# Improved Bound for the PPSZ/Schöning-Algorithm for 3-SAT 

Daniel Rolf<br>Humboldt-Universität zu Berlin<br>Institut für Informatik<br>Lehrstuhl für Logik in der Informatik<br>Unter den Linden 6<br>10099 Berlin<br>GERMANY<br>rolf@informatik.hu-berlin.de


#### Abstract

The PPSZ Algorithm presented by Paturi, Pudlak, Saks, and Zane in 1998 has the nice feature that the only satisfying solution of a uniquely satisfiable 3-SAT formula can be found in expected running time at most $\mathcal{O}\left(1.3071^{n}\right)$. Its bound degenerates when the number of solutions increases. In 1999, Schöning proved an bound of $\mathcal{O}\left(1.3334^{n}\right)$ for 3-SAT. In 2003, Iwama and Tamaki combined both algorithms to yield an $\mathcal{O}\left(1.3238^{n}\right)$ bound. We tweak the PPSZ-Bound to get a slightly better contribution to the combined algorithm and prove an $\mathcal{O}\left(1.32216^{n}\right)$ bound.


## 1 Introduction

The problem of deciding whether a $k$-CNF $G$ has a satisfying assignment is well known as the $k$-SAT problem, which is NP-complete for $k>2$. Hence, if $N P \neq P$ holds (which is widely assumed), there is no hope to find a polynomial time algorithm for the $k$-SAT problem for $k>2$.

For a CNF $G$ on $n$ variables, a naive approach is to enumerate all possible assignments and to check for each one whether it satisfies $G$. This algorithm has $\mathcal{O}\left(\operatorname{poly}(|G|) \cdot 2^{n}\right)$ running time at most. There are significantly more sophisticated algorithms known, and the evolution of expected running time bounds for 3 -SAT, which are somewhat below the deterministic ones, is given as $[1,2,3,4,5,6]$ with bounds of $\mathcal{O}\left(1.334^{n}\right), \mathcal{O}\left(1.3302^{n}\right), \mathcal{O}\left(1.32971^{n}\right), \mathcal{O}\left(1.3290^{n}\right), \mathcal{O}\left(1.32793^{n}\right)$, and $\mathcal{O}\left(1.3238^{n}\right)$.

Using an elegant simple random walk algorithm, Schöning showed in 1999 that a satisfying assignment for a satisfiable 3-SAT formula can be found in $\mathcal{O}\left((4 / 3+\epsilon)^{n}\right)$ expected running time, cf. [1].

In [7], Paturi, Pudlak, Saks, and Zane proved that for a uniquely satisfiable 3 -CNF, the solution can be found in $\mathcal{O}\left(1.3071^{n}\right)$ expected running time at most. We refer to their algorithm as the PPSZ Algorithm. This is the best randomized bound known for Unique-3-SAT and it is possible to derandomize it, essentially yielding the same bound deterministically, cf. [8]. But paradoxically, the bound
gets worse when the number of solutions increases. The best known randomized bounds for 3-SAT is $\mathcal{O}\left(1.3238^{n}\right)$, established in [6] by Iwama and Tamaki. Their bound automatically improves to $\mathcal{O}\left(1.32266^{n}\right)$ by modifying their analysis to use the latest bound for the PPSZ Algorithm that was presented in Corollary 14 in [9]. However, we tune the bound to improve their result to $\mathcal{O}\left(1.32216^{n}\right)$.

## 2 Preliminaries

Firstly, we make some common definitions. A literal is a variable or its negation. An assignment $\beta$ to a set of variables $X$ maps each variable in $X$ to 0 or 1 . A literal $l$ is satisfied by $\beta$ if $X(l)=1$ if $l$ is not negated resp. $X(\bar{l})=0$ if $l$ is negated. A clause is a set of literals based on different variables. A clause is satisfied by some assignment $\beta$ if at least one literal is satisfied by $\beta$. A formula is a set of clauses. A formula is satisfied by $\beta$ if each clause is satisfied by $\beta$. A $k$-clause is a clause of size $k$ and a $k-C N F$ is a set of clauses of size at most $k$. Finally, a 1-clause is commonly known as unit clause. For a set of clauses $G$, let $\operatorname{vars}(G)$ be the set of variables occurring in $G$.

