order
reducible to 11LGGR.

2.5 Acyclicity and Single-Source

We cannot in general tell whether a given directed
grid graph is acyclic, because this problem is hard
for GGR-B and thus (by Section 3) for GGR. But
in Section 5 we will present algorithms for two spe-
cial cases of general acyclic GGR, and in these two
cases we can decide whether the graph is acyclic in
FO + UGGR. These are the single-source problem
SMGGR and the single source, single-sink problem
SSGGR. (In each case we will assume that the source
occurs on the boundary of the grid graph.) Even the
latter problem is non-trivial in our hierarchy:

Lemma 2.8. 1LGGR≤FO
projSSGGR

Proof. (of Lemma 2.8) Appealing to Lemma 2.7, let
G be a layered grid graph with some east edges and all
possible south edges, with northwest corner (0, 0) and
southeast corner (a, b). We form a graph H by adding
one new row each north and south of G and one new
column each east and west of it. H will include all
possible south edges, and its east edges will be those
of G plus all those in the two new rows. These changes
do not affect reachability between vertices of G, but in
H (−1,−1) is the only source and (a+1, b+1) is the
only sink. Note that the source is on the boundary.

Since most of our arguments in Section 5 apply to
any graphs embedded in the plane, we will present
them in general form and note where the L construc-
tions may be carried out in FO + UGGR in the case of
grid graphs.

tst

s

Figure 5. Putting s and t on the same row.

s t m
m+1

s t

H

s’ t’

Figure 6. The basic gadget H

3 The Boundary Construction

In this section we show that each of the problems
GGR, UGGR, and 1GGR reduces via first-order pro-
jections to the special case where s and t are on the
external boundary. For simplicity, we first consider
GGR.

Theorem 3.1. GGR≤FO
projGGR-B.

Proof. (of Theorem 3.1) Let G be a grid graph. With-
out loss of generality, s and t appear on the same hor-
izontal row of G; call this row m. (If this is not true,
then add some paths to effect a vertical shift of part of
the grid, as illustrated in Figure 5.) We may also as-
sume without loss of generality that there is no vertical
edge out of s or into t, and may also assume that s is
a source and t is a sink, and that s appears to the left
of t in the grid. Modify G by inserting a new row of
“dummy” vertices just above row m of G, to obtain a
new graph G′. In G′ there are no horizontal edges in
row m+1, and all edges that enter row m+1 vertically
from above continue on below, and vice-versa.

Now build a new graph H by cutting G′ horizon-
tally along row m + 1 to obtain two grids G′

top and
G′

bottom. There is a copy of row m + 1 in each of
G′

top and G′
bottom. In H , the graph G′

bottom appears
above G′

top. For each vertex v in row m1 to the left of
s or to the right of t, there is a path connecting the the
two copies of v, going around the closest side bound-

8



H

H

H0

s’
0

-1

1

-1

1

t’

t’

t’

0
t"

Figure 7. Connecting multiple copies of H

ary, and directed the same way as the edge that passes
through v in G, as illustrated in Figure 6. Also as il-
lustrated in Figure 6, add new vertices s′ and t′ at the
top right and left corners, respectively, connected via
paths to s and t. For the vertices in row m + 1 that
appear between s and t, add vertical paths that we will
use to connect different copies of H together.

Let there be n vertices in G. Create 2n+1 copies of
H , labeled H−n,H−n−1, . . . ,H−1,H0,H1, . . . Hn,
and connected vertically with H0 in the middle, where
the connections are made at the vertical paths between
the copies of s and t. in the bottom row of Hi−1 and
the corresponding paths in the top row of Hi. (See Fig-
ure 7.) A simple inductive argument shows that there
is a path from s to t in G iff there is a path from s′0
to one of the vertices t′i. The vertex s′0 is on the exter-
nal face, as is each of the vertices t′i. The construction
is completed by creating a new vertex t′′ and adding
paths from each t′i to t′′. Call the resulting grid graph
H ′. It is easy to see that this reduction can be accom-
plished by means of a first-order projection.

Corollary 3.2. UGGR≤FO
projUGGR-B and

1GGR≤FO
proj1GGR-B

Proof. If G has outdegree one, then the graph H ′ also
has outdegree one. If G is undirected, then the graph
H ′ will also be undirected, if we modify the construc-
tion by adding undirected paths from s′ to s and from
t to t′, as well as from each t′i to t′′.

4 Lower Bounds

4.1 A TC
0 Lower Bound For 11LGGR

Even the easiest version of GGR we have consid-
ered has nontrivial complexity:

Theorem 4.1. The problem 11LGGR is complete for
TC

0 under first-order reductions.

Proof. (of Theorem 4.1) Our reduction is from the
complete problem EXACTLY-HALF, the set of binary
strings with exactly the same number of zeroes and
ones. Given a string w = w0 . . . wn−1 of length n,
with n even, we construct a grid graph G that is an
n/2 + 1 by n/2 + 1 square with vertices numbered
(0, 0) through (n/2, n/2). The edge out of vertex
(i, j) is to the east (to (i + 1, j)) if wi+j = 0 and
south (to (i, j + 1)) if wi+j = 1. Thus each diagonal,
the vertices with i + j = k for each k, have edges all
in the same direction. On the east and south boundary,
a vertex is a sink if its edge, by this rule, would leave
the graph.

It is clear that this graph is layered and has both
maximum in-degree and out-degree of 1, and thus is
an instance of 11LGGR once we set s = (0, 0) and
t = (n/2, n/2). Equally clearly, the unique path out
of s will take one edge east for every zero in w and one
edge south for every one, until or unless it reaches the
east or south boundary of G. It reaches t if and only if
the input string is in the language EXACTLY-HALF.
The reduction is a simple first-order projection.

