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Abstract

We propose a new model for studying graph related problems that we call the orientation
model. In this model, an undirected graph G is fixed, and the input is any possible edge
orientation of G. A property is now a property of the directed graph that is obtained by a
given orientation. The distance between two orientations is the number of edges that have to
be redirected in order to move from one digraph to the other.

This model allows studying digraph properties such as not containing a forbidden (induced)
subgraph, being strongly connected etc., for every underlying graph including sparse graphs. As
it turns out, this model generalizes the standard, adjacency matrix model. That is, we show that
for every graph property P of dense graphs there is a property of orientations that is testable
if and only if P is. This model is also handy in some practical situations of networks, in which
the underlying network is fixed while the direction of (weighted) links may vary.

We show that several orientations properties are testable in this model (for every underlying
graph), while some are not.
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1 Introduction

The goal of this paper is to introduce a new model for testing (di)graph related properties that we
call the orientation model. We study this model and prove some relations to the standard (dense
graph) model. In addition, we consider some specific properties of orientations in this model, for
which we present efficient testing algorithms.

Property Testing for (di)graph properties has been first studies by [10], and since then attracted
a considerable amount of attention (for a partial list of references and surveys see [1–5, 7, 9–16]).
The standard and main model that was considered in the context of graph properties testing is
the adjacency matrix model (also known as the “dense graph” model). In this model, a graph is
represented by its adjacency matrix (namely, a Boolean vector specifying for every two vertices
u, v whether there is an edge between u and v in the graph). The distance between two graphs in
this model is measured by the number of entries in the matrix that should be altered in order to
transform one graph to the other. That is, the distance between two graphs is the number of edges
that need to be deleted/inserted in order to move from one graph to the other.

An (ε, q)-test for a (di)graph property P is a randomized algorithm that, on an unknown input
graph G, probes q pairs of vertices from G. On each query, the tester receives the answer whether
the pair is a (di)edge in G or not. It then should distinguish, with success probability of at least
2/3, between the case that G has the property in question and the case that G is ε-far from having
the property (meaning that at least εn2 edges need to be deleted or inserted in order to transform
G into a graph G′ that has the property, where n = |V (G)|). A property is called testable, if there
is an (ε, q)-test where q = q(ε) (that is, q does not depend on the graph size). This model is only
suitable for the study of properties of dense graphs, as every ε-sparse graph (a graph with at most
εn2 edges) is ε-close to the empty graph (in the sense that at most εn2 edges have to be deleted
so that it becomes the empty graph). Property-testing for sparse graphs was first considered by
Goldreich and Ron [12], who presented the adjacency list model for bounded-degree graphs. In this
model, a graph is given by its adjacency lists and the distance between two bounded-degree graphs
is measured by the number of entries in the adjacency lists that should be modified to transform
one graph to the other. Other variants that allow to study graphs of varying edge densities were
considered by [15] and [14].

We propose a new model for testing of digraph related properties that studies the properties of
orientations. An orientation of the underlying graph G = (V,E), is a digraph that is obtained by
replacing each edge in E by a directed edge. In the orientations model one knows the undirected
graph G = (V,E), which we call the underlying graph, and gets an orientation of G as an input.
A property is then a property of orientations, e.g. being strongly connected, being acyclic, not
containing certain directed configurations etc. Orientations of a graph G are represented in the
natural way, namely by a vector D : E(G) −→ {0, 1} specifying the direction of each edge in G.
The distance between two orientations is then measured by the Hamming distance between the
two vectors representing them. Meaning that, in order to transform one digraph to the other, we
allow to change the direction of edges but not to delete or insert edges. An (ε, q)-test for a property
of G-orientations is defined analogously to the standard model. A query now is to an edge in the
underlying graph to which the answer is the direction of the edge in the input orientation.

The motivation behind this new model is four fold: First, there are some real world application
that directly call for this or similar models. Consider a given communication network, the underly-
ing graph at a given time is fixed, while the direction (upload/download capacities) of information
flow through communication lines are the varying/controlled parameters. In this setting, like many
other cases of fixed topology transportation networks such as railway or roads networks, properties
of interest are properties of the directed (sometimes weighted) digraph and how such properties
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might change when a small number of edges are redirected (reweighted).
The second motivation is that the orientation model allows the study of many properties of

digraphs and orientations in an interesting framework that was not done before. It allows the
study of properties of sparse graphs in a ’clean’ setting which avoids the ’representation issues’ (as
in [12, 14]). As it turns out, the ability to test a given orientation property may rely heavily on
the structure of the underlying graph (as exemplified by some of our results). Hence, the study of
graph properties in the orientation model, may reveal interesting combinatorial structures of the
underlying graph. In turn, the proofs might have their graph theoretic counter part that can be of
interest outside the context of property testing.

A third motivation is that, although this model seems to be unrelated to the standard graph
model, it turns out that it generalizes it for both digraphs and undirected graphs in the following
sense; We show, via a simple reduction, that for every property P there is a corresponding property
of orientations ~P (and an underlying graph) such that P is testable in the dense graph model if

and only if ~P is testable in the orientation model.
This relation to the standard model, may open a new avenue of research: We know that

properties that are defined by a finite collection of forbidden subgraphs are testable in the standard
model. However, the dependency on the distance parameter ε is huge as a result of using the
regularity lemma. One of the features of this model, as dealing with sparse graphs too, is that
using the regularity lemma is not a natural choice. This may result in new algorithms (for ‘old’
graph properties) that are more efficient in term of the dependence in ε from those obtained by
using the regularity lemma for the dense graphs model [1] (for ‘forbidden subgraphs’ properties ,
this would be a major breakthrough in the area of graph property testing).

Another feature that makes the model intriguing and is exemplified by our results, is that the
natural algorithm that always work for dense graphs properties, does not necessarily work here: In
the standard model, for any property P that is defined by a finite collection of forbidden subgraphs,
it holds that if G is ε-far from P, then it contains many instances of the forbidden subgraphs [1].
This was generalized by [13] to any graph property (for any fixed n).

The situation here is different; we show that, in the testable property of being source-drain-free,
it could be the case that an orientation is ε-far from the property while having an insignificant
amount of sources and drains. This is also true for the forbidden subgraph case: We show that
there is a digraph that is ε-far from not having a directed triangle while having only O(n) triangles.
Thus, algorithms for this model are potentially more interesting than those for graph properties in
the standard model. Finally, as we will show, the orientation model allows for interesting positive
results, with sophisticated algorithms.

We note that there are other related variants that should be studied. For example, one can
consider the problem of testing subgraphs that was suggested by M. Krivelevich. In this model
we fix an underlying graph and the input is a subgraph (or alternatively, an induced subgraph)
given by a 0/1 labeling of the edges (vertices) of the underlying graph. The distance between two
inputs is just the hamming distance of the representing characteristic vectors. A property now is any
collection of subgraphs (this obviously generalizes the standard model in which the fixed underlying
graph is the complete graph). However, by the same reduction we present, orientation properties
generalize this model as well (although the properties may become somewhat less natural). There
are other iteresting extensions in these directions, e.g properties of coloring (of vertices or edges)
of the underlying graph by more than 2 colors. This naturally gives rise to properties of colorings,
partitions etc. We don’t conduct here a study of such models, but do resort to such property in
our lower bound in Section 6.
Results in this draft: Section 3 presents a reduction from the dense graph model to the ori-
entation model, followed by some additional features of the orientation model (Section 4). Then,
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in Section 5, we study the orientation property of being drain-source-free. A directed graph D, is
source-drain-free if there is no vertex v ∈ V (D) whose edges are all either going out of v (which
makes v a source) or all going into v (which makes v a drain). The property of being source-
drain-free is quite natural in transportation networks. It also seems to be a first step towards
testing strong connectivity. We show that this property is ε-testable for every underlying graph G.
Namely, for every graph G there is a (1-sided error) test that on any input orientation ~G queries
q = exp(poly(1/ε)) edges (on which it receives as an answer the direction of the edge) and distin-

guishes, with success probability of 2/3, between the case that ~G is source-drain-free and the case
that it is ε-far from being so. Note that, although the result holds for every graph, the undirected
graph G is fixed in advanced and is not part of the input. We show that this property is testable
both for the hamming distance and for the weighted hamming distance too (in the weighted ham-
ming distance each edge has a weight and the distance between two orientations is the sum of
weights over all the edges that are directed differently in both graphs).