We will not consider polynomial factors in complexity calculations because we always expect an exponential expression which outweighs all polynomials for large problems, and because the number of clauses is $\mathcal{O}\left(|\operatorname{vars}(G)|^{k}\right)$, polynomials that depend on the number of clauses can also be replaced by some polynomial in $|\operatorname{vars}(G)|$.

For a CNF $G$ and a literal $l$, we denote with $\left.G\right|_{l}$ the formula obtained by making $l$ true in $G$, i.e. we remove all clauses that contain $l$ and remove $\bar{l}$ from all clauses that contain it.

A clause pair $\left(C_{1}, C_{2}\right)$ is a resolvent pair if they have only one variable $v$ in common whereby $v \in C_{1}$ and $\bar{v} \in C_{2}$. Their resolvent $R\left(C_{1}, C_{2}\right)$ is the clause $\left(C_{1}-v\right) \cup\left(C_{2}-\bar{v}\right)$. Because any satisfying assignment of $C_{1}$ and $C_{2}$ must also satisfy $R\left(C_{1}, C_{2}\right)$, adding $R\left(C_{1}, C_{2}\right)$ to a CNF does not change its set of satisfying assignments.
s-bounded resolution means to add to $G$ all resolvent pairs of clauses in $G$ where the size of the resolvent is at most $s$, over and over again until there is nothing more to do. Note that, if $s$ is a constant, this has polynomial time and space complexity in $|\operatorname{vars}(G)|$.

## 3 The Algorithm

As proposed by Iwama and Tamaki in [6], we combine both PPSZ and Schöning to a new algorithm.

Algorithm 1. $\operatorname{PPSZ}(k$ - CNF $G$, integer $d$, assignment $\beta$ )
$G:=$ do $k^{d}$-bounded resolution on $G$
$\pi:=$ permutation of $\operatorname{vars}(G)$ uniformly at random
for each variable $v \in \operatorname{vars}(G)$ ordered by $\pi\{$
if $G^{\prime}$ contains a unit clause $v$ resp. $\bar{v}$
8 return $\beta$
Algorithm 2. $S C H$ ( $k$-CNF $G$, assignment $\beta$ )
repeat $3|\operatorname{vars}(G)|$ times \{
if $\beta$ satisfies $G$ then break
Select an arbitrary clause $C \in G$ that is not satisfied by $\beta$
Choose a variable in $C$ uniformly at random and flip its value in $\beta$
\}
return $\beta$

Algorithm 3. $C O M B$ ( $k$-CNF $G$,integer $d$ )

```
\beta:= assignment to }G\mathrm{ drawn uniformly at random
\beta
if }\mp@subsup{\beta}{}{\prime}\mathrm{ satisfies }G\mathrm{ then return }\mp@subsup{\beta}{}{\prime
\beta}:=SCH(G,\beta
if }\mp@subsup{\beta}{}{\prime}\mathrm{ satisfies }G\mathrm{ then return }\mp@subsup{\beta}{}{\prime
return null
```


## 4 The Analysis

### 4.1 Main Result

Iwama and Tamaki proved in [6], that the expected number of repetitions of $\operatorname{COMB}(G, d)$ is $\mathcal{O}\left(1.3238^{n}\right)$ (resp. $\mathcal{O}\left(1.32266^{n}\right)$ as noted in the introduction) for a satisfiable 3-CNF $G$ and some large but fixed $d$. We improve that result to:

Proposition 4. For a satisfiable 3-CNF G and some large but fixed d, the expected number of repetitions of $\operatorname{COMB}(G, d)$ is $\mathcal{O}\left(1.32216^{n}\right)$.

