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Abstract

We use derandomization to show that sequences of positive pspace-dimension – in fact, even
positive ∆p

k-dimension for suitable k – have, for many purposes, the full power of random oracles.
For example, we show that, if S is any binary sequence whose ∆p

3-dimension is positive, then
BPP ⊆ PS and, moreover, every BPP promise problem is PS-separable. We prove analogous
results at higher levels of the polynomial-time hierarchy.

The dimension-almost-class of a complexity class C, denoted by dimalmost-C, is the class
consisting of all problems A such that A ∈ CS for all but a Hausdorff dimension 0 set of oracles
S. Our results yield several characterizations of complexity classes, such as BPP = dimalmost-P
and AM = dimalmost-NP, that refine previously known results on almost-classes. They also
yield results, such as Promise-BPP = almost-P-Sep = dimalmost-P-Sep, in which even the
almost-class appears to be a new characterization.

1 Introduction

Assessing the computational power of randomness is one of the most fundamental challenges facing
computational complexity theory. Concrete questions involving the best algorithms for primality
testing, factoring, etc., are instances of this challenge, as are structural questions concerning chal-
lenge, as are structural questions concerning BPP, AM, and other randomized complexity classes.

One approach to studying the power of a randomized complexity class C is to address the
following question: If C0 is the nonrandomized version of C, then how weak an assumption can we
place on an oracle S and still be assured that C ⊆ CS

0 ? For example, how weak an assumption can
we place on an oracle S and still be assured that BPP ⊆ PS? For this particular question, it was
a result of folklore that BPP ⊆ PS holds for every oracle S that is algorithmically random in the
sense of Martin-Löf [22]; it was shown by Lutz [18] that BPP ⊆ PS holds for every oracle S that
is pspace-random; and it was shown by Allender and Strauss [3] that BPP ⊆ PS holds for every
oracle S that is p-random, or even random relative to a particular sublinear-time complexity class.

In this paper, we extend this line of inquiry by considering oracles S that have positive dimension
(a complexity- theoretic analog of classical Hausdorff dimension [11, 8]) with respect to various
resource bounds. Specifically, we prove that every oracle S that has positive ∆p

3-dimension (hence
every oracle S that has positive pspace-dimension) satisfies BPP ⊆ PS .

Our main theorem is a generalization of this fact that applies to randomized promise classes
at various levels of the polynomial-time hierarchy. (Promise problems were introduced by Groll-
man and Selman [10]. The randomized promise class Promise-BPP was introduced by Buhrman
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and Fortnow [6] and shown by Fortnow [9] to characterize a “strength level” of derandomization
hypotheses. The randomized promise class Promise-AM was introduced by Moser [25].) For every
integer k ≥ 0, our main theorem says that, for every oracle S with positive ∆p

k+3-dimension, every

BP · ΣP
k promise problem is ΣP,S

k -separable. In particular, if S has positive ∆p
3-dimension, then

every BPP promise problem is PS-separable, and, if S has positive ∆p
4-dimension, then every AM

promise problem is NPS-separable.
We use our results to investigate classes of the form

dimalmost-C =
{

A
∣

∣ dimH(
{

B
∣

∣ A /∈ CB
}

) = 0
}

for various complexity classes C. It is clear that dimalmost-C is contained in the extensively inves-
tigated class

almost-C =
{

A
∣

∣ Pr[A /∈ CB] = 0
}

,

where the probability is computed according to the uniform distribution (Lebesgue measure) on
the set of all oracles B. We show that

dimalmost-ΣP
k -Sep = almost-ΣP

k -Sep = Promise-BP · ΣP
k

holds for every integer k ≥ 0, where ΣP
k -Sep is the set of all ΣP

k -separable pairs of languages. This
implies that

dimalmost-P = BPP,

refining the proof by Bennett and Gill [5] that almost-P = BPP. Also, for all k ≥ 1,

dimalmost-ΣP
k = BP · ΣP

k ,

refining the proof by Nisan and Wigderson [26] that almost-ΣP
k = BP · ΣP

k .
The 1997 derandomization method of Impagliazzo and Wigderson [16] is central to our argu-

ments.

2 Resource-Bounded Dimension and Relativized Circuit Complex-

ity

This section reviews and develops those aspects of resource-bounded dimension and its relationship
to relativized circuit-size complexity that are needed in this paper. It is convenient to use entropy
rates as an intermediate step in this development.

2.1 Resource-Bounded Dimension

Resource-bounded dimension is an extension of classical Hausdorff dimension that imposes dimen-
sion structure on various complexity classes. There are now several equivalent ways to formulate
resource-bounded dimension. Here we sketch the elements of the original formulation that are
useful in this paper.