In Sections 6, we study the property of being H-free for a fixed forbidden graph H. We prove
that for underlying graphs that are of bounded degree, and for H that either does not have a
source, or does not have a drain, this property is testable with poly(1/ε) queries. We also show
that this is in some sense best possible in the following respect: We show that the property of being
P3-free

1 is highly non-testable even for bounded degree graphs. Thus, the positive result above
cannot be generalized for every H even for the bounded degree case. We also note that if we relax
the restriction on the underlying graphs to be of bounded average degree (rather then bounded
maximum degree) then the property of being C6-free

2 is not testable with poly(1/ε) queries.
Finally, in Section 7, we study the property of being strongly connected. We show positive

results for a large class of underlying graphs.

2 Preliminaries

We use {u, v} for undirected edges and (u, v) for edges directed from u to v. Let G be an undirected
graph, and denote by n the number of vertices in V (G). We say that a directed graph D is an
orientation of the graph G, or in short a G-orientation, if we can derive G′ from G by replacing
each undirected edge {u, v} ∈ E(G) by either the directed edge (u, v) or the directed edge (v, u)

(but not both). We use the notation ~G to denote an orientation of G, and call G the underlying

graph of ~G. When we refer to more than one orientation we use indexing; for example, ~G1 and ~G2

are orientations of the graph G.
Note that the model is defined to include simple digraphs with no parallel or anti-parallel edges.

This results in a cleaner model in terms of input representation. However, all the results that we
present can be generalized to the model in which we allow parallel edges.

Given two G-orientations ~G1, ~G2, the relative distance between ~G1 and ~G2, denoted by
dist( ~G1, ~G2), is the number of edges in E(G) such that their direction in ~G1 is different than

their direction in ~G2. That is, dist( ~G1, ~G2) = |{{u, v} ∈ E(G)|(u, v) ∈ E( ~G1), (v, u) ∈ E( ~G2)}|.
Given a G-orientation ~G and an edge (u, v) ∈ E( ~G), the G-orientation ~G1 obtained from ~G by

flipping the edge (u, v) ∈ E( ~G), is defined by E( ~G1) = (E( ~G) \ {(u, v)}) ∪ {(v, u)}.
A property PG of G-orientations is a subset of all the G-orientations. We say that an orientation

~G satisfies the property PG if ~G ∈ PG. The distance of ~G1 from the property PG is defined by
dist( ~G1,PG) = min~G2∈PG

dist( ~G1, ~G2). We say that ~G is ε-far from PG if dist( ~G,PG) ≥ ε|E(G)|,
otherwise we say that ~G is ε-close to PG. In all notations we omit the subscript G when it is obvious

1
P3 is the directed path of length 3.

2
C6 is the 6 dicycle.
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from the context. Next, we define the notion of an ε-test for a property of G-orientations.

Definition 2.1. Let G be a fixed undirected graph and P be a property of G-orientations. An
(ε, q)-test for P is a randomized algorithm that accesses the input G-orientation via edge queries.

On query e ∈ E(G) it receives the orientation of e in ~G. The algorithm may ask at most q queries

to ~G and should distinguish with success probability 2/3 between the case that ~G ∈ P and the case

that ~G is ε-far from P . If the algorithm never errs on an input ~G ∈ P , we say that it has a one
sided error.

The complexity of an (ε, q)-test is the number of queries q. We say that a property is testable
if it has an (ε, q(ε))-test, where q(ε) is independent of the graph size.

3 Reduction

In this section, we show that the orientation model that we present in this work in fact generalizes
the dense graph model.

Theorem 3.1. For every property P of (di)graphs on n vertices there is an undirected graph G

and an orientation property ~P such that P is (ε, q)-testable if and only if ~P is (ε, q)-testable.

We note that the undirected graph G in the theorem depends only on n and is the same for
every P. The number of vertices, as well as the number of edges in G, will be shown to be Θ(n2).

Proof. Let P be a digraph property for graphs of n vertices which we want to test in the standard
model. The fixed graph G = Gn = (VG, EG) is defined as follows: VG = {vi,j| 1 ≤ i ≤ j ≤ n} and

EG = {{vi,i, vi,j}, {vi,j , vj,j}| for each 1 ≤ i < j ≤ n}. Clearly, |VG| = n·(n+1)
2 and |EG| = n ·(n−1).

In particular, the average degree of a vertex in G is less than 4.
For every digraph on n vertices D = ([n], E) we define the following orientation GD of G: For

every 1 ≤ i < j ≤ n, if (i, j) ∈ E(D), then (vi,i, vi,j), (vi,j , vj,j) ∈ E(GD). Similarly, if (j, i) ∈ E(D),
then (vj,j, vi,j), (vi,j , vi,i) ∈ E(GD). Otherwise, (vi,i, vi,j), (vj,j , vi,j) ∈ E(GD). Note that, there is
a directed edge (i, j) ∈ E(D) if and only if there is a path of length 2 from vi,i to vj,j in GD. We

now define the orientation property ~P of G-orientations as follows: ~P = {GD | D ∈ P}.
We first prove that if ~P is testable then so is P. Indeed we claim that for every digraph on n

vertices, distO(GD, ~P) = distA(D,P), where distO denotes the distance in the orientation model
and distA denotes the distance in the adjacency-matrix model. To see this note that ,by the
construction, D ∈ P implies that GD ∈ ~P. Also, if one needs to delete/insert k edges to D so to

enter P, then there are k corresponding edges whose redirection will cause GD to enter ~P . This
proves that distO(GD, ~P) ≤ distA(D,P). A similar reasoning proves the other direction.

Note that, the above proves that the absolute distance between the corresponding properties is
maintained by the reduction. We note that this also proves that the relative distance is maintained
up to a low order term. This is true as the relative distance in the adjacency matrix model is
defined by distA/n2, while for the orientation model it is distO/|EG| = distO/n2 + o(1).

Finally, given an ε-test for ~P in the orientation model, there exists an appropriate test for P in
the standard model using the same query complexity. This is due to the fact that each query of an
edge in GD can be trivially simulated by a single query of the corresponding edge in D.

This completes the proof that if ~P is testable then so is P. The reverse implication is similar
with the minor complication that a test for ~P needs to consider also G-orientations that do not
correspond to any digraph D on n vertices (and hence are not in ~P ). However, one could easily
see that such orientations are either easy to test or are close to an orientation that corresponds to
a digraph D on which all our previous reasoning work.
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We note that the above reduction transforms the natural properties of being H-free for a class
of forbidden subgraphs H (finite or infinite) to an orientation property that is also defined by a
forbidden collection of subgraphs. For example, the orientation property that corresponds to the
property of being di-triangle-free is being C6-free, where C6 is the directed 6-cycle.

4 Some additional features of the orientation model

In [13] it is shown that if a graph property is testable by a 1-sided error algorithm then there is also
a non-adaptive test that picks at random a subset of vertices, queries all edges between them and
rejects only if the the subgraph obtained has a certain predefined property. In particular, it was
already shown by [1] for properties that are defined by a finite set of forbidden (induced) subgraphs,
that if a graph is ε-far from the property, then a constant fraction of its (induced) subgraphs (of
appropriate size) are isomorphic to one of the forbidden subgraphs. Hence, a witness can be found
just by sampling at random.