### 4.2 Disassembling COMB

For a set of variables $D \subseteq \operatorname{vars}(G)$ and some assignment $\beta$, we define the set $B(D, \beta)$ to be the set of all assignments that agree with $\beta$ on at least the variables in $D$, i.e. the subcube of the solution space where the variables in $D$ are fixed to their values according to $\beta$ and the others take all possible combinations. From [9], we know:
Lemma 5. For a satisfiable $k-C N F G$, there exists a family of sets of variables $\left(D_{\beta}: \beta \in \operatorname{sat}(G)\right)$ so that the family of the corresponding subcubes $\left(B\left(D_{\beta}, \beta\right)\right.$ : $\beta \in \operatorname{sat}(G))$ partitions the solution space (i.e. covering completely while being pairwise distinct). Moreover, it is true that

$$
\sum_{\beta \in s a t(G)} 2^{-D_{\beta}}=1
$$

So, throughout the rest of the paper, fix $\left(D_{\beta}\right)$ to be some arbitrary such family, and let $\left(B_{\beta}\right)$ be the corresponding subcubes.

For some $\beta^{*} \in \operatorname{sat}(G)$, let $\beta$ be drawn uniformly at random from $\beta \in B_{\beta^{*}}$, then the success probability of Algorithm $C O M B$ is at least

$$
\max \left\{\mathbb{P}\left[P P S Z: \beta \in B_{\beta^{*}}\right], \mathbb{P}\left[S C H: \beta \in B_{\beta^{*}}\right]\right\}
$$

where $P P S Z$ resp. $S C H$ denote the events that $P P S Z(G, d, \beta)$ resp. $S C H(G, \beta)$ return some satisfying assignment. For a random $\beta$, the probability that $\beta \in B_{\beta^{*}}$ holds is equal to $2^{-D_{\beta^{*}}}$, while $\beta$ is still distributed uniformly in $B_{\beta^{*}}$. To get the success probability, we just sum up the success probabilities over all subcubes. Hence, Algorithm $C O M B$ succeeds with probability at least

$$
\begin{aligned}
& \sum_{\beta^{*} \in \operatorname{sat}(G)} 2^{-D_{\beta^{*}}} \cdot \max \left\{\mathbb{P}\left[P P S Z: \beta \in B_{\beta^{*}}\right], \mathbb{P}\left[S C H: \beta \in B_{\beta^{*}}\right]\right\} \\
\geq & \min _{\beta^{*} \in \operatorname{sat}(G)} \max \left\{\mathbb{P}\left[P P S Z: \beta \in B_{\beta^{*}}\right], \mathbb{P}\left[S C H: \beta \in B_{\beta^{*}}\right]\right\}
\end{aligned}
$$

The inequality follows because we know that $\sum_{\beta^{*} \in \operatorname{sat}(G)} 2^{-D_{\beta^{*}}}=1$.
Therefore, to have a lower bound on the success probability, we can focus on computing a lower bound for the success probability given a single satisfying assignment $\beta^{*}$ and its subcube. Hence, fix some $\beta^{*} \in \operatorname{sat}(G), B=B_{\beta^{*}}, D=D_{\beta^{*}}$, and $N=\operatorname{vars}(G) \backslash D$ to the end of the paper.

### 4.3 Bound for $\boldsymbol{S C H}$

To bound the running time of his algorithm, Schöning proved the following theorem, which bounds the success probability of Algorithm SCH in terms of the hamming distance $\operatorname{dist}\left(\beta, \beta^{*}\right)$ of some initial assignment $\beta$ and some satisfying assignment $\beta^{*}$ :
Theorem 6. Let $G$ be a satisfiable $k-C N F$ on $n$ variables and $\beta^{*}$ be a satisfying assignment for $F$. For each initial assignment $\beta$, the probability that $\operatorname{SCH}(G, \beta)$ finds a satisfying assignment is at least $(k-1)^{-\operatorname{dist}\left(\beta, \beta^{*}\right)-o(n)}$.

