
Improved Bound for the

PPSZ/Schöning-Algorithm for 3-SAT

Daniel Rolf

Humboldt-Universität zu Berlin
Institut für Informatik

Lehrstuhl für Logik in der Informatik
Unter den Linden 6

10099 Berlin
GERMANY

rolf@informatik.hu-berlin.de

Abstract. The PPSZ Algorithm presented by Paturi, Pudlak, Saks, and
Zane in 1998 has the nice feature that the only satisfying solution of a
uniquely satisfiable 3-SAT formula can be found in expected running
time at most O(1.3071n). Its bound degenerates when the number of
solutions increases. In 1999, Schöning proved an bound of O(1.3334n)
for 3-SAT. In 2003, Iwama and Tamaki combined both algorithms to
yield an O(1.3238n) bound. We tweak the PPSZ-Bound to get a slightly
better contribution to the combined algorithm and prove an O(1.32216n)
bound.

1 Introduction

The problem of deciding whether a k-CNF G has a satisfying assignment is
well known as the k-SAT problem, which is NP-complete for k > 2. Hence, if
NP 6= P holds (which is widely assumed), there is no hope to find a polynomial
time algorithm for the k-SAT problem for k > 2.

For a CNF G on n variables, a naive approach is to enumerate all possible
assignments and to check for each one whether it satisfies G. This algorithm has
O (poly(|G|) · 2n) running time at most. There are significantly more sophisti-
cated algorithms known, and the evolution of expected running time bounds for
3-SAT, which are somewhat below the deterministic ones, is given as [1,2,3,4,5,6]
with bounds of O(1.334n), O(1.3302n), O(1.32971n), O(1.3290n), O(1.32793n),
and O(1.3238n).

Using an elegant simple random walk algorithm, Schöning showed in 1999
that a satisfying assignment for a satisfiable 3-SAT formula can be found in
O ((4/3 + ε)n) expected running time, cf. [1].

In [7], Paturi, Pudlak, Saks, and Zane proved that for a uniquely satisfiable
3-CNF, the solution can be found in O(1.3071n) expected running time at most.
We refer to their algorithm as the PPSZ Algorithm. This is the best randomized
bound known for Unique-3-SAT and it is possible to derandomize it, essentially
yielding the same bound deterministically, cf. [8]. But paradoxically, the bound

Electronic Colloquium on Computational Complexity, Report No. 159 (2005)

ISSN 1433-8092

gets worse when the number of solutions increases. The best known randomized
bounds for 3-SAT is O(1.3238n), established in [6] by Iwama and Tamaki. Their
bound automatically improves to O(1.32266n) by modifying their analysis to use
the latest bound for the PPSZ Algorithm that was presented in Corollary 14 in
[9]. However, we tune the bound to improve their result to O(1.32216n).

2 Preliminaries

Firstly, we make some common definitions. A literal is a variable or its negation.
An assignment β to a set of variables X maps each variable in X to 0 or 1.
A literal l is satisfied by β if X(l) = 1 if l is not negated resp. X(l) = 0 if l
is negated. A clause is a set of literals based on different variables. A clause is
satisfied by some assignment β if at least one literal is satisfied by β. A formula
is a set of clauses. A formula is satisfied by β if each clause is satisfied by β. A
k-clause is a clause of size k and a k-CNF is a set of clauses of size at most k.
Finally, a 1-clause is commonly known as unit clause. For a set of clauses G, let
vars(G) be the set of variables occurring in G.

We will not consider polynomial factors in complexity calculations because
we always expect an exponential expression which outweighs all polynomials for
large problems, and because the number of clauses is O(|vars(G)|k), polynomials
that depend on the number of clauses can also be replaced by some polynomial
in |vars(G)|.

For a CNF G and a literal l, we denote with G|l the formula obtained by
making l true in G, i.e. we remove all clauses that contain l and remove l from
all clauses that contain it.

