
Grid Graph Reachability Problems

Eric Allender∗ David A. Mix Barrington† Tanmoy Chakraborty‡ Samir Datta§

Sambuddha Roy¶

Abstract

We study the complexity of restricted versions ofst-
connectivity, which is the standard complete problem for
NL. Grid graphs are a useful tool in this regard, since

• reachability on grid graphs is logspace-equivalent to
reachability in general planar digraphs, and

• reachability on certain classes of grid graphs gives
natural examples of problems that are hard forNC

1

underAC
0 reductions but are not known to be hard for

L; they thus give insight into the structure ofL.

In addition to explicating the structure ofL, another of our
goals is to expand the class of digraphs for which connec-
tivity can be solved in logspace, by building on the work of
Jakobyet al. [15], who showed that reachability in series-
parallel digraphs is solvable inL.

Our main results are:

• Many of the natural restrictions on grid-graph reacha-
bility (GGR) are equivalent underAC

0 reductions (for
instance, undirectedGGR, outdegree-oneGGR, and
indegree-one-outdegree-oneGGR are all equivalent).
These problems are all equivalent to the problem of
determining if a completed game position in HEX is a
winning position, as well as to the problem of reacha-
bility in mazes studied by Blum and Kozen [5].

• Series-Parallel digraphs are a special case of single-
source-single-sink planar dags; reachability for such

∗Department of Computer Science, Rutgers, the State University of
NJ. Supported in part by NSF Grant CCF-0514155. email:allen-
der@cs.rutgers.edu.

†Computer Science Dept., University of Massachusetts Amherst.
Supported in part by NSF Grant CCR-9988260. e-mail:bar-
ring@cs.umass.edu.

‡Chennai Mathematical Institute, Chennai, India. e-mail:tan-
moych1985@gmail.com.

§Chennai Mathematical Institute, Chennai, India. e-mail:
sdatta@cmi.ac.in.

¶Department of Computer Science, Rutgers, the State University of
NJ. Supported in part by NSF Grant CCF-0514155. email:sam-
roy@paul.rutgers.edu.

graphs logspace reduces to single-source-single-sink
acyclic grid graphs. We show that reachability on such
grid graphsAC

0 reduces to undirectedGGR.

• We build on this to show that reachability for single-
source multiple-sink planar dags is solvable inL.

1. Introduction

Graph reachability problems have long played a fun-
damental role in complexity theory. The generalst-
connectivity problem in directed graphs is the standard
complete problem forNL, while thest-connectivity prob-
lems for directed graphs of outdegree 1 [7, 12, 9] and undi-
rected graphs [17] are complete forL. It follows from [3]
that reachability in directed graphs of widthO(1) (or even
width five, with outdegree 1) is complete forNC

1.
Grid graphs are a special class of planar graphs whose

vertices are located on grid points, and whose vertices
are adjacent only to their immediate horizontal or vertical
neighbors. Barringtonet al. showed [4] thatst-connectivity
in width k (directed or undirected) graphs is complete for
depthk AC

0 under first-order projections. In this paper
we study grid graphs without any width restrictions. The
general grid-graph reachability problem (GGR) is equiva-
lent to thest-connectivity problem in directed planar graphs
(and graphs of genus one) under logspace reducibility [1].
Although there are a number of papers presenting effi-
cient algorithms for connectivity in planar graphs (such as
[11, 8, 10]), little is known about the computational com-
plexity of this problem. The best upper bound known for
GGR isNL, although a slightly better upper bound is known
for so-called “layered” grid graphs (LGGR): LGGR∈
UL ∩ coUL [1].

Our focus in this paper is primarily on classes of grid
graphs whose reachability problem is solvable in logspace.
Reachability inundirectedgrid graphs (UGGR) was studied
by Blum and Kozen [5]; they showed that UGGR is solv-
able in logspace (a quarter-century before Reingold [17]
showed thatgeneralundirected reachability is solvable in

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 149 (2005)

ISSN 1433-8092

logspace). Buss has studied UGGR in connection with tau-
tologies arising from the game of HEX [6] (namely, the tau-
tology that every completed game board of HEX has a win-
ner); he credits Barrington with the observation that UGGR
is equivalent to the problem of determining if a given com-
pleted HEX board position is a win for one player. Reach-
ability in grid graphs of outdegree one (1GGR) is another
restriction on GGR that is clearly solvable in logspace.

One of our theorems is that UGGR and 1GGR are equiv-
alent underAC

0 reductions (and even under first-order pro-
jections). We show that these problems are hard forNC

1,
and thus this gives a cluster of natural problems that are can-
didates for having complexity intermediate betweenNC

1

andL, since even the general GGR problem is not known
to be hard forL underAC

0 reductions.
Jakoby, Liskiewicz, and Reischuk showed that reachabil-

ity in series-parallel digraphs is solvable in logspace [15],
thus solving the reachability question for an important sub-
class of planar directed graphs. Series-parallel digraphsare
a special case of planar directed acyclic graphs having a sin-
gle source and single sink. Motivated by a desire to solve
the reachability problem for a larger class of planar DAGs,
we introduce the following three classes of DAGs:

• Single-Source Single-Sink Planar DAGs(SSPDs): the
class of DAGs having one vertex of indegree zero
and one vertex of outdegree zero. Reachability in
SSPDs generalizes the problem of reachability in
series-parallel digraphs studied in [15].

• Single-Source Multiple-Sink Planar DAGs(SMPDs):
the class of DAGs having one vertex of indegree
zero. Reachability in such graphs is clearly equivalent
to reachability in Multiple-Source Single Sink DAGs
(MSPDs) by simply reversing all of the edges.

• Multiple-Source Multiple-Sink Planar DAGs
(MMPD). This is simply the class of all planar
DAGs.

We show that the SMPD reachability problem (and hence
also that for MSPD) lies in logspace. In addition, reach-
ability in SSPDs, restricted to grid graphs, is reducible to
UGGR. Our algorithmic approach for SMPD extends to
certain classes of graphs that are not acyclic. This is dis-
cussed in more detail in Section 5.

The rest of the paper is organized as follows. In Section
2 we introduce the various grid graph problems that we will
be considering, and present reductions showing how these
problems relate to each other. In Section 3 we present a
generic reduction showing that, for many of the problems
we consider, it is no loss of generality to assume thats and
t appear on the external boundary of the graph. Our hard-
ness results are presented in Section 4. Our logspace algo-

rithms for SSPD and SMPD are presented in Section 5. We
conclude with open questions in Section 6.

2. Versions of the GGR Problem

We begin by defining and exploring a number of special
cases of the GGR problem, based on a variety of restrictions
on the grid graphs and on the verticess andt.

2.1. Classes and Reductions

We assume familiarity with the following important sub-
classes of nondeterministic logspace (NL): L, NC

1, TC
0,

andAC
0. When defining notions of reducibility and com-

pleteness in order to investigate the structure of such small
complexity classes, some form ofAC

0 reducibility is usu-
ally employed. We will frequently make use of the termi-
nology and notation employed by Immerman [14], which
exploits the close connections betweenAC

0 and first-order
logic. In particular,AC

0-Turing reducibility (≤AC0

T
) to a set

A can be defined equivalently in terms ofAC
0 circuits aug-

mented with “oracle gates” forA, or in terms of first-order
formulae withA as a built-in predicate symbol applied to a
structure defined in first-order. For details refer to [14]. For
this reason, we sometimes refer to≤AC0

T
reductions asFO

reductions. The class of problems≤AC0

T
reducible toA is

sometimes denoted asFO + A.
Immerman also gives good motivation for studying a re-

stricted form of≤AC0

m
reductions calledfirst-order projec-

tions (≤FO
proj). These can be visualized as many-one reduc-

tions computed by first-order uniform circuitshaving no
gates(other than NOT gates); thus each bit of the output is
either a constant or is a copy (or a negated copy) of one bit
of the input. For example, the class depth-k AC

0 is closed
under these reductions.

2.2. Nine Problems

We first consider two restrictions on the global structure
of a GGR problem, and two local restrictions:

• The problem GGR-B is the set of tuples(G, s, t) where
G is a directed grid graph,s andt are vertices on the
boundary of G, and there is a path froms to t in G.

• The problem LGGR is the set of tuples(G, s, t) where
G is a layered directed grid graph, havingonly east
and south edges, and there is a path froms to t.

• The problem 1GGR is the set of tuples(G, s, t) where
G is a directed grid graph ofoutdegree at most 1and
there is a path froms to t. (Since a cycle of length
two can not contribute to a path froms to t, and since

GGR

11LGGR

1LGGR11GGR-B

11GGR LGGR1GGR-B

GGR-B1-GGR

Figure 1. Nine GGR problems.

the existence of such cycles makes certain of our re-
ductions more complicated, and since such cycles are
easy to eliminate via a syntactic test, we assume that
there is no cycle of length 2 in an instance of 1GGR.)

• The problem 11GGR is the set of tuples(G, s, t) where
G is a directed grid graph ofindegree and outdegree
at most 1and there is a path froms to t.

It is obvious that 11GGR is a special case of 1GGR.
LGGR is a special case of GGR-B because given a layered
graph with verticess andt, we can clearly restrict our at-
tention to the rectangle withs at its northwest corner andt
at its southeast corner – if there is no such rectangle, there
can be no path froms to t. The local and global restrictions
are orthogonal, so that the three global conditions (general,
boundary, and layered) and three local conditions (general,
outdegree 1, both degrees 1) give us nine special cases of
the GGR problem: GGR, 1GGR, 11GGR, GGR-B, 1GGR-
B, 11GGR-B, LGGR, 1LGGR, and 11LGGR. Even the eas-
iest of these problems, 11LGGR, is non-trivial, as we will
show in Section 4 that it is hard for the classTC

0.

