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Grid Graph Reachability Problems

Eric Allender David A. Mix Barringtori Tanmoy Chakraborfy ~ Samir Datt&
Sambuddha Rdy
Abstract graphs logspace reduces to single-source-single-sink

We study the complexity of restricted versionsstf
connectivity, which is the standard complete problem for
NL. Grid graphs are a useful tool in this regard, since

e reachability on grid graphs is logspace-equivalent to
reachability in general planar digraphs, and

e reachability on certain classes of grid graphs gives
natural examples of problems that are hard o€’
underAC" reductions but are not known to be hard for
L; they thus give insight into the structurelof

In addition to explicating the structure &f another of our
goals is to expand the class of digraphs for which connec-
tivity can be solved in logspace, by building on the work of
Jakobyet al. [15], who showed that reachability in series-
parallel digraphs is solvable ih.

Our main results are:

e Many of the natural restrictions on grid-graph reacha-
bility (GGR) are equivalent undeAC® reductions (for
instance, undirecte@6GR outdegree-on&GR, and
indegree-one-outdegree-of&R are all equivalent).
These problems are all equivalent to the problem of
determining if a completed game position in HEX is a
winning position, as well as to the problem of reacha-
bility in mazes studied by Blum and Kozen [5].

Series-Parallel digraphs are a special case of single-
source-single-sink planar dags; reachability for such
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acyclic grid graphs. We show that reachability on such
grid graphsAC” reduces to undirecteGGR

e We build on this to show that reachability for single-
source multiple-sink planar dags is solvablelin

1. Introduction

Graph reachability problems have long played a fun-
damental role in complexity theory. The generdt
connectivity problem in directed graphs is the standard
complete problem foNL, while the st-connectivity prob-
lems for directed graphs of outdegree 1 [7, 12, 9] and undi-
rected graphs [17] are complete for It follows from [3]
that reachability in directed graphs of widf(1) (or even
width five, with outdegree 1) is complete fNIC".

Grid graphs are a special class of planar graphs whose
vertices are located on grid points, and whose vertices
are adjacent only to their immediate horizontal or vertical
neighbors. Barringtoat al. showed [4] thatt-connectivity
in width & (directed or undirected) graphs is complete for
depthz AC® under first-order projections. In this paper
we study grid graphs without any width restrictions. The
general grid-graph reachability problem (GGR) is equiva-
lent to thest-connectivity problem in directed planar graphs
(and graphs of genus one) under logspace reducibility [1].
Although there are a number of papers presenting effi-
cient algorithms for connectivity in planar graphs (such as
[11, 8, 10]), little is known about the computational com-
plexity of this problem. The best upper bound known for
GGRisNL, although a slightly better upper bound is known
for so-called “layered” grid graphs (LGGR): LGGR
UL N coUL [1].

Our focus in this paper is primarily on classes of grid
graphs whose reachability problem is solvable in logspace.
Reachability inundirectedyrid graphs (UGGR) was studied
by Blum and Kozen [5]; they showed that UGGR is solv-
able in logspace (a quarter-century before Reingold [17]
showed thapeneralundirected reachability is solvable in
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logspace). Buss has studied UGGR in connection with tau-rithms for SSPD and SMPD are presented in Section 5. We

tologies arising from the game of HEX [6] (namely, the tau- conclude with open questions in Section 6.

tology that every completed game board of HEX has a win-

ner); he credits Barrington with the observation that UGGR o Versions of the GGR Problem

is equivalent to the problem of determining if a given com-

pleted HEX board position is a win for one player. Reach-

ability in grid graphs of outdegree one (1GGR) is another

restriction on GGR that is clearly solvable in logspace.
One of our theorems is that UGGR and 1GGR are equiv-

alent undeAC" reductions (and even under first-order pro-

jections). We show that these problems are hard\fét,

and thus this gives a cluster of natural problems that are can

We begin by defining and exploring a number of special
cases of the GGR problem, based on a variety of restrictions
on the grid graphs and on the verticeandt.

2.1. Classes and Reductions

didates for having complexity intermediate betwd¢@' We assume familiarity with the following important sub-
andL, since even the general GGR problem is not known Classes of nondeterministic logspadé }. L, NC*, TC',
to be hard foi. underAC® reductions. andAC”. When defining notions of reducibility and com-

Jakoby, Liskiewicz, and Reischuk showed that reachabil- pletenes§ in order to investigate thg structgrg_ of.suchlsmal
ity in series-parallel digraphs is solvable in logspace,[15 COMPlexity classes, some form AL" reducibility is usu-
thus solving the reachability question for an importantsub 2lly émployed. We will frequently make use of the termi-
class of planar directed graphs. Series-parallel digraphs 009y and notation employed by Imméarman_[14], which
a special case of planar directed acyclic graphs having a sin XPloits the close connections betwe®@™ and first-order
gle source and single sink. Motivated by a desire to solve l09ic. In particularAC’-Turing reducibility (<4") to a set
the reachability problem for a larger class of planar DAGs, A can be defined equivalently in termsA€” circuits aug-
we introduce the following three classes of DAGS: mented with “oracle gates” fad, or in terms of first-order

formulae withA as a built-in predicate symbol applied to a

¢ Single-Source Single-Sink Planar DA@SPDs): the  structure defined in first-order. For details refer to [14jr F

class of DAGs having one vertex of indegree zero this reason, we sometimes refer<d’ reductions a§O
and one vertex of outdegree zero. Reachability in reductions. The class of problem<:"’ reducible toA is
SSPDs generalizes the problem of reachability in sometimes denoted &0 + A.

series-parallel digraphs studied in [15]. Immerman also gives good motivation for studying a re-
_ _ ) stricted form ofgﬁf0 reductions calledirst-order projec-
e Single-Source Multiple-Sink Planar DAGSMPDs): tions (<EQ.). These can be visualized as many-one reduc-

the class of DAGs having one vertex of indegree tions computed by first-order uniform circuitgving no
zero. Reachability in such graphs is clearly equivalent gates(other than NT gates); thus each bit of the output is
to reachability in Multiple-Source Single Sink DAGS  gjther a constant or is a copy (or a negated copy) of one bit
(MSPDs) by simply reversing all of the edges. of the input. For example, the class depthC® is closed

. . . under these reductions.
e Multiple-Source  Multiple-Sink ~ Planar  DAGs

(MMPD). This is simply the class of all planar

DAGS. 2.2. Nine Problems

We show that the SMPD reachability problem (and hence We first consider two restrictions on the global structure
also that for MSPD) lies in logspace. In addition, reach- of @ GGR problem, and two local restrictions:

ability in SSPDs, restricted to grid graphs, is reducible to

UGGR. Our algorithmic approach for SMPD extends to

certain classes of graphs that are not acyclic. This is dis-
cussed in more detail in Section 5.

The rest of the paper is organized as follows. In Section ¢ The problem LGGR is the set of tuplés, s, t) where
2 we introduce the various grid graph problems that we will G is alayered directed grid graph hav’in’gnly east
be considering, and present reductions showing how these 514 south edgesand there is a path fromto .

problems relate to each other. In Section 3 we present a

generic reduction showing that, for many of the problems e The problem 1GGR is the set of tuplgs, s, t) where
we consider, it is no loss of generality to assume thatd G is a directed grid graph afutdegree at most land
t appear on the external boundary of the graph. Our hard- there is a path frons to ¢. (Since a cycle of length
ness results are presented in Section 4. Our logspace algo- two can not contribute to a path frogto ¢, and since

e The problem GGR-B is the set of tuplés, s, t) where
G is a directed grid graphs; andt are vertices on the
boundary of G, and there is a path fromto ¢ in G.



GGR 2.3. Undirected GGR

/ \ One of the most natural local restrictions on a graph is
undirectedness Long before Reingold[17] showed that the

1-GGR GGR-B undirected reachability problem is In Blum and Kozen
[5] showed that the UGGR problem, testing reachability in
undirected grid graphs, is in. Here we show that UGGR
is equivalent tdfour of the nine versions of GGR we have
11GGR 1GGR-B LGGR just defined:
\ Theorem 2.1. The problems UGGR, UGGR-B, 1GGR,
1GGR-B, 11GGR, and 11GGR-B are all equivalent under
11GGR-B 1LGGR first-order projections.
\ / Proof. We will show that 1GGRYQUGGR<FO,
UGGR-B <fQ. 11GGR-B gggleGR appealing to
11LGGR Section 3 for the second reduction and observing that the

Figure 1. Nine GGR problems. last reduction is trivial.

Lemma 2.2. 1GGR<FO UGGR

—pro)

the existence of such cycles makes certain of our re-
ductions more complicated, and since such cycles are
easy to eliminate via a syntactic test, we assume that
there is no cycle of length 2 in an instance of 1GGR.)