In the orientation model, we don’t know if the property of being di-triangle free is testable (as
opposed to the dense graph model [1,4]). However, we do know that if it is testable, the test cannot
be the standard test — namely, the number of triangles in an ε-far orientation might be only O(n)
(compared to Ω(n3) possible triangles) as the following example shows.

a

b

c

. . . .

...

..

a_1

a_n

c_1

c_n

b_1

b_n

Figure 1: a graph that contains 1 di-triangle but is far from being triangle free.

Let ~G be the G-orientation that is shown in Fig 1. The only directed triangle in ~G is the
triangle T = (a, b, c). However, any change of a single edge in it, creates Ω(n) different triangles.

As |E(G)| = O(n) it is clear that dist( ~G, triangle-free) = Ω(n). This example can be generalized
to a dense graph G with Ω(n2) edges and an orientation that has O(n) di-triangles but is 1/9-far
form being triangle-free.

5 Drain-Source-Freeness

Let D = (V,E) be a digraph. We say that v ∈ V is a source if there is no edge (x, v) ∈ E (that is,
there exists no edge in D that is directed towards v). Similarly, v ∈ V is a drain if there is no edge
(v, x) ∈ E. Define Drains(D) to be the set of all drains in D, and Sources(D) to be the set of all
sources in D.

Definition 5.1. A directed graph D is called drain-source-free, if Drains(D) ∪ Sources(D) = ∅.
Similarly, D is drain-free (respectively, source-free), if Drains(D) = ∅ (respectively, Sources(D) =
∅). We say that D is 2DSF if there is no source or drain of degree 2 in D.

In what follows, we show that the orientation property of being drain-source-free (as well as
drain-free and source-free) is testable for any underlying graph. We present here a test for the case
in which the input G-orientations are assumed to be 2DSF (this is the main technical part). The
general test, which is a simple modification of the test here, is presented in Appendix C.
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An important feature of those tests is that they work for weighted graphs as well. In the weighted
case, the distance between two G-orientations ~G1, ~G2 is defined to be

∑

e∈E( ~G1)4E( ~G2) weight(e),

where E( ~G1)4E( ~G2) is the set of all edges that have different orientation in the two orientations.

Remark 5.1.: The tests we describe are for the case that the underlying graph is connected,
has at least one vertex of degree greater than 2 and does not contain any vertices of degree 1.
Extending the tests to deal with general underlying graphs is trivial.

We first present an ε-test that distinguishes between orientations that are drain-source-free and
those that are 2DSF (that is, have no drain or source of degree 2), and are ε-far from being drain-
source-free. The test is non adaptive and has a 1-sided error, that is, it rejects a G-orientation only
if it finds a drain/source in it.

The test only looks for drains/sources of degree smaller than a specified polynomial in 1
ε . We

later prove that the impact of sources and drains of higher degree on the distance is negligible. For
v ∈ V , denote by degG(v) the degree of the vertex v. We formally state the bound on the degree.

Definition 5.2. Let G be an undirected graph. We say that u ∈ V (G) is ε-relevant if 3 ≤ degG(u) ≤
36/ε and ε-heavy if degG(u) > 36/ε. Denote by HeavyG the set of all the ε-heavy vertices in G.

For every two vertices u, v ∈ V (G), denote by distG(u, v) the length of the shortest undirected
path from u to v in G. For every vertex v ∈ V (G), and for every integer r ≤ n, define BG(v, r)
to be the subgraph of G spanned by the set of all vertices u such that dist(u, v) ≤ r. Denote
by B̃G(v, r) the subgraph of G obtained from BG(v, r) by removing every edge {x, y} such that
distG(x, v) = distG(y, v) = r.

Definition 5.3. For every graph G = (V,E), vertex v ∈ V , and ε > 0, define radG,ε(v) to be the
minimal integer r such that at least one of the following requirements is satisfied:
• B̃G(v, r) is not a tree.
• B̃G(v, r) contains heavy vertices.
• there are at least 36/ε vertices at distance exactly r from v.

Claim 5.4. For every graph G = (V,E) and every vertex v ∈ V , B̃G(v, rad(v)) contains at most
2(36/ε)2 relevant vertices. In particular, a path from v to a vertex x in B̃G(v, rad(v)) contains at
most 2(36/ε)2 relevant vertices.

Proof. Let h be the number of vertices at distance rad(v) − 1 from v. By Definition 5.3, h < 36/ε.
Consequently, since B̃G(v, rad(v) − 1) does not contain heavy vertices and the degree of every
relevant vertex is at most 36/ε, there are at most h ·(36/ε) vertices at distance rad(v) from v. Since
B̃G(v, rad(v) − 1) is a tree and the degree of every relevant vertex is at least 3, B̃G(v, r) contains
at most 2(36/ε)2 relevant vertices.

The test, assuming that the input orientations are 2DSF, is as follows:

Algorithm 5.1.

Input: ε, ~G.
Repeat 16/ε times:

1. Randomly choose an edge {u, v} ∈ E(G) such that v 6∈ Heavy.

2. For every relevant vertex z in the graph such that dist(v, z) < rad(z) query all incident edges
to z and reject if z is a drain/source.

6



If no drain or source was found, return PASS.

Theorem 5.5. Algorithm 5.1 is an (ε, (1/ε)O(( 1

ε
)2))-test for Drain-Source-Free.

Proof. We first determine the query complexity of the algorithm. We start by bounding from above
the number of relevant vertices z than can be selected in one run of step 2 of algorithm 5.1. Since
dist(v, z) < rad(z), by Claim 5.4, the shortest path between v and z contains at most 2(36/ε)2

relevant vertices. Hence, there are less than (36/ε)2(36/ε)2 such paths and consequently there are

at most (36/ε)2(36/ε)2 such relevant vertices. Since step 1 is repeated 16/ε times and we query all

edges only for such relevant vertices, the total number of query is bounded by (ε, (1/ε)O(( 1

ε
)2)).

Clearly, the test does not reject a drain-source-free orientation. It remains to prove that every
orientation ~G that is 2DSF and is ε-far from being Drain-Source-Free is rejected with high proba-
bility.

By Claim 5.6, which we state and prove further on, if ~G is ε-far from Drain-Source-Free then it is
either ε/3-far from Drain-Free or it is ε/3-far from Source-Free. Without loss of generality, assume

that ~G is ε/3-far from Drain-Free. Then, by Lemma 5.7 below, the probability that for a vertex v

that is selected in step 1 of algorithm 5.1 there exists a vertex z ∈ (Drains( ~G)∪Sources( ~G))\Heavy
such that v ∈ B̃G(z, rad(z)) is at least 2ε/9. The proof follows.

The following claim states that if a G-orientation is far from being Drain-Source-Free then it is
either far from being Source-Free or far from being Drain-Free. Note that a similar relation between
the sum of distances form two peoperties and the distance to their union is not necessarily true in
general. The proof of the claim appears in Appendix A.

Claim 5.6. If ~G is ε-far from Drain-Source-Free then either ~G is ε/3-far from Drain-Free or ~G is
ε/3-far from Source-Free.

The following is the main technical lemma used in the correctness proof of Algorithm 5.1.

Lemma 5.7. Let ~G ∈ 2DSF be ε-far from Drain-Free then, for at least a 2ε/3 fraction of the edges

{u, v} ∈ E(G) such that v is ε-relevant, there exists a vertex x ∈ Drains( ~G) \ Heavy such that
v ∈ B̃G(x, rad(x)).

The proof of the above lemma is presented in Appendix B and relies on the following lemma.

Lemma 5.8. For every graph G and every G-orientation ~G ∈ 2DSF, dist( ~G,Drain-Free) ≤ 4·|E(G)|

∆Dr( ~G)
,

where ∆Dr( ~G) = minx∈Drains( ~G) degG(x) (that is, ∆Dr( ~G) the minimal degree of a drain in ~G).