There are other natural ways to define a layered graph.
We could forbid only one of the four directions of edges
rather than two. Or we could allow diagonal edges but force
them to go only northeast, east, or southeast, making each
north-south column a layer according to the standard defi-
nition. But it is an easy exercise to construct a first-order
projection from a graph satisfying any one of these restric-
tions to one satisfying any of the others. (We prove one of
these results in Proposition 2.12.)

2.3. Undirected GGR

One of the most natural local restrictions on a graph is
undirectedness. Long before Reingold[17] showed that the
undirected reachability problem is inL, Blum and Kozen
[5] showed that the UGGR problem, testing reachability in
undirected grid graphs, is inL. Here we show that UGGR
is equivalent tofour of the nine versions of GGR we have
just defined:

Theorem 2.1. The problems UGGR, UGGR-B, 1GGR,
1GGR-B, 11GGR, and 11GGR-B are all equivalent under
first-order projections.

Proof. We will show that 1GGR≤FO
projUGGR≤FO

proj

UGGR-B ≤FO
proj 11GGR-B ≤FO

proj1GGR, appealing to
Section 3 for the second reduction and observing that the
last reduction is trivial.

Lemma 2.2. 1GGR≤FO
projUGGR

Proof. The well-known general reduction from outdegree
one reachability to undirected reachability works without
modification for grid graphs. Given an outdegree one grid
graphG and verticess and t, create an undirected graph
H by modifyingG to delete the edge (if any) out oft and
change each directed arc to an undirected edge. Since the
vertices with paths tot in G form a directed tree, the cor-
responding vertices inH are simplyt’s connected compo-
nent. Sos has a directed path tot in G if and only if it
has an undirected path tot in H . The reduction is clearly a
first-order projection.

Lemma 2.3. UGGR-B≤FO
proj11GGR-B

Proof. We merely have to formalize the familiar “right-
hand rule” for exploring mazes – if we place our right hand
on the wall and keep walking with our hand on the wall,
we will return to our starting place having gone completely
around the connected component of wall to our right. If
both our starting place and our goal are on the boundary of
the entire maze, they are on the boundary of their connected
component.

More formally, given an undirected grid graphG and
verticess andt on its boundary, we define a grid graphH
of indegree and outdegree at most 1 as follows. The vertices
of H will be points(a/3, b/3) wherea andb are integers –
when both coordinates are integers we identify this vertex
of H with the corresponding vertex ofG. (Note that the
positivex direction is east, and the positivey direction is
south.) The directed edges ofH will have the property that
there is an edge ofG 1/3 unit to their right in their direction
of travel, unless they are turning a corner:

t’

s’

t

s

Figure 2. An undirected grid graph and its in-
1-out-1 graph.

• If there is an edge inG between(u, v) and(u + 1, v),
then there are directed arcs inH from (u + 1/3, v −
1/3) to (u+2/3, v−1/3) and from(u+2/3, v+1/3)
to (u + 1/3, v + 1/3).

• If there is an edge inG between(u, v) and(u, v + 1),
then there are directed arcs inH from (u − 1/3, v +
2/3) to (u−1/3, v+1/3) and from(u+1/3, v+1/3)
to (u + 1/3, v + 2/3).

• If (u, v) is a vertex ofG with noedge inG to (u+1, v),
thenH has edges from(u + 1/3, v − 1/3) to (u +
1/3, v) and from(u + 1/3, v) to (u + 1/3, v + 1/3).

• If (u, v) is a vertex ofG with noedge inG to (u−1, v),
thenH has edges from(u − 1/3, v + 1/3) to (u −
1/3, v) and from(u− 1/3, v) to (u − 1/3, v − 1/3).

• If (u, v) is a vertex ofG with noedge inG to (u, v+1),
thenH has edges from(u + 1/3, v + 1/3) to (u, v +
1/3) and from(u, v + 1/3) to (u − 1/3, v + 1/3).

• If (u, v) is a vertex ofG with noedge inG to (u, v−1),
thenH has edges from(u − 1/3, v − 1/3) to (u, v −
1/3) and from(u, v − 1/3) to (u + 1/3, v − 1/3).

We define verticess′ and t′ in H by moving1/3 unit
away from the rest ofG from s andt respectively. It is clear
that H has both indegree and outdegree at most one, and
that there is a directed path froms′ to t′ in H if and only
if there is an undirected path froms to t in H . Figure 2
shows the result of this construction on a small undirected
graph.

Thus all these versions of the problem are equivalent un-
der first-order projections.

2.4. Five Problems

The results of the preceding section and of Section 3 re-
duce our nine problems to five. If we close each under first-
order reductions, we get a hierarchy of complexity classes
within NL and (as we shall see in Section 4) aboveTC

0.
Since each problem has a number of interesting alternate
formulations, we spend some time looking at each in turn:

UGGR LGGR

1LGGR

11LGGR

GGR

Figure 3. The five surviving GGR problems.

2.4.1 GGR

The general GGR problem is inNL, of course, but we have
no better upper bound. As shown by Allenderet al.[1], it is
equivalent underlogspacereductions to the general planar
reachability problem. (Our argument in Section 3 that GGR
and GGR-B are equivalent is in fact a simplification of the
argument there that general planar reachability reduces to
its boundary special case.)

There is an easy (first-order projection) reduction from
GGR-B to its complement, grid-graph non-reachability
with s and t on the boundary. This is because there is
no path froms to t in a grid graphG iff there is a path,
from some boundary vertex on one path froms to t to a
boundary vertex on the other path, in thecomplement-dual
grid graph. (For details see [4].) The reachability prob-
lem for general graphs reduces to its complement by the
Immerman-Szelepcsenyi theorem [13, 19], but this much
simpler reduction provides some weak evidence that GGR
is not complete forNL.

2.4.2 UGGR

We found above that UGGR, undirected grid graph reach-
ability, has a number of equivalent formulations including
its boundary version UGGR-B. To these we may add the

problem of determining the winner in a completed game of
HEX[6], because a hexagonal grid can easily be mapped
by a projection reduction to the Euclidean grids we have
defined here. Like GGR-B, UGGR-B projection-reduces
directly to its complement by taking a complement-dual
graph. This gives it another robustness property:

Proposition 2.4. A language is in the classFO+UGGRiff
it projection-reduces toUGGR.

Proof. We show that the set of languages that projection-
reduce to UGGR-B, and hence (by Section 3) to UGGR,
is closed under≤AC0

T
reductions. We give an inductive ar-

gument on the depth of the circuits computing the≤AC0

T

reduction (where without loss of generality the circuits for
different lengths have the same structure, and all gates on
the same level are of the same type). The inductive hypoth-
esis is that the value of each wirew leading into a top-level
gate can be represented as the answer to the question of
whether or not a graphGw is in UGGR-B whereGw is a
projection of the input graphG. This is clearly true if the
only gates are NOT gates, which establishes the basis for
the induction. If the top-level gate is an AND gate, then it
suffices to connect the graphsGw in series. Similarly, if the
top-level gate is an OR gate, then it suffices to connect the
graphsGw in parallel. If the top level gate is a NOT gate,
then as we observed above, the complement-dual graph lets
us represent the negation of a UGGR-B problem as the OR

of polynomially many UGGR-B problems (and thus again
we can connect these graphs in parallel.) If the top level gate
is an oracle gateg, then we can replace each wirew (rep-
resenting an edge(x, y) in the encoding of the grid graph
H presented as input tog) by a small sub-grid encoding the
graphGw, identifying the source vertex asx and the sink
vertex asy. The details are straightforward to fill in; by
simple padding we may assume that all of the graphsGw

are the same size.

In its incarnation as 11GGR, UGGR can be seen to have
the followingcountingproperty:

Proposition 2.5. If G is a directed grid graph of indegree
and outdegree each at most one, then the following pred-
icate projection-reduces toUGGR: DIST(s, t, k) ↔ the
path out ofs reachest in exactlyk steps.

Proof. We first note that we can determine many properties
of thedirectedpath out ofs in G by usingFO + UGGR to
answer questions about relatedundirected graphs. By look-
ing at the undirected graph obtained by erasing the arrows in
G, we can tell whether the path passes through a given ver-
texv. By removing an edge from this undirected graph and
retesting, we can determine whether a given directed edge
occurs on the path inG. Similarly, we can tell whether the
path turns a corner at a given vertex.

cable turning corner

cable straight into
shift insertvertex

Figure 4. The Construction of Proposition 2.5

If the path does turn a corner at a vertexv, then either the
path cuts across the diagonal line atv running from north-
east to southwest, or else it cuts across the diagonal line atv
running from northwest to southeast. Let us callv an “NE”
vertex in the first case, and an “NW” vertex in the second
case.

Now we can define a graphHs,t,k where each vertex
along the path is replaced byk + 1 copies. These copies
are placed in a diagonal line from northeast to southwest if
v is an “NE” vertex or if the path does not turn a corner at
v, and the copies are placed in a diagonal line from north-
west to southeast otherwise. Each edge along this path is
replaced by a “cable” ofk + 1 parallel straight paths. The
copies of each vertex and edge are numbered so that copyk
is to the left and copy0 is to the right in the direction of the
path’s travel.

Finally, on each incoming cable, we insert a shift compo-
nent so that the path forming thei’th copy of each edge now
connects thei’th copy of its source to thei+1’st copy of its
destination. (See Figure 4.) Note that this graphH also has
indegree and outdegree at most 1. Then DIST(s, t, k) is true
iff there is a path inH from copy0 of s to copyk of t. We
can defineH in FO + UGGR, and thus by Proposition 2.4
we can defineH as a first-order projection ofG.

In Section 5 we will be interested in the depth-first search
of a directed tree embedded in a grid graph. If we convert
the directed tree to an undirected tree and then to a graph
of indegree and outdegree one by the constructions of this
section, we produce a tour of the vertices of the tree that
exactly follows the order in which they are visited by the
depth-first search. Because we can count the length of paths
in this final graph, we conclude:

Theorem 2.6. LetT be a directed tree embedded in a grid
graph and consider the depth-first search ofT that visits
children of a node in the left-to-right order given by the em-
bedding. Then the following properties of the search are
each computable inFO + UGGR: start time of a vertex,

finish time of a vertex, depth of a vertex, and whether one
vertex is an ancestor of another.