Proof. The well-known general reduction from outdegree

one reachability to undirected reachability works without

modification for grid graphs. Given an outdegree one grid

graphG and verticess andt¢, create an undirected graph

H by modifying G to delete the edge (if any) out ¢fand

e The problem 11GGR s the set of tuples, s, t) where ~ change each directed arc to an undirected edge. Since the
G is a directed grid graph ondegree and outdegree  Vertices with paths te in G form a directed tree, the cor-

at most 1and there is a path fromto ¢. responding vertices iff are simplyt’s connected compo-
nent. Sos has a directed path toin G if and only if it

has an undirected path ton H. The reduction is clearly a
It is obvious that 11GGR is a special case of 1GGR. first-order projection. O
LGGR is a special case of GGR-B because given a layered
graph with vertices andt, we can clearly restrict our at- Lemma 2.3. UGGR—BSES)J.MGGR-B
tention to the rectangle with at its northwest corner and

at its southeast corner — if there is no such rectangle, thereprgof. We merely have to formalize the familiar “right-

can be no path fromto ¢. The local and global restrictions  hand rule” for exploring mazes — if we place our right hand
are orthogonal, so that the three global conditions (génera on the wall and keep walking with our hand on the wall,
boundary, and layered) and three local conditions (general\e will return to our starting place having gone completely
outdegree 1, both degrees 1) give us nine special cases 0fround the connected component of wall to our right. If

the GGR problem: GGR, 1GGR, 11GGR, GGR-B, 1GGR- poth our starting place and our goal are on the boundary of
B, 11GGR-B, LGGR, 1LGGR, and 11LGGR. Even the eas- the entire maze, they are on the boundary of their connected

iest of these problems, 11LGGR, is non-trivial, as we will component.

show in Section 4 that it is hard for the claBg®. More formally, given an undirected grid gragh and
There are other natural ways to define a layered graph.verticess and¢ on its boundary, we define a grid graph
We could forbid only one of the four directions of edges ofindegree and outdegree at most 1 as follows. The vertices
rather than two. Or we could allow diagonal edges but force of H will be points(a/3,b/3) wherea andb are integers —
them to go only northeast, east, or southeast, making eaclwhen both coordinates are integers we identify this vertex
north-south column a layer according to the standard defi-of H with the corresponding vertex @¥. (Note that the
nition. But it is an easy exercise to construct a first-order positive z direction is east, and the positiyedirection is
projection from a graph satisfying any one of these restric- south.) The directed edges Hf will have the property that
tions to one satisfying any of the others. (We prove one of there is an edge @¥ 1/3 unit to their right in their direction
these results in Proposition 2.12.) of travel, unless they are turning a corner:



s =l GGR

Figure 2. An undirected grid graph and its in-
1-out-1 graph.

UGGR LGGR

e Ifthere is an edge i between(u, v) and(u + 1, v),
then there are directed arcs #h from (u + 1/3,v —
1/3)to(u+2/3,v—1/3)and from(u+2/3,v+1/3)
to (u+1/3,v+1/3).

o Ifthere is an edge i between(u, v) and(u, v + 1),

then there are directed arcs #h from (v — 1/3,v + 1 LG G R

2/3)to (u—1/3,v+1/3)and from(u+1/3,v+1/3)
to(u+1/3,0v+2/3).

o If (u,v)is avertex of5 with noedge inG'to (u+1, v),
then H has edges fronfu + 1/3,v — 1/3) to (v +
1/3,v) and from(u + 1/3,v) to (u + 1/3,v + 1/3).

o If (u,v)is avertex of7 with noedge inG to (u—1, v), 1 1 LG G R

then H has edges fronfu — 1/3,v + 1/3) to (u — _ _ o
1/3,v) and from(u — 1/3,v) to (u — 1/3,v — 1/3). Figure 3. The five surviving GGR problems.

o If (u,v)isavertex of5 with noedge inG to (u, v+1),
thenH has edges fronu + 1/3,v + 1/3) to (u, v + 24.1 GGR

1/3) and from(u, v + 1/3) 10 (u = 1/3,v + 1/3). The general GGR problem is ML, of course, but we have

e If (u,v) is a vertex o7 with noedge inG' to (u, v—1), no better upper bound. As shown by Allen@é¢al[1], it is
thenH has edges fronw — 1/3,v — 1/3) to (u, v — equivalent undelogspacereductions to the general planar
1/3) and from(u, v — 1/3) to (u + 1/3,v — 1/3). reachability problem. (Our argumentin Section 3 that GGR

and GGR-B are equivalent is in fact a simplification of the
We define vertices’ and#' in H by moving1/3 unit argument there that general planar reachability reduces to
away from the rest of! from s andt respectively. Itis clear  its boundary special case.)
that H has both indegree and outdegree at most one, and There is an easy (first-order projection) reduction from
that there is a directed path froshto ¢’ in H if and only GGR-B to its complement, grid-graph non-reachability
if there is an undirected path fromto ¢ in H. Figure 2 with s andt on the boundary. This is because there is
shows the result of this construction on a small undirectedno path froms to ¢ in a grid graphG iff there is a path,
graph. O from some boundary vertex on one path frento ¢ to a
boundary vertex on the other path, in tt@mplement-dual
Thus all these versions of the problem are equivalent un-grid graph. (For details see [4].) The reachability prob-

der first-order projections. O lem for general graphs reduces to its complement by the
Immerman-Szelepcsenyi theorem [13, 19], but this much
2.4. Five Problems simpler reduction provides some weak evidence that GGR

is not complete foNL.

The results of the preceding section and of Section 3 re-
duce our nine problems to five. If we close each underfirst-5 4 5 gGR
order reductions, we get a hierarchy of complexity classes
within NL and (as we shall see in Section 4) abawe’. We found above that UGGR, undirected grid graph reach-
Since each problem has a number of interesting alternateability, has a number of equivalent formulations including
formulations, we spend some time looking at each in turn: its boundary version UGGR-B. To these we may add the



problem of determining the winner in a completed game of
HEX[6], because a hexagonal grid can easily be mapped
by a projection reduction to the Euclidean grids we have
defined here. Like GGR-B, UGGR-B projection-reduces ?

directly to its complement by taking a complement-dual ﬂ T

graph. This gives it another robustness property:

Proposition 2.4. A language is in the clads0 + UGGRiff cable turning corner T

it projection-reduces tGGR cable straight into
vertex shift insert

Proof. We show that the set of languages that projection-

reduce to UGGR-B, and hence (by Section 3) to UGGR,  Figure 4. The Construction of Proposition 2.5

is closed undeigf%CO reductions. We give an inductive ar-

. . . 0
gument on the depth of the circuits computing #&¢
rgductlon (where without loss of generality the circuits fo If the path does turn a comer at a vertexhen either the
different lengths have the same structure, and all gates on . . .

. . path cuts across the diagonal linevatunning from north-
the same level are of the same type). The inductive hypoth- ; . )
- . L east to southwest, or else it cuts across the diagonal line at
esis is that the value of each witeleading into a top-level

gate can be represented as the answer to the question o\r/% r;tr:; )r(lgi]nfrtc;]rg Qfsrttkégs:t g)nfjograh“el\?\i\;’-’ bgtrtl;i ?r)ﬁﬂeNsEcon d
whether or not a grapty,, is in UGGR-B where’z,, is a ’

projection of the input graptyy. This is clearly true if the case.

; : . Now we can define a grapH;:  where each vertex
only gates are NT gates, which establishes the basis for along the path is replaced Hy-+ 1 coies. These copies
the induction. If the top-level gate is anNd gate, then it 9 P P PIes. b

suffices to connect the grapls, in series. Similarly, if the are placed in a diagonal line from northeast to southwest if

) . ; v is an “NE” vertex or if the path does not turn a corner at
top-level gate is an @gate, then it suffices to connect the v, and the copies are placed in a diagonal line from north-
graphsG,, in parallel. If the top level gate is ad¥ gate, ' P P 9

then as we observed above, the complement-dual graph IetgveSt to southeast otherwise. Each edge along this path is

us represent the negation of a UGGR-B problem as the O repl_aced by a “cable” of + 1 parallel straight paths. The
. . copies of each vertex and edge are numbered so thaticopy
of polynomially many UGGR-B problems (and thus again . . e L
. is to the left and cop¥ is to the right in the direction of the
we can connectthese graphs in parallel.) If the top level gat ,
) ) path’s travel.
is an oracle gatg, then we can replace each wite(rep-

resenting an edgér, y) in the encoding of the grid graph Finally, on each incoming cable, we insert a shift compo-
H presented as input ig) by a small sub-grid encoding the nent so that the path forming th'¢h copy of each edge now

; e ; connects the'th copy of its source to thé+ 1'st copy of its
graphG,,, identifying the source vertex asand the sink S ’ .
vertex asy. The details are straightforward to fill in; by destination. (See Figure 4.) Note that this grdpalso has