Conditioning on $\beta \in B_{\beta^{*}}$, we know that $\beta$ agrees with $\beta^{*}$ on $D$, whereby the assignment to $N$ is uniformly distributed. So, we have:

$$
\begin{aligned}
& \mathbb{P}\left[S C H: \beta \in B_{\beta^{*}}\right] \\
\geq & \mathbb{E}\left[(k-1)^{-\operatorname{dist}\left(\beta, \beta^{*}\right)-o(n)}: \beta \in B_{\beta^{*}}\right] \\
= & (k-1)^{-o(n)} \prod_{v \in N}\left(\mathbb{P}\left[\beta(v)=\beta^{*}(v)\right] \cdot(k-1)^{0}+\mathbb{P}\left[\beta(v) \neq \beta^{*}(v)\right] \cdot(k-1)^{-1}\right) \\
= & (k-1)^{-o(n)} \prod_{v \in N}\left(1 / 2 \cdot(k-1)^{0}+1 / 2 \cdot(k-1)^{-1}\right) \\
= & (2-2 / k)^{-|N|-o(n)} \\
= & (2-2 / k)^{-n+|D|-o(n)} \\
= & 2^{-\sigma_{k}(n-|D|)-o(n)}
\end{aligned}
$$

where $\sigma_{k}=\log _{2}(2-2 / k)$.
Obviously, Schöning's algorithm performs better with increasing $|D|$.

### 4.4 Bound for PPSZ

Let us define a nice distribution $H . H$ is a nondecreasing, continuous mapping from $[0,1]$ to $[0,1]$ with $H(0)=0$ and $H(1)=1$. Moreover, it must be differentiable in all but at most a finite number of points. Finally, its derivate $h$ must be uniformly bounded on $[0,1]$. We set

$$
\begin{array}{r}
\beta_{H}=\int_{0}^{1} h(r) \log _{2}(h(r)) d r \\
\gamma_{H}=\int_{0}^{1} \min \left\{H(r)^{k-1}, R_{k}(r)\right\} d r
\end{array}
$$

where $R_{k}(r)$ is the smallest non-negative $x$ that satisfies $f_{k}(x, r)=x$ with $f_{k}(x, r)=(r+(1-r) x)^{k-1}$.

We will prove:
Lemma 7. The probability that PPSZ finds a satisfying assignment given $\beta \in$ $B_{\beta^{*}}$ is at least

$$
2^{-\beta_{H}|D|-\left(1-\gamma_{H}\right)(n-|D|)-\epsilon n-o(n)}
$$

where $\epsilon$ can be made arbitrary small positive by choosing d large enough.
Of course, $H$ is only a parameter in the analysis, it actually does not change the running time of $\operatorname{PPSZ}$. However, $\beta_{H}$ and $\gamma_{H}$ are subject to $H$. For $k=3$ and $k=4$ we are not able to find $H$ in such a way that the success probability does not decrease for small $|D|$. But, we will see that we can tweak $H$ so that the bound does not decrease too much until Schöning's can take over.

### 4.5 Reassembling $C O M B$

Given both bounds, we like to have a bound for $\max \left\{\mathbb{P}\left[P P S Z: \beta \in B_{\beta^{*}}\right], \mathbb{P}[S C H\right.$ : $\left.\left.\beta \in B_{\beta^{*}}\right]\right\}$. We see that both bounds are in terms of $|D|$. Hence, we have to find the 'worst' $|D|$ :

$$
\min _{D} 2^{\max \left\{-\sigma_{k}(n-|D|),-\beta_{H}|D|-\left(1-\gamma_{H}\right)(n-|D|)\right\}}
$$

Assuming that we have a distribution $H$ so that the success probability of $P P S Z$ decreases with $|D|$, we can compute the worst $\left|D_{0}\right|$ since the success probability of $S C H$ increases with $|D|$ :

$$
\begin{aligned}
\sigma_{k}\left(n-\left|D_{0}\right|\right) & =\beta_{H}\left|D_{0}\right|+\left(1-\gamma_{H}\right)\left(n-\left|D_{0}\right|\right) \\
\left|D_{0}\right| & =n \frac{\sigma_{k}-1+\gamma_{H}}{\sigma_{k}-1+\gamma_{H}+\beta_{H}}
\end{aligned}
$$

We have proven:

Proposition 8. Let $H$ be a nice distribution so that that the bound for PPSZ decreases with $|D|$, and let

$$
\delta=\frac{\sigma_{k}-1+\gamma_{H}}{\sigma_{k}-1+\gamma_{H}+\beta_{H}}
$$

be well defined with $0 \leq \delta \leq 1$. For a satisfiable $k$-CNF $G$, the success probability of Algorithm $\operatorname{COMB}(G, d)$ is at least

$$
2^{-\sigma_{k}(1-\delta) n-\epsilon n-o(n)}
$$

where $\epsilon$ can be made arbitrary small positive by choosing d large enough.
In Section 6, we will provide some $H_{3}$ with $\beta_{H_{3}} \leq 0.90925, \gamma_{H_{3}} \geq 0.61229$, and thus $\delta_{3} \geq 0.02927$. Therefore, we have a lower bound of $\Omega\left(1.32216^{-n}\right)$ for the success probability of $C O M B$. This finishes the proof of the main result, Proposition 4.

## 5 Proof of The PPSZ Bound

At first, we have to recapitulate some technical features around $P P S Z$, some of which have been dismissed from the latest version of [9] because they are not necessary anymore by their analysis, but we need them for this one. ${ }^{1}$

However, for some permutation $\pi$, let $F(\pi)$ denote the set of variables in $N$ that have been reduced to unit clauses during a run of $P P S Z$. When $\beta$ agrees with $\beta^{*}$ on the variables in $\operatorname{vars}(G) \backslash F(\pi)$, the algorithm will find $\beta^{*}$. Given that $\beta \in B_{\beta *}$, we know that $\beta$ and $\beta^{*}$ already agree on $D$. So, we have:

$$
\mathbb{P}\left[P P S Z: \beta \in B_{\beta^{*}}\right] \geq 2^{-N} \cdot \mathbb{E}\left[2^{F(\pi)}\right]
$$

In order to have a good bound on the expectation, we will choose some subset $\Gamma$ of the permutation space and compute instead:

$$
\mathbb{P}\left[P P S Z: \beta \in B_{\beta^{*}}\right] \geq 2^{-N} \cdot \mathbb{P}[\pi \in \Gamma] \cdot \mathbb{E}\left[2^{|F(\pi)|}: \pi \in \Gamma\right]
$$

A placement $\alpha$ is a function that maps each variable to a real value in $[0,1]$. With $\pi(\alpha)$, we denote the permutation obtained by ranking the variables of $G$ due to the value $\alpha$ takes on them with some arbitrary rule for breaking ties. So, a uniform distribution of $\alpha($.$) yields a uniform distribution of \pi(\alpha()$.$) .$

Let $v$ be a variable in $N$. For a set of placements $\Gamma$, we define $Q_{\Gamma}(r)$ to be the probability that a unit clause will force $v$ with respect to $\pi(\alpha)$ where $\alpha$ is a random placement from $\Gamma$ having $\alpha(v)=r$. Then we have:

$$
\mathbb{P}[v \in F(\pi(\alpha)): \alpha \in \Gamma] \geq Q_{\Gamma}=\int_{0}^{1} Q_{\Gamma}(r) d r
$$

[^0]For every $\lambda \in[0,1)$, we consider the set of placements $\Gamma_{H, \lambda, D}$ to be the set of all placements where, for each $r \in[\lambda, 1]$, at least $H(r)|D|$ variables $v \in D$ have $\alpha(v)<r$.

In Lemma 24 in the old version of [9], they restrict $H(r)$ to be at most $R_{k}(r)^{1 /(k-1)}$. The corresponding lemma in the latest version, Lemma 13 in [9], does not make use of any function $H$ at all. Nevertheless, comparing the details, the new lemma looks like using $H(r)=\min \{r \cdot(k-1) /(k-2), 1\}$ in the old one. But, that $H$ violates the restriction $H(r) \leq R_{k}(r)^{1 /(k-1)}$. Motivated by that insight, we suppose that the restriction can be removed to generalize Lemma 24 of the old version.