2.4.3 LGGR

The most interesting question regarding LGGR is whether
it is any easier than general GGR. It seems plausible that
searching for a path that must always make progress in a
given direction would be easier than searching for one that
could double back upon itself arbitrarily. But the evidence
we have for this is rather thin. Allenderet al.[1], follow-
ing the method of Reinhardt and Allender [18], show that
LGGR is in the classUL – it is the language of a nonde-
terministic logspace machine that never has more than one
accepting run on the same input. But it is known [18] that
the non-uniform versions ofUL andNL are the same, and
it is entirely plausible that the classes themselves are the
same.

Another interesting question is the relationship, if any,
between LGGR and reachability for general grid graphs that
happen to be acyclic. The two restrictions seem similar, but
nothing is known.

It is not clear whether LGGR is closed under comple-
mentation. The complement-dual of a grid graph whose
edges go only east and south is a grid graph that containsall
possiblenorth and east edges, and some edges going south
and west. There may be a way to reduce this problem to
LGGR, but we don’t know of one.

LGGR is also a special case of evaluating alayered
monotone planar circuit, where the circuit has only OR
gates and constant0 gates (except for one constant1 gate).
Limayeet al. [16] give a nice survey of the various versions
of this problem along with some new results.

2.4.4 1LGGR

The 1LGGR problem has some alternate characterizations,
which we find useful in proving our results about this prob-
lem.

Definition 2.7. An outdegree exactly-one layered grid
graphis an instance of1LGGRwhere every vertex not ap-
pearing on the boundary has outdegree 1. That is, the only
sinks are on the boundary. The reachability problem on
these graphs is denoted byE1LGGR.

Lemma 2.8. E1LGGR is equivalent (via projections) to
the reachability problem on directed grid graphs that have
some east edges, all possible south edges, and no north or
west edges.

Proof. We first reduce this new problem to E1LGGR. LetG
be a layered grid graph with some east and all south edges.
Without loss of generality lets be the northwest corner and
t the southeast corner. Define the following instanceH of

E1LGGR. The vertices ofH are the same as those ofG. If
vertexv has an east edge out of it inG, it has an east edge
out of it in H . Otherwise it has a south edge out of it inH .
Clearly, every vertex ofH that is not on the south boundary
has outdegree one. It is easy to show by induction that the
path out ofs in H reaches or passes directly north of every
vertex reachable inG. Either this path ends at a vertex on
the south boundary that has no east edge, or it reaches the
east boundary and thus goes south tot. So the path inG
exists iff the path inH does.

For the other reduction, letG be an instance of E1LGGR.
DefineH to be a copy ofG with all possible south edges
added. DefineGT to be the layered grid graph obtained
from G by reflecting about the northwest-to-southeast diag-
onal, and letH ′ be a copy ofGT with all possible south
edges added. Finally, letI be aseries connectionof H and
H ′ – a layered grid graph, with all south edges present, ob-
tained by placingH in the northwest quarter andH ′ in the
southeast quarter of a single graph, identifying the south-
east corner ofH with the northwest corner ofH ′. It is easy
now to verify that there is a path from the northwest corner
of I to the southeast corner iff the unique path froms in G
reachest, rather than some other sink on the boundary of
G.

Proposition 2.9. The language of problems projection-
reducible toE1LGGRis closed under complement.

Proof. The complement-dual of a layered grid graph with
some east edges and all south edges has all possible north
and east edges, some south edges, and no west edges. But
the north edges are of no additional use in making a path
from north to south, so this is equivalent to a problem with
some south and all east edges, clearly isomorphic to the
problem with all south and some east.

Theorem 2.10.1LGGR and E1LGGRare equivalent un-
der projections (and thus, by the preceding proposition,
1LGGRprojection-reduces to its complement).

Proof. Since E1LGGR is a special case of 1LGGR, it suf-
fices to reduce 1LGGR to E1LGGR. First, we present a
first-order reduction. LetG be an instance of 1LGGR. Let
H be a graph with the same set of vertices and containing
all of the edges ofG, but with the property that ifv is an
internal sink inG, thenv has an edge leading out to the east
in H . H is clearly an instance of E1LGGR, and there is
path froms to t in G if and only if (there is a path froms to
t in H and, for every sinkv of G, there is not a path froms
to v in H).

It remains to simulate this reduction with a projection.
Note thatH can be formed as a projection fromG; although
the condition thatv is a sink depends ontwo bits of G, we
can phrase this condition equivalently by saying that there
is an east edge out ofv iff there is not a south edge out

of v. Next note that the first-order reduction is the AND

of a reachability question onH with polynomially-many
conditions of the formCv: “v is not a sink or there is not a
path froms to v in H”. Cv is equivalent to the negation of
the condition “v is a sink and there is a path froms to v in
H”, which can be expressed by a reachability question in a
graph with two components: the first component is a two-
by-two grid graph containing the negations of the two edges
out of v, and the second component is the subgraph ofH
with v as terminal node. It is easy to see that the negation of
Cv can thus be expressed as a projection of E1LGGR, and
thus by the preceding proposition, each conditionCv can be
posed as a positive query to E1LGGR.

All of the polynomially-many reachability conditions of
our first-order reduction can be combined in series to form
a single instance of E1LGGR. (That is: form a grid with
the queried graphs along the main diagonal, with vertexs
in one graph identified with vertext in the next. Vertices
along the boundaries of the queried graphs are connected
to paths running east or south to the boundary of the large
graph, to maintain the property that the only sinks are on
the boundary.) This yields the desired projection.

Theorem 2.11.Any language first-order reducible to
1LGGR is projection-reducible to it.

Proof. We follow essentially the same strategy as in the
proof of Proposition 2.4 – but we cannot use the same con-
struction of simulating an OR gate by a parallel connection,
since that construction does not have outdegree 1. However,
using DeMorgan’s laws, we can assume that a first-order re-
duction to to 1LGGR is computed by a constant-depth cir-
cuit with only AND and NOT gates, in addition to oracle
gates for 1LGGR. The inductive argument now proceeds
in exactly the same way as in the proof of Proposition 2.4,
but we need to be more careful in the way that oracle gates
are simulated.G be then-by-m grid corresponding to the
input wires of an oracle gate, where by induction we are
assuming that we have instances of 1LGGRGw for each
of these wires. For each possible horizontal edge(u, v) of
G represented by wirew, we can placeGw diagonally be-
tweenu andv, so that all edges ofGw are running northeast
or southeast. For each vertical edge(u, v) represented by
wire w, we placeGw diagonally betweenu andv so that
all edges ofGw are running southwest or southeast. If we
rotate this graph 45 degrees counterclockwise, we obtain a
grid graph with outdegree one having no west edges, such
that there is a path froms to t if and only if there is a path
from s to t in G. The proof is completed by showing that
reachability in graphs of this type is projection-reducible to
1LGGR; see Proposition 2.12.

Proposition 2.12. The restriction of1GGR to instances
having no west edges projection-reduces to1LGGR.

Proof. Consider a directedn by n grid graphG with no
west edges, a vertexs on the west boundary, and a vertex
t on the right boundary. We describe how to successively
recast thisGGR instance as a sequence ofGGR-like in-
stances, the last of which is a 1LGGR instance.

• Our first graphG′ is n by n(n + 1) and has edges that
go northeast, east, and southeast. We embed the ver-
tices ofG in G′ so that there aren columns of new
vertices between each column ofG vertices. For each
east edge inG, we make a corresponding path ofn+1
east edges inG′. For each north or south edge inG,
we put northeast or southeast edges respectively on the
corresponding vertex inG′ and each of the nextn− 1
new vertices in the same row. Note thatG′ also has
outdegree one. We can now see that if the path inG
from vertexu first reaches a particular column at ver-
texv, then the path out ofu in G′ also goes tov.

• We now makeG′′ by doubling the size ofG′ and re-
placing each east edge with a path of length two con-
sisting of a northeast and a southeast edge. Northeast
and southeast edges inG′ become paths of two north-
east or two southeast edges inG′′.

• Finally, we make a 1LGGR instanceH by rotating
G′′ 45 degrees clockwise so that its edges go east and
south.

As we will see in Section 4, the complexity class of
problems first-order reducible to 1LGGR lies somewhere
betweenL andNC

1. These two classes exemplify one con-
trast between sequential computation (L) and parallel com-
putation (NC

1). The question of whetherL = NC
1 is the

question of whether sequential computations using only log
space can be parallelized to a certain extent. (Of courseL
problems can be solved inO(log2) parallel bit operations
becauseL ⊆ NC

2, but the question is whether we can get
depthO(log n).)

Here is a problem that looks to be inherently somewhat
sequential, in that a polynomial number of operationsap-
pear to be necessary in sequence. LetA be ann by n
Boolean array and consider the following Java code frag-
ment:

int count = 0;
for (int i=0; i < n; i++)

if (A[i,count]) count++;

Determining whether the value ofcount at the end of
this fragment is some valuek is easily projection-reduced
to 1LGGR. If 1LGGR∈ NC

1, then this code can be par-
allelized in some way that is not readily apparent to get
O(log n) time instead of theO(log2 n) time from pointer
doubling.

2.4.5 11LGGR

The easiest problem in our hierarchy, 11LGGR, has an in-
teresting alternate formulation. Consider a data structure
holding a varying number of items and supporting the fol-
lowing two operations:

• insert(i) places a new element in positioni and moves
all higher-numbered elements up by one position, and

• delete(i) removes the element in positioni and moves
all higher-numbered elements down one position.

Given such a structureA, a sequences of inserts
and deletes, and a positioni in A, define the predicate
Preserves(A, s, i, j) to be true iff the item in positioni
at the beginning still exists and is in positionj after s is
executed.