) . indegree and outdegree at most 1. Then DIST, k) is true
simple padding we may assume that all of the graphs iff there is a path ind from copy0 of s to copyk of t. We

are the same size. = can defineH in FO + UGGR, and thus by Proposition 2.4
In its incarnation as 11GGR, UGGR can be seen to havewe can defing! as a first-order projection af.

the followingcountingproperty: U

Proposition 2.5. If G is a directed grid graph of indegree In Section 5 we will be interested in the depth-first search

and outdegree each at most one, then the following pred-of a directed tree embedded in a grid graph. If we convert
icate projection-reduces tdGGR DIST(s,t, k) < the the directed tree to an undirected tree and then to a graph
path out ofs reacheg in exactlyk steps. of indegree and outdegree one by the constructions of this
i ] ~section, we produce a tour of the vertices of the tree that
Proof. We first note that we can determine many properties exactly follows the order in which they are visited by the

of thedirectedpath out ofs in G by usingFO + UGGR 10 genth-first search. Because we can count the length of paths
answer questions about relatgndirected graphsBy look- in this final graph, we conclude:

ing at the undirected graph obtained by erasing the arrows in

G, we can tell whether the path passes through a given ver-Theorem 2.6. Let T be a directed tree embedded in a grid
texv. By removing an edge from this undirected graph and graph and consider the depth-first search7otthat visits
retesting, we can determine whether a given directed edgechildren of a node in the left-to-right order given by the em-
occurs on the path ity. Similarly, we can tell whether the bedding. Then the following properties of the search are
path turns a corner at a given vertex. each computable ifO + UGGR start time of a vertex,



finish time of a vertex, depth of a vertex, and whether oneE1LGGR. The vertices off are the same as those@f If

vertex is an ancestor of another. | vertexv has an east edge out of it @, it has an east edge
out of it in H. Otherwise it has a south edge out of itih
243 LGGR Clearly, every vertex of that is not on the south boundary

has outdegree one. It is easy to show by induction that the

The most interesting question regarding LGGR is whether path out ofs in H reaches or passes directly north of every
it is any easier than general GGR. It seems plausible thatyertex reachable . Either this path ends at a vertex on
searching for a path that must always make progress in ahe south boundary that has no east edge, or it reaches the
given direction would be easier than searching for one thatggst boundary and thus goes souttt.t&So the path irG
could double back upon itself arbitrarily. But the evidence exists iff the path inH does.
we have for this is rather thin. Allendet al[1], follow- For the other reduction, Iét be an instance of EILGGR.
ing the method of Reinhardt and Allender [18], show that Define H to be a copy of7 with all possible south edges
LGGR is in the classJL — it is the language of a nonde- added. Defings” to be the layered grid graph obtained
terministic logspace machine that never has more than ongrom G by reflecting about the northwest-to-southeast diag-
accepting run on the same ihput. But it is known [18] that 0na|, and letH’ be a copy OfGT with all possib|e south
the non-uniform versions dfL andNL are the same, and  edges added. Finally, Idtbe aseries connectionf H and
it is entirely plausible that the classes themselves are theg’ _ 5 layered grid graph, with all south edges present, ob-
same. tained by placingd in the northwest quarter anid’ in the

Another interesting question is the relationship, if any, southeast quarter of a single graph, identifying the south-
between LGGR and reachability for general grid graphs thateast corner off with the northwest corner df’. It is easy
happen to be acyclic. The two restrictions seem similar, butnoy to verify that there is a path from the northwest corner
nothing is known. of I to the southeast corner iff the unique path frein G

It is not clear whether LGGR is closed under comple- reacheg, rather than some other sink on the boundary of
mentation. The complement-dual of a grid graph whose ¢;. 0

edges go only east and south is a grid graph that coradlins
possiblenorth and east edges, and some edges going soutfProposition 2.9. The language of problems projection-
and west. There may be a way to reduce this problem toreducible toE1LGGRis closed under complement.
LGGR, but we don't know of one.

LGGR is also a special case of evaluatindagiered
monotone planar circuit, where the circuit has only ©
gates and constafitgates (except for one constangate).
Limayeet al.[16] give a nice survey of the various versions
of this problem along with some new results.

Proof. The complement-dual of a layered grid graph with
some east edges and all south edges has all possible north
and east edges, some south edges, and no west edges. But
the north edges are of no additional use in making a path
from north to south, so this is equivalent to a problem with
some south and all east edges, clearly isomorphic to the

problem with all south and some east. O
244 1LGGR

... Theorem 2.10.1LGGR and EILGGRare equivalent un-
The 1LGGR problem has some alternate characterlzatlonsder projections (and thus, by the preceding proposition,

which we find useful in proving our results about this prob- 1LGGRprojection-reduces to its complement)
lem. '
Proof. Since E1ILGGR is a special case of 1LGGR, it suf-

Definition 2.7. An outdegree exactly-one layered grid ficeq tg reduce 1LGGR to ELLGGR. First, we present a
graphis an instance oLlLGGRwhere every vertex notap- st order reduction. Le€ be an instance of 1LGGR. Let

pearing on the boundary has outdegree 1. Thatis, the only i e 5 graph with the same set of vertices and containing
sinks are on the boundary. The reachability problem on j of the edges of7, but with the property that if is an

these graphs is denoted B{LGGR internal sink inG, thenv has an edge leading out to the east

Lemma 2.8. EILGGR is equivalent (via projections) to in [. H is clearly an instance of EILGGR, and there is
the reachability problem on directed grid graphs that have Path froms totin G if and only if (there is a path from to
some east edges, all possible south edges, and no north of I H and, for every sinlo of G, there is not a path from

west edges. tovin H). . . . . o
It remains to simulate this reduction with a projection.

Proof. We firstreduce this new problemto ELILGGR. k&t  Note thatH can be formed as a projection fragh although

be a layered grid graph with some east and all south edgesthe condition that is a sink depends otwo bits of G, we
Without loss of generality let¢ be the northwest corner and can phrase this condition equivalently by saying that there
t the southeast corner. Define the following instaftef is an east edge out of iff there is not a south edge out



of v. Next note that the first-order reduction is theiB\ Proof. Consider a directed by n grid graphG with no

of a reachability question o/ with polynomially-many  west edges, a vertexon the west boundary, and a vertex
conditions of the fornC,,: “v is not a sink or there is nota ¢ on the right boundary. We describe how to successively
path froms to v in H”. C, is equivalent to the negation of recast thisSGGR instance as a sequence @t R-like in-

the condition % is a sink and there is a path frogrto v in stances, the last of which is a 1LGGR instance.

H”, which can be expressed by a reachability question in a
graph with two components: the first component is a two-
by-two grid graph containing the negations of the two edges
out of v, and the second component is the subgrapH of
with v as terminal node. It is easy to see that the negation of
C, can thus be expressed as a projection of ELLGGR, and
thus by the preceding proposition, each conditircan be
posed as a positive query to EILGGR.

All of the polynomially-many reachability conditions of
our first-order reduction can be combined in series to form
a single instance of ELLGGR. (That is: form a grid with
the queried graphs along the main diagonal, with vestex
in one graph identified with vertexin the next. Vertices
along the boundaries of the queried graphs are connected e We now makeG"” by doubling the size ofs’ and re-
to paths running east or south to the boundary of the large placing each east edge with a path of length two con-
graph, to maintain the property that the only sinks are on sisting of a northeast and a southeast edge. Northeast
the boundary.) This yields the desired projection. [ and southeast edges@ become paths of two north-

east or two southeast edge<Gfi.

e Our first graphG’ is n by n(n + 1) and has edges that
go northeast, east, and southeast. We embed the ver-
tices of G in G’ so that there are columns of new
vertices between each column@fvertices. For each
east edge ild7, we make a corresponding pathrof- 1
east edges id:’. For each north or south edge @
we put northeast or southeast edges respectively on the
corresponding vertex i’ and each of the next — 1
new vertices in the same row. Note thGi also has
outdegree one. We can now see that if the patty in
from vertexu first reaches a particular column at ver-
tex v, then the path out af in G’ also goes ta.