We work in the Cantor-space C of all infinite binary sequences.

Definition. ([19]). Let s ∈ [0,∞).

1. An s-gale is a function d : {0, 1}∗ → [0,∞) satisfying d(w) = 2−s[d(w0) + d(w1)] for all w ∈
{0, 1}∗.
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2. An s-gale succeeds on a sequence S ∈ C if lim sup
n→∞

d(S[0..n− 1]) = ∞, where S[0..n− 1] denotes

the n-bit prefix of S.

3. The success set of an s-gale d is S∞[d] = {S ∈ C | d succeeds on S }.

The following gale characterization of Hausdorff dimension is the key to resource-bounded
dimension. In this paper we will use this characterization in place of the original definition of
Hausdorff dimension [11, 8], which we refrain from repeating here.

Theorem 2.1. (Lutz [19]). The Hausdorff dimension of a set X ⊆ C is

dimH(X) = inf {s | there is an s-gale d such that X ⊆ S∞[d]} .

To extend Hausdorff dimension to complexity classes, we define a resource bound to be one of
the following classes of functions.

all = {f | f : {0, 1}∗ → {0, 1}∗ }
p =

{

f ∈ all
∣

∣ f is computable in nO(1) time
}

∆p
k = pΣP

k−1 for k ≥ 2
pspace =

{

f ∈ all
∣

∣ f is computable in nO(1) space
}

Each of these resource bounds ∆ is associated with a result class R(∆) defined as follows.
R(all) = C

R(p) = E = TIME(2linear)

R(∆p
k) = ∆E

k = EΣP
k−1

R(pspace) = ESPACE = SPACE(2linear)
A real-valued function f : {0, 1}∗ → [0,∞) is ∆-computable if there is a function f̂ : {0, 1}∗×N →

Q such that f̂ ∈ ∆ (where the input (w, r) ∈ {0, 1}∗ × N is suitably encoded with r in unary) and,
for all w ∈ {0, 1}∗ and r ∈ N, |f̂(w, r) − f(w)| ≤ 2−r.

We now define resource-bounded dimension by imposing resource bounds on the gale charac-
terization in Theorem 2.1.

Definition. ([19]). Let ∆ be a resource bound, and let X ⊆ C. (We identify each S ∈ X with the
language whose characteristic sequence is S.)

1. The ∆-dimension of X is

dim∆(X) = inf {s | there is a ∆-computable s-gale d such that X ⊆ S∞[d]} .

2. The dimension of X in R(∆) is dim(X|R(∆)) = dim∆(X ∩ R(∆)).

As shown in [19], these definitions endow the above-mentioned complexity classes R(∆) with
dimension structure. In general,

0 ≤ dim(X|R(∆)) ≤ dim∆(X) ≤ 1,

and dim(R(∆)|R(∆)) = 1. Also,

∆ ⊆ ∆′ =⇒ dim∆′(X) ≤ dim∆(X),

e.g., dimpspace(X) ≤ dim∆p
3
(X). It is clear that dimall(X) = dim(X|C) = dimH(X).
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Our main results involve ∆-dimensions of individual sequences S, by which we mean

dim∆(S) = dim∆({S}).

We use the easily verified fact that, if ∆ is any of the countable resource bounds above, then

dimH({S | dim∆(S) = 0}) = 0.

For more discussion, motivation, examples, and results, see [19, 14, 20, 12, 23].

2.2 Entropy Rates

We use a recent result of Hitchcock and Vinodchandran [15] relating entropy rates to dimension.
Entropy rates were studied by Chomsky and Miller [7], Kuich [17], Staiger [27, 28], Hitchcock [12],
and others.

Definition. The entropy rate of a language A ⊆ {0, 1}∗ is

HA = lim sup
n→∞

log |A=n|

n
,

where A=n = A ∩ {0, 1}n.

Definition. Let C be a class of languages, and let X ⊆ C. The C-entropy rate of X is

HC(X) = inf
{

HA

∣

∣ A ∈ C and X ⊆ Ai.o.
}

,

where
Ai.o. = {S ∈ C | (∃∞n)S[0..n − 1] ∈ A} .

The following result is a routine relativization of Theorem 5.5 of [15].

Theorem 2.2. (Hitchcock and Vinodchandran [15]). For all X ⊆ C and k ∈ Z+,

dim∆p

k+2
(X) ≤ HΣP

k
(X).