This problem is reducible to 11LGGR, because we can
make a grid where each row represents a time step, each
column represents a position, each vertex represents an item
at some time, edges go southwest, south, or southeast to
represent the movement or non-movement of an item, and a
path thus traces the history of a given item.

What is interesting is that thisPreserves problem is
completefor the class of problems first-order reducible to
11LGGR. Given an arbitrary 11LGGR instance, we can
interpret a layer as a time step in the history of a similar
but more complicated data structure, where several vertices
might be inserted or deleted at the same time, correspond-
ing to the sources or sinks among that layer of vertices. But
these operations may be sequentialized into single inserts
and deletes as above. If we do this for each layerG, we get
aPreserves problem equivalent to the 11LGGR instance.

2.5. Acyclicity and Single-Source

We have no logspace algorithm to test if a given di-
rected grid graph isacyclic, because this problem is hard
for LGGR (which is not known to lie inL). But in Section 5
we will present algorithms for two special cases of general
acyclic GGR.

These are thesingle-sourceproblem SMGGR and the
single source, single-sinkproblem SSGGR. (In each case
we will assume, as per Proposition 3.3, that the source oc-
curs on the boundary of the grid graph.)

Even the latter problem is non-trivial in our hierarchy:

Lemma 2.13. 1LGGR≤FO
projSSGGR

Proof. Appealing to Lemma 2.8, letG be a layered grid
graph with some east edges and all possible south edges,
with northwest corner(0, 0) and southeast corner(a, b). We
form a graphH by adding one new row each north and
south ofG and one new column each east and west of it.

ts
t

s

Figure 5. Putting s and t on the same row.

s t
m
m+1

s t

H

s’ t’

Figure 6. The basic gadget H

H will include all possible south edges, and its east edges
will be those ofG plus all those in the two new rows. These
changes do not affect reachability between vertices ofG,
but in H (−1,−1) is the only source and(a + 1, b + 1) is
the only sink. Note that the source is on the boundary.

Since most of our arguments in Section 5 apply to any
graphs embedded in the plane, we will present them in gen-
eral form and note where theL constructions may be carried
out inFO + UGGR in the case of grid graphs.

3. The Boundary Construction

In this section we show that each of the problems GGR,
UGGR, and 1GGR reduces via first-order projections to the
special case wheres andt are on the external boundary. For
simplicity, we first consider GGR.

Theorem 3.1. GGR≤FO
projGGR-B.

Proof. Let G be a grid graph. Without loss of generality,
s andt appear on the same horizontal row ofG; call this
row m. (If this is not true, then add some paths to effect a
vertical shift of part of the grid, as illustrated in Figure 5.)
We may also assume without loss of generality that there is
no vertical edge out ofs or into t, and may also assume that
s is a source andt is a sink, and thats appears to the left of
t in the grid. ModifyG by inserting a new row of “dummy”
vertices just above rowm of G, to obtain a new graphG′.
In G′ there are no horizontal edges in rowm + 1, and all
edges that enter rowm + 1 vertically from above continue
on below, and vice-versa.

Now build a new graphH by cutting G′ horizontally
along rowm + 1 to obtain two gridsG′

top andG′

bottom.

H

H

H
0

s’
0

-1

1

-1

1

t’

t’

t’

0

t"

Figure 7. Connecting multiple copies of H

There is a copy of rowm + 1 in each ofG′

top andG′

bottom.
In H , the graphG′

bottom appearsaboveG′

top. For each ver-
tex v in row m1 to the left ofs or to the right oft, there
is a path connecting the the two copies ofv, going around
the closest side boundary, and directed the same way as the
edge that passes throughv in G, as illustrated in Figure 6.
Also as illustrated in Figure 6, add new verticess′ and t′

at the top right and left corners, respectively, connected via
paths tos and t. For the vertices in rowm + 1 that ap-
pear betweens andt, add vertical paths that we will use to
connect different copies ofH together.

Let there ben vertices inG. Create2n + 1 copies ofH ,
labeledH−n, H−n−1, . . . , H−1, H0, H1, . . . Hn, and con-
nected vertically withH0 in the middle, where the connec-
tions are made at the vertical paths between the copies of
s andt in the bottom row ofHi−1 and the corresponding
paths in the top row ofHi. (See Figure 7.) A simple in-
ductive argument shows that there is a path froms to t in
G iff there is a path froms′0 to one of the verticest′i. The
vertexs′0 is on the external face, as is each of the vertices
t′i. The construction is completed by creating a new vertex
t′′ and adding paths from eacht′i to t′′. Call the resulting
grid graphH ′. It is easy to see that this reduction can be
accomplished by means of a first-order projection.

Corollary 3.2. UGGR≤FO
projUGGR-B and

1GGR≤FO
proj1GGR-B

Proof. If G has outdegree one, then the graphH ′ also has
outdegree one. IfG is undirected, then the graphH ′ will
also be undirected, if we modify the construction by adding
undirectedpaths froms′ to s and fromt to t′, as well as
from eacht′i to t′′.

�
�

�
�

�
�

�
�

A
BD

C

....

....
........

....

....

....

Figure 8. Grid graph G with cell E in the cen-
ter.

We conclude this section with the observation that a
much simpler construction is sufficient if we wish to put
onespecified vertex on the boundary, instead of two.

Proposition 3.3. For any given grid graphG and vertexv,
there is a graphH that can be expressed as a first-order
projection ofG, that has the same connectivity properties
asG, but has vertexv on the boundary ofH .

Proof. The three figures Figure 8, Figure 9 and Figure 10
illustrate how any given cellE of the grid graphG (contain-
ing vertexv) can be “stretched” to become the boundary of
H (with the subgrids that surroundedE being flipped over
into the interior ofE).

4. Lower Bounds

4.1. ATC
0 Lower Bound For 11LGGR

Even the easiest version of GGR we have considered has
nontrivial complexity:

Theorem 4.1. The problem11LGGR is hard for TC
0 un-

der first-order reductions.

Proof. Our reduction is from the complete problem
EXACTLY-HALF, the set of binary strings with exactly
the same number of zeroes and ones. Given a stringw =
w0 . . . wn−1 of lengthn, with n even, we construct a grid
graphG that is ann/2 + 1 by n/2 + 1 square with vertices

C

D

A
B

Figure 9. Cell E “stretched” to full size.

...
...

... ...

A
B

C

D

Figure 10. The final graph H .

numbered(0, 0) through(n/2, n/2). The edge out of ver-
tex (i, j) is to the east (to(i + 1, j)) if wi+j = 0 and south
(to (i, j + 1)) if wi+j = 1. Thus each diagonal, the vertices
with i + j = k for eachk, have edges all in the same direc-
tion. On the east and south boundary, a vertex is a sink if its
edge, by this rule, would leave the graph.

It is clear that this graph is layered and has both maxi-
mum indegree and outdegree of 1, and thus is an instance
of 11LGGR once we sets = (0, 0) and t = (n/2, n/2).
Equally clearly, the unique path out ofs will take one edge
east for every zero inw and one edge south for every one,
until or unless it reaches the east or south boundary ofG.
It reachest if and only if the input string is in the language
EXACTLY-HALF. The reduction is a simple first-order pro-
jection.

We can define a special case of 11LGGR that iscom-
plete for TC

0. Suppose that the indegree and outdegree
of every vertex isexactlyone, except for vertices on the
boundary. This condition forces all the edges from vertices
on a giveni + j = k diagonal to go in the same direction.
Thus it must be exactly the encoding of some string under
our reduction from EXACTLY-HALF to 11LGGR. Given
two verticess = (i, j) andt = (i′, j′), we need only find
the substringwi+j . . . wi′+j′−1 of this string, and determine
whether the number of zeroes in this string is exactlyi′ − i.
This is clearly easy to do by reduction to EXACTLY-HALF
and is thus in the classTC

0. Since our earlier reduction al-
ways produces 11LGGR problems falling within the special
case, the special case is complete forTC

0.

4.2. AnNC
1 Lower Bound: Series-Parallel Graphs

We now show that except for the minimal problem
11LGGR, each of our versions of GGR is hard for the class
NC

1. Our proof constructs a graph with aparticular series-
parallel decomposition. (By contrast, Jakobyet al. [15] deal
with graphs thatadmit such a decomposition.) While the
GGR problem for such pre-decomposed graphs is inNC

1,
we have noNC

1 upper bound for any of the versions of
GGR we have defined above.

Theorem 4.2. The problem 1LGGR is hard for the class
NC

1 under first-order projections.

Proof. Our reduction is from a special case of the Boolean
sentence value problem, proved to be both inNC

1 and
hard forNC

1 by Buss, Cook, Gupta, and Ramachandran
in [BCGR92]. A Boolean sentence is an infix Boolean for-
mula with constants 0 and 1 and binary operators∧, ∨, and
¬, and BSVP is the set of such formulas that evaluate to
1. In Theorem 5.1 of [BCGR92], they construct a Boolean
sentence whose value is equivalent to that of an arbitrary
O(log n) time alternating Turing machine on a given input

G
a

bG

G
a

G
a

G
b

or

andG G
ba

G
b

1

G
0

G

Figure 11. The construction of Gφ. All south
edges are present.

string of lengthn. Here we will use the fact that the sen-
tence they construct is always:

• monotone (has no¬ operators),

• fully balanced (every constant occurs at the same
depth), and

• alternating (∧ and∨ operators alternate).

We describe a general inductive construction that takes a
monotone Boolean sentenceφ and produces a square grid
graphGφ that contains all possible south edges, some east
edges, and no north or west edges, such that there is a path
from the northwest to the southeast corner ofGφ if and only
if φ is true. Figure 11 illustrates the construction.

As we observed in Section 2.3, 1LGGR can be defined
in terms of reachability from the northwest to the south-
east corner of such graphs. In the special case of a mono-
tone, fully balanced, and alternating formula, our construc-
tion can be simulated by a first-order projection. This will
show that the 1LGGR problem is hard forNC1 under such
projections.