Theorem 2.11.Any language first-order reducible to

1LGGRis projection-reducible to it. e Finally, we make a 1LGGR instancH by rotating
G" 45 degrees clockwise so that its edges go east and
Proof. We follow essentially the same strategy as in the south.

proof of Proposition 2.4 — but we cannot use the same con-
struction of simulating an @gate by a parallel connection,
since that construction does not have outdegree 1. However, As we will see in Section 4, the complexity class of
using DeMorgan'’s laws, we can assume that a first-order re-problems first-order reducible to 1LGGR lies somewhere
duction to to 1LGGR is computed by a constant-depth cir- betweerl andNC'. These two classes exemplify one con-
cuit with only AND and NOT gates, in addition to oracle trast between sequential computatith énd parallel com-
gates for 1LGGR. The inductive argument now proceeds putation NC'). The question of whethdr = NC' is the
in exactly the same way as in the proof of Proposition 2.4, question of whether sequential computations using only log
but we need to be more careful in the way that oracle gatesspace can be parallelized to a certain extent. (Of course
are simulated G be then-by-m grid corresponding to the  problems can be solved ift(log?) parallel bit operations
input wires of an oracle gate, where by induction we are becaus¢. C NC?, but the question is whether we can get
assuming that we have instances of 1LGGR for each  depthO(logn).)
of these wires. For each possible horizontal eflge) of Here is a problem that looks to be inherently somewhat
G represented by wire, we can places,, diagonally be-  sequential, in that a polynomial number of operatiaps
tweenu andv, so that all edges @, are running northeast pear to be necessary in sequence. L&tbe ann by n
or southeast. For each vertical edgev) represented by  Boolean array and consider the following Java code frag-
wire w, we placeG,, diagonally betweem andv so that ment:
all edges ofGG,, are running southwest or southeast. If we
rotate this graph 45 degrees counterclockwise, we obtain a
grid graph with outdegree one having no west edges, such
that there is a path fromto ¢ if and only if there is a path
from s tot in G. The proof is completed by showing that Determining whether the value cbunt at the end of
reachability in graphs of this type is projection-redueitd this fragment is some valueis easily projection-reduced
1LGGR,; see Proposition 2.12. O to 1LGGR. If ILGGRe NC!, then this code can be par-
allelized in some way that is not readily apparent to get

Proposition 2.12. The restriction of LGGR to instances O(logn) time instead of the)(log? n) time from pointer
having no west edges projection-reduceglt®&>GR doubling.

O

int count = O;
for (int i=0; i < n; i++)
if (Ali,count]) count++;



245 11LGGR

The easiest problem in our hierarchy, 11LGGR, has an in- s
teresting alternate formulation. Consider a data strectur o ] ot

holding a varying number of items and supporting the fol-
lowing two operations:

e insert(i) places a new elementin positiband moves Figure 5. Putting s and ¢ on the same row.
all higher-numbered elements up by one position, and

s
o delete(i) removes the element in positiand moves l [ ‘ j f—

all higher-numbered elements down one position.

Given such a structured, a sequences of inserts
and deletes, and a positianin A, define the predicate
Preserves(4, s, i, ) to be true iff the item in positiori i=5 [ ‘ —
at the beginning still exists and is in positignafter s is
executed. H

This problem is reducible to 11LGGR, because we can
make a grid where each row represents a time step, each
column represents a position, each vertex representsman ite

at some time, edges go southwest, south, or southeast t97 il include all possible south edges, and its east edges

represent the movement or non-movement of an item, and gyl be those ofG plus all those in the two new rows. These

path thus traces the history of a given item. ~ changes do not affect reachability between vertice'of
What is interesting is that thi®reserves problem is butin H (—1,—1) is the only source anth + 1,b+ 1) is

completefor the class of problems first-order reducible to the only sink. Note that the source is on the boundary
11LGGR. Given an arbitrary 11LGGR instance, we can

interpret a layer as a time step in the history of a similar ~ Since most of our arguments in Section 5 apply to any
but more complicated data structure, where several vertice graphs embedded in the plane, we will present them in gen-
might be inserted or deleted at the same time, corresponderal form and note where theconstructions may be carried
ing to the sources or sinks among that layer of vertices. Butout inFO + UGGR in the case of grid graphs.

these operations may be sequentialized into single inserts

and deletes as above. If we do this for each l&yewe get 3. The Boundary Construction
a Preserves problem equivalent to the 11LGGR instance.

Figure 6. The basic gadget H

o ) In this section we show that each of the problems GGR,
2.5. Acyclicity and Single-Source UGGR, and 1GGR reduces via first-order projections to the
special case whereandt are on the external boundary. For
We have no logspace algorithm to test if a given di- simplicity, we first consider GGR.
rected grid graph isicyclic, because this problem is hard
for LGGR (which is not known to lie ifh). Butin Section5  Theorem 3.1. GGR<}0 .GGR-B,
we will present algorithms for two special cases of general

Proof. Let G be a grid graph. Without loss of generality,
acyclic GGR. gnc grap g 4

) s andt appear on the same horizontal row@®@f call this
These are theingle-sourceproblem SMGGR and the .\, (f this is not true, then add some paths to effect a

S|nglgllsource, smgle-smlproblem SSGGR;]' (Ir;]each CaS€ yertical shift of part of the grid, as illustrated in Figurg 5
we wi aﬁsume, as perfPr:opo§|t|on 353, that the source oC-yg may also assume without loss of generality that there is
curs on the boundary of t e grid grap ) . no vertical edge out of or intot, and may also assume that
Even the latter problem is non-trivial in our hierarchy: s is a source andis a sink, and that appears to the left of
Lemma 2.13. 1LGGR§§&SSGGR tin t_he g_rid. ModifyG by inserting a new row of “dummy”
vertices just above row: of G, to obtain a new grapt”.
Proof. Appealing to Lemma 2.8, lef be a layered grid In G’ there are no horizontal edges in rew+ 1, and all
graph with some east edges and all possible south edgegdges that enter row + 1 vertically from above continue
with northwest cornef0, 0) and southeast cornét, b). We on below, and vice-versa.
form a graphH by adding one new row each north and Now build a new graphd by cutting G’ horizontally

south of G and one new column each east and west of it. along rowm + 1 to obtain two gridsG{,, and Gy oum-
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Figure 7. Connecting multiple copies of H

Figure 8. Grid graph G with cell E in the cen-

ter.
There is a copy of rown + 1 in each ofG,, andGy, .-
In H, the graplGy, ..., appearsaboveGy,, . For each ver-
tex v in row m; to the left of s or to the right of¢, there
is a path connecting the the two copiesupigoing around
the closest side boundary, and directed the same way as t
edge that passes throughn G, as illustrated in Figure 6.
Also as illustrated in Figure 6, add new verticésand ¢’
at the top right and left corners, respectively, connectad v
paths tos andt. For the vertices in rown + 1 that ap-
pear between andt, add vertical paths that we will use to
connect different copies df together.

Let there ben vertices inG. Create2n + 1 copies ofH, Proof. The three figures Figure 8, Figure 9 and Figure 10
labeledd_,,H_,,_1,... ,H_1,Hy, Hy,... H,, and con- illustrate how any given celt of the grid graph; (contain-
nected vertically withH, in the middle, where the connec- ing vertexv) can be “stretched” to become the boundary of
tions are made at the vertical paths between the copies offf (with the subgrids that surroundégibeing flipped over
s andt in the bottom row ofH;_, and the corresponding into the interior ofE). O
paths in the top row off;. (See Figure 7.) A simple in-
ductive argument shows that there is a path froto ¢ in
G iff there is a path froms;, to one of the vertices;,. The
vertexs; is on the external face, as is each of the vertices
t.. The construction is completed by creating a new vertex
t" and adding paths from eachto ¢”. Call the resulting

grid graphH’. It is easy to see that this reduction can be
accomplished by means of a first-order projection. O Even the easiest version of GGR we have considered has
nontrivial complexity:

We conclude this section with the observation that a
hgwch simpler construction is sufficient if we wish to put
onespecified vertex on the boundary, instead of two.

Proposition 3.3. For any given grid graphz and vertexv,
there is a graphH that can be expressed as a first-order
projection of G, that has the same connectivity properties
as@, but has vertex on the boundary off.

4. Lower Bounds

4.1. ATC® Lower Bound For 11LGGR

Corollary 3.2. UGGR<[,UGGR-B and  Theorem 4.1. The probleml1LGGRis hard for TC° un-
1GGR<FQ 1GGR-B der first-order reductions.

Proof. If G has outdegree one, then the grdiphalso has  Proof. Our reduction is from the complete problem
outdegree one. If7 is undirected, then the gragt’ will EXACTLY-HALF, the set of binary strings with exactly
also be undirected, if we modify the construction by adding the same number of zeroes and ones. Given a strirg
undirectedpaths froms’ to s and fromi¢ to ¢/, as well as wy ... w,_1 Of lengthn, with n even, we construct a grid
from each; to . O graphG thatis am /2 + 1 by n/2 + 1 square with vertices



Figure 9. Cell E “stretched” to full size.

Figure 10. The final graph H.

numbered0, 0) through(n/2,n/2). The edge out of ver-
tex (¢, 7) is to the east (t¢: + 1, j)) if w;+; = 0 and south

(to (4,7 + 1)) if w,y; = 1. Thus each diagonal, the vertices
with i 4+ j = k for eachk, have edges all in the same direc-
tion. On the east and south boundary, a vertex is a sink if its
edge, by this rule, would leave the graph.