A clause pair (C1, C2) is a resolvent pair if they have only one variable v in
common whereby v ∈ C1 and v ∈ C2. Their resolvent R(C1, C2) is the clause
(C1 − v) ∪ (C2 − v). Because any satisfying assignment of C1 and C2 must also
satisfy R(C1, C2), adding R(C1, C2) to a CNF does not change its set of satisfying
assignments.

s-bounded resolution means to add to G all resolvent pairs of clauses in G
where the size of the resolvent is at most s, over and over again until there is
nothing more to do. Note that, if s is a constant, this has polynomial time and
space complexity in |vars(G)|.

3 The Algorithm

As proposed by Iwama and Tamaki in [6], we combine both PPSZ and Schöning
to a new algorithm.

Algorithm 1. PPSZ(k-CNF G, integer d, assignment β)
1 G := do kd-bounded resolution on G
2 π := permutation of vars(G) uniformly at random
3 for each variable v ∈ vars(G) ordered by π {
4 if G′ contains a unit clause v resp. v

5 then Set the value of v in β to satisfy that unit clause
6 Choose G := G′|v or G := G′|v depending on β(v) = 1 or β(v) = 0.
7 }
8 return β

Algorithm 2. SCH(k-CNF G, assignment β)
1 repeat 3|vars(G)| times {
2 if β satisfies G then break
3 Select an arbitrary clause C ∈ G that is not satisfied by β
4 Choose a variable in C uniformly at random and flip its value in β
5 }
6 return β

Algorithm 3. COMB(k-CNF G,integer d)
1 β := assignment to G drawn uniformly at random
2 β′ := PPSZ(G, d, β)
3 if β′ satisfies G then return β′

4 β′ := SCH(G, β)
5 if β′ satisfies G then return β′

6 return null

4 The Analysis

4.1 Main Result

Iwama and Tamaki proved in [6], that the expected number of repetitions of
COMB(G, d) is O(1.3238n) (resp. O(1.32266n) as noted in the introduction)
for a satisfiable 3-CNF G and some large but fixed d. We improve that result to:

Proposition 4. For a satisfiable 3-CNF G and some large but fixed d, the ex-
pected number of repetitions of COMB(G, d) is O(1.32216n).

4.2 Disassembling COMB

For a set of variables D ⊆ vars(G) and some assignment β, we define the set
B(D, β) to be the set of all assignments that agree with β on at least the variables
in D, i.e. the subcube of the solution space where the variables in D are fixed to
their values according to β and the others take all possible combinations. From
[9], we know:

Lemma 5. For a satisfiable k-CNF G, there exists a family of sets of variables
(Dβ : β ∈ sat(G)) so that the family of the corresponding subcubes (B(Dβ , β) :
β ∈ sat(G)) partitions the solution space (i.e. covering completely while being
pairwise distinct). Moreover, it is true that

∑

β∈sat(G)

2−Dβ = 1.

So, throughout the rest of the paper, fix (Dβ) to be some arbitrary such
family, and let (Bβ) be the corresponding subcubes.

For some β∗ ∈ sat(G), let β be drawn uniformly at random from β ∈ Bβ∗ ,
then the success probability of Algorithm COMB is at least

max{P[PPSZ : β ∈ Bβ∗], P[SCH : β ∈ Bβ∗]}

where PPSZ resp. SCH denote the events that PPSZ(G, d, β) resp. SCH(G, β)
return some satisfying assignment. For a random β, the probability that β ∈ Bβ∗

holds is equal to 2−Dβ∗ , while β is still distributed uniformly in Bβ∗ . To get the
success probability, we just sum up the success probabilities over all subcubes.
Hence, Algorithm COMB succeeds with probability at least

∑

β∗∈sat(G)

2−Dβ∗ · max{P[PPSZ : β ∈ Bβ∗], P[SCH : β ∈ Bβ∗]}

≥ min
β∗∈sat(G)

max{P[PPSZ : β ∈ Bβ∗], P[SCH : β ∈ Bβ∗]}.