We can define a special case of 11LGGR that is
complete for TC

0. Suppose that the in-degree and
out-degree of every vertex is exactly one, except for
vertices on the boundary. This condition forces all
the edges from vertices on a given i + j = k diago-
nal to go in the same direction. Thus it must be ex-
actly the encoding of some string under our reduction
from EXACTLY-HALF to 11LGGR. Given two ver-
tices s = (i, j) and t = (i′, j′), we need only find
the substring wi+j . . . wi′+j′−1 of this string, and de-
termine whether the number of zeroes in this string is
exactly i′− i. This is clearly easy to do by reduction to
EXACTLY-HALF and is thus in the class TC

0. Since
our earlier reduction always produces 11LGGR prob-
lems falling within the special case, the special case is
complete for TC

0.

9



4.2 An NC
1 Lower Bound: Series-Parallel

Graphs

We now show that except for the minimal problem
11LGGR, each of our versions of GGR is hard for
the class NC

1. Our proof constructs a graph with a
particular series-parallel decomposition. (By contrast,
Jakoby et al. [11] deal with graphs that admit such a
decomposition.) While the GGR problem for such pre-
decomposed graphs is in NC

1, we have no NC
1 upper

bound for any of the versions of GGR we have defined
above.

Theorem 4.2. The problem 1LGGR is hard for the
class NC

1 under first-order projections.

Proof. (of Theorem 4.2) Our reduction is from a spe-
cial case of the Boolean sentence value problem,
proved to be both in NC

1 and hard for NC
1 by Buss,

Cook, Gupta, and Ramachandran in [BCGR92]. A
Boolean sentence is an infix boolean formula with con-
stants 0 and 1 and binary operators ∧, ∨, and ¬, and
BSVP is the set of such formulas that evaluate to 1. In
Theorem 5.1 of [BCGR92], they construct a Boolean
sentence whose value is equivalent to that of an arbi-
trary O(log n) time alternating Turing machine on a
given input string of length n. Here we will use the
fact that the sentence they construct is always:

• monotone (has no ¬ operators),

• fully balanced (every constant occurs at the same
depth), and

• alternating (∧ and ∨ operators alternate).

We describe a general inductive construction that
takes a monotone Boolean sentence φ and produces
a square grid graph Gφ that contains all possible south
edges, some east edges, and no north or west edges,
such that there is a path from the northwest to the
southeast corner of Gφ if and only if φ is true. Fig-
ure 8 illustrates the construction.

As we observed in Section 2.3, 1LGGR can be de-
fined in terms of reachability from the northwest to the
southeast corner of such graphs. In the special case of
a monotone, fully balanced, and alternating formula,
our construction can be simulated by a first-order pro-
jection. This will show that the 1LGGR problem is
complete for NC1 under such projections.

Ga

bG

Ga

Ga

Gb

or

andG Gba

Gb

1

G0

G

Figure 8. The construction of Gφ. All south
edges are present.

We map constants to 2 by 2 graphs, with no east
edges for a constant 0 and an east edge on the south
boundary for a constant 1. Clearly a path from north-
west to southeast exists for G1 and not for G0.

If φ is the formula α ∧ β, and α and β are already
represented by square graphs Gα and Gβ of side a
and b respectively, then Gφ is a square graph of side
a + b with Gα in its northwest corner and Gβ in its
southwest corridor. The rest of Gφ has only the re-
quired south edges, except for a single east edge from
(a−1, a) to (a, a), the northwest corner of the copy of
Gβ . If there are paths from the northwest to southeast
corners of Gα and Gβ respectively, there is a path from
the northwest corner (0, 0) of Gφ to (a−1, a−1), south
one step, across the east edge to (a, a), and across Gβ

to (a+b−1, a+b−1). But the only way from column
a− 1 to column a is across this east edge, and thus the
only way to get from (0, 0) to (a + b− 1, a + b− 1) is
to cross both Gα and Gβ from northwest to southeast
corner. The path across Gφ thus exists if and only if
both α and β are true, that is, if φ is true.

Similarly, suppose that φ = α ∨ β and α and β
are already represented as above. We make a square
graph of Gφ side a + b as before, placing Gα and Gβ

as before. This time, our added east edges form two
paths, from (a − 1, a − 1) to (a + b − 1, a − 1) and

10



from (0, a) to (a, a). We must show that a path exists
from (0, 0) to (a+b−1, a+b−1) in Gφ iff a path exists
either across Gα or Gβ . If the path exists across Gα,
we may take it and then go due east to column a+b−1
and then south to our goal. If the path exists across Gβ ,
we can go from (0, 0) south to (0, a), then east to (a, a)
and across this path to our goal. Conversely, suppose
there is a path from (0, 0) to (a+b−1, a+b−1). Since
there are only two edges from column a−1 to column
a, the path must use one of them. If it uses the edge
from (a−1, a−1) to (a, a−1) it must have previously
crossed Gα, and if it uses the edge from (a − 1, a) to
(a, a) it must then cross Gβ .

If φ is a monotone, fully balanced, alternating
Boolean sentence of depth d, this construction pro-
duces a square graph Gφ of side 2d+1. To construct
Gφ from φ, we need only place the east edges. For
the i’th of the 2d constants in φ, we add an edge from
(2i + 1, 2i) to (2i + 1, 2i + 1) iff this constant is 1.
Without loss of generality, assume that the lowest-level
operators in φ are ∧’s. Then the east edges correspond-
ing to ∧ operators go from (i2j − 1, i2j) to (i2j , i2j)
whenever i and j are both odd. And the east paths cor-
responding to the ∨ operators go from (i2j−1, i2j−1)
to ((i + 1)2j − 1, i2j − 1) and from ((i − 1)2j , i2j)
to (i2j , i2j) whenever i is odd and j is even. It should
be clear that Gφ can be produced from such a φ by a
first-order projection.

5 Acyclic Single-Source Graphs

Definition 5.1. An embedding of a planar DAG is said
to be “Bimodal” if, for every vertex v, all incom-
ing edges appear consecutively in the cyclic order-
ing around v. The embedding is said to have “SSPD
faces” if each face (viewed as a subgraph) has a single
source and a single sink.