It is clear that this graph is layered and has both maxi-
mum indegree and outdegree of 1, and thus is an instance
of 11LGGR once we sei = (0,0) andt = (n/2,n/2).
Equally clearly, the unique path out efwill take one edge
east for every zero iw and one edge south for every one,
until or unless it reaches the east or south bounday.of
It reacheg if and only if the input string is in the language
EXACTLY-HALF. The reduction is a simple first-order pro-
jection. O

We can define a special case of 11LGGR thatam-
plete for TC’. Suppose that the indegree and outdegree
of every vertex isexactlyone, except for vertices on the
boundary. This condition forces all the edges from vertices
on a giveni + j = k diagonal to go in the same direction.
Thus it must be exactly the encoding of some string under
our reduction from EXACTLY-HALF to 11LGGR. Given
two verticess = (4,7) andt = (¢, '), we need only find
the substringv; ; . . . wy 4 ;-1 of this string, and determine
whether the number of zeroes in this string is exaitly i.

This is clearly easy to do by reduction to EXACTLY-HALF
and is thus in the claseC’. Since our earlier reduction al-
ways produces 11LGGR problems falling within the special
case, the special case is completeTar’.

4.2. AnNC' Lower Bound: Series-Parallel Graphs

We now show that except for the minimal problem
11LGGR, each of our versions of GGR is hard for the class
NC'. Our proof constructs a graph wittparticular series-
parallel decomposition. (By contrast, Jakaal. [15] deal
with graphs thatdmit such a decomposition.) While the
GGR problem for such pre-decomposed graphs N@,
we have noNC' upper bound for any of the versions of
GGR we have defined above.

Theorem 4.2. The problem 1LGGR is hard for the class
NC' under first-order projections.

Proof. Our reduction is from a special case of the Boolean
sentence value problem, proved to be bothNii' and
hard forNC' by Buss, Cook, Gupta, and Ramachandran
in [BCGR92]. A Boolean sentence is an infix Boolean for-
mula with constants 0 and 1 and binary operatars, and

-, and BSVP is the set of such formulas that evaluate to
1. In Theorem 5.1 of [BCGR92], they construct a Boolean
sentence whose value is equivalent to that of an arbitrary
O(log n) time alternating Turing machine on a given input
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string of lengthn. Here we will use the fact that the sen-
tence they construct is always:

e monotone (has ne operators),

e fully balanced (every constant occurs at the same
depth), and

e alternating (\ andV operators alternate).

We describe a general inductive construction that takes
monotone Boolean sentengeand produces a square grid
graphGy that contains all possible south edges, some eas

edges, and no north or west edges, such that there is a pat

from the northwest to the southeast corne@gfif and only
if ¢ is true. Figure 11 illustrates the construction.

As we observed in Section 2.3, 1LGGR can be defined
in terms of reachability from the northwest to the south-

east corner of such graphs. In the special case of a mono

tone, fully balanced, and alternating formula, our corstru
tion can be simulated by a first-order projection. This will
show that the 1LGGR problem is hard fatC* under such
projections.

a

of G4 has only the required south edges, except for a single
east edge fronfa — 1, a) to (a, a), the northwest corner of
the copy ofGg. If there are paths from the northwest to
southeast corners 6f, andG s respectively, there is a path
from the northwest corngi0, 0) of G4 to (a — 1,a — 1),
south one step, across the east edde ta), and across: s
to(a+b—1,a+ b—1). But the only way from column

a — 1 to columna is across this east edge, and thus the only
way to get from(0,0)to (a + b —1,a + b — 1) is to cross
both G, andGg from northwest to southeast corner. The
path acrosgx, thus exists if and only if botlx and 5 are
true, that is, if¢ is true.

Similarly, suppose that = o vV 5 anda and are al-
ready represented as above. We make a square graph of
sidea+b as before, placing’, andG s as before. This time,
our added east edges form two paths, fl@m 1,a — 1) to
(a+b—1,a—1)andfrom(0,a) to (a,a). We must show
that a path exists frorf0,0) to (a +b—1,a+b—1)in Gy
iff a path existseitheracrossG,, or Gg. If the path exists
across=,, we may take it and then go due east to column
a-+b—1and then south to our goal. If the path exists across
G, we can go fron{0, 0) south to(0, a), then east tda, a)
and across this path to our goal. Conversely, suppose there
is a path from0,0) to (a +b — 1,a + b — 1). Since there
are only two edges from column- 1 to columna, the path
must use one of them. If it uses the edge fr@m-1,a — 1)
to (a,a — 1) it must have previously crossee,, and if it
uses the edge frortu — 1, a) to (a, a) it must then cross
Gg.

If ¢ is a monotone, fully balanced, alternating Boolean
sentence of depthd, this construction produces a square
graphG, of side2¢*1. To construcG, from ¢, we need
only place the east edges. For i of the 2¢ constants
in ¢, we add an edge frorf2i + 1,2¢) to (2i + 1,2i + 1)
iff this constant is1. Without loss of generality, assume
hat the lowest-level operators ifnare A's. Then the east
edges corresponding tooperators go froni2/ —1,i27) to
(i27,427) whenevei and; are both odd. And the east paths
corresponding to the operators go fronti2/ — 1,27 — 1)
to ((i + 1)29 — 1,427 — 1) and from((i — 1)27,i27) to
(i27,i27) whenevei is odd andj is even. It should be clear
thatG,, can be produced from suchgeby a first-order pro-
jection. O

5. Acyclic Single-Source Graphs

We map constants to 2 by 2 graphs, with no east edges

for a constan6 and an east edge on the south boundary for
a constantl. Clearly a path from northwest to southeast
exists forG; and not forGy.

If ¢ is the formulax A 3, anda and3 are already repre-
sented by square grapis, andG of sidea andb respec-
tively, thenG,, is a square graph of side+ b with G, in its
northwest corner an@ s in its southwest corridor. The rest

Definition 5.1. An embedding of a planar DAG is said to be
“Bimodal if, for every vertexw, all incoming edges appear
consecutively in the cyclic ordering around The embed-
ding is said to have SSPDfaces” if each face (viewed as a
subgraph) has a single source and a single sink.

Some properties of SSPDs and SMPDs are summarized
below:



Fact1l. 1. Thereis a path from the source to every vertex
in everySMPD (and thus in evengSPD.

. There is a path from every vertex to the sink in every
SSPD

. Every embedding of aBSPDis Bimodal and has
SSPDfaces. (see [20]).

. There is a logspace algorithm that, given éMPD
G, constructs a directed spanning tréefor GG, rooted
at the source. (The algorithm simply selects (arbitrar-
ily) the first incoming edge for each vertex; it is easy
to see that this is a directed spanning tree.)

. Preorder and postorder numberings vyielding the
discovery time Discover(x)) and finishing time
(Finish(z)) for each vertex: w.r.t. the spanning tree
G can be computed bylatransducer.

It is easy to see that forward edgesiincan be deleted
without affecting the reachability predicate. (A non-tree
edge(z, y) is a forward edge if; is a descendant afin T'.)

5.1. Reachability in SSPDs

Theorem 5.4. SSPDreachability is inL.

Proof. We first state a lemma regarding the set of vertices
reachable from a fixed vertex in a given SSPD.

Lemma 5.5. Let R be the closed region bounded by the
left-most and right-most paths from a vertexo the sink:.
The set of vertices iR is exactly the set of vertices reach-
able fromz.

This lemma tells us that, in order to determine whether
there is a directed path fromto v, it suffices to consider the
left-most and right-most paths fromto ¢ and find whether
either of them intersects an arbitrary path freno «. (For
example, we could take the reverse of the left-most path
from u to s in the SSPD formed by reversing all edges in
the given SSPD.) O

Proof. (of Lemma 5.5)
To see that each such vertgxs indeed reachable from

Since it is easy to delete such edges in logspace, we assume We note that the subgraph in this region is itself a SSPD,

from now on that there are no forward edges. We classify
edges w.r.t. the spanning tree obtained above as follows:

Definition 5.2. Given an embedding of &@MPD and one
of its spanning trees, all edges in t&¢PD fall in one of
the following classes:

e Tree Edges

e Local Edges: non-tree edges such that the unique undi-
rected cycle formed by adding the edge to the tree doe
not enclose any vertex strictly within its boundary.

e Jump Edges: non-tree edges that are not local edges.

S

and then appeal to Fact 1.

To see that no vertex other than those in regins
reachable fronx, suppose to the contrary there is such a
vertexy and a directed pat® from x to y. Then since
x € R, let the pathP exit the regionB for the first time at
vertexw i.e, let (w, z) be an edge irP such thatw € R
butz ¢ R. But since the “left-most” outgoing edge from
is part of the boundary, it follows that all the other outgpin
edges end in the vertices lying either strictly wittiror on

its right boundary, contradicting the choicewof O

Corollary 5.6. The problen5SGGRis in FO + UGGR

Since we may consider any face to be the external faceProof. Let G be a single-source, single-sink grid graph,
of the embedding, we assume without loss of generality thatWith the source on the boundary. We can easily construct

s is on the external face. Thus no jump edges go “over the
top” of the graph, arounsl.
We observe the following:

Observation 1. If a subgraph of arSMPD does not con-
tain any jump edges, then it has all its sinks on the external
face.