2.3 Relativized Circuit-Size Complexity

Definition.1 [29]. For f : {0, 1}n → {0, 1} and A ⊆ {0, 1}∗, sizeA(f) is the minimum size of (i.e.,
number of wires in) an n-input oracle circuit γ such that γA computes f .

2. For x ∈ {0, 1}∗ and A ⊆ {0, 1}∗, sizeA(x) = sizeA(fx), where fx : {0, 1}dlog |x|e → {0, 1} is
defined by

fx(wi) =

{

x[i] if 0 ≤ i < |x|

0 if i ≥ |x|,

w0, . . . , w2dlog |x|e−1 lexicographically enumerate {0, 1}dlog |x|e, and x[i] is the ith bit of x.

Lemma 2.3. For all A, S ∈ C,

HNPA({S}) ≤ lim inf
n→∞

sizeA(S[0..n − 1]) log n

n
.

4



Proof. Assume that

α > β > lim inf
n→∞

sizeA(S[0..n − 1]) log n

n
.

It suffices to show that HNPA({S}) ≤ α.

Let B be the set of all strings x such that sizeA(x) < β |x|
log |x| . By standard circuit-counting

arguments (e.g., see [21]), there is a constant c ∈ N such that, for all sufficiently large n, if we
choose m ∈ N with 2m−1 ≤ n < 2m and write γ = 2−mn, so that

β
n

log n
= β

γ2m

log(γ2m)
≤ βγ

2m

m − 1
,

then

|B=n| ≤ c

(

4eβγ
2m

m − 1

)βγ 2m

m−1

,

so

log |B=n| ≤ log c + βγ
2m

m − 1
log

(

4eβγ
2m

m − 1

)

= log c + βγ2m

[

m

m − 1
+

log 4eβγ − log(m − 1)

m − 1

]

≤ αn,

whence

HB = lim sup
n→∞

log |B=n|

n
≤ α.

By our choice of β, S ∈ Bi.o.. Since B ∈ NPA, it follows that HNP({S}) ≤ α.

Notation. For k ∈ N and x ∈ {0, 1}∗, we write

sizeΣP
k (x) = sizeKk

(x),

where Kk is the canonical ΣP
k -complete language [4].

By Theorem 2.2 and Lemma 2.3, we have the following.

Theorem 2.4. For all S ∈ C and k ∈ N,

dim∆p

k+3
(S) ≤ lim inf

n→∞

sizeΣP
k (S[0..n − 1])

n

3 Positive-Dimension Derandomization

In order to state our main theorem, we review the notion of separability and give a formulation of
Promise-BP-classes that is suitable for our purposes.

Definition. Given a class C of languages, an ordered pair A = (A+, A−) of (disjoint) languages is
C-separable if there exists a language C ∈ C such that A+ ⊆ C and A− ∩ C = ∅. We write

C-Sep =
{

(A+, A−)
∣

∣ (A+, A−) is C-separable
}

.
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Definition. Fix a standard paring function 〈, 〉 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗.

1. A witness configuration is an ordered pair B = (B, g) where B ⊆ {0, 1}∗ and g : N → N.

2. Given a witness configuration B = (B, g), the B-critical event for a string x ∈ {0, 1}∗ is the set

Bx =
{

w ∈ {0, 1}g(|x|) | 〈x, w〉 ∈ B
}

,

interpreted as an event in the sample space {0, 1}g(|x|) with the uniform probability measure.
(That is, the probability of Bx is Pr(Bx) = 2−g(|x|)|Bx|.)

3. Given a class C of languages, we define the class Promise-BP · C to be the set of all ordered
pairs A = (A+, A−) of languages for which there is a witness configuration B = (B, q) with the
following four properties.

(i) B ∈ C.

(ii) q is a polynomial.

(iii) For all x ∈ A+, Pr(Bx) ≥ 2
3 .

(iv) For all x ∈ A−, Pr(Bx) ≤ 1
3 .

Note that Promise-BP is an operator that maps a class C of languages to a class Promise-BP · C
of disjoint pairs of languages. In particular,

Promise-BP · P = Promise-BPP

is the class of BPP promise problems investigated by Buhrman and Fortnow [6] and Moser [24],
and

Promise-BP · NP = Promise-AM

is the class of Arthur-Merlin promise problems investigated by Moser [25].
The following result is the main theorem of this paper.

Theorem 3.1. For every S ∈ C and k ∈ Z+,

dim∆p

k+3
(S) > 0 =⇒ Promise-BP · ΣP

k ⊆ ΣP,S
k -Sep.