Some properties of SSPDs and SMPDs are summa-
rized below:

Fact 1. 1. There is a path from the source to every
vertex in every SMPD (and thus in every SSPD).

2. There is a path from every vertex to the sink in
every SSPD.

3. Every embedding of an SSPD is Bimodal and has
SSPD faces. (see [16]).

4. There is a logspace algorithm that, given any
SMPD G, constructs a directed spanning tree T
for G, rooted at the source. (The algorithm sim-
ply selects (arbitrarily) the first incoming edge for
each vertex; it is easy to see that this is a directed
spanning tree.)

5. Preorder and postorder numberings yielding the
discovery time (Discover(x)) and finishing time
(Finish(x)) for each vertex x w.r.t. the spanning
tree G can be computed by a L-transducer.

It is easy to see that forward edges in T can be
deleted without affecting the reachability predicate.
(An edge (x, y) is a forward edge if y is a descendant
of x in T .) Since it is easy to delete such edges in
logspace, we assume from now on that there are no
forward edges. We classify edges w.r.t. the spanning
tree obtained above as follows:

Definition 5.2. Given an embedding of an SMPD and
one of its spanning trees, all edges in the SMPD fall in
one of the following classes:

• Tree Edges

• Local Edges: non-tree edges such that the unique
undirected cycle formed by adding the edge to the
tree does not enclose any vertex strictly within its
boundary.

• Jump Edges: non-tree edges that are not local
edges.

Since we may consider any face to be the external
face of the embedding, we assume without loss of gen-
erality that s is on the external face. Thus no jump
edges go “over the top” of the graph, around s.

We observe the following:

Observation 1. Any subgraph of an SMPD that does
not contain any jump edges, has all its sinks on the
external face.

Proof. Any sink not on the external face must be con-
tained strictly within some undirected cycle – but, by
definition, any undirected cycle formed by local edges
does not strictly contain any vertex.

11



Definition 5.3. Given G and a spanning tree T as
above, then for any vertex x 6= s we define the left-
most (right-most) path starting from x to be the path
such that every edge (y, z) on the path is the last (resp.
first) edge among all outgoing edges from y enumer-
ated in the clockwise order, starting from the unique
edge into x in T .

5.1 Reachability in SSPDs

Theorem 5.4. SSPD reachability is in L.

Proof. (of Theorem 5.4) We first state a lemma regard-
ing the set of vertices reachable from a fixed vertex in
a given SSPD.

Lemma 5.5. Let R be the closed region bounded by
the left-most and right-most paths from a vertex x to
the sink t. The set of vertices in R is exactly the set of
vertices reachable from x.

Thus given vertices u and v, in order to determine
whether there is a directed path from u to v, we just
consider the left-most and right-most paths from u to t
and find whether either of them intersects an arbitrary
path from s to u. (For example, we could take the
reverse of the left-most path from u to s in the SSPD
formed by reversing all edges in the given SSPD.)

Proof. (of Lemma 5.5)
To see that each such vertex y is indeed reachable

from x, we note that the subgraph in this region is itself
a SSPD, and then appeal to Fact 1.

To see that no vertex other than those in region R
is reachable from x, suppose to the contrary there is
such a vertex y and a directed path P from x to y.
Then since x ∈ R, let the path P exit the region B for
the first time at vertex w i.e., let (w, z) be an edge in
P such that w ∈ R but z 6∈ R. But since the “left-
most” outgoing edge from w is part of the boundary,
it follows that all the other outgoing edges end in the
vertices lying either strictly within R or on its right
boundary, contradicting the choice of w.

Corollary 5.6. The problem SSGGR is in FO +
UGGR.

Proof. Let G be a single-source, single-sink grid
graph, with the source on the boundary. We can easily

construct the directed tree of Fact 1 as a first-order pro-
jection on G, and then by Theorem 2.6 we can com-
pute all the predicates necessary to define the depth-
first search of this tree in FO + UGGR. The argument
of Theorem 5.4 refers only to reachability in graphs of
out-degree one, which are computable in FO+UGGR
by Lemma 2.2.

5.2 Reachability in SMPDs

Theorem 5.7. SMPD reachability is in L.

Proof. (of Theorem 5.7) We defer to later the question
of how to recognize if a given graph is an SMPD. As-
sume for now that we are given a DAG G that is an
SMPD with source s, and we are trying to determine
if there is a path from u to v.

We may restrict attention to the special case where
s and u are both on the external face, and where u ap-
pears on the rightmost path of the spanning tree T . (To
see this, we first note that if we are given an arbitrary
SMPD G, we can build a spanning tree as discussed
above, and thus we can find a directed path from s to
u. Now we use the argument presented in Section 2
of [1], where it is shown how to embed two vertices
on the external face by first “cutting along” a path be-
tween the vertices to create a new face, and then “in-
verting” the graph so that this new face becomes the
external face. In the special case where we have a di-
rected path from s to u and G is a DAG, this construc-
tion has the property that no new sources are created
and no path from u to v is lost. Thus we have cre-
ated a graph with s and u on the external face (and in
fact there are two directed paths from s to u along the
external face). We create our spanning tree T so that
the edges appearing in the directed path along the right
side of the external face are all included in T , and now
we have guaranteed that that u appears on the right-
most path of T .)

It is convenient also to add a new vertex w that is
the leftmost child of s in the tree, along with a jump
edge from the rightmost child of u to w. This clearly
creates no new paths from u to v (but it does provide a
reachable jump edge to the far left of the graph, which
simplifies some of our notation).