Proof. Any sink not on the external face must be contained
strictly within some undirected cycle — but, by definition,
any undirected cycle formed by local edges does not strictly
contain any vertex. O

Definition 5.3. GivenG and a spanning tred" as above,
then for any vertex: # s we define thdeft-most (right-
most) path starting from: to be the path such that every
edge(y, z) on the path is the last (resp. first) edge among all
outgoing edges fronp enumerated in the clockwise order,
starting from the unique edge intoin T'.

the directed tree of Fact 1 as a first-order projectioid-of

and then by Theorem 2.6 we can compute all the predi-
cates necessary to define the depth-first search of this tree
in FO + UGGR. The argument of Theorem 5.4 refers only
to reachability in graphs of outdegree one, which are com-
putable inFO + UGGR by Lemma 2.2. O

5.2. Reachability in SMPDs

Theorem 5.7. SMPDreachability is inL.

Proof. We defer to later the question of how to recognize
if a given graph is an SMPD. Assume for now that we are
given a DAGG that is an SMPD with source and we are
trying to determine if there is a path fromto v.

We may restrict attention to the special case wheard
u are both on the external face, and wher@appears on
the rightmost path of the spanning tr€e (To see this, we



first note that if we are given an arbitrary SMRE) we can Sincey is to the left ofz (by the definition of uselessness),
build a spanning tree as discussed above, and thus we caany path fromy to v must cross the boundary of this region,
find a directed path from to . Now we use the argument again creating a cycle. O
presented in Section 2 of [1], where it is shown how to em-

bed two vertices on the external face by first “cutting along” |, logspace we can detect and remove useless edges: we
a path between the vertices to create a new face, and thefygrefore assume thathas no useless edges. Note also that
“inverting” the graph so that this new face becomes the ex- path fromu to v can visit any descendant of thus we

ternha]! face. In thedspgcial case r\:\_/here we ha}‘aﬁrﬁctedh can delete all proper descendant® o§o thatv is a leaf.
path froms to u and(' is @ DAG, this construction has the We need to define some basic search routines.

property thaho new sources are createghdno path from

u to v is lost Thus we have created a graph witland «

on the external face (and in fact there are two directed path
from s to u along the external face). We create our span-
ning treeT" so that the edges appearing in the directed path
along the right side of the external face are all included in
T, and now we have guaranteed that thatppears on the
rightmost path ofl".)

It is convenient also to add a new vertexthat is the Proof. Consider the induced subgra@f(z) on the vertices
leftmost child ofs in the tree, along with a jump edge from in ReachLocal@). Since there are no jump edges, all the
the rightmost child ofu to w. This clearly creates no new sinks inG’(z) lie on the external face (by appealing to Ob-
paths fromu to v (but it does provide a reachable jump edge servation 1). Construct a new gra@ti(x) by adding a sink
to the far left of the graph, which simplifies some of our to G’(z) along with an edge from each old sink to this new
notation). sink. ClearlyG”(z) is an SSPD and we are done by an

Itis easy in logspace to seeufis a descendant af (in application of Theorem 5.4. O
which case there is a path, sin€eis a directed tree) and
thus we assume for now thatis not a descendant af,
and thus that it is to the left af in T'. Given any vertex,

T partitions the vertices into the set of ancestors pthe
descendants af, and the vertices to thiéght andleft of x.
The adjectives “right” and “left” give partial orders on the
set of vertices (where two vertices on the same paihamne
neither to the right nor to the left of each other). Let us call
alocal edgd, y) uselessf x is to the right ofv and(x, y)

is directed to the right, or if is to the left ofv and(z, y) is
directed to the left.

Definition 5.8. Given anSMPD G and a vertexz, let
SReachLocaI(oc) be the set of vertices reachable frarmus-
ing only tree edges and local edges.

Lemma 5.9. The predicate; € ReachLocal) is inL.

An immediate consequence, which we record for future ref-
erence, is the following:

Corollary 5.10. Given vertex z, the vertices in
ReachLocal{) with the least finishing time and max-
imum discovery time (relative to the original spanning tree
of the graph) can be found ib. Let’s call these vertices
ReachLeft(z) andReachRight(r) respectively.

Our basic strategy is as follows. Startiafon the right
Fact 2. If there is a path fromu to v, then there is a path ~ side of the graph) ana (on the left side of the graph) and
that uses no useless edges. do local searches. The goal verteis thus “squeezed” be-

tween some areas where we were able to do some searching.

Proof. Assume that we have a path franto a useless edge We will make use of the procedurksftwardSearch and
(z,y) and then ta, wherez is to the right ofv. Either this RightwardSearch to make limited use of jump edges to
path intersects the tree path fronto y, or it doesn'’t. If it further restrict the area wherecan try to hide. When these
does, then we can clearly construct a path froto y, and procedures no longer admit any progress, then we make
then tow, that avoids(z, y). Otherwisey is in the closed  stronger use of jump edges that “tunnel” from one side of
region bounded by the tree paths frero = and tou, along the graph, below, over to the other side, to take even more
with the path fromu to . Any path fromy to v must cross ~ hiding room away fromv. Below, we define these proce-
the boundary of this region, which would create a directed dures more precisely, and then we show that the algorithm
cycle, contrary to the fact that is a DAG. works.

Now assume that we have a path frarto v via a useless The proceduréeftwardSearch starts at a given vertex
edge(z,y), wherez is to the left ofv. Either this path  and does a local search, updatibignright to mark the
intersects the tree path fromto v or it doesn't. In the right boundary of the area whevecan still be hiding. Then
former case, we clearly do not need the edgey). In the it looks for a jump edge that stays on the right side aeihd
latter casey is in the bounded region enclosed by the tree advances as little as possible beydmaright , and repeats
paths froms to z andu, along with the path fromu to x. the process until no more progress can be made.



LeftwardSearch(z)

while true
do
Enumeratd&ReachlLocal).
Limright < ReachLeft(z)
S —{(z,y): (x,y) is ajump edge with
x to the right ofLimright and
y to the left ofLimright and
to the right ofv}
if S is not empty
then pick (x,y) € S such that
y is the furthest right
(i.e., as close as possibleltonright ),
breaking ties by picking
as close to the roatas possible,
Z—y
else return

RightwardSearchis defined symmetrically. The proce-
dure Tunnel looks for jump edges ir%,. (jump edges that
tunnel from the right side of the graph, belawto the area
just right of Limleft) or in a similarly-defined sef;. (It
is easy to see that at least one$fand .S, will always be
empty, by planarity.)

Tunnel()
Sy —{(z,y) : (x,y) is ajump edge with
x to the right ofLimright and
y to the left ofv and
to the right ofLimleft .
S; —{(x,y) : (z,y) is ajump edge with
z to the left ofLimleft and
y to the right ofv and
to the left ofLimright .}
if S, U S;is empty,
then Direction < Nil

if S, is not empty
then Direction < Right

Pick (z,y) in S, with
y as far left as possible
(i.e., as close as possibleltonleft ,
breaking ties by picking the
vertex closer to the root)
Target «— y

if S; is not empty,
then Direction « Left

Pick (z,y) in S; with
y as far right as possible
(i.e., as close as possibleltonright ,
breaking ties by picking the
vertex closer to the root)
Target — y

We now present an algorithm to enumerate vertices that
are reachable from. The vertexv is reachable fromu if
and only if it ever shows up in the enumeration.

begin
LeftwardSearch(u)
RightwardSearch(w)
Repeat
Tunnel
If Direction = Left then
LeftwardSearch(Target)
If Direction = Right then
RightwardSearch(Target)
until Direction = Nil
end

In order to argue that the algorithm is correct, we
will establish the following invariant condition: Each tm
Limright or Limleft is updated, ifz is to the right of
Limright or to the left ofLimleft , then there is a path from
u to z iff z has been enumerated, and any jump edge that is
ever in one of the setS, S;, S, is reachable from.