6 Testing of being H-free

In this section we further study the general property of being H-free where H is a finite fixed
digraph. As will be shown in Theorem 6.3, it is not true that the property of being H-free is
testable for every underlying graph and for every H, hence we don’t have here a positive result
as for drain-source freeness. However, we present (essentially best possible) results about testing
H-freeness in bounded degree underlying graphs.

Theorem 6.1. Let H be a fixed digraph that is either source-free or drain-free. Then, for any
O(1)-bounded degree graph G, H-freeness of G-orientations is ε-testable by poly(1/ε) queries.
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Proof. The test is the analogue of the ‘canonical tester’ for the case of orientations which is sampling
a node at random, sampling a large enough ball around this node and rejecting based on the
subgraph obtained. We first observe following (proof can be found in Appendix E).

Observation 6.2. Let G = (V,E) be an undirected graph such that deg(v) < ∆ for each v ∈ V

and let H be a source-free digraph. If dist( ~G,H-free) ≥ εn then at least εn/∆ of the vertices in G

appears in a copy of H in ~G.

Observation 6.2 immediately implies that the following is a 1-sided error ε-test for being H-free:
Repeat the following 10∆/ε times. Choose a random vertex v ∈ V (G) and query all the edges

that are adjacent to a vertex in the ball B(r, v) for r = |V (H)|. Reject if a copy of H is found.

Clearly, the query complexity is O(1/ε) and the test has 1-sided error. Assume that ~G is ε-far
from being H-free and H is source free. By Observation 6.2, the probability that a random chosen
v is in a copy of H in ~G is at least ε/∆. In addition, if v is in an H-copy in ~G, then this copy will
be discovered by the test. Thus, the claim follows.

We note that all the above applies also to the property of having no induced subgraph that is
isomorphic to H.

Theorem 6.1 presents positive results only for a restricted class of forbidden subgraph H and
bounded degree underlying graphs. One may wonder what happens if we remove one of those
restriction. Let P3 be a directed path of length 3 (and 4 vertices). We show, in Theorem 6.3, that
testing of being P3 free for a certain family of underlying graphs (of bounded degree) needs linear
number of queries. Note, that since P3 has a source and a drain, this implies that Theorem 6.1 is
best possible in that respect.

As a side remark, we note that testing for being P2 free is actually very easy: it is meaningful
only for underlying graphs that are bipartite (as otherwise, any orientation contain a P2) and it is
done by just sampling O(1/ε) edges.

Theorem 6.3. For an infinite sequence of n ∈ N there is an underlying graph G on n vertices and
degree bounded by 10, for which any test for the orientation property of being P3 free requires Ω(n)
queries.

Proof. Let G be a graph and let (A,B,C) be a partition of the vertex set into three (possibly
empty) parts, we say that the partition defines a proper 3-coloring if there is no edge in G such
that both its end-points are in the same part. Similarly, a coloring is proper if there is no edge
such that both its end-points are colored by the same color. We denote by i-path a directed path
of length i. We first note that if a G-orientation is P3-free then G is 3-colorable. To see that
consider a P3-free orientation, ~G. We may assume that ~G has no directed triangles (as if it does,
each di-triangle is disconnected from the rest of the graph). Let V0 = {v ∈ V (G) | there is a 2 −
path starting at v in ~G }. Similarly, let V2 = {v ∈ V (G) | there is a 2 − path ending at v in ~G }.
Let V1 = {v ∈ V (G) | v is a middle vertex in 2 − path in ~G}. Note that since ~G is triangle free
and has no path of length 3 it follows that {V0, V1, V2} are pair-wise disjoint and each being an
independent set in G. Also note that every vertex u ∈ V (G)−∪2

i=0Vi is either a source, or a drain.
Putting each source vertex in V (G) − ∪2

i=0Vi into either V1 or V0 (and if put into V1, putting also
drains adjacent to it, that are in V (G) − ∪2

i=0Vi into V2) and putting each remaining drain into
V1 or V2, results in a partition that defines a proper 3-coloring of G. We call any such coloring a
coloring consistent with the orientation ~G.

The above discussion proves that for any P3-free orientation any consistent coloring defines a
proper 3 coloring of G. The other direction is also true; any 3-coloring of G defines a P3-free
orientation by orienting all edges from lower color class to higher color class.
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For a 3-colorable undirected graph G let coloring(G) be the property containing all proper
3-coloring of G. The results in [8] implicitely3 implies that there is an ε (and an infinite sequence of
n ∈ N) for which there is a 3-colorable graph G on n vertices such that any ε-test for the property
coloring(G) requires Ω(n) queries. It can also be seen that the graphs obtained from the proof
of [8] can be made to be of degree bounded by 10.

We now show that coloring(G) is reducible to the orientation property of being P3-free. Indeed
let G be a 3-colorable graph and c : V (G) −→ {0, 1, 2} be any 3 coloring of V (G) (not necessarily a

proper 3-coloring). We define the following G-orientation ~Gc: For each edges going in between two
color classes direct the edge from the lower to the higher color. For each edge inside a color class
we choose the orientation arbitrary. To prove that this is a reduction between two testing problems
we should prove that the following three requirements hold:

1. If c : V (G) −→ {0, 1, 2} is a proper coloring of G then ~Gc is a P3-free orientation.

2. If c : V (G) −→ {0, 1, 2} is ε-far from being a proper 3-coloring then ~Gc is ε′-far from being
P3-free from some ε′ that should not depend on n.

3. If there is a test for being P3-free then there is a test for being a proper coloring using roughly
the same amount of queries.

Indeed the first item follows immediately the discussion above, since the mapping between the
inputs is such that ~Gc is P3-free if and only if c is a proper coloring. This also immediately implies
the 3rd item as the mapping is local, thus an alleged test for P3-free can be simulated by a test
for coloring by just querying the colors of the two endpoints of an edge which will determine the
orientation of the edge.

The 2nd item is not true in general. However, as we only aim for a lower bound on testing
orientations, it is enough to have that the 2nd item is correct on ε-far colorings that are ’hard-to-
test’. To be specific, we show that if c is ε-far from being a proper coloring and moreover, it has
only o(n) monochromatic edges, then ~Gc is ε-far from being P3-free. This is enough as coloring
that have Ω(n) monochromatic edges are easy to test just by sampling an edge at random. Thus,
the hard to test coloring must be those for which the 2nd item holds and thus the lower bound
follows. The proof of the 2nd item for the hard to test coloring can be found in Appendix F.

We now note that for testing H-freeness for H that is either drain-free or source-free, the
assumption of being bounded degree cannot be simply relaxed to the assumption that G has O(n)
edges (equivalently, a bounded average degree).

Observation 6.4. There is a graph with O(1)-average degree for which there is no ε-test for the
property of not containing a directed 6-cycle, that has poly(1/ε) query complexity.

Proof. Alon et al. [4] showed that in the standard (dense graph) model, a test for the property
of not containing a (directed) triangle cannot be of poly(1/ε) query complexity (and independent
of n). By Theorem 3.1, for every directed graph D = (V,E), there exists an undirected graph

GD = (V ′, E′) with constant average degree, such that any ε-test for being di-6-cycle-free for ~GD

induces an ε-test in the standard model of the same complexity for D being triangle free.

3 [8] shows that there is a linear size 3CNF that is highly not testable. The standard reduction from 3CNF to
coloring implies the above.
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7 Testing being Strongly Connected

In this section we present partial results on testing the orientation property of being strongly
connected. The basic tool that we use is inspired by [6]. We comment that we still do not know if
this property is testable for every underlying undirected graph.

We start with a few observations. Obviously, we may assume that the underlying graph G =
(V,E) is 2 edge-connected as otherwise no orientation is strongly connected. We can also assume

that |E| = O(n) as otherwise ~G is ε-close to be strongly connected for any G-orientation ~G (by
simply orienting a minimal 2-edge connected subgraph of G to be strongly connected). Thus it is
enough to consider 2-edge connected sparse graphs.