It is easy in logspace to see if v is a descendant of u
(in which case there is a path, since T is a directed tree)
and thus we assume for now that v is not a descendant

12



of u, and thus that it is to the left of u in T . Given
any vertex x, T partitions the vertices into the set of
ancestors of x, the descendants of x, and the vertices
to the right and left of x. The adjectives “right” and
“left” give partial orders on the set of vertices (where
two vertices on the same path in T are neither to the
right nor to the left of each other). Let us call a local
edge (x, y) useless if x is to the right of v and (x, y) is
directed to the right, or if x is to the left of v and (x, y)
is directed to the left.

Fact 2. If there is a path from u to v, then there is a
path that uses no useless edges.

Proof. Assume that we have a path from u to a useless
edge (x, y) and then to v, where x is to the right of
v. Either this path intersects the tree path from s to y,
or it doesn’t. If it does, then we can clearly construct
a path from u to y, and then to v, that avoids (x, y).
Otherwise, y is in the closed region bounded by the
tree paths from s to x and to u, along with the path
from u to x. Any path from y to v must cross the
boundary of this region, which would create a directed
cycle, contrary to the fact that G is a DAG.

Now assume that we have a path from u to v via
a useless edge (x, y), where x is to the left of v. Ei-
ther this path intersects the tree path from s to v or it
doesn’t. In the former case, we clearly do not need
the edge (x, y). In the latter case, v is in the bounded
region enclosed by the tree paths from s to x and u,
along with the path from u to x. Since y is to the left
of x (by the definition of uselessness), any path from
y to v must cross the boundary of this region, again
creating a cycle.

In logspace we can detect and remove useless
edges; we therefore assume that G has no useless
edges. Note also that no path from u to v can visit
any descendant of v; thus we can delete all proper de-
scendants of v, so that v is a leaf.

We need to define some basic search routines.

Definition 5.8. Given an SMPD G and a vertex x, let
ReachLocal(x) be the set of vertices reachable from x
using only tree edges and local edges.

Lemma 5.9. The predicate y ∈ ReachLocal(x) is in
L.

Proof. (of Lemma 5.9) Consider the induced subgraph
G′(x) on the vertices in ReachLocal(x). Since there
are no jump edges, all the sinks in G′(x) lie on the
external face (by appealing to Observation 1). Con-
struct a new graph G′′(x) by adding a sink to G′(x)
along with an edge from each old sink to this new sink.
Clearly G′′(x) is an SSPD and we are done by an ap-
plication of Theorem 5.4.

An immediate consequence, which we record for fu-
ture reference, is the following:

Corollary 5.10. Given vertex x, the vertices in
ReachLocal(x) with the least finishing time and max-
imum discovery time (relative to the original span-
ning tree of the graph) can be found in L. Let’s call
these vertices ReachLeft(x) and ReachRight(x) re-
spectively.

Our basic strategy is as follows. Start at u (on the
right side of the graph) and w (on the left side of the
graph) and do local searches. The goal vertex v is
thus “squeezed” between some areas where we were
able to do some searching. We will make use of the
procedures LeftwardSearch and RightwardSearch
to make limited use of jump edges to further restrict
the area where v can try to hide. When these pro-
cedures no longer admit any progress, then we make
stronger use of jump edges that “tunnel” from one side
of the graph, below v, over to the other side, to take
even more hiding room away from v. Below, we define
these procedures more precisely, and then we show
that the algorithm works.

The procedure LeftwardSearch starts at a given
vertex and does a local search, updating Limright to
mark the right boundary of the area where v can still
be hiding. Then it looks for a jump edge that stays on
the right side of v and advances as little as possible be-
yond Limright, and repeats the process until no more
progress can be made.

13



LeftwardSearch(z)

while true
do

Enumerate ReachLocal(z).
Limright← ReachLeft(z)
S ← {(x, y) : (x, y) is a jump edge with

x to the right of Limright and
y to the left of Limright and

to the right of v}
if S is not empty

then pick (x, y) ∈ S such that
y is the furthest right
(i.e., as close as possible to Limright),
breaking ties by picking y
as close to the root s as possible,
z ← y

else return

RightwardSearch is defined symmetrically. The
procedure Tunnel looks for jump edges in Sr (jump
edges that tunnel from the right side of the graph,
below v, to the area just right of Limleft) or in a
similarly-defined set Sl. (It is easy to see that at least
one of Sl and Sr will always be empty, by planarity.)

Tunnel()

Sr ← {(x, y) : (x, y) is a jump edge with
x to the right of Limright and
y to the left of v and

to the right of Limleft.
Sl ← {(x, y) : (x, y) is a jump edge with

x to the left of Limleft and
y to the right of v and

to the left of Limright.}
if Sr ∪ Sl is empty,

then Direction← Nil

if Sr is not empty
then Direction← Right

Pick (x, y) in Sr with
y as far left as possible
(i.e., as close as possible to Limleft,
breaking ties by picking the
vertex closer to the root)
Target← y

if Sl is not empty,
then Direction← Left

Pick (x, y) in Sl with
y as far right as possible
(i.e., as close as possible to Limright,
breaking ties by picking the
vertex closer to the root)
Target← y

We now present an algorithm to enumerate vertices
that are reachable from u. The vertex v is reachable
from u if and only if it ever shows up in the enumera-
tion.

begin
LeftwardSearch(u)
RightwardSearch(w)
Repeat

Tunnel
If Direction = Left then

LeftwardSearch(Target)
If Direction = Right then

RightwardSearch(Target)
until Direction = Nil

end

14



In order to argue that the algorithm is correct, we
will establish the following invariant condition: Each
time Limright or Limleft is updated, if z is to the right
of Limright or to the left of Limleft, then there is a
path from u to z iff z has been enumerated, and any
jump edge that is ever in one of the sets S, Sl, Sr is
reachable from u.