Limright is updated only by eftwardSearch, and it al- edges that start frorReachLocal) for the vertexy that
ways occurs immediately after executiorRéachLocal() was selected whehimright was updated most recently.
as the first step of an instantiation loéftwardSearch(z). Let e be the jump edgéx, y) that was selected when this
The first time this happens is far = u, and in this case  update happened. If the inductive hypothesis were to fail,
Limright is set toReachLeft(u). It is easy to see that there would have to be a jump edgedeparting between
all vertices to the right oReachLeft(u) are enumerated in  the old value ofLimright andReachLocalg). If e is di-
ReachLocal) and all are reachable; this establishes the rected from right to left, then it encloses the region where
basis of our induction foLimright , and an even easier ¢’ would begin, which means that would not be inS, S;,
argument establishes the basis Eamleft. Also, this di- or S,.. Thus we must have directed from left to right. But
rectly implies that the first time the sétis considered in  thene’ would have been selected during the previous exe-
LeftwardSearch, or RightwardSearch, all of the relevant  cution of LeftwardSearch, which is contrary to the choice
jump edges are reachable fram Similarly, if Tunnel is of ¢.

called beforeLimright or Limleft is updated again, then We have now established the invariant condition. To
we immediately have that the same is true for all jump edgessee that this implies correctness, assume dhatis reach-
in S; andS,. (and in this case$; is empty). able fromu but is not enumerated. Consider the first edge

For the inductive step, consider first the case where€ = (z,y) on this path fromu such thay is not enumerated
Limright is updated after executing another round of the by the time that the procedure halts. By the invariant condi-
loop in LeftwardSearch. Thus we have just enumerated tion,y cannot be to the right of the final value lofright
ReachLocalf) for a jump edge(z,y). By the inductive or to the left of the final value dfimleft , whereag: is to the
hypothesis, all of these enumerated vertices are reachabl&ight of Limright or to the left ofLimleft. Clearly,e can-
from u, since the jump edge is reachable. Thus if the induc- NOt be a local edge or tree edge, and thus it is a jump edge.
tive step were to fail, there must be some vertéxo the ~ However, if such a jump edge had existed, then the proce-
right of ReachLeft(y), that has not been enumerated but is dure would not have stopped at the given valueisiofleft
reachable. By the inductive hypothesis, it must be to the andLimright . O
right of ReachLocalfy) and to the left of the old value of
Limright . Consider the first edge on the path framo 2/ 5.3. Recognition of SSPDs
that is to the left of the old value dfimright and to the
right of ReachLocalf). This edge cannot be a local edge We prove:
or tree edge (because the predecessor is enumerated by hy- . .
pothesis, and the enumeration follows such edges). Thus it)fheorem 5.11. Recognition 0ESPD: can be done ib.
must be a jump edge. But by the way that we select jump  |n order to prove this, we use the following:

edges, it would have been chosen, insteag:0f). Thusz’ _ .
cannot exist. Lemma 5.12. In any planar graph with a single source

and sinks and no facial cycles, any directed cycle separates
s andt. (Thatis,s and¢ cannot both be embedded in the
interior (or exterior) of any directed cycle.)

It remains only to consider the case wheimright is
updated after executinunnel. Thus we have just enumer-
atedReachLocalfy) for ajump edgéz, y) wherez is to the

left of v. By hypothesisy is reachable, and thus all of the  proof. We give a proof by contradiction. Assume that there
enumerated vertices are reachable fromThus as in the s 3 directed cycleD (not a facial cycle) that does not sep-
previous case, if the inductive step were to fail, there must grates andt. Assume without loss of generality thaand

be some vertex’ to the right ofReachLocal) and to the ¢ are both embedded on the exterior/of By deleting all
left of the old value oLimright that has not been enumer- of the vertices that are embedded outsid®ofve obtain a
ated but is reachable. Consider the first edge on the patfplanar graphG' with no sources or sinks, such that only its
fromu to 2’ that is to the left of the old value dfimright external face (and no other face) is a directed cycle. We will
and to the right oReachLocalf). This edge cannot be a show that this leads to a contradiction.

local edge or a tree edge; thus it must be a jump edge. But (; has a smallest cyck that encloses no other cycle in
Tunnel would not have been called if there had been suchits interior. We consider the cyclé and its interior. Since

a jump edge coming from the right, and if this jump edge py assumption( is not a face ofG, there are vertices in

were to come from the left, then it would have been chosen, jis interior: (note that if this is not the case, théhhas a

instead of(x, y). Thusz’ cannot exist. chord, which gives rise to a smaller directed cycle, cogtrar
A similar argument holds facimleft. It remains onlyto  to our choice of”). Thus there has to be some edge leading

show that the jump edges K S;, andsS,. are reachable. By  from some vertex; onC to one such interior vertex, (or

induction hypothesis, the jump edges that start to the rightan edge from an interior vertex to a vertexv; onC - the

of the old value otimright are reachable, as are any jump reasoning for this case is similar). Given that no vertex in



G is a source or a sink, we have at least one outgoing edge

from v,. Follow that to a third vertexs, and repeat the

process of choosing an arbitrary outgoing edge and follow-

ing that edge. Clearly, this process can end in one of two Se
ways. Either the sequence of vertiagswvs, - - - , vy, satisfy N
thatv; = v; for somei, j, in which case we have a smaller

cycle thanC' lying inside C, or the sequence of vertices

v1, v, -, U, MeetC again (i.e. vi lies onC), in which
case we have again a proper cycle lying insidleontrary I
to the minimality ofC. u Figure 12. ¢ inside cycle C, s outside

Proof. (of Theorem 5.11) In the following, we are given a . _ )
planar graplG along with an embedding on the plane. We ~ But now it is clear that there is no directed path frem

perform the following tests: to ¢ in Gi.r¢, because, similarly to [1], we now haveyao-
metric cutconsisting of only the remaining outgoing edges
1. DoesG have a single sourceand a single sink? from C to the outside o€ - or a simple argument - if there

is a path froms to ¢t now, that path intersectS' at some
2. Does every face daff have a single (local) source and place, and it can only be directed towatdsBut we deleted

a single (local) sink? all of these incoming edges in constructi@g ;. Thus, we
end up with an indegreé-graph in which there is no path
3. IsG bimodal at every vertex? fromstot.

] . Since we are not sure priori what direction the edges
4. Forevery vertex of graphG, consider all the incom- 5y & might have, we have to includmthtests 4 and 5. In
ing edges. Delete all incoming edgesaxceptforthe  gne of these tests, the edges incoming'tom the outside
leftmostincoming edge (pick any arbitrary incoming || get deleted and disconnectrom s.

edge at the sink node). Call the residual grapby. . So, if G has a directed cycle, then there is no path from
Is there a path from to ¢ in Gies:? stot in eitherGie s, Of Gyight.
. . . Thus, we have recognized SSPD4.in

5. For every vertex of G, consider all the incoming n
edges. Delete all incoming edgeswaéxcept for the
rightmostincoming edge (with a similar proviso fey. Corollary 5.13. Let G be a single-source, single-sink di-
Call the residual grapty',.;4n:. IS there a path froma rected grid graph. The problem of determining whettier
totin Grignt? has a cycle (and hence wheth@rprovides an instance of

] ) SSGGRisin FO + UGGR
If all of the tests above are answered affirmatively, we

claim thatG is indeed a SSPD. Proof. We need only examine the five steps in the proof
Observe thati;.s; and G,z are indegreé-digraphs of Theorem 5.11. The first and third are simple first-order
foranyG. guestions. The second requires traversing the boundary of a

Clearly if G is a SSPD, then by Fact 1, we know tifat ~ face of the embedding to count the local sources and sinks,
passes all the above tests (in this cade s andGm.ght are which is a 1GGR and hence a UGGR question. The fourth
both trees). and fifth are reachability questions in a graphirddegree

So suppos& passes all the above tests, and yet has aone. which are easily converted to 1GGR questions on that
directed cycle”. By Lemma 5.12, we only have to consider graph’s reversal. O
the case where the sinkies insideC' while the source lies
outsideC (i.e. C separates fromt). See Figure 12. 5.4. Recognition of SMPDs

Consider all the edges from outsidéthat are incom-
ing to some vertex ot (for instance, edgein Figure 12). Theorem 5.14. Recognition oBEMPDs can be done ih.
Suppose the cyclé’ were as directed as in Figure 12, then )
in Step 4 where all leftmost incoming edges are deleted, P0°f- We perform the following tests:
all such incoming edges t6' get deleted. So, i 1. We first check if the given grapH is planar, and if so,
among all the edge§ betweéhand th.e.out3|de of’, we find a planar embedding @ [2].
only have the outgoing edges frofi (it is of course pos-
sible that some of the edges é6halso get deleted in this 2. Check if the digraplz has a single source. If not,
process). return “false”.



Henceforth we can assume tl@thas a single source
s. We first transform the given embedding so thh¢s
on the external face. We now need to chedk ifhas a
cycle.

. We construct a subgragt of G as follows: for every
vertex that is not the source, retain a single, arbitrar-
ily chosen, incoming edge to the vertex and delete all
other edges. Check # is a directed tree. If not, return
“false”.

SupposeH is a directed tree H clearly inherits its
embedding fromG. We assume that we are given a
dfs numbering off. We refer to the non-tree edges in
G (with respect to the treél) ascross edges|n this
embedding ofZ, the cross edges can be classified into
two types:

e Type | edges are those going right-to-left (i.e.
a cross edgda,b) is Type | if Finish(a) >
Finish(b)).

e Type Il edges are those going left-to-right (i.e.
cross edge&r, b) whereFinish(a) < Finish(b)).
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Figure 13. Tree-paths to edges around C

It is easy to see the following:

Lemma 5.16. A cycle is not minimal if it has a tree chord.