Let D be a directed graph. We refer to the DAG (directed acyclic graph) ST (D), that is defined
on the strongly connected components of D in the standard way. A source component of D is a
strongly connected component C in D that corresponds to a source vertex in ST (D) (in other
words, every edge between a vertex in C and a vertex in V (D) \ C is directed away from C). A
drain component of D is defined similarly.

The following is an observation used in [6] and which we will recurrently use.

Observation 7.1. Let ~G be a G-orientation. If ~G has at least Ω(n) sources or drains components

then a source or drain component of ~G can be found in O(1) queries.

We don’t know if the orientation property of being “strongly connected” is testable in general.
However, we prove that for a rather large family of graphs that is defined below, the property is
testable.

Definition 7.2. An undirected 2-edge connected graph G = (V,E) is called efficiently-Steiner-
connected if for every δ > 1/ log n and S ⊆ V with |S| ≤ δ2n there is a connected subgraph
T = (V ′, E′) such that S ⊆ V ′ and |E′| ≤ 10δn

Note that we may always assume that T is a Steiner tree spanning S. We also note that for
our purpose, the constant 10 and the function log n in the definition are quite arbitrary (and could
be replaced by other constant and any f = w(1)).

Theorem 7.3. If G is efficiently-Steiner-connected then the G-orientations property of being
strongly connected is testable. (We omit the proof for lack of space).

We note that any ’slightly expanding’ graph is strongly-Steiner-connected, while for example,
the cycle is not. A simple application of Theorem 7.3 is given by the following two theorems.

Theorem 7.4. Let G be the
√

n ×√
n two dimensional grid. Then the property of being strongly

connected is testable for G-orientations. (The proof is given in the Appendix 7.4).

Theorem 7.5. Let G be an expander graph then the G-orientations property of being strongly
connected is testable. (We omit the proof for lack of space).
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Appendix
A Proof of Claim 5.6

Assume that ~G is ε/3-close to Drain-Free and ε/3-close to Source-Free. We will show that this

immediately implies that dist( ~G,Drain-Source-Free) < ε|E(G)|.
We claim that for every ~H and ~H ′ ∈ Drain-Free such that dist( ~H, ~H ′) = dist( ~H,Drain-Free)

we have that Sources( ~H ′) ⊆ Sources( ~H). We prove this claim after we show how it leads to the
required contradiction.

According to this claim if we select ~G′ ∈ Drain-Free such that dist( ~G, ~G′) =

dist( ~G,Drain-Free) < ε · |E(G)|/3 then Sources( ~G′) ⊆ Sources( ~G). Again according to the claim

if we select ~G′′ ∈ Source-Free such that dist( ~G′, ~G′′) = dist( ~G′,Source-Free) then Drains( ~G′′) ⊆
Drains( ~G′). Since Sources( ~G′) = ∅ we get ~G′′ ∈ Drain-Source-Free. By the triangle inequality

we get dist( ~G,Drain-Source-Free) ≤ dist( ~G, ~G′′) ≤ 2 · dist( ~G,Drain-Free) + dist( ~G,Source-Free) <
ε · |E(G)|.

Let ~H, ~H ′ be G-orientations such that ~H ′ is drain-free and such that dist( ~H,Drain-Free) =

dist( ~H, ~H ′). Assume for contradiction that Sources( ~H ′) is not a subset of Sources( ~H). Then

there exists v ∈ Sources( ~H ′) such that v 6∈ Sources( ~H). Hence there exists u ∈ V (G) such that

(v, u) ∈ E( ~H ′) and (u, v) ∈ E( ~H). Let ~H ′′ be the orientation we get from ~H ′ by flipping the

edge (v, u). Obviously dist( ~H, ~H ′′) < dist( ~H, ~H ′) and therefore it is enough to prove that ~H ′ ∈
Drain-Free in order to get a contradiction. Observe that all the edges that are adjacent to vertices
in V (G) \ {u, v} are directed in the same way in ~H ′ and ~H ′′; hence, the vertices in V (G) \ {u, v}
are not in Drains( ~H ′′). The vertex u is not in Drains( ~H ′′) since (u, v) ∈ E( ~H ′′). The vertex v is

not in Drains( ~H ′′) since it has degree at least 2 and was a source in ~H ′′.

B Proof of Lemma 5.7 and Lemma 5.8

We first introduce some preliminary definitions and claims, then, in Subsection B.1, we prove
Lemma 5.8, and in Subsection B.2 we conclude the proof of Lemma 5.7.

Given a drain v in ~G, we will be interested in correcting v (by directing a path in the graph
from it to a different vertex in the graph) without creating any new drain. Hence, we define the
class of vertices and paths in the graph that are potential candidates for such a correction, and
prove some features of the definitions that will be later used in the proof.

Definition B.1. Given a G-orientation ~G, we say that a vertex v ∈ V (G) is a target vertex in ~G,

if v has out-degree of at least 2 in ~G.

Definition B.2. Let ~G be a G-orientation. We associate with each vertex v ∈ Drains( ~G) an

arbitrary shortest path in G that starts in a target vertex x (with respect to ~G) and ends in v. We
denote this path by Correction-Path ~G

(v) and set Correction-Dist ~G
(v) = distG(v, x).

Note: In definition B.2 the path is the shortest path in G (not in ~G), though the definition is

done with respect to a specific G-orientation ~G.

Claim B.3. For every v ∈ Drains( ~G), the following holds: (1) The graph B(v, r) is a directed tree
for every r < Correction-Dist ~G(v). (2) All the edges in B̃(v, r) are directed towards v for every
r ≤ Correction-Dist ~G(v).

Proof. By induction on r. For r = 1 the claim is trivial.
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Induction step: Assume that B̃G(v, r− 1) is a directed tree whose edges are directed towards v.
(1) Assume that BG(v, r) for r < Correction-Dist ~G(v) is not a tree. This can only happen if

one of the following is true. There exist x, y ∈ V (G) such that dist(x, v) = dist(y, v) = r and
{x, y} ∈ E(G) or there exist u,w, z such that dist(w, v) = dist(u, v) = r − 1 and dist(z, v) = r and
{u, z}, {w, z} ∈ E(G). It is immediate that one of the vertices x, u, w, z is a target in contradiction
to the assumption that r < Correction-Dist ~G(v).

(2)Assume that not all the edges in B̃(v, r) are directed towards v for r ≤ Correction-Dist ~G(v).

Then, there exists an edge (y, x) ∈ E( ~G) such that dist(x, v) = r and dist(y, v) = r − 1. It is
immediate that y is a target in contradiction to the assumption that r ≤ Correction-Dist ~G(v).

Claim B.4. For every two different drains u, v in ~G, B̃G(v,Correction-Dist ~G(v)) and

B̃G(v,Correction-Dist ~G(u)) are edge disjoint.

Proof. To prove the above claim, it is enough to prove that distG(u, v) ≥ Correction-Dist ~G(v) +

Correction-Dist ~G
(u), for every u, v ∈ Drains( ~G).

Let u, v be two drains in ~G and let T be a shortest path in G that connects u and v. Since
both u and v are drains in ~G, at least one of the vertices x along T has an out degree of at least 2
in ~G. Hence, x is a target vertex in ~G. Since distG(v, x) ≥ Correction-Dist ~G(v) and distG(u, x) ≥
Correction-Dist ~G(u), then Correction-Dist ~G(v)+Correction-Dist ~G(u) ≤ distG(x, v)+distG(u, x) =
distG(v, u).

However, it is easy to see that a correction of every drain in ~G to the closest target vertex (by
directing the path from the drain to the target vertex) is not always possible without creating a
new drain. A problem may rise when trying to correct more than one drain to the same target
vertex. This situation is formally defined as follows.