Limright is updated only by LeftwardSearch,
and it always occurs immediately after execution of
ReachLocal(z) as the first step of an instantiation
of LeftwardSearch(z). The first time this happens
is for z = u, and in this case Limright is set
to ReachLeft(u). It is easy to see that all ver-
tices to the right of ReachLeft(u) are enumerated
in ReachLocal(u) and all are reachable; this estab-
lishes the basis of our induction for Limright, and
an even easier argument establishes the basis for
Limleft. Also, this directly implies that the first
time the set S is considered in LeftwardSearch, or
RightwardSearch, all of the relevant jump edges are
reachable from u. Similarly, if Tunnel is called before
Limright or Limleft is updated again, then we imme-
diately have that the same is true for all jump edges in
Sl and Sr (and in this case, Sl is empty).

For the inductive step, consider first the case where
Limright is updated after executing another round of
the loop in LeftwardSearch. Thus we have just enu-
merated ReachLocal(y) for a jump edge (x, y). By the
inductive hypothesis, all of these enumerated vertices
are reachable from u, since the jump edge is reachable.
Thus if the inductive step were to fail, there must be
some vertex z′ to the right of ReachLeft(y), that has
not been enumerated but is reachable. By the inductive
hypothesis, it must be to the right of ReachLocal(y)
and to the left of the old value of Limright. Consider
the first edge on the path from u to z ′ that is to the
left of the old value of Limright and to the right of
ReachLocal(y). This edge cannot be a local edge or
tree edge (because the predecessor is enumerated by
hypothesis, and the enumeration follows such edges).
Thus it must be a jump edge. But by the way that we
select jump edges, it would have been chosen, instead
of (x, y). Thus z′ cannot exist.

It remains only to consider the case where Limright
is updated after executing Tunnel. Thus we have just
enumerated ReachLocal(y) for a jump edge (x, y)
where x is to the left of v. By hypothesis, x is reach-

able, and thus all of the enumerated vertices are reach-
able from u. Thus as in the previous case, if the induc-
tive step were to fail, there must be some vertex z ′ to
the right of ReachLocal(y) and to the left of the old
value of Limright that has not been enumerated but
is reachable. Consider the first edge on the path from
u to z′ that is to the left of the old value of Limright
and to the right of ReachLocal(y). This edge cannot
be a local edge or a tree edge; thus it must be a jump
edge. But Tunnel would not have been called if there
had been such a jump edge coming from the right, and
if this jump edge were to come from the left, then it
would have been chosen, instead of (x, y). Thus z ′

cannot exist.

A similar argument holds for Limleft. It remains
only to show that the jump edges in S, Sl, and Sr are
reachable. By induction hypothesis, the jump edges
that start to the right of the old value of Limright
are reachable, as are any jump edges that start from
ReachLocal(y) for the vertex y that was selected when
Limright was updated most recently. Let e be the
jump edge (x, y) that was selected when this update
happened. If the inductive hypothesis were to fail,
there would have to be a jump edge e′ departing be-
tween the old value of Limright and ReachLocal(y).
If e is directed from right to left, then it encloses the re-
gion where e′ would begin, which means that e′ would
not be in S, Sl, or Sr. Thus we must have e directed
from left to right. But then e′ would have been selected
during the previous execution of LeftwardSearch,
which is contrary to the choice of e′.

We have now established the invariant condition. To
see that this implies correctness, assume that v is is
reachable from u but is not enumerated. Consider the
first edge e = (x, y) on this path from u such that y
is not enumerated by the time that the procedure halts.
By the invariant condition, y cannot be to the right of
the final value of Limright or to the left of the final
value of Limleft, whereas x is to the right of Limright
or to the left of Limleft. Clearly, e cannot be a local
edge or tree edge, and thus it is a jump edge. However,
if such a jump edge had existed, then the procedure
would not have stopped at the given values of Limleft
and Limright.

15



5.3 Recognition of SSPDs

We prove:

Theorem 5.11. Recognition of SSPDs can be done in
L.

In order to prove this, we use the following:

Lemma 5.12. Given a planar graph G such that only
its external face (and no other face) is a directed cycle,
there has to be a source or a sink somewhere inside the
graph G.

Proof. (of Lemma 5.12) We argue by contradiction.
Let G be a graph with no sources or sinks, with a given
planar embedding such that its external face is a di-
rected cycle and no other face is a cycle. Then G has a
smallest cycle C that encloses no other cycle in its inte-
rior. We consider the cycle C and its interior. Since by
assumption, C is not a face of G, there are vertices in
its interior, so there has to be some edge leading from
some vertex v1 on C to one such interior vertex v2 (or
an edge from an interior vertex v2 to a vertex v1 on C
- the reasoning for this case is similar). Given that no
vertex in G is a source or a sink, we have at least one
outgoing edge from v2. Follow that to a third vertex v3,
and repeat the process of choosing an arbitrary outgo-
ing edge and following that edge. Clearly, this process
can end in one of two ways. Either the sequence of
vertices v1, v2, · · · , vk satisfy that vi = vj for some
i, j, in which case we have a smaller cycle than C ly-
ing inside C , or the sequence of vertices v1, v2, · · · , vk

meet C again (i.e. vk lies on C), in which case we
have again a proper cycle lying inside C contrary to
the minimality of C .

Proof. (of Theorem 5.11) In the following, we are
given a planar graph G along with an embedding on
the plane. We perform the following tests:

1. Does G have a single source s and a single sink
t?

2. Does every face of G have a single (local) source
and a single (local) sink?

3. Is G bimodal at every vertex?

e

s
t

C

Figure 9. t inside cycle C , s outside

4. For every vertex v of graph G, consider all the
incoming edges. Delete all incoming edges at v
except for the leftmost incoming edge (pick any
arbitrary incoming edge at the sink node). Call
the residual graph Gleft. Is there a path from s to
t in Gleft?

5. For every vertex v of G, consider all the incom-
ing edges. Delete all incoming edges at v except
for the rightmost incoming edge (with a similar
proviso for t). Call the residual graph Gright. Is
there a path from s to t in Gright?

If all of the tests above are answered affirmatively,
we claim that G is indeed a SSPD.