The inequality follows because we know that
∑

β∗∈sat(G) 2−Dβ∗ = 1.
Therefore, to have a lower bound on the success probability, we can focus

on computing a lower bound for the success probability given a single satisfying
assignment β∗ and its subcube. Hence, fix some β∗ ∈ sat(G), B = Bβ∗ , D = Dβ∗ ,
and N = vars(G) \ D to the end of the paper.

4.3 Bound for SCH

To bound the running time of his algorithm, Schöning proved the following
theorem, which bounds the success probability of Algorithm SCH in terms of the
hamming distance dist(β, β∗) of some initial assignment β and some satisfying
assignment β∗:

Theorem 6. Let G be a satisfiable k-CNF on n variables and β∗ be a satisfying
assignment for F . For each initial assignment β, the probability that SCH(G, β)
finds a satisfying assignment is at least (k − 1)−dist(β,β∗)−o(n).

Conditioning on β ∈ Bβ∗ , we know that β agrees with β∗ on D, whereby the
assignment to N is uniformly distributed. So, we have:

P[SCH : β ∈ Bβ∗]

≥ E[(k − 1)−dist(β,β∗)−o(n) : β ∈ Bβ∗]

= (k − 1)−o(n)
∏

v∈N

(P[β(v) = β∗(v)] · (k − 1)0 + P[β(v) 6= β∗(v)] · (k − 1)−1)

= (k − 1)−o(n)
∏

v∈N

(1/2 · (k − 1)0 + 1/2 · (k − 1)−1)

= (2 − 2/k)−|N |−o(n)

= (2 − 2/k)−n+|D|−o(n)

= 2−σk(n−|D|)−o(n)

where σk = log2(2 − 2/k).
Obviously, Schöning’s algorithm performs better with increasing |D|.

4.4 Bound for PPSZ

Let us define a nice distribution H . H is a nondecreasing, continuous mapping
from [0, 1] to [0, 1] with H(0) = 0 and H(1) = 1. Moreover, it must be differen-
tiable in all but at most a finite number of points. Finally, its derivate h must
be uniformly bounded on [0, 1]. We set

βH =

∫ 1

0

h(r) log2(h(r)) dr

γH =

∫ 1

0

min{H(r)k−1, Rk(r)} dr

where Rk(r) is the smallest non-negative x that satisfies fk(x, r) = x with
fk(x, r) = (r + (1 − r)x)k−1.

We will prove:

Lemma 7. The probability that PPSZ finds a satisfying assignment given β ∈
Bβ∗ is at least

2−βH |D|−(1−γH)(n−|D|)−εn−o(n)

where ε can be made arbitrary small positive by choosing d large enough.

Of course, H is only a parameter in the analysis, it actually does not change
the running time of PPSZ. However, βH and γH are subject to H . For k = 3
and k = 4 we are not able to find H in such a way that the success probability
does not decrease for small |D|. But, we will see that we can tweak H so that
the bound does not decrease too much until Schöning’s can take over.

4.5 Reassembling COMB

Given both bounds, we like to have a bound for max{P[PPSZ : β ∈ Bβ∗], P[SCH :
β ∈ Bβ∗]}. We see that both bounds are in terms of |D|. Hence, we have to find
the ‘worst’ |D|:

min
D

2max{−σk(n−|D|),−βH |D|−(1−γH)(n−|D|)}.

Assuming that we have a distribution H so that the success probability of
PPSZ decreases with |D|, we can compute the worst |D0| since the success
probability of SCH increases with |D|:

σk(n − |D0|) = βH |D0| + (1 − γH)(n − |D0|)

|D0| = n
σk − 1 + γH

σk − 1 + γH + βH

We have proven:

Proposition 8. Let H be a nice distribution so that that the bound for PPSZ
decreases with |D|, and let

δ =
σk − 1 + γH

σk − 1 + γH + βH

be well defined with 0 ≤ δ ≤ 1. For a satisfiable k-CNF G, the success probability
of Algorithm COMB(G, d) is at least

2−σk(1−δ)n−εn−o(n)

where ε can be made arbitrary small positive by choosing d large enough.