So, from Lemma 26 in the old version of [9], we know that:
Lemma 9. Recursively define $Q_{k}^{d}(r)$ by $Q_{k}^{0}(r)=0$ and $Q_{k}^{d}(r)=f_{k}\left(Q_{k}^{d-1}(r), r\right)$ for $d>0$. For $\Gamma=\Gamma_{H, \lambda, D}$ and $r \in[\lambda, 1]$, it is true that

$$
Q_{\Gamma}(r) \geq \min \left\{H(r)^{k-1}, Q_{k}^{d}(r)\right\}-\rho(H(r))
$$

where $\rho(x)=0$ for $x \in\{0,1\}$ and $\rho(x)=\min \left\{\frac{k^{2 d}}{|A|}\left(\frac{1}{x(1-x)}\right), 1\right\}$ for $x \in(0,1)$.
We compute $Q_{\Gamma}$ for $\Gamma=\Gamma_{H, \lambda, D}$ :

$$
\begin{aligned}
Q_{\Gamma} & =\int_{0}^{1} Q_{\Gamma}(r) d r \\
& \geq \int_{\lambda}^{1} Q_{\Gamma}(r) d r \\
& \geq \int_{0}^{1}\left(\min \left\{H(r)^{k-1}, Q_{k}^{d}(r)\right\}-\rho(H(r))\right) d r-\lambda \\
& \geq \int_{0}^{1} \min \left\{H(r)^{k-1}, Q_{k}^{d}(r)\right\} d r-\int_{0}^{1} \rho(H(r)) d r-\lambda
\end{aligned}
$$

Paturi et al evaluated $\int_{0}^{1} \rho(H(r)) d r$ to be $o(1)$ when $|D| \geq \sqrt{n}$ as $n$ tends to infinity. We omit the analysis for $|D| \leq \sqrt{n}$ here since it is very likely for less than $\sqrt{n}$ variables to appear at the very beginning of the permutation $\pi$ before all variable in $N$. For those, Paturi et al showed that $Q_{\Gamma} \geq \int_{0}^{1} Q_{k}^{d}(r)$. We conclude:

$$
Q_{\Gamma} \geq \int_{0}^{1} \min \left\{H(r)^{k-1}, Q_{k}^{d}(r)\right\} d r-o(1)-\lambda
$$

In Proposition 3 in [7], they also show that that $Q_{k}^{d}(r)$ converges to $R_{k}(r)$ for every $r \in[0,1]$. Hence, for every small positive $\epsilon$, there exists a large $d_{\epsilon}$ so that for every $d \geq d_{\epsilon}, Q_{k}^{d}(r) \geq R_{k}(r)-\epsilon$ is true for all $r \in[0,1]$. We conclude that

$$
\begin{aligned}
Q_{\Gamma} & \geq \int_{0}^{1} \min \left\{H(r)^{k-1}, R_{k}(r)-\epsilon\right\} d r-\lambda-o(1) \\
& \geq \int_{0}^{1} \min \left\{H(r)^{k-1}, R_{k}(r)\right\} d r-\epsilon-\lambda-o(1)
\end{aligned}
$$

is true and thus have essentially generalized Lemma 24 in the old version of [9].
Since we have computed $Q_{\Gamma}$, we can consider the expected number of variables that will be forced by unit clauses:

$$
\begin{aligned}
& \mathbb{E}\left[2^{|F(\pi(\alpha))|}: \alpha \in \Gamma_{H, \lambda, D}\right] \\
\geq & 2^{\left.\mathbb{E}| | F(\pi(\alpha)) \mid: \alpha \in \Gamma_{H, \lambda, D}\right]} \\
\geq & 2^{\gamma_{H}|N|-\epsilon|N|-\lambda|N|-o(|N|)}
\end{aligned}
$$

Thus, we conlude:

$$
\mathbb{P}\left[P P S Z: \beta \in B_{\beta^{*}}\right] \geq \mathbb{P}\left[\alpha \in \Gamma_{H, \lambda, D}\right] \cdot 2^{-\left(1-\gamma_{H}\right)|N|-\epsilon|N|-\lambda|N|-o(|N|)}
$$