Observe that Gleft and Gright are indegree-1 di-
graphs for any G.

Clearly if G is a SSPD, then by Fact 1, we know
that G passes all the above tests (in this case, Gleft

and Gright are both trees).
So suppose G passes all the above tests, and yet has

a directed cycle C . By Lemma 5.12, we only have to
consider the case where the sink t lies inside C while
the source s lies outside C (i.e. C separates s from t).
See Figure 9.

Consider all the edges from outside C that are in-
coming to some vertex on C (for instance, edge e in
Figure 9). Suppose the cycle C were as directed as in
Figure 9, then in the step 4 where all leftmost incom-
ing edges are deleted, all such incoming edges to C get
deleted. So, in Gleft among all the edges between C
and the outside of C , we only have the outgoing edges
from C (it is of course possible that some of the edges
on C also get deleted in this process).

But now it is clear that there is no directed path from
s to t in Gleft, because, similarly to [1], we now have
a geometric cut consisting of only the remaining out-

16



going edges from C to the outside of C - or a sim-
ple argument - if there is a path from s to t now, that
path intersects C at some place, and it can only be di-
rected towards C . But we deleted all of these incoming
edges in constructing Gleft. Thus, we end up with an
indegree-1 graph in which there is no path from s to t.

Since we are not sure a priori, what direction the
edges on C might have, we have to include both tests
4 and 5. In one of these tests, the edges incoming to C
from the outside will get deleted and disconnect t from
s.

So, if G has a directed cycle, then there is no path
from s to t in either Gleft or Gright.

Thus, we have recognized SSPDs in L.

Corollary 5.13. Let G be a single-source, single-sink
directed grid graph. The problem of determining
whether G has a cycle (and hence whether G provides
an instance of SSGGR) is in FO + UGGR.

Proof. We need only examine the five steps in the
proof of Theorem 5.11. The first and third are simple
first-order questions. The second requires traversing
the boundary of a face of the embedding to count the
local sources and sinks, which is a 1GGR and hence
a UGGR question. The fourth and fifth are reacha-
bility questions in a graph of in-degree one, which are
easily converted to 1GGR questions on that graph’s re-
versal.

5.4 Recognition of SMPDs

Theorem 5.14. Recognition of SMPDs can be done in
L.

Proof. (of Theorem 5.14) We perform the following
tests:

1. We first check if the given graph G is planar, and
if so, find a planar embedding of G [2].

2. Check if the digraph G has a single source. If not,
return “false”.

Henceforth we can assume that G has a single
source s. We first transform the given embedding
so that s lies on the external face. We now need
to check if G has a cycle.

3. We construct a subgraph H of G as follows: for
every vertex that is not the source, retain a sin-
gle, arbitrarily chosen, incoming edge to the ver-
tex and delete all other edges. Check if H is a
directed tree. If not, return “false”.

Suppose H is a directed tree - H clearly inherits
its embedding from G. We assume that we are
given a dfs numbering of H . We refer to the non-
tree edges in G (with respect to the tree H) as
cross edges. In this embedding of G, the cross
edges can be classified into two types:

• Type I edges are those going right-to-left
(i.e. a cross edge (a, b) is Type I if
Finish(a) > Finish(b)).

• Type II edges are those going left-to-right
(i.e. cross edges (a, b) where Finish(a) <
Finish(b)).

4. Now, we check if G with the underlying spanning
tree H has any back edge. If so, we have clearly
found a cycle, so G is not a SMPD. Otherwise,
delete all forward edges from H .

Create two graphs G′ and G′′: in G′ remove all
edges from G of Type I, (but retaining all edges of
Type II), and in G′′, remove all edges of Type II.
We observe that either of G′ and G′′ are SMPDs
(because any cycle in the tree has to use edges
of both types - also we are not creating any more
sources, but removing all edges of a specific Type
can potentially create more sinks). Thus, we can
solve reachability questions in G′ (or G′′) in L.

5. Choose a cross edge (a, b). If (a, b) is a Type
I edge, then query G′ to find if there is a path
from b to a. If there is such a path, return “false”.
Likewise, if (a, b) is a Type II edge, then query
G′′ to find if there is a path from b to a. Again, if
there is such a path, return “false”.

It is easy to see that if G is a SMPD, then it passes all
of the above tests. This is because G in such a case
will neither have a back edge nor any cycle. We thus
need to prove that if G passes all the tests above, it is
a SMPD. For this purpose, we introduce the following
terminology

17



Definition 5.15. A (directed) cycle is minimal if the
set of cross edges contained in it is minimal w.r.t. in-
clusion.

A directed chord in a cycle all of whose edges are
tree edges, will be called a tree chord.

It is easy to see the following:

Lemma 5.16. A cycle is not minimal if it has a tree
chord.

We use the above lemma to prove:

Lemma 5.17. Any minimal cycle either contains ex-
actly one edge of Type I or contains exactly one edge
of Type II.

Proof. (of Lemma 5.17) Consider a minimal cycle C
in G. Clearly, C must contain at least one edge each
of both Types I and II.

Consider any vertex v on C . The tree-path from the
source s (remembering that s lies on the outer face)
to v cannot intersect C: if it did, then that would
be a tree chord, contradicting the minimality of C by
Lemma 5.16.

So we can assume that for all vertices v on C , the
tree-path to v does not intersect the interior of C .

Since cycle C has edges of both Type I and Type
II, let us consider two edges: (a1, b1) of Type II, and
(a2, b2) of Type I. Given the constraint that the tree-
paths cannot intersect the interior of C , together with
the constraints that the tree-path to a1 is to the left of
the tree-path to b1 (because edge (a1, b1) is of Type II)
and the tree-path to a2 is to the right of the tree-path to
b2 (because edge (a2, b2) is of Type I), the situation is
as in Figure 10. The dotted paths from s to the vertices
on C are the tree-paths.