In Section 6, we will provide some H3 with βH3 ≤ 0.90925, γH3 ≥ 0.61229,
and thus δ3 ≥ 0.02927. Therefore, we have a lower bound of Ω(1.32216−n) for
the success probability of COMB. This finishes the proof of the main result,
Proposition 4.

5 Proof of The PPSZ Bound

At first, we have to recapitulate some technical features around PPSZ, some of
which have been dismissed from the latest version of [9] because they are not
necessary anymore by their analysis, but we need them for this one.1

However, for some permutation π, let F (π) denote the set of variables in N
that have been reduced to unit clauses during a run of PPSZ. When β agrees
with β∗ on the variables in vars(G) \ F (π), the algorithm will find β∗. Given
that β ∈ Bβ∗, we know that β and β∗ already agree on D. So, we have:

P[PPSZ : β ∈ Bβ∗] ≥ 2−N · E

[

2F (π)
]

In order to have a good bound on the expectation, we will choose some subset
Γ of the permutation space and compute instead:

P[PPSZ : β ∈ Bβ∗] ≥ 2−N · P[π ∈ Γ] · E

[

2|F (π)| : π ∈ Γ
]

A placement α is a function that maps each variable to a real value in [0, 1].
With π(α), we denote the permutation obtained by ranking the variables of G
due to the value α takes on them with some arbitrary rule for breaking ties. So,
a uniform distribution of α(.) yields a uniform distribution of π(α(.)).

Let v be a variable in N . For a set of placements Γ, we define QΓ (r) to be
the probability that a unit clause will force v with respect to π(α) where α is a
random placement from Γ having α(v) = r. Then we have:

P[v ∈ F (π(α)) : α ∈ Γ] ≥ QΓ =

∫ 1

0

QΓ (r) dr

1 An older version of [9] is still available in the citeseer-cache at
http://citeseer.ist.psu.edu/paturi98improved.html.

For every λ ∈ [0, 1), we consider the set of placements ΓH,λ,D to be the set of
all placements where, for each r ∈ [λ, 1], at least H(r)|D| variables v ∈ D have
α(v) < r.

In Lemma 24 in the old version of [9], they restrict H(r) to be at most
Rk(r)1/(k−1). The corresponding lemma in the latest version, Lemma 13 in [9],
does not make use of any function H at all. Nevertheless, comparing the details,
the new lemma looks like using H(r) = min{r · (k−1)/(k−2), 1} in the old one.
But, that H violates the restriction H(r) ≤ Rk(r)1/(k−1) . Motivated by that
insight, we suppose that the restriction can be removed to generalize Lemma 24
of the old version.

So, from Lemma 26 in the old version of [9], we know that:

Lemma 9. Recursively define Qd
k(r) by Q0

k(r) = 0 and Qd
k(r) = fk(Qd−1

k (r), r)
for d > 0. For Γ = ΓH,λ,D and r ∈ [λ, 1], it is true that

QΓ (r) ≥ min{H(r)k−1, Qd
k(r)} − ρ(H(r))

where ρ(x) = 0 for x ∈ {0, 1} and ρ(x) = min
{

k2d

|A|

(

1
x(1−x)

)

, 1
}

for x ∈ (0, 1).