Before proving Theorem 3.1, we derive some of its consequences. First, the cases k = 0 and
k = 1 are of particular interest:

Corollary 3.2. For every S ∈ C,

dim∆p
3
(S) > 0 =⇒ Promise-BPP ⊆ PS-Sep

and
dim∆p

4
(S) > 0 =⇒ Promise-AM ⊆ NPS-Sep.

We next note that our results for promise problems imply the corresponding results for decision
problems. (Note, however, that the results of Fortnow [9] suggest that the results on promise
problems are in some sense stronger.)
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Corollary 3.3. For every S ∈ C and k ∈ N,

dim∆p

k+3
(S) > 0 =⇒ BP · ΣP

k ⊆ ΣP,S
k .

In particular,
dim∆p

3
(S) > 0 =⇒ BPP ⊆ PS (3.1)

and
dim∆p

4
(S) > 0 =⇒ AM ⊆ NPS . (3.2)

Intuitively, (3.1) says that even an oracle S with ∆p
3-dimension 0.001 – which need not be

random relative to any reasonable distribution – “contains enough randomness” to carry out a
deterministic simulation of BPP. To put the matter differently, to prove that P = BPP, we need
“only” show how to dispense with such an oracle S.

As in section 1, for each relativizable complexity class C (of languages or pairs of languages),
define the dimension-almost-class

dimalmost-C =
{

A
∣

∣ dimH(
{

S
∣

∣ A /∈ CS
}

) = 0
}

,

noting that this is contained in the previously studied almost-class

almost-C =
{

A
∣

∣ Pr[A ∈ CS ] = 1
}

,

where the probability is computed according to the uniform distribution (Lebesgue measure) on
the set of all oracles S.

Theorem 3.4. For every k ∈ N,

dimalmost-ΣP
k -Sep = almost-ΣP

k -Sep = Promise-BP · ΣP
k .

Proof. Since every set of Hausdorff dimension less than 1 has Lebesgue measure 0, it is clear that
dimalmost-ΣP

k -Sep ⊆ almost-ΣP
k -Sep.

To see that almost-ΣP
k -Sep ⊆ Promise-BP · ΣP

k , let A = (A+, A−) ∈ almost-ΣP
k -Sep. Then by

the Lebesgue density theorem, there exists a deterministic polynomial-time oracle Turing machine
M and polynomial p such that

PrR[∃pMΣP
k−1

,R separates A] ≥ 3/4,

where ∃p means that the Turing machine can make p(n) nondeterministic moves with input of
length n. Let nk be the time bound of M . Let GNW be the Nisan-Wigderson pseudorandom
generator. Let N be the following Turing machine with ΣP

k−1 oracle.

input x
n = |x|

input s ∈ {0, 1}2n10k

input w ∈ {0, 1}nk

let r = GNW (s)

simulates MΣP
k−1

,r(〈x, w〉)
output the output of the simulation
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Note that each bit of r may be computed in polynomial time and MΣP
k−1

,r(x) makes at most nk

queries, therefore the above oracle Turing machine runs in polynomial time.

For all x ∈ A+, PrR[∃w ∈ {0, 1}p(|x|)MΣP
k−1

,R(〈x, w〉) = 1] ≥ 3/4. By the pseudorandomness of
GNW ,

Pr
s∈{0,1}2n10k [(∃w ∈ {0, 1}p(|x|))MΣP

k−1
,GNW (s)(〈x, w〉) = 1] ≥ 2/3. (3.3)

Similarly, for all x ∈ A−,

Pr
s∈{0,1}2n10k [(∃w ∈ {0, 1}p(|x|))MΣP

k−1
,GNW (s)(〈x, w〉) = 1] ≤ 1/3. (3.4)

Let

B =

{

< x, s >

∣

∣

∣

∣

(∃w ∈ {0, 1}|x|
nk

)N(〈x, s, w〉) = 1.

}

It is clear that B ∈ NPΣP
k−1 = ΣP

k .
Then by (3.3), for all x ∈ A+,

Pr(Bx) ≥ 2/3,

and by (3.4), for all x ∈ A−,
Pr(Bx) ≤ 1/3.

Then (B, 2n10k) is a witness configuration for A, hence A ∈ Promise-BP · ΣP
k .

To see that Promise-BP · ΣP
k ⊆ dimalmost-ΣP

k -Sep, let A ∈ Promise-BP · ΣP
k . Let

X =
{

S
∣

∣

∣
A /∈ ΣP,S

k -Sep
}

.

By Theorem 3.1, every element of X has ∆p
k+3-dimension 0. As noted in section 2.1, this implies

that dimH(X) = 0, whence A ∈ dimalmost-ΣP
k -Sep.