Definition B.5. A target vertex v in ~G is said to be bad, if for every edge (v, x) ∈ E( ~G), there

exists a drain u in ~G such that the correction path Correction-Path ~G(u) ends in v and contains the

edge (v, x). Define Bad( ~G) to be the set of all bad vertices in ~G.

Definition B.6. For every vertex v ∈ V (G) and for every G-orientation ~G we define the bad
environment of v, denoted by Bad env ~G

(v) as follows.

• If v is not a bad vertex in ~G then Bad env ~G(v) = ∅.

• Otherwise, set Bad env ~G(v) to be the union of Correction-Path ~G(u) over all drains u in ~G
such that Correction-Path ~G(u) contains v.

In the proof we apply the following operation on Bad env subgraphs.

Contracting a subgraph: The contraction transformation is given a graph G, a G-orientation
~G, and a subset S of V (G), and returns an undirected graph H and a H-orientation ~H that are

obtained from G and ~G by replacing the vertices in S with a single vertex vS . The output graphs
H and ~H are formally defined as follows:

• V (H) = (V (G) \ S) ∪ {vS}.

• E(H) = {{x, y} ∈ E(G) | x, y ∈ V (G) \ S} ∪ {{x, vS} | x ∈ V (G) \ S, ∃y ∈ S s.t. {x, y} ∈
E(G)}.
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• E( ~H) = {(x, y) ∈ E( ~G) | x, y ∈ V (G)\S}∪{(x, vS) | x ∈ V (G)\S, ∃y ∈ S s.t. {x, y} ∈ E(G)}.

Note that edges that are disjoint from S retain their direction in ~H as in ~G, while for edges
{x, y} such that x 6∈ S and y ∈ S, we impose the direction of (x, vS) regardless of the direction of

{x, y} in ~G. However, the following claim asserts that when applied to Bad env the direction of
the edges remains consistent.

Observation B.7. For every bad vertex v in ~G, and for every edge {x, y} ∈ E(G) such that

x ∈ Bad env ~G(v) and y 6∈ Bad env ~G(v), the edge (y, x) ∈ E( ~G).

Proof. Immediate from the definition of a correction path as the shortest path to a target vertex.
Otherwise, x would have been a target vertex, and the correction path that contains x would have
terminated in x and not in v.

In our proof we contract all the Bad env’s in a graph. To make sure that this operation is well
defined we need the following simple observation.

Observation B.8. For every two different bad vertices v and u in ~G, Bad env ~G(v) ∩
Bad env ~G(u) = ∅.

B.1 Proof of Lemma 5.8

Let G and ~G be as in the lemma. We first construct from ~G a family of graphs that will be used
in the proof that indeed dist( ~G,Drain-Free) ≤ 4 · |E(G)|/∆Dr( ~G), where ∆Dr( ~G) is the minimal

degree of a drain in ~G. This is constructed by the procedure ‘correct’ below.

Correct
Input: ~G.
Set ~H1 = ~G and i = 1.
Repeat the following step while Bad( ~Hi) 6= ∅.

• For each v ∈ Bad( ~Hi) contract the subgraph Bad env ~Hi
(v).

• Set Hi+1 to the resulting graph and increase i by 1.

Set k = i − 1.

Note that by observation B.8 the contractions are well defined. We show that the above family
of graphs satisfy certain conditions.

Claim B.9. The following holds for every iteration of Procedure Correct.

1. |Drains( ~Hi+1)| ≤
⌊

|Drains( ~Hi)|
2

⌋

.

2. Drains( ~Hi+1) = Bad( ~Hi).

3. Bad( ~Hi) ⊂ V ( ~G).

4. ∆Dr( ~Hi+1) ≥ (4/3)i · ∆Dr( ~G)

5.
∑

i

∑

v∈Drains( ~Hi)
Correction-Dist ~Hi

(v) ≤ 4|E(G)|/∆Dr( ~G).
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Proof. 1 and 2 are immediate from Definition B.6.

3. Assume towards a contradiction that for some i there exists x ∈ Bad( ~Hi) such that x 6∈ V ( ~G).

By the definition of a bad vertex we have x 6∈ Drains( ~Hi). However, by the definition of procedure

correct, x is the result of a contraction and hence by observation B.7 it is a drain of ~Hi.
4. By the definition of Bad env, ∆Dr( ~Hi+1) ≥ 2 · ∆Dr( ~Hi) − 2. Since ~G is free of degree 2

drains and ∆Dr( ~Hj) ≥ 3, then ∆Dr( ~Hi+1) ≥ 4
3∆Dr( ~Hi). Condition 4 immediately follows.

5. By claim B.4, for every two different drains u, v in ~Hj, the two subgraphs

B̃ ~Hj
(v,Correction-Dist ~Hj

(v)) and B̃ ~Hj
(v,Correction-Dist ~Hj

(u)) are edge disjoint. Therefore,

|E(G)| ≥ |E(H)| ≥
∑

v∈Drains( ~Hj)

∣

∣

∣
E

(

B̃ ~Hj
(v,Correction-Dist ~Hj

(v))
)
∣

∣

∣
. (1)

In addition, by Claim B.3, B̃ ~Hj
(v,Correction-Dist ~Hj

(v) − 1) is a tree, and hence

∣

∣

∣
E

(

B̃ ~Hj
(v,Correction-Dist ~Hj

(v))
)
∣

∣

∣
≥ degH(v)·Correction-Dist ~Hj

(v) ≥ ∆Dr( ~Hj)·Correction-Dist ~Hj
(v).

(2)
Equations 1 and 2 now imply

∑

v∈Drains( ~Hj)

Correction-Dist ~Hj
(v) ≤ |E(G)|/∆Dr( ~Hj). (3)

Summing up equation 3 over j and combining with condition 4 implies 5.

Lemma B.10. For every i ≤ k + 1,

dist( ~Hi,Drain-Free) ≤
k+1
∑

j=i

∑

v∈Drains( ~Hj)

Correction-Dist ~Hj
(v).

Before proving the above lemma, we show why it completes the proof of Lemma 5.8. By
Claim B.9 part 5, for every i ≤ k + 1, it holds that

∑

j

∑

v∈Drains( ~Hj)

Correction-Dist ~Hj
(v) ≤ 4|E(G)|/∆Dr( ~G).

By Lemma B.10, dist( ~H1,Drain-Free) ≤ ∑k+1
j=1

∑

v∈Drains( ~Hj)
Correction-Dist ~Hj

(v). The desired

claim now follows.

Proof of Lemma B.10. The proof is done by downwards induction.
For i = k + 1 this is immediate because Bad( ~Hi+1) = ∅ and hence the orientation we obtain by

flipping all the edges in Correction-Dist ~Hk+1
(v) for every v ∈ Drains( ~Hk+1) is Drain-Free. Therefore,

dist( ~Hk+1,Drain-Free) ≤ ∑k+1
j=k+1

∑

v∈Drains( ~Hj)
Correction-Dist ~Hj

(v).