For $\mathbb{P}\left[\alpha \in \Gamma_{H, \lambda, D}\right]$, Paturi et al proved a lower bound, cf. Lemma 23 in the old version of [9]:

Lemma 10. For $\lambda>0$, it is true that

$$
\mathbb{P}\left[\alpha \in \Gamma_{H, \lambda, D}\right] \geq 2^{-\beta_{H}|D|-o(|D|)}
$$

Because $\epsilon$ and $\lambda$ are both arbitrary small positive values, we replace $\epsilon$ by $\epsilon+\lambda$ and obtain

$$
\mathbb{P}\left[P P S Z: \beta \in B_{\beta^{*}}\right] \geq 2^{-\beta_{H}|D|-\left(1-\gamma_{H}\right)(n-|D|)-\epsilon n-o(n)},
$$

which finishes the proof of Lemma 7.

## 6 Optimized Nice Distributions for 3-SAT

By Proposition 8, the running time bound depends on the choice of some $H$ which produces a large $\delta$. Experiments showed that we should consider functions $H$ so that there is some $r_{0} \leq 1 / 2$ with $H(r)^{2} \geq R_{2}(r)$ for $r \leq r_{0}$ and $H(r)^{2} \leq R_{2}(r)$ for $r \geq r_{0}$. In that case we have:

$$
\gamma_{H}=\int_{0}^{r_{0}} R_{3}(r) d r+\int_{r_{0}}^{1} H(r)^{2} d r
$$

For $r \in[0,1 / 2]$, we have:

$$
\begin{aligned}
R_{3}(r) & =\frac{r^{2}}{(1-r)^{2}} \\
\int_{0}^{r} R_{3}\left(r^{\prime}\right) d r^{\prime} & =2 \ln (1-r)-1+\frac{r^{2}-r-1}{r-1}
\end{aligned}
$$

At a simple example, we consider the function $H_{\theta}(r)=\min \{1, r / \theta\}$ for some $\theta \in[1 / 2,1]$. For $r \in[0,1-\theta]$, we have that $H_{\theta}(r)^{2} \geq R_{3}(r)$, for $r \in[1-\theta, \theta]$,
$H_{\theta}(r)^{2} \leq R_{3}(r)$, and finally, for $r \in[\theta, 1]$, we have $H_{\theta}(r)^{2}=R_{3}(r)=1$. We have:

$$
\begin{aligned}
\gamma_{H_{\theta}} & =\int_{0}^{1-\theta} R_{3}(r) d r+\int_{1-\theta}^{\theta} H_{\theta}(r)^{2} d r+1-\theta \\
& =\frac{6 \ln (\theta) \theta^{2}+6 \theta-4 \theta^{3}-1}{3 \theta^{2}} \\
\beta_{H_{\theta}} & =\int_{0}^{\theta} \frac{1}{\theta} \log _{2}\left(\frac{1}{\theta}\right) d r \\
& =-\log _{2}(\theta)
\end{aligned}
$$

We insert this into the formula for $\delta$ in Proposition 8 and compute the root of the derivate with respect to $\theta$ to get the optimal $\theta=0.5109968782$. For this, we get $\beta_{H_{\theta}} \leq 0.9686136176, \gamma_{H_{\theta}} \geq 0.613242472$, and thus $\delta \geq 0.28368$. This yields an upper bound of $\mathcal{O}\left(1.3225^{n}\right)$ for the expected number of repetitions of Algorithm COMB.

But, we can do better. In order to find an optimal $H$, we can setup a continuous function $H$ consisting of linear pieces and try to optimize it until we hit the best result. Experiments showed that the resulting curve is perfectly resembled by the following function, with some appropriate parameters $a$ and $b$ :

$$
\begin{aligned}
H(r) & = \begin{cases}r / \theta & \text { if } r \in[0,1-\theta) \\
1-(-a \ln (r))^{b} & \text { if } r \in[1-\theta, 1]\end{cases} \\
h(r)=\frac{d H}{d r} & = \begin{cases}1 / \theta & \text { if } r \in[0,1-\theta) \\
-b \frac{(-a \ln (r))^{b}}{r \ln (r)} & \text { if } r \in[1-\theta, 1)\end{cases}
\end{aligned}
$$