We map constants to 2 by 2 graphs, with no east edges
for a constant0 and an east edge on the south boundary for
a constant1. Clearly a path from northwest to southeast
exists forG1 and not forG0.

If φ is the formulaα ∧ β, andα andβ are already repre-
sented by square graphsGα andGβ of sidea andb respec-
tively, thenGφ is a square graph of sidea+ b with Gα in its
northwest corner andGβ in its southwest corridor. The rest

of Gφ has only the required south edges, except for a single
east edge from(a − 1, a) to (a, a), the northwest corner of
the copy ofGβ . If there are paths from the northwest to
southeast corners ofGα andGβ respectively, there is a path
from the northwest corner(0, 0) of Gφ to (a − 1, a − 1),
south one step, across the east edge to(a, a), and acrossGβ

to (a + b − 1, a + b − 1). But the only way from column
a− 1 to columna is across this east edge, and thus the only
way to get from(0, 0) to (a + b − 1, a + b − 1) is to cross
bothGα andGβ from northwest to southeast corner. The
path acrossGφ thus exists if and only if bothα andβ are
true, that is, ifφ is true.

Similarly, suppose thatφ = α ∨ β andα andβ are al-
ready represented as above. We make a square graph ofGφ

sidea+b as before, placingGα andGβ as before. This time,
our added east edges form two paths, from(a− 1, a− 1) to
(a + b− 1, a− 1) and from(0, a) to (a, a). We must show
that a path exists from(0, 0) to (a + b− 1, a+ b− 1) in Gφ

iff a path existseitheracrossGα or Gβ . If the path exists
acrossGα, we may take it and then go due east to column
a+b−1 and then south to our goal. If the path exists across
Gβ , we can go from(0, 0) south to(0, a), then east to(a, a)
and across this path to our goal. Conversely, suppose there
is a path from(0, 0) to (a + b − 1, a + b − 1). Since there
are only two edges from columna−1 to columna, the path
must use one of them. If it uses the edge from(a−1, a−1)
to (a, a − 1) it must have previously crossedGα, and if it
uses the edge from(a − 1, a) to (a, a) it must then cross
Gβ .

If φ is a monotone, fully balanced, alternating Boolean
sentence of depthd, this construction produces a square
graphGφ of side2d+1. To constructGφ from φ, we need
only place the east edges. For thei’th of the 2d constants
in φ, we add an edge from(2i + 1, 2i) to (2i + 1, 2i + 1)
iff this constant is1. Without loss of generality, assume
that the lowest-level operators inφ are∧’s. Then the east
edges corresponding to∧ operators go from(i2j−1, i2j) to
(i2j, i2j) wheneveri andj are both odd. And the east paths
corresponding to the∨ operators go from(i2j − 1, i2j − 1)
to ((i + 1)2j − 1, i2j − 1) and from((i − 1)2j, i2j) to
(i2j, i2j) wheneveri is odd andj is even. It should be clear
thatGφ can be produced from such aφ by a first-order pro-
jection.

5. Acyclic Single-Source Graphs

Definition 5.1. An embedding of a planar DAG is said to be
“ Bimodal” if, for every vertexv, all incoming edges appear
consecutively in the cyclic ordering aroundv. The embed-
ding is said to have “SSPDfaces” if each face (viewed as a
subgraph) has a single source and a single sink.

Some properties of SSPDs and SMPDs are summarized
below:

Fact 1. 1. There is a path from the source to every vertex
in everySMPD(and thus in everySSPD).

2. There is a path from every vertex to the sink in every
SSPD.

3. Every embedding of anSSPD is Bimodal and has
SSPDfaces. (see [20]).

4. There is a logspace algorithm that, given anySMPD
G, constructs a directed spanning treeT for G, rooted
at the source. (The algorithm simply selects (arbitrar-
ily) the first incoming edge for each vertex; it is easy
to see that this is a directed spanning tree.)

5. Preorder and postorder numberings yielding the
discovery time (Discover(x)) and finishing time
(Finish(x)) for each vertexx w.r.t. the spanning tree
G can be computed by aL-transducer.

It is easy to see that forward edges inT can be deleted
without affecting the reachability predicate. (A non-tree
edge(x, y) is a forward edge ify is a descendant ofx in T .)
Since it is easy to delete such edges in logspace, we assume
from now on that there are no forward edges. We classify
edges w.r.t. the spanning tree obtained above as follows:

Definition 5.2. Given an embedding of anSMPDand one
of its spanning trees, all edges in theSMPD fall in one of
the following classes:

• Tree Edges

• Local Edges: non-tree edges such that the unique undi-
rected cycle formed by adding the edge to the tree does
not enclose any vertex strictly within its boundary.

• Jump Edges: non-tree edges that are not local edges.

Since we may consider any face to be the external face
of the embedding, we assume without loss of generality that
s is on the external face. Thus no jump edges go “over the
top” of the graph, arounds.

We observe the following:

Observation 1. If a subgraph of anSMPD does not con-
tain any jump edges, then it has all its sinks on the external
face.

Proof. Any sink not on the external face must be contained
strictly within some undirected cycle – but, by definition,
any undirected cycle formed by local edges does not strictly
contain any vertex.

Definition 5.3. GivenG and a spanning treeT as above,
then for any vertexx 6= s we define theleft-most (right-
most) path starting fromx to be the path such that every
edge(y, z) on the path is the last (resp. first) edge among all
outgoing edges fromy enumerated in the clockwise order,
starting from the unique edge intox in T .

5.1. Reachability in SSPDs

Theorem 5.4. SSPDreachability is inL.

Proof. We first state a lemma regarding the set of vertices
reachable from a fixed vertex in a given SSPD.

Lemma 5.5. Let R be the closed region bounded by the
left-most and right-most paths from a vertexx to the sinkt.
The set of vertices inR is exactly the set of vertices reach-
able fromx.

This lemma tells us that, in order to determine whether
there is a directed path fromu tov, it suffices to consider the
left-most and right-most paths fromu to t and find whether
either of them intersects an arbitrary path froms to u. (For
example, we could take the reverse of the left-most path
from u to s in the SSPD formed by reversing all edges in
the given SSPD.)

Proof. (of Lemma 5.5)
To see that each such vertexy is indeed reachable from

x, we note that the subgraph in this region is itself a SSPD,
and then appeal to Fact 1.

To see that no vertex other than those in regionR is
reachable fromx, suppose to the contrary there is such a
vertexy and a directed pathP from x to y. Then since
x ∈ R, let the pathP exit the regionB for the first time at
vertexw i.e., let (w, z) be an edge inP such thatw ∈ R
butz 6∈ R. But since the “left-most” outgoing edge fromw
is part of the boundary, it follows that all the other outgoing
edges end in the vertices lying either strictly withinR or on
its right boundary, contradicting the choice ofw.

Corollary 5.6. The problemSSGGRis in FO + UGGR.

Proof. Let G be a single-source, single-sink grid graph,
with the source on the boundary. We can easily construct
the directed tree of Fact 1 as a first-order projection ofG,
and then by Theorem 2.6 we can compute all the predi-
cates necessary to define the depth-first search of this tree
in FO + UGGR. The argument of Theorem 5.4 refers only
to reachability in graphs of outdegree one, which are com-
putable inFO + UGGR by Lemma 2.2.

5.2. Reachability in SMPDs

Theorem 5.7. SMPDreachability is inL.

Proof. We defer to later the question of how to recognize
if a given graph is an SMPD. Assume for now that we are
given a DAGG that is an SMPD with sources, and we are
trying to determine if there is a path fromu to v.

We may restrict attention to the special case wheres and
u are both on the external face, and whereu appears on
the rightmost path of the spanning treeT . (To see this, we

first note that if we are given an arbitrary SMPDG, we can
build a spanning tree as discussed above, and thus we can
find a directed path froms to u. Now we use the argument
presented in Section 2 of [1], where it is shown how to em-
bed two vertices on the external face by first “cutting along”
a path between the vertices to create a new face, and then
“inverting” the graph so that this new face becomes the ex-
ternal face. In the special case where we have adirected
path froms to u andG is a DAG, this construction has the
property thatno new sources are createdandno path from
u to v is lost. Thus we have created a graph withs andu
on the external face (and in fact there are two directed paths
from s to u along the external face). We create our span-
ning treeT so that the edges appearing in the directed path
along the right side of the external face are all included in
T , and now we have guaranteed that thatu appears on the
rightmost path ofT .)

It is convenient also to add a new vertexw that is the
leftmost child ofs in the tree, along with a jump edge from
the rightmost child ofu to w. This clearly creates no new
paths fromu to v (but it does provide a reachable jump edge
to the far left of the graph, which simplifies some of our
notation).

It is easy in logspace to see ifv is a descendant ofu (in
which case there is a path, sinceT is a directed tree) and
thus we assume for now thatv is not a descendant ofu,
and thus that it is to the left ofu in T . Given any vertexx,
T partitions the vertices into the set of ancestors ofx, the
descendants ofx, and the vertices to theright andleft of x.
The adjectives “right” and “left” give partial orders on the
set of vertices (where two vertices on the same path inT are
neither to the right nor to the left of each other). Let us call
a local edge(x, y) uselessif x is to the right ofv and(x, y)
is directed to the right, or ifx is to the left ofv and(x, y) is
directed to the left.

Fact 2. If there is a path fromu to v, then there is a path
that uses no useless edges.

Proof. Assume that we have a path fromu to a useless edge
(x, y) and then tov, wherex is to the right ofv. Either this
path intersects the tree path froms to y, or it doesn’t. If it
does, then we can clearly construct a path fromu to y, and
then tov, that avoids(x, y). Otherwise,y is in the closed
region bounded by the tree paths froms to x and tou, along
with the path fromu to x. Any path fromy to v must cross
the boundary of this region, which would create a directed
cycle, contrary to the fact thatG is a DAG.