Assume that the claim holds for i + 1. That is, there exists a Drain-Free orientation ~H ′
i+1 such

that dist( ~H ′
i+1,

~Hi+1) ≤
∑k+1

j=i+1

∑

v∈Drains( ~Hj)
Correction-Dist ~Hj

(v).
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Define Hi to be the underlying graph of ~Hi. We define a new Hi-orientation ~H ′
i as follows. For

every {x, y} ∈ E(Hi) such that x, y ∈ V (Hi)\V (Hi+1), if (x, y) ∈ E( ~Hi) then (y, x) ∈ E( ~H ′
i) other-

wise (x, y) ∈ E( ~H ′
i) (one can view this as the result of flipping all the edges of Correction-Path ~Hj

(v)

for every v ∈ Drains( ~Hi)). For every {x, y} ∈ E(Hi+1) such that x, y ∈ V (Hi) ∩ V (Hi+1)

if (x, y) ∈ E( ~H ′
i+1) then (x, y) ∈ E( ~H ′

i) otherwise (y, x) ∈ E( ~H ′
i) (all edges that are “com-

mon” to ~H ′
i and ~Hi+1 are directed in the same way). For every {x, y} ∈ E(Hi) such that

y ∈ V (Hi) ∩ V (Hi+1) and x ∈ V (Hi) \ V (Hi+1) and hence x ∈ S = Bad env ~Hi
(v) for some

v ∈ Bad( ~Hi), if (vS , y) ∈ E( ~H ′
i+1) then (x, y) ∈ E( ~H ′

i), otherwise (y, x) ∈ E( ~H ′
i) (each edge con-

necting a vertex from a bad environment to a vertex not in a bad environment is directed in the
same way as the edge “corresponding” to it in ~H ′

i+1).

Observe that Drains( ~H ′) = Bad( ~Hi). Consider the set S = Bad env ~Hi
(v) for some v ∈

Bad( ~Hi). By the definition of ~H ′
i, v is a drain in ~H ′

i. Since ~H ′
i+1 is drain-free, vS is not a drain in

~H ′
i+1 and hence by the definition of ~H ′

i there exists a vertex y in V (S) that is a target in ~H ′
i. By

the definition of S, there exists a (di)path in ~H ′
i from y to x that goes only through vertices in S.

It is easy to verify that flipping all the edges in such a (di)path for every v ∈ Drains( ~H ′
i) results

in a drain-free orientation ~H ′′
i . Note that all flips where made in Correction-Path ~Hi

(v) for some

v ∈ Drains( ~Hi) and hence

dist( ~Hi, ~H ′′
i ) ≤

∑

v∈Drains( ~Hi)

Correction-Dist ~Hi
(v) +

k+1
∑

j=i+1

∑

v∈Drains( ~Hj)

Correction-Dist ~Hj
(v). (4)

B.2 Proof of Lemma 5.7

For the proof of the Lemma, we need the following notations. Let L ~G(ε) =
⋃

v∈Drains(G)\Heavy B̃(v, rad(v)), L ~G(ε) = G \ L ~G(ε). For every two G-orientations ~G1, ~G2, denote

by dif( ~G1, ~G2) the number of edges in L ~G(ε) such that their direction in ~G1 is different than their

direction in ~G2. That is, dif( ~G1, ~G2) = {{u, v} ∈ E
(

L ~G(ε)
)

: (u, v) ∈ E( ~G1), (v, u) ∈ E( ~G2)}.
To prove the Lemma it is enough to prove that for every ~G ∈ 2DSF such that ~G is ε-far from

Drain-Free, there exists a G-orientation ~G′ ∈ Drain-Free, such that dif( ~G, ~G′) ≤ ε|E(G)|
6 . Since ~G

is ε-far from Drain-Free, the claim follows. Let ~G be as described above.
We construct the orientation ~G′ in two stages as follows.

Stage 1: we first construct a G-orientation ~G1 as follows: Set ~G1 = ~G and S = Drains( ~G1). For
every v ∈ S, according to some ordering of S, do the following. If the path Correction-Path ~G1

(v)

is fully contained in B̃G(v, rad(v)), flip all the edges in Correction-Path ~G1
(v). Otherwise, if there

is a heavy vertex x ∈ B̃G(v, rad(v)), direct towards x all edges on a shortest path connecting v
and x. It is important to note that for each v ∈ S flipping the edges along Correction-Path ~G(v) is

according to the current state of ~G1, that is the state after the previous flipping. Since B(v, rad(v))

are vertex disjoint a drain can be created only if it is a heavy vertex, thus Drains( ~G1) \ Heavy ⊆
Drains( ~G) \ Heavy.
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Observe that for the resulting orientation ~G1 and for every v ∈ Drains( ~G1) \ Heavy
we have Correction-Dist ~G(v) > rad(v) and hence B̃ ~G1

(v, rad(v)) is fully contained in

B̃G(v,Correction-Path ~G1
(v)−1). Therefore, by Claim B.3, for every vertex v ∈ Drains( ~G1)\Heavy

we have that B̃G(v, rad(v)) is a tree and all the edges are directed towards v. In addition, by

Claim B.4 for every pair of different vertices u, v ∈ Drains( ~G1)\Heavy we have that B̃G(u, rad(u))
and B̃G(v, rad(v)) are vertex disjoint. Most importantly, by the definition of rad(v) and the defini-

tion of the correction path as a shortest path to some target vertex, for every v ∈ Drains( ~G1)\Heavy
there are at least 36/ε vertices at distance rad(v) from v.

Stage 2: Define ~H to be the graph obtained from ~G1 in the following manner: For every v ∈
Drains( ~G1) \Heavy, according to an arbitrary ordering, contract B̃G(v, rad(v)− 1). Note that the
subgraphs contracted are pairwise vertex disjoint.

We next show that Drains( ~H) ⊆ HeavyH . Observe that Drains( ~H) contains vertices that are

in Drains( ~H)∩HeavyG and vertices and that are a result of the contractions. Since B̃ ~G1
(v, rad(v))

is a directed tree whose edges are directed towards v and has at least 36/ε ingoing edges, the
contraction transforms B̃ ~G1

(v, rad(v) − 1) into a heavy drain.

By lemma 5.8, there exists ~H ′ ∈ Drain-FreeH such that dist( ~H, ~H ′) ≤ 4|E(G)|

∆Dr( ~H
) ≤ ε|E(G)|

9 .

The G-orientation ~G2 is obtained from ~G1 by directing all edges that correspond to edges in
~H ′ in the same way that the corresponding edges in ~H ′ are directed. Based on what was argued
before, dist( ~G1, ~G2) ≤ ε|E(G)|/9, and hence dif( ~G1, ~G2) ≤ ε|E(G)|/9.

Note that there are no heavy drains in ~G2 since all the heavy vertices in V (G) are also in vertices

in V (H) and moreover, all the edges connected to them are directed the same way in ~G2 and in
~H ′. Note also, that all drains in ~G2 are also drains in ~G1; namely, those are drains v ∈ Drains( ~G1)

that where not corrected in step 1 and now for every such v ∈ ~G2 there is a target vertex in
B̃ ~G2

(v, rad(v)). Thus, since the B̃G(v, rad(v)) are vertex disjoint for different v ∈ Drains( ~G2), by

flipping the edges in Correction-Path ~G2
(v) for every remaining drain v ∈ ~G2, we get a drain-free

orientation.

C Test for Drain-Source-Free

We present now the test for general inputs (relaxing the assumption of being 2DSF ). We need the
following definition.

Definition C.1. For every edge e = {u, v} ∈ E(G) define Pe to be the maximal length path using e
such that all the internal nodes of Pe have degree 2. That is, Pe is a path between two (not necessarily
different) vertices x and y such that the following holds: (a) Pe uses the edge e, (b) degG(x) 6= 2,

degG(y) 6= 2, and (c) degG(z) = 2 for every vertex z 6= x, y in Pe. For a G-orientation ~G denote by
~Pe the subgraph of ~G that corresponds to Pe. We say that ~Pe is consistent if it is a directed path.

Note that if a G-orientation has an edge e such that ~Pe is not consistent then it has a drain or
a source of degree 2.

The new algorithm is obtained from Algorithm 5.1 by replacing each query of an edge e by
random sampling of the path Pe. A G-orientation is rejected if either a source or a drain were
detected, or if one of the paths Pe sampled is not consistent. The algorithm is now defined as
follows:
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Algorithm C.1.