$H(r)$ must be continuous, and naturally it should also be differentiable completely. Moreover, we propose that $H(r)$ should hit $R_{3}(r)^{1 / 2}$ exactly when the linear part finishes, i.e. at $1-\theta$ since $R_{3}(r)^{1 / 2}=r /(1-r)$ for $r \in[0,1 / 2]$. Using these constraints, i.e.

$$
\begin{aligned}
H(1-\theta) & =R_{3}(1-\theta)^{1 / 2} \quad \text { and } \\
h(1-\theta) & =1 / \theta
\end{aligned}
$$

we can eliminate $a$ and $b$ :

$$
\begin{aligned}
& a=-\left(\frac{2 \theta-1}{\theta}\right)^{\frac{2 \theta-1}{\ln (1-\theta)(-1+\theta)}}(\ln (1-\theta))^{-1} \\
& b=\frac{\ln (1-\theta)(-1+\theta)}{2 \theta-1}
\end{aligned}
$$

Using numerical optimization, we can find $\theta$ so that $\delta$ in Proposition 8 is maximized:

$$
\begin{aligned}
\theta & =0.51118 \ldots \\
a & =1.14371 \ldots \\
b & =15.63571 \ldots \\
\beta_{H} & \leq 0.90625 \\
\gamma_{H} & \geq 0.61229 \\
\delta_{H} & \geq 0.02927
\end{aligned}
$$

This yields an upper bound of $\mathcal{O}\left(1.32216^{n}\right)$ for the expected number of repetitions of Algorithm $C O M B$.

## Acknowledgements

The author would like to thank Mario Szegedy for some nice remarks.

## References

1. Schöning, U.: A probabilistic algorithm for $k$-SAT and constraint satisfaction problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS). (1999) 410-414
2. Schuler, R., Schöning, U., Watanabe, O.: A probabilistic 3-SAT algorithm further improved. In: Proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS). (2002) 192-202
3. Rolf, D.: 3 -SAT $\in \operatorname{RTIME}\left(1.32971^{n}\right)$. Diploma thesis, Department Of Computer Science, Humboldt University Berlin, Germany (2003)
4. Baumer, S., Schuler, R.: Improving a probabilistic 3-SAT algorithm by dynamic search and independent clause pairs. In: Proceedings of the 6th International Conference on Theory and Applications of Satisfiability Testing (SAT). (2003) 150-161
5. Rolf, D.: 3-SAT $\in \operatorname{RTIME}\left(O\left(1.32793^{n}\right)\right)$ - improving randomized local search by initializing strings of 3 -clauses. Electronic Colloquium on Computational Complexity (ECCC) (2003)
6. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). (2004) 328-328
7. Paturi, R., Pudlak, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for $k$-SAT. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS). (1998) 628-637
8. Rolf, D.: Derandomization of PPSZ for Unique- $k$-SAT. In: Proceedings of the 8th International Conference on Theory and Applications of Satisfiability Testing (SAT). (2005) 216-225
9. Paturi, R., Pudlak, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for $k$-SAT. Journal of the Association for Computing Machinery (JACM) (to appear)
10. Alon, N., Spencer, J.: The Probabilistic Method. John Wiley (1992)
11. Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique $k$-SAT: An isolation lemma for $k$-CNFs. In: Proceedings of the 18th Annual IEEE Conference on Computational Complexity (CCC). (2003) 135-141
12. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic $(2-2 /(k+1))^{n}$ algorithm for k-SAT based on local search. Theoretical Computer Science 289 (2002) 69-83
13. Paturi, R., Pudlak, P., Zane, F.: Satisfiability coding lemma. Chicago Journal of Theoretical Computer Science (1999)
14. Brueggemann, T., Kern, W.: An improved deterministic local search algorithm for 3-SAT. Theoretical Computer Science 329 (2004) 303-313

[^0]:    ${ }^{1}$ An older version of [9] is still available in the citeseer-cache at http://citeseer.ist.psu.edu/paturi98improved.html.