But now we see that, under the constraint of pla-
narity, any edge (c, d) lying on C between b1 and a2

has to be such that the tree-path to c lies to the left of
the tree-path to d. So any cross edge lying between
b1 and a2 has to be of Type II. Likewise for any cross
edge lying between b2 and a1.

The symmetric case where the edge (a1, b1) is of
Type I and (a2, b2) of Type II is handled similarly.

Thus we have proven that any minimal cycle can
contain exactly one edge of Type I or exactly one edge
of Type II.

d

c

s

C

1
b1

a

a22b

Figure 10. Tree-paths to edges around C

Hence if there is a cycle in G, then there is a minimal
cycle that contains exactly one edge of Type I or Type
II by Lemma 5.17, and we discover such a minimal
cycle in Test 5.

5.5 Planar digraphs with a few cycles

In the above, we have considered the reachabil-
ity and recognition questions for different classes of
DAGs. We may now ask: is the acyclicity essential
for being able to perform the above tasks in L? We
show in the following that we can solve reachability
questions, even when the graph has a few cycles, in L.

Consider the class G of graphs that are planar, have
a single source and a single sink, and no facial cy-
cles (no faces that form directed cycles). Note that the
recognition problem for graphs of the class G is easily
in L. We prove:

Theorem 5.18. Reachability questions in graphs from
the class G can be solved in L.

Observe that any SSPD belongs to the class G. Also
note that a graph G ∈ G is not necessarily bimodal.

Proof. (of Theorem 5.18) Given a planar graph G with
a unique source s and sink t, and no facial cycles, by
appealing to Lemma 5.12, we know that any possible
cycle has to contain at least a source or a sink inside.
Now a potential cycle C cannot contain both s and t
inside, because then the outside of the cycle C vio-
lates Lemma 5.12. So the only possibility is that C

18



separates s from t, i.e. without loss of generality, we
can assume that t lies inside C and s outside.

Now we proceed to reduce reachability questions in
G to a reachability question in a SMPD.

We can find a path (not necessarily a directed path)
from s to t in L. Now we apply the cut-and-paste
method from [1], by cutting along the path between
s and t. As in [1], after cutting along the path from s
to t and inverting the graph inside out to get a graph
G′, we paste n copies of G′ along the path from s to t
to get a graph G′′ which preserves the connectivity of
G and has s and t on the outer face. However, in this
process, because the path from s to t is not a directed
path, we have introduced some more sources and sinks
on the outer face. Now we can add a single source ver-
tex and connect it to all the sources in G′′ to get a graph
G′′′. One can verify that G′′′ is a SMPD (since it still
satisfies the properties of G, but now s and t are on the
external face, and thus there can be no directed cycles
(that is, any cycle in the original graph is destroyed
when we cut along the undirected path). Hence reach-
ability in G′′′ (and thus in G) can be solved in L.

Theorem 5.19. Reachability questions in outerplanar
digraphs can be solved in L.

Note that outerplanar digraphs, even DAGs, are not
series-parallel digraphs as considered by [11]. The re-
sult above is trivial for outerplanar DAGs, since all the
sources and sinks lie on the same face, and we can re-
duce this case to a SMPD.

In the language of book embeddings (see [17] for
instance), outerplanar graphs are exactly the ones that
have 1-page embeddings: in short, all the vertices are
laid out on the spine of the book, and all the edges are
on a single page.

Proof. (of Theorem 5.19) Suppose we have a 1-page
embedding of outerplanar graph G given to us (here,
the vertices are all on the spine as in Figure 11).

Here, the graph G is not acyclic. The instance to the
reachability question is (G, u, v) and we are to find if
v is reachable from u. We can assume that u is the
topmost vertex on the spine of the embedding.

We keep two markers limup, limdown.
Call the edges on the spine ordinary edges and the

edges not on the spine jump edges. The algorithm is

u

v

limup

limdown

Figure 11. A 1-page embedding

as follows:

1. Initialize the markers as limup = u, limdown =
∞.

2. Go down from limup as far as one can using only
ordinary edges. Go up from limdown as far as one
can using only ordinary edges. Call the region
between u and limup and limdown and∞ on the
spine the explored region E.

3. Consider all jump edges between the explored re-
gion E and the unexplored region. The unex-
plored region is thereby an “interval” on the spine
of the embedding. Consider the jump edges j1, j2

(if any) that land on vertices closest to the tar-
get vertex v on the spine, from either side (from
above or below).

4. Let j1 = (a, b) be the jump edge landing on a
vertex closest to the target v from below (if any).
Update limdown = b. Similarly, let j2 = (c, d) be
the jump edge landing on a vertex closest to the
target v from above (if any). Update limup = d.

19



5. Go to step 2.

6. If v is discovered at some step then return “true”.
If at some step neither limup nor limdown can be
changed any more and we haven’t discovered v
as yet, then return “false”.

In order to prove that the above procedure is correct,
we need to show: if v is reached by our algorithm, then
v is indeed reachable from u. This follows by an easy
induction on limup, limdown. Specifically, we have
to convince ourselves that vertices limup, limdown are
always reachable from u. For this, we use the 1-page
embedding of the graph.

On the other hand, if v is not reached by the al-
gorithm, that means, that the algorithm stopped at a
stage when it could change neither limup nor limdown

any more. Clearly, in a run of the algorithm, on the
spine, limup always stays above v (or is equal to
v), and likewise, limdown always stays below v (or
equals v). Hence, when the algorithm stops there is
no jump edge from the explored region to the inter-
val on the spine between limup, limdown (and also
limup, limdown cannot be extended any further using
ordinary edges). But this means v is not reachable
from u.