Input: ε, ~G.
Repeat 48/ε times:

1. Randomly choose an edge e = {u, v} ∈ E(G) such that v 6∈ Heavy.

2. Select 48/ε2 edges uniformly and independently from Pe.

3. If Pe is not consistent then return REJECT.

4. For every relevant vertex z such that dist(v, z) ≤ rad(z), do the following.

• For every edge e′ = {z, x} ∈ E(G) select 48/ε2 edges uniformly and independently from
Pe′ and query their direction as well as the direction of e′.

• If for one of the edges e′, Pe′ is not consistent then return REJECT.

• If a drain or a source is found then return REJECT.

5. If there was no rejection in previous steps then return PASS.

As was previously noted, this algorithm is similar to algorithm 5.1 with the following two
differences. Each query in the algorithm is replaced by sampling some random edges in the related
path P (e) and the new uses the notion of a consistent path.

Lemma C.2. Algorithm C.1 is a (ε, (1/ε)O(( 1

ε
)2))-test for Drain-Source-Free.

Proof. Clearly, the number of queries used by algorithm C.1 is 3 ·48/ε2 times the number of queries
used by algorithm 5.1 and hence it is as claimed. Since the algorithm only rejects if there is a
drain/source in the orientation the algorithm has a one-sided error. Thus, it remains to show that
algorithm C.1 rejects every G-orientation that is ε-far from Drain-Source-Free with probability of
at least 2

3 .

Let ~G be ε-far from Drain-Source-Free and let ~G′ ∈ 2DSF be such that dist( ~G, ~G′) =

dist( ~G, 2DSF). We distinguish between two cases.

1. ~G is ε/6-far from 2DSF. Define Path(G) to be the set of all paths Pe that contain at least one

vertex z such that degG(z) = 2. Observe that dist( ~G, 2DSFG) =
∑

P∈Path(G) dist(~P , 2DSFP ).

By averaging considerations, there exists a set T ⊆ Path(G) such that
∑

P∈T |E(~P )| ≥
ε · ε|E(G)|/12 and for every P ∈ T we have dist( ~P , 2DSFP ) ≥ ε · |E( ~P )|/12. The probability
that Pe ∈ T for an edge e selected in step 1 of algorithm C.1 is at least ε/12. The probability
that such an e is selected in one of the iterations is at least (1− ε/12)48/ε > 9/10. For such Pe

the probability that 2 edges of opposite direction are not selected in step 2 of algorithm C.1 is
at most (1− ε/12)48/ε2 +(ε/12)48/ε2 < 1/16. Hence the probability that algorithm C.1 rejects
is at least (1 − 1/16)9/10 > 2/3.

2. ~G is ε/6-close to 2DSF. By the triangle inequality, ~G′ is 2ε/3-far from Drain-Source-Free.

Consider a relevant vertex z ∈ Drains( ~G′) that is not a drain or a source in ~G. Since z is not

a drain or a source in ~G then for one of the edges e = (z, x) the direction of the edge e in ~G

is not consistent with the direction of ~Pe in ~G′. By the definition of ~G′, at least half of the
edges in Pe are directed as in ~G′ and hence are not consistent with the direction of e. Thus,
sampling each of these edges we either find a drain or a source or we find an inconsistent
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path. Given such a relevant vertex z, the probability that the algorithm failed to find a drain

or a source or a not consistent path is bounded by 1
2

48

ε2 .

By the correctness proof of Algorithm 5.1, the probability that for some relevant vertex z
that is found in step 4 we have that z ∈ Drains( ~G′) is at least 9/10. By the above discussion,
the probability that the algorithm finds a drain or a source or a not consistent path for such
a vertex v is also at least 9/10. Hence, the algorithm rejects ~G with probability of at least
2/3.

D Proof of Theorem 7.4

Proof sketch: By Theorem 7.3 it is enough to show that the
√

n × √
n grid is strongly-Steiner-

connected.
Indeed, let G be the 2-dimensional grid and let S ⊆ G with |S| ≤ δ2n. Divide G into vertex

disjoint subgrids each of size 1
δ2 × 1

δ2 by partitioning the rows and the columns of G into consecutive

blocks of size 1
δ2 . Let P be a path going through all the centers of these blocks, whose length is

at most δ2n (it is easy to see that such a path exists). We can connect each point in S by a
path of length at most 2/δ to the closest center thus creating a connected subgraph that spans S.
Obviously, as |S| ≤ δ2n the total number of edges in this subgraph is bounded by 3δn.

E Proof of Observation 6.2

Let V ′ = {v|v appears in a copy of H in ~G}. We will show that dist( ~G,H-free) ≤ |V ′| ·∆. Indeed,
pick an arbitrary vertex v ∈ V ′ and direct all its incident edges to be outgoing. This obviously
makes it impossible for v to belong to any H-copy in the resulting orientation as H is source-free,
and in addition, it creates no new copy of H. This can now be iterated on the other vertices of V ′.
At each step, at most ∆-edges are flipped, while finally the resulting graph is H-free.

F Proof of Theorem 6.3

In this section, we prove that the second item indeed holds for hard to test coloring. By this, we
complete the proof of Theorem 6.3.

Assume that c : V (G) −→ {0, 1, 2} is ε-far from being a proper 3-coloring and contains o(n)

monochromatic edges. Let C0, C1, C2 be the corresponding color classes. Let ~Gc be the correspond-
ing orientation and assume that dist( ~Gc, P3 − free) = βn. This means that we can redirect at

most βn edges so to get a P3-free orientation ~G∗. We now define a proper 3-coloring of G based
on ~G∗. Let B be all the vertices that are adjacent to an edge that is oriented differently in ~Gc and
~G∗. Note that |B| ≤ 2βn.

Let U0 = {v | v is a start vertex in a 2 − path with respect to ~G∗}. Let U2 =

{v | v is a end vertex in a 2−path with respect to ~G∗}. Let U1 = {v | v is a middle vertex in a 2−
path with respect to ~G∗}. For other vertices: for u ∈ B we put u in U0 if u is a source w.r.t ~G∗ and

in U2 if it is a drain w.r.t. ~G∗. For u /∈ B we put u in U0 if it is a source and either u ∈ C0 or u ∈ C1

but has a neighbor in C1, if u is a source but has no neighbor in C1 u goes to U1. Analogously,
we put u that is a drain in U2 if it is in B or it is in C2 or it is in C1 and has a neighbor in C1.
Otherwise, we put it in C1.

We claim that the partition obtained is consistent with ~G∗ and thus defines a proper coloring
c∗. To see that the only thing to be checked is that no two vertices in U1−B are neighbors. Indeed
this immediately follows, as otherwise, either they are both middle points of a 2-path, in which
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case there is a 3-path in ~G∗ in contradiction to its definition. Or one is source and one is a drain
belonging to C1 with no neighbors in C1 which contradicts the fact that they are neighbors.

It remains to show that the coloring obtained c∗ is ’close’ to c. Indeed, let us analyze the
number of recolored 0’s. That is, the number of vertices in U0 − C0. Each such vertex u is either
in B of which there are at most 2βn vertices, or it is a source in ~G, it belonged to C1 and has
a neighbor in C1 - however, by assumption on c there are o(n) such vertices. A similar bound
applies to U2 − C2. Finally, u ∈ U1 − C1 if it either belongs to B or it belongs to C0 ∪ C2 and is,
or became a middle point in a 2-path. Note that there are at most 2βn vertices for the first case.
If, u ∈ C0 and is a mid point of a 2-path v − u − w with respect to c, it means that v ∈ C0 and
thus there are only o(n) such vertices. If u ∈ C0 and became a mid point of a 2-path v − u − w it
means that either v ∈ B or w ∈ B but as G has degree bounded by ∆ there are at most 4 · ∆βn
such vertices. A similar calculation is valid for the other final case of u ∈ C2. Hence, altogether
dist(c, c∗) ≤ (8 · ∆ + 6)βn + o(n). This implies that β > ε/(12∆) which completes the proof.
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