Now assume that we have a path fromu to v via a useless
edge(x, y), wherex is to the left ofv. Either this path
intersects the tree path froms to v or it doesn’t. In the
former case, we clearly do not need the edge(x, y). In the
latter case,v is in the bounded region enclosed by the tree
paths froms to x andu, along with the path fromu to x.

Sincey is to the left ofx (by the definition of uselessness),
any path fromy to v must cross the boundary of this region,
again creating a cycle.

In logspace we can detect and remove useless edges; we
therefore assume thatG has no useless edges. Note also that
no path fromu to v can visit any descendant ofv; thus we
can delete all proper descendants ofv, so thatv is a leaf.

We need to define some basic search routines.

Definition 5.8. Given an SMPD G and a vertexx, let
ReachLocal(x) be the set of vertices reachable fromx us-
ing only tree edges and local edges.

Lemma 5.9. The predicatey ∈ ReachLocal(x) is in L.

Proof. Consider the induced subgraphG′(x) on the vertices
in ReachLocal(x). Since there are no jump edges, all the
sinks inG′(x) lie on the external face (by appealing to Ob-
servation 1). Construct a new graphG′′(x) by adding a sink
to G′(x) along with an edge from each old sink to this new
sink. ClearlyG′′(x) is an SSPD and we are done by an
application of Theorem 5.4.

An immediate consequence, which we record for future ref-
erence, is the following:

Corollary 5.10. Given vertex x, the vertices in
ReachLocal(x) with the least finishing time and max-
imum discovery time (relative to the original spanning tree
of the graph) can be found inL. Let’s call these vertices
ReachLeft(x) andReachRight(x) respectively.

Our basic strategy is as follows. Start atu (on the right
side of the graph) andw (on the left side of the graph) and
do local searches. The goal vertexv is thus “squeezed” be-
tween some areas where we were able to do some searching.
We will make use of the proceduresLeftwardSearch and
RightwardSearch to make limited use of jump edges to
further restrict the area wherev can try to hide. When these
procedures no longer admit any progress, then we make
stronger use of jump edges that “tunnel” from one side of
the graph, belowv, over to the other side, to take even more
hiding room away fromv. Below, we define these proce-
dures more precisely, and then we show that the algorithm
works.

The procedureLeftwardSearch starts at a given vertex
and does a local search, updatingLimright to mark the
right boundary of the area wherev can still be hiding. Then
it looks for a jump edge that stays on the right side ofv and
advances as little as possible beyondLimright , and repeats
the process until no more progress can be made.

LeftwardSearch(z)

while true
do

EnumerateReachLocal(z).
Limright ← ReachLeft(z)
S ← {(x, y) : (x, y) is a jump edge with

x to the right ofLimright and
y to the left ofLimright and

to the right ofv}
if S is not empty

then pick (x, y) ∈ S such that
y is the furthest right
(i.e., as close as possible toLimright),
breaking ties by pickingy
as close to the roots as possible,
z ← y

else return

RightwardSearch is defined symmetrically. The proce-
dureTunnel looks for jump edges inSr (jump edges that
tunnel from the right side of the graph, belowv, to the area
just right of Limleft) or in a similarly-defined setSl. (It
is easy to see that at least one ofSl andSr will always be
empty, by planarity.)

Tunnel()

Sr ← {(x, y) : (x, y) is a jump edge with
x to the right ofLimright and
y to the left ofv and

to the right ofLimleft .
Sl ← {(x, y) : (x, y) is a jump edge with

x to the left ofLimleft and
y to the right ofv and

to the left ofLimright .}
if Sr ∪ Sl is empty,

then Direction← Nil

if Sr is not empty
then Direction← Right

Pick (x, y) in Sr with
y as far left as possible
(i.e., as close as possible toLimleft ,
breaking ties by picking the
vertex closer to the root)
Target← y

if Sl is not empty,
then Direction← Left

Pick (x, y) in Sl with
y as far right as possible
(i.e., as close as possible toLimright ,
breaking ties by picking the
vertex closer to the root)
Target← y

We now present an algorithm to enumerate vertices that
are reachable fromu. The vertexv is reachable fromu if
and only if it ever shows up in the enumeration.

begin
LeftwardSearch(u)
RightwardSearch(w)
Repeat

Tunnel
If Direction = Left then

LeftwardSearch(Target)
If Direction = Right then

RightwardSearch(Target)
until Direction = Nil

end

In order to argue that the algorithm is correct, we
will establish the following invariant condition: Each time
Limright or Limleft is updated, ifz is to the right of
Limright or to the left ofLimleft , then there is a path from
u to z iff z has been enumerated, and any jump edge that is
ever in one of the setsS, Sl, Sr is reachable fromu.

Limright is updated only byLeftwardSearch, and it al-
ways occurs immediately after execution ofReachLocal(z)
as the first step of an instantiation ofLeftwardSearch(z).
The first time this happens is forz = u, and in this case
Limright is set toReachLeft(u). It is easy to see that
all vertices to the right ofReachLeft(u) are enumerated in
ReachLocal(u) and all are reachable; this establishes the
basis of our induction forLimright , and an even easier
argument establishes the basis forLimleft . Also, this di-
rectly implies that the first time the setS is considered in
LeftwardSearch, or RightwardSearch, all of the relevant
jump edges are reachable fromu. Similarly, if Tunnel is
called beforeLimright or Limleft is updated again, then
we immediately have that the same is true for all jump edges
in Sl andSr (and in this case,Sl is empty).

For the inductive step, consider first the case where
Limright is updated after executing another round of the
loop in LeftwardSearch. Thus we have just enumerated
ReachLocal(y) for a jump edge(x, y). By the inductive
hypothesis, all of these enumerated vertices are reachable
from u, since the jump edge is reachable. Thus if the induc-
tive step were to fail, there must be some vertexz′ to the
right of ReachLeft(y), that has not been enumerated but is
reachable. By the inductive hypothesis, it must be to the
right of ReachLocal(y) and to the left of the old value of
Limright . Consider the first edge on the path fromu to z′

that is to the left of the old value ofLimright and to the
right of ReachLocal(y). This edge cannot be a local edge
or tree edge (because the predecessor is enumerated by hy-
pothesis, and the enumeration follows such edges). Thus it
must be a jump edge. But by the way that we select jump
edges, it would have been chosen, instead of(x, y). Thusz′

cannot exist.

It remains only to consider the case whereLimright is
updated after executingTunnel. Thus we have just enumer-
atedReachLocal(y) for a jump edge(x, y) wherex is to the
left of v. By hypothesis,x is reachable, and thus all of the
enumerated vertices are reachable fromu. Thus as in the
previous case, if the inductive step were to fail, there must
be some vertexz′ to the right ofReachLocal(y) and to the
left of the old value ofLimright that has not been enumer-
ated but is reachable. Consider the first edge on the path
from u to z′ that is to the left of the old value ofLimright
and to the right ofReachLocal(y). This edge cannot be a
local edge or a tree edge; thus it must be a jump edge. But
Tunnel would not have been called if there had been such
a jump edge coming from the right, and if this jump edge
were to come from the left, then it would have been chosen,
instead of(x, y). Thusz′ cannot exist.

A similar argument holds forLimleft . It remains only to
show that the jump edges inS, Sl, andSr are reachable. By
induction hypothesis, the jump edges that start to the right
of the old value ofLimright are reachable, as are any jump

edges that start fromReachLocal(y) for the vertexy that
was selected whenLimright was updated most recently.
Let e be the jump edge(x, y) that was selected when this
update happened. If the inductive hypothesis were to fail,
there would have to be a jump edgee′ departing between
the old value ofLimright andReachLocal(y). If e is di-
rected from right to left, then it encloses the region where
e′ would begin, which means thate′ would not be inS, Sl,
or Sr. Thus we must havee directed from left to right. But
thene′ would have been selected during the previous exe-
cution ofLeftwardSearch, which is contrary to the choice
of e′.

We have now established the invariant condition. To
see that this implies correctness, assume thatv is is reach-
able fromu but is not enumerated. Consider the first edge
e = (x, y) on this path fromu such thaty is not enumerated
by the time that the procedure halts. By the invariant condi-
tion, y cannot be to the right of the final value ofLimright
or to the left of the final value ofLimleft , whereasx is to the
right of Limright or to the left ofLimleft . Clearly,e can-
not be a local edge or tree edge, and thus it is a jump edge.
However, if such a jump edge had existed, then the proce-
dure would not have stopped at the given values ofLimleft
andLimright .

5.3. Recognition of SSPDs

We prove:

Theorem 5.11.Recognition ofSSPDs can be done inL.

In order to prove this, we use the following:

Lemma 5.12. In any planar graph with a single sources
and sinkt and no facial cycles, any directed cycle separates
s and t. (That is,s and t cannot both be embedded in the
interior (or exterior) of any directed cycle.)

Proof. We give a proof by contradiction. Assume that there
is a directed cycleD (not a facial cycle) that does not sep-
arates andt. Assume without loss of generality thats and
t are both embedded on the exterior ofD. By deleting all
of the vertices that are embedded outside ofD, we obtain a
planar graphG with no sources or sinks, such that only its
external face (and no other face) is a directed cycle. We will
show that this leads to a contradiction.

G has a smallest cycleC that encloses no other cycle in
its interior. We consider the cycleC and its interior. Since
by assumption,C is not a face ofG, there are vertices in
its interior; (note that if this is not the case, thenC has a
chord, which gives rise to a smaller directed cycle, contrary
to our choice ofC). Thus there has to be some edge leading
from some vertexv1 onC to one such interior vertexv2 (or
an edge from an interior vertexv2 to a vertexv1 onC - the
reasoning for this case is similar). Given that no vertex in

G is a source or a sink, we have at least one outgoing edge
from v2. Follow that to a third vertexv3, and repeat the
process of choosing an arbitrary outgoing edge and follow-
ing that edge. Clearly, this process can end in one of two
ways. Either the sequence of verticesv1, v2, · · · , vk satisfy
thatvi = vj for somei, j, in which case we have a smaller
cycle thanC lying inside C, or the sequence of vertices
v1, v2, · · · , vk meetC again (i.e. vk lies onC), in which
case we have again a proper cycle lying insideC contrary
to the minimality ofC.