We compute QΓ for Γ = ΓH,λ,D :

QΓ =

∫ 1

0

QΓ (r) dr

≥
∫ 1

λ

QΓ (r) dr

≥
∫ 1

0

(min{H(r)k−1, Qd
k(r)} − ρ(H(r))) dr − λ

≥
∫ 1

0

min{H(r)k−1, Qd
k(r)} dr −

∫ 1

0

ρ(H(r)) dr − λ

Paturi et al evaluated
∫ 1

0 ρ(H(r)) dr to be o(1) when |D| ≥ √
n as n tends

to infinity. We omit the analysis for |D| ≤ √
n here since it is very likely for

less than
√

n variables to appear at the very beginning of the permutation π

before all variable in N . For those, Paturi et al showed that QΓ ≥
∫ 1

0
Qd

k(r). We
conclude:

QΓ ≥
∫ 1

0

min{H(r)k−1, Qd
k(r)} dr − o(1) − λ

In Proposition 3 in [7], they also show that that Qd
k(r) converges to Rk(r)

for every r ∈ [0, 1]. Hence, for every small positive ε, there exists a large dε so
that for every d ≥ dε, Qd

k(r) ≥ Rk(r) − ε is true for all r ∈ [0, 1]. We conclude
that

QΓ ≥
∫ 1

0

min{H(r)k−1, Rk(r) − ε} dr − λ − o(1)

≥
∫ 1

0

min{H(r)k−1, Rk(r)} dr − ε − λ − o(1)

is true and thus have essentially generalized Lemma 24 in the old version of [9].
Since we have computed QΓ , we can consider the expected number of vari-

ables that will be forced by unit clauses:

E

[

2|F (π(α))| : α ∈ ΓH,λ,D

]

≥ 2E[|F (π(α))|:α∈ΓH,λ,D]

≥ 2γH |N |−ε|N |−λ|N |−o(|N |)

Thus, we conlude:

P[PPSZ : β ∈ Bβ∗] ≥ P[α ∈ ΓH,λ,D] · 2−(1−γH)|N |−ε|N |−λ|N |−o(|N |)

For P[α ∈ ΓH,λ,D], Paturi et al proved a lower bound, cf. Lemma 23 in the
old version of [9]:

Lemma 10. For λ > 0, it is true that

P[α ∈ ΓH,λ,D] ≥ 2−βH |D|−o(|D|).

Because ε and λ are both arbitrary small positive values, we replace ε by
ε + λ and obtain

P[PPSZ : β ∈ Bβ∗] ≥ 2−βH |D|−(1−γH)(n−|D|)−εn−o(n),

which finishes the proof of Lemma 7.

6 Optimized Nice Distributions for 3-SAT

By Proposition 8, the running time bound depends on the choice of some H which
produces a large δ. Experiments showed that we should consider functions H so
that there is some r0 ≤ 1/2 with H(r)2 ≥ R2(r) for r ≤ r0 and H(r)2 ≤ R2(r)
for r ≥ r0. In that case we have:

γH =

∫ r0

0

R3(r) dr +

∫ 1

r0

H(r)2 dr

For r ∈ [0, 1/2], we have:

R3(r) =
r2

(1 − r)2
∫ r

0

R3(r
′) dr′ = 2 ln(1 − r) − 1 +

r2 − r − 1

r − 1

At a simple example, we consider the function Hθ(r) = min{1, r/θ} for some
θ ∈ [1/2, 1]. For r ∈ [0, 1 − θ], we have that Hθ(r)

2 ≥ R3(r), for r ∈ [1 − θ, θ],

Hθ(r)
2 ≤ R3(r), and finally, for r ∈ [θ, 1], we have Hθ(r)

2 = R3(r) = 1. We
have:

γHθ
=

∫ 1−θ

0

R3(r) dr +

∫ θ

1−θ

Hθ(r)
2 dr + 1 − θ

=
6 ln(θ)θ2 + 6 θ − 4 θ3 − 1

3 θ2

βHθ
=

∫ θ

0

1

θ
log2

(

1

θ

)

dr

= − log2(θ)

We insert this into the formula for δ in Proposition 8 and compute the root
of the derivate with respect to θ to get the optimal θ = 0.5109968782. For this,
we get βHθ

≤ 0.9686136176, γHθ
≥ 0.613242472, and thus δ ≥ 0.28368. This

yields an upper bound of O(1.3225n) for the expected number of repetitions of
Algorithm COMB.