Corollary 3.5. For every k ∈ N,

dimalmost-ΣP
k = BP · ΣP

k .

In particular,
dimalmost-P = BPP (3.5)

and
dimalmost-NP = AM. (3.6)

We now turn to the proof of Theorem 3.1. We use the following well-known derandomization
theorem.

Theorem 3.6 (Impagliazzo and Wigderson [16]). For each ε > 0, there exists constants c′ > c > 0
such that, for every A ⊆ {0, 1}∗ and integer n > 1, the following holds. If f : {0, 1}bc log nc → {0, 1}
is a Boolean function that cannot be computed by an oracle circuit of size at most ncε relative to A,
then the generator GIW97

f : {0, 1}bc
′ log nc → {0, 1}n has the property that, for every oracle circuit γ

with size at most n,
∣

∣

∣
Prr∈Un [γA(r) = 1] − Prx∈Ubc′ log nc

[γA(GIW97
f (x)) = 1]

∣

∣

∣
< 1

n
,

where Um denotes {0, 1}m with the uniform probability measure.
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Proof of Theorem 3.1. Assume that dim∆p
k+3

(S) = α > 0. It suffices to show that for every A ∈

Promise-BP · Σp
k, A ∈ ΣP,S

k -Sep.

By Theorem 2.4, we have sizeΣP
k (S[0..n − 1]) > αn

2 log n
for all but finitely many n.

Let A = (A+, A−) ∈ Promise-BP · Σp
k. There exists B ∈ ΣP

k and polynomial q such that (B, q)
is a witness configuration for A. Therefore, there exists polynomial-time oracle Turing machine M
and polynomial p such that

∀x ∈ A+, Pr
r

[(∃w ∈ {0, 1}p(|x|))MΣP
k−1(x, r, w) = 1] ≥ 2/3

and
∀x ∈ A+, Pr

r
[(∃w ∈ {0, 1}p(|x|))MΣP

k−1(x, r, w) = 1] ≤ 1/3.

Let nd be the upper bound of the running time of M on x of length n with r and w of corresponding
lengths.

Let ε = α/2 and let c′, c be fixed in Theorem 3.6.
Let f : {0, 1}bcd log nc → {0, 1} be given by the first 2bcd log nc bits of S.
By Theorem 3.6, GIW97

f derandomizes linear size circuits with ΣP
k oracle and linear size nonde-

terministic circuits with ΣP
k−1 oracle.

Let NΣP
k−1

,S be the following nondeterministic Turing machine with oracles ΣP
k−1 and S.

input x
n = |x|

guess w1, w2, . . . , w2bc′d log nc ∈ {0, 1}p(n)

query the first 2bcd log nc bits of S

Let f : {0, 1}bcd log nc → {0, 1} be given by the first 2bcd log nc bits of S

for each string si ∈ {0, 1}bc
′d log nc do

Let ri = GIW97
f (si)

end for

Let r = 0
for each ri

if MΣP
k−1(x, ri, wi) = 1 then r = r + 1

end for

if r

2bc′d log nc ≥ 1/2 then output 1

else output 0.

By Theorem 3.6, for all x ∈ A+, there exists witness 〈w1, w2, . . . , w2bc′d log nc〉 such that NΣP
k−1

,S(x) =

1 and for all x ∈ A−, such witness does not exist.

Therefore, the above NPΣP
k−1 machine separates A with oracle S and hence A ∈ ΣP,S

k −Sep.

It should be noted that derandomization plays a significantly larger role in the proof of Corollary
3.5 than in the proofs of the analogous results for almost-classes. For example, the proof by Bennett
and Gill [5] that almost-P = BPP uses the easily proven fact that the set X =

{

S
∣

∣ PS 6= BPPS
}

has Lebesgue measure 0. Hitchcock [13] has recently proven that this set has Hausdorff dimension 1,
so the Bennett-Gill argument does not easily extend to a proof of (3.5). Instead, our proof of (3.5)
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relies, via (3.1), on Theorem 3.6 to prove that the set Y =
{

S
∣

∣ BPP * PS
}

has Hausdorff dimension
0. Similarly, the proof by Nisan and Wigderson [26] that almost-NP ⊆ AM uses derandomization,
but their proof that AM ⊆ almost-NP is elementary. In contrast, both directions of the proof of (3.6)
use derandomization: The inclusion dimalmost-NP ⊆ AM relies on the fact that almost-NP ⊆ AM
(hence on derandomization), and our proof that AM ⊆ dimalmost-NP relies, via (3.2), on Theorem
3.6.
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discussions and suggestions.
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