Proof. (of Theorem 5.11) In the following, we are given a
planar graphG along with an embedding on the plane. We
perform the following tests:

1. DoesG have a single sources and a single sinkt?

2. Does every face ofG have a single (local) source and
a single (local) sink?

3. IsG bimodal at every vertex?

4. For every vertexv of graphG, consider all the incom-
ing edges. Delete all incoming edges atv except for the
leftmostincoming edge (pick any arbitrary incoming
edge at the sink node). Call the residual graphGleft.
Is there a path froms to t in Gleft?

5. For every vertexv of G, consider all the incoming
edges. Delete all incoming edges atv except for the
rightmostincoming edge (with a similar proviso fort).
Call the residual graphGright. Is there a path froms
to t in Gright?

If all of the tests above are answered affirmatively, we
claim thatG is indeed a SSPD.

Observe thatGleft andGright are indegree-1 digraphs
for anyG.

Clearly if G is a SSPD, then by Fact 1, we know thatG
passes all the above tests (in this case,Gleft andGright are
both trees).

So supposeG passes all the above tests, and yet has a
directed cycleC. By Lemma 5.12, we only have to consider
the case where the sinkt lies insideC while the sources lies
outsideC (i.e. C separatess from t). See Figure 12.

Consider all the edges from outsideC that are incom-
ing to some vertex onC (for instance, edgee in Figure 12).
Suppose the cycleC were as directed as in Figure 12, then
in Step 4 where all leftmost incoming edges are deleted,
all such incoming edges toC get deleted. So, inGleft

among all the edges betweenC and the outside ofC, we
only have the outgoing edges fromC (it is of course pos-
sible that some of the edges onC also get deleted in this
process).

e

s
t

C

Figure 12. t inside cycle C, s outside

But now it is clear that there is no directed path froms
to t in Gleft, because, similarly to [1], we now have ageo-
metric cutconsisting of only the remaining outgoing edges
from C to the outside ofC - or a simple argument - if there
is a path froms to t now, that path intersectsC at some
place, and it can only be directed towardsC. But we deleted
all of these incoming edges in constructingGleft. Thus, we
end up with an indegree-1 graph in which there is no path
from s to t.

Since we are not surea priori what direction the edges
on C might have, we have to includeboth tests 4 and 5. In
one of these tests, the edges incoming toC from the outside
will get deleted and disconnectt from s.

So, if G has a directed cycle, then there is no path from
s to t in eitherGleft or Gright.

Thus, we have recognized SSPDs inL.

Corollary 5.13. Let G be a single-source, single-sink di-
rected grid graph. The problem of determining whetherG
has a cycle (and hence whetherG provides an instance of
SSGGR) is in FO + UGGR.

Proof. We need only examine the five steps in the proof
of Theorem 5.11. The first and third are simple first-order
questions. The second requires traversing the boundary of a
face of the embedding to count the local sources and sinks,
which is a 1GGR and hence a UGGR question. The fourth
and fifth are reachability questions in a graph ofindegree
one, which are easily converted to 1GGR questions on that
graph’s reversal.

5.4. Recognition of SMPDs

Theorem 5.14.Recognition ofSMPDs can be done inL.

Proof. We perform the following tests:

1. We first check if the given graphG is planar, and if so,
find a planar embedding ofG [2].

2. Check if the digraphG has a single source. If not,
return “false”.

Henceforth we can assume thatG has a single source
s. We first transform the given embedding so thats lies
on the external face. We now need to check ifG has a
cycle.

3. We construct a subgraphH of G as follows: for every
vertex that is not the source, retain a single, arbitrar-
ily chosen, incoming edge to the vertex and delete all
other edges. Check ifH is a directed tree. If not, return
“false”.

SupposeH is a directed tree -H clearly inherits its
embedding fromG. We assume that we are given a
dfs numbering ofH . We refer to the non-tree edges in
G (with respect to the treeH) ascross edges. In this
embedding ofG, the cross edges can be classified into
two types:

• Type I edges are those going right-to-left (i.e.
a cross edge(a, b) is Type I if Finish(a) >
Finish(b)).

• Type II edges are those going left-to-right (i.e.
cross edges(a, b) whereFinish(a) < Finish(b)).

4. Now, we check ifG with the underlying spanning tree
H has any back edge. If so, we have clearly found
a cycle, soG is not a SMPD. Otherwise, delete all
forward edges fromH .

Create two graphsG′ andG′′: in G′ remove all edges
from G of Type I, (but retaining all edges of Type II),
and inG′′, remove all edges of Type II. We observe
that either ofG′ andG′′ are SMPDs (because any cycle
in the tree has to use edges of both types - also we
are not creating any more sources, but removing all
edges of a specific Type can potentially create more
sinks). Thus, we can solve reachability questions in
G′ (or G′′) in L.

5. Choose a cross edge(a, b). If (a, b) is a Type I edge,
then queryG′ to find if there is a path fromb to a. If
there is such a path, return “false”. Likewise, if(a, b)
is a Type II edge, then queryG′′ to find if there is a
path fromb to a. Again, if there is such a path, return
“false”.

It is easy to see that ifG is a SMPD, then it passes all of the
above tests. This is becauseG in such a case will neither
have a back edge nor any cycle. We thus need to prove
that if G passes all the tests above, it is a SMPD. For this
purpose, we introduce the following terminology

Definition 5.15. A (directed) cycle isminimal if the set of
cross edges contained in it is minimal w.r.t. inclusion.

A directed chord in a cycle all of whose edges are tree
edges, will be called atree chord.

d

c

s

C

1
b1

a

a
22b

Figure 13. Tree-paths to edges around C

It is easy to see the following:

Lemma 5.16. A cycle is not minimal if it has a tree chord.

We use the above lemma to prove:

Lemma 5.17. Any minimal cycle either contains exactly
one edge of Type I or contains exactly one edge of Type II.

Proof. Consider a minimal cycleC in G. Clearly,C must
contain at least one edge each of both Types I and II.

Consider any vertexv on C. The tree-path from the
sources (remembering thats lies on the outer face) tov
cannot intersectC: if it did, then that would be a tree chord,
contradicting the minimality ofC by Lemma 5.16.

So we can assume that for all verticesv on C, the tree-
path tov does not intersect the interior ofC.

Since cycleC has edges of both Type I and Type II, let us
consider two edges:(a1, b1) of Type II, and(a2, b2) of Type
I. Given the constraint that the tree-paths cannot intersect
the interior ofC, together with the constraints that the tree-
path toa1 is to the left of the tree-path tob1 (because edge
(a1, b1) is of Type II) and the tree-path toa2 is to the right
of the tree-path tob2 (because edge(a2, b2) is of Type I),
the situation is as in Figure 13. The dotted paths froms to
the vertices onC are the tree-paths.

But now we see that, under the constraint of planarity,
any edge(c, d) lying onC betweenb1 anda2 has to be such
that the tree-path toc lies to the left of the tree-path tod. So
any cross edge lying betweenb1 anda2 has to be of Type
II. Likewise for any cross edge lying betweenb2 anda1.

The symmetric case where the edge(a1, b1) is of Type I
and(a2, b2) of Type II is handled similarly.

Thus we have proven that any minimal cycle can contain
exactly one edge of Type I or exactly one edge of Type II.

Hence if there is a cycle inG, then there is a minimal
cycle that contains exactly one edge of Type I or Type II
by Lemma 5.17, and we discover such a minimal cycle in
Test 5. We have thus proved Theorem 5.14.

In contrast to Corollary 5.13, we do not know how to
adapt this proof to determine whether a single-source grid
graph has a cycle (and hence whether it provides an instance
of SMGGR) in the classFO + UGGR. This is because the
algorithm presented above appeals to the SMGGR recogni-
tion algorithm of Theorem 5.7, and we do not know how to
carry out this algorithm inFO + UGGR.

5.5. Planar digraphs with a few cycles

In the above, we have considered the reachability and
recognition questions for different classes of DAGs. We
may now ask: is the acyclicity essential for being able to
perform the above tasks inL? Here we show that wecan
solve some reachability questions, even when the graph has
a few cycles, inL.

Consider the classG of graphs that are planar, have a
single source and a single sink, and nofacial cycles (no
faces that form directed cycles). Note that the recognition
problem for graphs of the classG is easily inL. We prove:

Theorem 5.18.Reachability questions in graphs from the
classG can be solved inL.

Observe that any SSPD belongs to the classG. Also note
that a graphG ∈ G is not necessarily bimodal.

Proof. Given a planar graphG with a unique sources and
sink t, and no facial cycles, Lemma 5.12 tells us that any
cycle in the graph separatess andt.

Now we proceed to reduce reachability questions inG to
a reachability question in a SMPD.

We can find a path (not necessarily a directed path) from
s to t in L. Now we apply the cut-and-paste method from
[1], by cutting along the path betweens andt. As in [1],
after cutting along the path froms to t and inverting the
graph inside out to get a graphG′, we pasten copies ofG′

along the path froms to t to get a graphG′′ which preserves
the connectivity ofG (in the sense that there is a path from
u to v in G if and only if there is a path from one of the
copies ofu to one of the copies ofv in G′′) and hass and
t on the outer face. However, in this process, because the
path froms to t is not a directed path, we have introduced
some more sources and sinks on the outer face. Now we can
add a single source vertex and connect it to all the sources in
G′′ to get a graphG′′′. One can verify thatG′′′ is a SMPD
(since it still satisfies the properties ofG, but nows andt
are on the external face, and thus there can be no directed
cycles (that is, any cycle in the original graph is destroyed

u

v

limup

lim
down

Figure 14. A 1-page embedding

when we cut along the undirected path). Hence reachability
in G′′′ (and thus inG) can be solved inL.