We use the above lemma to prove:

- Now, we check it with the underlying spanning treé | o,y 517, Any minimal cycle either contains exactly

H has any back edge. If so, we have clearly found
a cycle, soG is not a SMPD. Otherwise, delete all
forward edges froni{.

Create two graph&’ andG”: in G’ remove all edges
from G of Type |, (but retaining all edges of Type II),

one edge of Type | or contains exactly one edge of Type Il.

Proof. Consider a minimal cycl€’ in G. Clearly,C must
contain at least one edge each of both Types | and II.

Consider any vertex on C. The tree-path from the

and inG”, remove all edges of Type Il. We observe sources (remembering that lies on the outer face) to
that either ofz’ andG” are SMPDs (because any cycle cannotinterseat’ if it did, then that would be a tree chord,
in the tree has to use edges of both types - also wecontradicting the minimality o’ by Lemma 5.16.

are not creating any more sources, but removing all
edges of a specific Type can potentially create more
sinks). Thus, we can solve reachability questions in
G’ (orG")in L.

So we can assume that for all verticesn C, the tree-
path tov does not intersect the interior 6f.
Since cycle” has edges of both Type | and Type Il, let us

consider two edgesu1, b1 ) of Type Il, and(as, b2) of Type

5. Choose a cross edge, b). If (a,b) is a Type | edge,
then queryG’ to find if there is a path from to a. If
there is such a path, return “false”. Likewise(df, b)

I. Given the constraint that the tree-paths cannot intérsec
the interior ofC, together with the constraints that the tree-
path toa; is to the left of the tree-path ty (because edge

is a Type Il edge, then quer’ to find if there is a
path fromb to a. Again, if there is such a path, return

(a1, b1) is of Type Il) and the tree-path 1, is to the right
of the tree-path td, (because edgéu, bs) is of Type ),
the situation is as in Figure 13. The dotted paths frota

“false”.

Itis easy to see that & is a SMPD, then it passes all of the

above tests. This is becausein such a case will neither

have a back edge nor any cycle. We thus need to prov
that if G passes all the tests above, it is a SMPD. For this

purpose, we introduce the following terminology

Definition 5.15. A (directed) cycle isninimal if the set of
cross edges contained in it is minimal w.r.t. inclusion.

the vertices o' are the tree-paths.

But now we see that, under the constraint of planarity,

any edgéc, d) lying onC betweerb; andas has to be such

e

that the tree-path telies to the left of the tree-path tb So
any cross edge lying betweén andas has to be of Type
. Likewise for any cross edge lying betwegnanda; .

The symmetric case where the edge, b, ) is of Type |

and(as, bo) of Type Il is handled similarly.

Thus we have proven that any minimal cycle can contain

A directed chord in a cycle all of whose edges are tree exactly one edge of Type | or exactly one edge of Type Il.

edges, will be called &ee chord

O



Hence if there is a cycle 7, then there is a minimal u
cycle that contains exactly one edge of Type | or Type Il

by Lemma 5.17, and we discover such a minimal cycle in

Test 5. We have thus proved Theorem 5.14. O

In contrast to Corollary 5.13, we do not know how to
adapt this proof to determine whether a single-source grid &
graph has a cycle (and hence whether it provides an instance
of SMGGR) in the clas&0O + UGGR. This is because the
algorithm presented above appeals to the SMGGR recogni-
tion algorithm of Theorem 5.7, and we do not know how to
carry out this algorithm ifrO + UGGR.

lim,,

5.5. Planar digraphs with a few cycles

In the above, we have considered the reachability and
recognition questions for different classes of DAGs. We
may now ask: is the acyclicity essential for being able to
perform the above tasks io? Here we show that wean
solve some reachability questions, even when the graph has
a few cycles, irL.

Consider the clas§ of graphs that are planar, have a
single source and a single sink, and fiagial cycles (no
faces that form directed cycles). Note that the recognition lim, .

roblem for graphs of the claskis easily inL. We prove:
P grap & y P Figure 14. A 1-page embedding

Theorem 5.18. Reachability questions in graphs from the

cla can be solved ifh.. . .
SSG sovedt when we cut along the undirected path). Hence reachability

Observe that any SSPD belongs to the clasalso note i G” (and thus inG) can be solved if.. O

thata grapit- € G is not necessarily bimodal. Theorem 5.19. Reachability questions in outerplanar di-

Proof. Given a planar grapt¥ with a unique source and ~ 9raPhs can be solved in

sink ¢, and no facial cycles, Lemma 5.12 tells us that any  note that outerplanar digraphs, even DAGs, ant
cycle in the graph separatesaindt. - o series-parallel digraphs as considered by [15]. The result
Now we proceed to reduce reachability questionS o 4p6ve s trivial for outerplanar DAGs, since all the sources

areachability question in a SMPD. _ and sinks lie on the same face, and we can reduce this case
We can find a path (not necessarily a directed path) from, 5 SMPD.

stotin L. Now we apply the cut-and-paste method from In the language of book embeddings (see [21] for in-

[1], by cutting along the path betweenand¢. Asin [1],  stance), outerplanar graphs are exactly the ones that have
after cutting along the path from to ¢ and inverting the  1.page embeddings: in short, all the vertices are laid out on
graph inside out to get a grajgi, we paste: copies ofG; the spine of the book, and all the edges are on a single page.

along the path from to ¢ to get a grapltz”” which preserves

the connectivity of7 (in the sense that there is a path from Proof. Suppose we havelapage embedding of outerplanar
u to v in G if and only if there is a path from one of the graphG given to us (here, the vertices are all on the spine
copies ofu to one of the copies af in G”) and hass and as in Figure 14).

t on the outer face. However, in this process, because the Here, the grapi: is not acyclic. The instance to the
path froms to ¢ is not a directed path, we have introduced reachability question i$G, v, v) and we are to find i is
some more sources and sinks on the outer face. Now we cameachable fromu. We can assume that is the topmost
add a single source vertex and connect it to all the sources invertex on the spine of the embedding.

G" to get a graplz””’. One can verify that:”’ is a SMPD We keep two markerBm,,, limgouwn.

(since it still satisfies the properties Gf but nows andt Call the edges on the spinedinary edges and the edges
are on the external face, and thus there can be no directediot on the spingumpedges. The algorithm is as follows:
cycles (that is, any cycle in the original graph is destroyed



1. Initialize the markers a$m., = u, limgown = 00.

2. Go down fromiim,,, as far as you can using only or-
dinary edges. Go up frotimg..., as far as you can
using only ordinary edges. Call the region betwaen
andlim,, andlimge,, andoo on the spine thex-
ploredregionE.

3. Consider all jump edges between the explored region
E and the unexplored region. The unexplored region
is thereby an “interval” on the spine of the embedding.
Consider the jump edgeg, j» (if any) that land on
vertices closest to the target vertesn the spine, from
either side (from above or below).

4. Letj; = (a,b) be the jump edge landing on a ver-
tex closest to the targetfrom below (if any). Update
limgown = b. Similarly, letj, = (¢, d) be the jump
edge landing on a vertex closest to the targétom
above (if any). Updat&m,,, = d.

5. Goto Step 2.

6. If v is discovered at some step then return “true”. If at
some step neithégm,,, norlimq..,» can be changed
any more and we haven'’t discovereas yet, then re-
turn “false”.

In order to prove that the above procedure is correct, we
need to show: ifv is reached by our algorithm, thenis
indeed reachable fromy. This follows by an easy induction
oN liMmyy, limgown. Specifically, we have to convince our-
selves that vertice&im,,, limq..n are always reachable
fromw. For this, we use thé-page embedding of the graph.

On the other hand, if is not reached by the algorithm,
that means, that the algorithm stopped at a stage when it
could change neithéim,,, Norlimge.» any more. Clearly,
in a run of the algorithm, on the spingm,,, always stays
abovev (or is equal tov), and likewise,limgo.,, always
stays belowv (or equalsv). Hence, when the algorithm
stops there is no jump edge from the explored region to
the interval on the spine betwe&m,,, limqown (@and also
limuy,p, limgows Cannot be extended any further using ordi-
nary edges). But this meanss not reachable from. O

6. Conclusions and Open Problems

Any problem defines the complexity class of those prob-
lems reducible to it. There is a general phenomenon
whereby interesting problems, such as general reachabilit
define interesting classes, suchNis The GGR problem
and its subproblems as outlined here define a hierarchy of
new classes, whose relations to each other and to the stan-
dard classes betwedrC® andNL are shown in Figure 15.
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Figure 15. The Hierarchy of GGRClasses
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