6 Conclusions and Open Problems

Any problem defines the complexity class of those
problems reducible to it. There is a general phe-
nomenon whereby interesting problems, such as gen-
eral reachability, define interesting classes, such as NL.
The GGR problem and its subproblems as outlined
here define a hierarchy of new classes, whose relations
to each other and to the standard classes between TC

0

and NL are shown in Figure 12.
Are these problems and classes interesting? We ar-

gue, particularly in Section 2.4, that many of them
have interesting alternate formulations, sometimes not
appearing to involve graphs at all. The computational
actions of searching on a grid, of searching in a maze,
of following a laid-out path on a grid, and so forth
strike us as fundamental ones, well worth studying.

The natural next questions concerning this hierar-
chy are whether any of the upper and lower bounds
can be improved, or whether additional containment
relations exist among the new classes. In particular, is

SMGGR

1LGGR

11LGGR

SSGGR

UGGR

NL

LGGR

GGRL

UL

TC0

1NC

Figure 12. The Hierarchy of GGR Classes

20



the SMGGR problem reducible to UGGR? The proof
of Theorem 5.7, like the proofs for SSPD’s, seems to
mostly involve following a laid-out path on a grid, but
we do not yet see how to formulate it solely in terms
of this. The question also remains as to whether we
can detect cycles in a general single-source graph in
FO + UGGR – the algorithm presented here relies on
SMPD reachability but this may not be necessary.

Our logspace algorithm for SMPD reachability ex-
pands the class of graphs for which Jakoby et al. ([11])
provided logspace reachability algorithms – but our
results are not completely extensions of theirs. They
proved that counting the number of paths between two
vertices of a series-parallel digraph can be done in
logspace. We have no new upper or lower bounds for
the counting problem in the classes of graphs that we
study. Another shortcoming of our reachability algo-
rithms is that they provide no clue about how to find a
shortest path, and we have no lower bounds showing
that finding a shortest path is harder than the reacha-
bility problem.

It is entirely plausible that reachability in planar
graphs, like planarity testing itself, is in L. Our work
here fits into a general program of expanding the
classes of planar graphs for which we have logspace
reachability tests. A natural intermediate goal on the
way to general planar graphs is acyclic planar graphs,
which would be called MMPD in our notation. We
note that reachability in an acyclic graph with con-
stantly many sources is in L by an easy extension of
our methods. Also, while we can easily show that
reachability questions in SSPDs reduce to the comple-
ment, we are not able to show the same for SMPDs.

Acknowledgments

The second author gratefully acknowledges helpful
discussions over the years on this topic with Sam Buss,
Steve Cook, Bill Hesse, Pierre McKenzie, and Charlie
Rackoff. The third and the fourth authors would like to
acknowledge interesting and illuminating discussions
with Meena Mahajan and K. V. Subrahmanyam on pla-
nar reachability and related topics.

References

[1] E. Allender, S. Datta, and S. Roy. The directed planar reach-
ability problem. In Proc. 25th annual Conference on Foun-

dations of Software Technology and Theoretical Computer
Science (FST&TCS), number 1373 in Lecture Notes in Com-
puter Science. Springer, 2005. to appear.

[2] Eric Allender and Meena Mahajan. The complexity of pla-
narity testing. Information and Computation, 189:117–134,
2004.

[3] David A. Barrington. Bounded-width polynomial-size
branching programs recognize exactly those languages in
NC1. Journal of Computer and System Sciences, 38:150–
164, 1989.

[4] David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen,
and Sven Skyum. Searching constant width mazes captures
the AC0 hierarchy. In 15th International Symposium on
Theoretical Aspects of Computer Science (STACS), number
1373 in Lecture Notes in Computer Science, pages 73–83.
Springer, 1998.

[5] Manuel Blum and Dexter Kozen. On the power of the
compass (or, why mazes are easier to search than graphs).
In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 132–142, 1978.

[6] S. Buss. Polynomial-sise frege and resolution
proofs of st-connectivity and Hex tautologies. sub-
mitted for publication, manuscript available from
http://www.math.ucsd.edu/ sbuss., 2005.

[7] Kousha Etessami. Counting quantifiers, successor relations,
and logarithmic space. Journal of Computer and System Sci-
ences, 54(3):400–411, Jun 1997.

[8] N. Immerman. Nondeterministic space is closed under com-
plementation. SIAM Journal on Computing, 17:935–938,
1988.

[9] Neil Immerman. Languages that capture complexity classes.
SIAM Journal of Computing, 16(4):760–778, 1987.

[10] Neil Immerman. Descriptive Complexity. Springer Graduate
Texts in Computer Science, 1998.

[11] A. Jakoby, M. Liskiewicz, and R. Reischuk. Space effi-
cient algorithms for series-parallel graphs. In 18th Interna-
tional Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), number 2010 in Lecture Notes in Computer
Science, pages 339–352. Springer, 2001. To appear in J. Al-
gorithms.

[12] N. Limaye, M. Mahajan, and J. Sarma M N. Evaluat-
ing monotone circuits on cylinders, planes, and torii. In
Proc. 23rd Symposium on Theoretical Aspects of Comput-
ing (STACS), Lecture Notes in Computer Science. Springer,
2006. to appear.

[13] O. Reingold. Undirected st-connectivity in log-space. In
Proceedings 37th Symposium on Foundations of Computer
Science, pages 376–385. IEEE Computer Society Press,
2005.

[14] K. Reinhardt and E. Allender. Making nondeterminism un-
ambiguous. SIAM Journal of Computing, 29:1118–1131,
2000.

21



[15] R. Szelepcsényi. The method of forced enumeration for
nondeterministic automata. Acta Informatica, 26:279–284,
1988.

[16] H. Yang. An NC algorithm for the general planar mono-
tone circuit value problem. In SPDP: 3rd IEEE Symposium
on Parallel and Distributed Processing. ACM Special Inter-
est Group on Computer Architecture (SIGARCH), and IEEE
Computer Society, 1991.

[17] M. Yannakakis. Four pages are necessary and sufficient for
planar graphs. In STOC ’86: Proceedings of the eighteenth
annual ACM symposium on Theory of computing, pages
104–108, New York, NY, USA, 1986. ACM Press.

22

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