Theorem 5.19.Reachability questions in outerplanar di-
graphs can be solved inL.

Note that outerplanar digraphs, even DAGs, arenot
series-parallel digraphs as considered by [15]. The result
above is trivial for outerplanar DAGs, since all the sources
and sinks lie on the same face, and we can reduce this case
to a SMPD.

In the language of book embeddings (see [21] for in-
stance), outerplanar graphs are exactly the ones that have
1-page embeddings: in short, all the vertices are laid out on
the spine of the book, and all the edges are on a single page.

Proof. Suppose we have a1-page embedding of outerplanar
graphG given to us (here, the vertices are all on the spine
as in Figure 14).

Here, the graphG is not acyclic. The instance to the
reachability question is(G, u, v) and we are to find ifv is
reachable fromu. We can assume thatu is the topmost
vertex on the spine of the embedding.

We keep two markerslimup, limdown.
Call the edges on the spineordinaryedges and the edges

not on the spinejumpedges. The algorithm is as follows:

1. Initialize the markers aslimup = u, limdown =∞.

2. Go down fromlimup as far as you can using only or-
dinary edges. Go up fromlimdown as far as you can
using only ordinary edges. Call the region betweenu
and limup and limdown and∞ on the spine theex-
ploredregionE.

3. Consider all jump edges between the explored region
E and the unexplored region. The unexplored region
is thereby an “interval” on the spine of the embedding.
Consider the jump edgesj1, j2 (if any) that land on
vertices closest to the target vertexv on the spine, from
either side (from above or below).

4. Let j1 = (a, b) be the jump edge landing on a ver-
tex closest to the targetv from below (if any). Update
limdown = b. Similarly, let j2 = (c, d) be the jump
edge landing on a vertex closest to the targetv from
above (if any). Updatelimup = d.

5. Go to Step 2.

6. If v is discovered at some step then return “true”. If at
some step neitherlimup nor limdown can be changed
any more and we haven’t discoveredv as yet, then re-
turn “false”.

In order to prove that the above procedure is correct, we
need to show: ifv is reached by our algorithm, thenv is
indeed reachable fromu. This follows by an easy induction
on limup, limdown. Specifically, we have to convince our-
selves that verticeslimup, limdown are always reachable
fromu. For this, we use the1-page embedding of the graph.

On the other hand, ifv is not reached by the algorithm,
that means, that the algorithm stopped at a stage when it
could change neitherlimup norlimdown any more. Clearly,
in a run of the algorithm, on the spine,limup always stays
abovev (or is equal tov), and likewise,limdown always
stays belowv (or equalsv). Hence, when the algorithm
stops there is no jump edge from the explored region to
the interval on the spine betweenlimup, limdown (and also
limup, limdown cannot be extended any further using ordi-
nary edges). But this meansv is not reachable fromu.

6. Conclusions and Open Problems

Any problem defines the complexity class of those prob-
lems reducible to it. There is a general phenomenon
whereby interesting problems, such as general reachability,
define interesting classes, such asNL. The GGR problem
and its subproblems as outlined here define a hierarchy of
new classes, whose relations to each other and to the stan-
dard classes betweenTC

0 andNL are shown in Figure 15.

SMGGR

1LGGR

11LGGR

SSGGR

UGGR

NL

LGGR

GGRL

UL

TC0

1NC

Figure 15. The Hierarchy of GGRClasses

Are these problems and classes interesting? We argue,
particularly in Section 2.4, that many of them have inter-
esting alternate formulations, sometimes not appearing to
involve graphs at all. The computational actions of search-
ing on a grid, of searching in a maze, of following a laid-out
path on a grid, and so forth strike us as fundamental ones,
well worth studying.

The natural next questions concerning this hierarchy are
whether any of the upper and lower bounds can be im-
proved, or whether additional containment relations exist
among the new classes. In particular, is the SMGGR prob-
lem reducible to UGGR? The proof of Theorem 5.7, like
the proofs for SSPD’s, seems to mostly involve following a
laid-out path on a grid, but we do not yet see how to formu-
late it solely in terms of this. The question also remains as
to whether we can detect cycles in a general single-source
graph inFO + UGGR – the algorithm presented here relies
on SMPD reachability but this may not be necessary.

Our logspace algorithm for SMPD reachability expands
the class of graphs for which Jakobyet al. ([15]) provided
logspace reachability algorithms – but our results are not
completely extensions of theirs. They proved thatcount-
ing the number of paths between two vertices of a series-
parallel digraph can be done in logspace. We have no
new upper or lower bounds for the counting problem in the
classes of graphs that we study. Another shortcoming of our
reachability algorithms is that they provide no clue about
how to find ashortestpath, and we have no lower bounds
showing that finding a shortest path is harder than the reach-
ability problem.

It is entirely plausible that reachability in planar graphs,
like planarity testing itself, is inL. Our work here fits into a
general program of expanding the classes of planar graphs
for which we have logspace reachability tests. A natural
intermediate goal on the way to general planar graphs is
acyclicplanar graphs, which would be called MMPD in our
notation. We note that reachability in an acyclic graph with
constantly many sources is inL by an easy extension of our
methods. Also, while we can easily show that reachability
questions in SSPDs reduce to the complement, we are not
able to show the same for SMPDs.

Acknowledgments

The second author gratefully acknowledges helpful dis-
cussions over the years on this topic with Sam Buss, Steve
Cook, Bill Hesse, Pierre McKenzie, and Charlie Rackoff.
The third and the fourth authors would like to acknowledge
interesting and illuminating discussions with Meena Maha-
jan and K. V. Subrahmanyam on planar reachability and
related topics. We thank Andreas Jakoby, Peter Bro Mil-
tersen, and the anonymous reviewers for the detailed and
insightful comments on an earlier draft.

References

[1] E. Allender, S. Datta, and S. Roy. The directed planar reacha-
bility problem. InProc. 25th annual Conference on Founda-
tions of Software Technology and Theoretical Computer Sci-
ence (FST&TCS), number 1373 in Lecture Notes in Com-
puter Science, pages 238–249. Springer, 2005.

[2] E. Allender and M. Mahajan. The complexity of planarity
testing.Information and Computation, 189:117–134, 2004.

[3] D. A. Barrington. Bounded-width polynomial-size branching
programs recognize exactly those languages in NC1. Journal
of Computer and System Sciences, 38:150–164, 1989.

[4] D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum.
Searching constant width mazes captures the AC0 hierarchy.
In 15th International Symposium on Theoretical Aspects of
Computer Science (STACS), number 1373 in Lecture Notes
in Computer Science, pages 73–83. Springer, 1998.

[5] M. Blum and D. Kozen. On the power of the compass (or,
why mazes are easier to search than graphs). InIEEE Sym-
posium on Foundations of Computer Science (FOCS), pages
132–142, 1978.

[6] S. Buss. Polynomial-sise Frege and resolution
proofs of st-connectivity and Hex tautologies. sub-
mitted for publication, manuscript available from
http://www.math.ucsd.edu/∼sbuss, 2005.

[7] S. A. Cook and P. McKenzie. Problems complete for deter-
ministic logarithmic space.Journal of Algorithms, 8:385–
394, 1987.

[8] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J.R.
Westbrook, and M. Yung. Maintenance of a minimum
spanning forest in a dynamic planar graph.J. Algorithms,
13(1):33–54, March 1992. (Corrigendum in Vol 15, 1993.).

[9] K. Etessami. Counting quantifiers, successor relations, and
logarithmic space.Journal of Computer and System Sciences,
54(3):400–411, Jun 1997.

[10] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian.
Faster shortest-path algorithms for planar graphs.J. Comput.
Syst. Sci., 55(1):3–23, 1997.

[11] T. Husfeldt. Fully dynamic transitive closure in planedags
with one source and one sink. InProc. 3rd ESA, volume 955
of Lecture Notes in Computer Science, pages 199–212, 1995.

[12] N. Immerman. Languages that capture complexity classes.
SIAM Journal of Computing, 16(4):760–778, 1987.

[13] N. Immerman. Nondeterministic space is closed under com-
plementation. SIAM Journal on Computing, 17:935–938,
1988.

[14] N. Immerman.Descriptive Complexity. Springer Graduate
Texts in Computer Science, 1998.

[15] A. Jakoby, M. Liskiewicz, and R. Reischuk. Space effi-
cient algorithms for series-parallel graphs. In18th Interna-
tional Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), number 2010 in Lecture Notes in Computer
Science, pages 339–352. Springer, 2001. To appear in J. Al-
gorithms.

[16] N. Limaye, M. Mahajan, and J. Sarma M. N. Evaluat-
ing monotone circuits on cylinders, planes, and torii. In
Proc. 23rd Symposium on Theoretical Aspects of Computing
(STACS), Lecture Notes in Computer Science, pages 660–
671. Springer, 2006.

[17] O. Reingold. Undirected st-connectivity in log-space. In
Proceedings 37th Symposium on Foundations of Computer
Science, pages 376–385. IEEE Computer Society Press,
2005.

[18] K. Reinhardt and E. Allender. Making nondeterminism un-
ambiguous. SIAM Journal of Computing, 29:1118–1131,
2000.

[19] R. Szelepcsényi. The method of forced enumeration fornon-
deterministic automata.Acta Informatica, 26:279–284, 1988.

[20] H. Yang. An NC algorithm for the general planar mono-
tone circuit value problem. InSPDP: 3rd IEEE Symposium
on Parallel and Distributed Processing. ACM Special Inter-
est Group on Computer Architecture (SIGARCH), and IEEE
Computer Society, 1991.

[21] M. Yannakakis. Four pages are necessary and sufficient for
planar graphs. InSTOC ’86: Proceedings of the eighteenth
annual ACM symposium on Theory of computing, pages 104–
108, New York, NY, USA, 1986. ACM Press.

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