But, we can do better. In order to find an optimal H, we can setup a contin-
uous function H consisting of linear pieces and try to optimize it until we hit the
best result. Experiments showed that the resulting curve is perfectly resembled
by the following function, with some appropriate parameters a and b:

H(r) =

{

r/θ if r ∈ [0, 1− θ)

1 − (−a ln(r))b if r ∈ [1 − θ, 1]

h(r) =
dH

dr
=

{

1/θ if r ∈ [0, 1− θ)

−b (−a ln(r))b

r ln(r) if r ∈ [1 − θ, 1)

H(r) must be continuous, and naturally it should also be differentiable com-
pletely. Moreover, we propose that H(r) should hit R3(r)

1/2 exactly when the
linear part finishes, i.e. at 1− θ since R3(r)

1/2 = r/(1− r) for r ∈ [0, 1/2]. Using
these constraints, i.e.

H(1 − θ) = R3(1 − θ)1/2 and

h(1 − θ) = 1/θ,

we can eliminate a and b:

a = −
(

2 θ − 1

θ

)

2 θ−1
ln(1−θ)(−1+θ)

(ln (1 − θ))
−1

b =
ln (1 − θ) (−1 + θ)

2 θ − 1

Using numerical optimization, we can find θ so that δ in Proposition 8 is
maximized:

θ = 0.51118...

a = 1.14371...

b = 15.63571...

βH ≤ 0.90625

γH ≥ 0.61229

δH ≥ 0.02927

This yields an upper bound of O(1.32216n) for the expected number of rep-
etitions of Algorithm COMB.

Acknowledgements

The author would like to thank Mario Szegedy for some nice remarks.

References

1. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction
problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations
of Computer Science (FOCS). (1999) 410–414

2. Schuler, R., Schöning, U., Watanabe, O.: A probabilistic 3-SAT algorithm further
improved. In: Proceedings of the 19th Annual Symposium on Theoretical Aspects
of Computer Science (STACS). (2002) 192–202

3. Rolf, D.: 3-SAT ∈ RTIME(1.32971n). Diploma thesis, Department Of Computer
Science, Humboldt University Berlin, Germany (2003)

4. Baumer, S., Schuler, R.: Improving a probabilistic 3-SAT algorithm by dynamic
search and independent clause pairs. In: Proceedings of the 6th International
Conference on Theory and Applications of Satisfiability Testing (SAT). (2003)
150–161

5. Rolf, D.: 3-SAT ∈ RTIME(O(1.32793n)) - improving randomized local search by
initializing strings of 3-clauses. Electronic Colloquium on Computational Com-
plexity (ECCC) (2003)

6. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). (2004)
328–328

7. Paturi, R., Pudlak, P., Saks, M.E., Zane, F.: An improved exponential-time al-
gorithm for k-SAT. In: Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). (1998) 628–637

8. Rolf, D.: Derandomization of PPSZ for Unique-k-SAT. In: Proceedings of the
8th International Conference on Theory and Applications of Satisfiability Testing
(SAT). (2005) 216–225

9. Paturi, R., Pudlak, P., Saks, M.E., Zane, F.: An improved exponential-time algo-
rithm for k-SAT. Journal of the Association for Computing Machinery (JACM)
(to appear)

10. Alon, N., Spencer, J.: The Probabilistic Method. John Wiley (1992)
11. Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique

k-SAT: An isolation lemma for k-CNFs. In: Proceedings of the 18th Annual IEEE
Conference on Computational Complexity (CCC). (2003) 135–141

12. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou,
C., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for
k-SAT based on local search. Theoretical Computer Science 289 (2002) 69–83

13. Paturi, R., Pudlak, P., Zane, F.: Satisfiability coding lemma. Chicago Journal of
Theoretical Computer Science (1999)

14. Brueggemann, T., Kern, W.: An improved deterministic local search algorithm for
3-SAT. Theoretical Computer Science 329 (2004) 303–313

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

