
Online Learning and Resource-Bounded Dimension:

Winnow Yields New Lower Bounds for Hard Sets
∗

John M. Hitchcock

Department of Computer Science

University of Wyoming

Abstract

We establish a relationship between the online mistake-bound model of learning and resource-
bounded dimension. This connection is combined with the Winnow algorithm to obtain new
results about the density of hard sets under adaptive reductions. This improves previous work
of Fu (1995) and Lutz and Zhao (2000), and solves one of Lutz and Mayordomo’s “Twelve
Problems in Resource-Bounded Measure” (1999).

1 Introduction

This paper has two main contributions: (i) establishing a close relationship between resource-
bounded dimension and Littlestone’s online mistake-bound model of learning, and (ii) using this
relationship along with the Winnow algorithm to resolve an open problem in computational com-
plexity. In this introduction we briefly describe these contributions.

1.1 Online Learning and Dimension

Lindner, Schuler, and Watanabe [15] studied connections between computational learning the-
ory and resource-bounded measure, primarily working with the probably approximately correct
(PAC) model. They also included the observation that any “admissible” subclass of P/poly that
is polynomial-time learnable in Angluin’s exact learning model [2] must have p-measure 0. The
proof of this made use of the essential equivalence between Angluin’s model and Littlestone’s online
mistake-bound model [16].

In the online mistake-bound model, a learner is presented a sequence of examples, and is asked
to predict whether or not they belong to some unknown target concept. The concept is drawn from
some concept class, which is known to the learner, and the examples may be chosen by an adversary.
After making its prediction about each example, the learner is told the correct classification for the
example, and learner may use this knowledge in making future predictions. The mistake bound of
the learner is the maximum number of incorrect predictions the learner will make, over any choice
of target concept and sequence of examples.

We push the observation of [15] much further, developing a powerful, general framework for
showing that classes have resource-bounded dimension 0. Resource-bounded measure and dimen-
sion involve betting on the membership of strings in an unknown set. To prove that a class has
dimension 0, we show that it suffices to give a reduction to a family of concept classes that has a

∗This research was supported in part by National Science Foundation grant 0515313.

1

Electronic Colloquium on Computational Complexity, Report No. 161 (2005)

ISSN 1433-8092

good mistake-bound learning algorithm. It is possible that the reduction can take exponential-time
and that the learning algorithm can also take exponential-time, as long as the mistake bound of the
algorithm is subexponential. If we have a reduction from the unknown set to a concept in learnable
concept class, we can view the reduction as generating a sequence of examples, apply the learning
algorithm to these examples, and use the learning algorithm’s predictions to design a good betting
strategy. Formal details of this framework are given in Section 3.

1.2 Density of Hard Sets

The two most common notions of polynomial-time reductions are many-one (≤p
m) and Turing (≤p

T).
A many-one reduction from A to B maps instances of A to instance of B, preserving membership.
A Turing reduction from A to B makes many, possibly adaptive, queries to B in order to solve
A. Many-one reductions are a special case of Turing reductions. In between ≤p

m and ≤p
T is a wide

variety of polynomial-time reductions of different strengths.
A common use of reductions is to demonstrate hardness for a complexity class. Let ≤p

τ be a
polynomial-time reducibility. For any set B, let Pτ (B) = {A | A ≤p

τ B} be the class of all problems
that ≤p

τ -reduce to B. We say that B is ≤p
τ -hard for a complexity class C if C ⊆ Pτ (B), that is, every

problem in C ≤p
τ -reduces to B. For a class D of sets, a useful notation is Pτ (D) =

⋃
B∈D Pτ (B).

A problem B is dense if there exists ε > 0 such that |B≤n| > 2nε
for all but finitely many n.

All known hard sets for the exponential-time complexity classes E = DTIME(2O(n)) or EXP =

DTIME(2nO(1)
) are dense. Whether every hard set must be dense has been often studied. First,

Meyer [25] showed that every ≤p
m-hard set for E must be dense, and he observed that proving the

same for ≤p
T-reductions would imply that E has exponential circuit-size complexity. Since then, a

line of research has obtained results for a variety of reductions between ≤p
m and ≤p

T, specifically
the conjunctive (≤p

c) and disjunctive (≤p
d) reductions, and for various functions f(n), the bounded

query ≤p
f(n)−tt

and ≤p
f(n)−T

reductions:

1. Watanabe [27, 10] showed that every hard set for E under the ≤p
c , ≤

p
d, or ≤p

O(log n)−tt reduc-
tions is dense.

2. Lutz and Mayordomo [20] showed that for all α < 1, the class Pnα−tt(DENSEc) has p-measure
0, where DENSE is the class of all dense sets. Since E does not have p-measure 0, their result
implies that every ≤p

nα−tt-hard set for E is dense.

3. Fu [8] showed that for all α < 1/2, every ≤p
nα−T-hard set for E is dense, and that for all

α < 1, every ≤p
nα−T-hard set for EXP is dense.

4. Lutz and Zhao [22] gave a measure-theoretic strengthening of Fu’s results, showing that for
all α < 1/2, Pnα−T(DENSEc) has p-measure 0, and that for all α < 1, Pnα−T(DENSEc) has
p2 -measure 0.

This contrast between E and EXP in the last two references was left as a curious open problem,
and exposited by Lutz and Mayordomo [21] as one of their “Twelve Problems in Resource-Bounded
Measure”:

Problem 6. For α ≤ 1
2 < 1, is it the case that Pnα−T(DENSEc) has p-measure 0 (or

at least, that E 6⊆ Pnα−T(SPARSE))?

We resolve this problem, showing the much stronger conclusion that the classes in question have
p-dimension 0. But first, in Section 4, we prove a theorem about disjunctive reductions that

2

illustrates the basic idea of our technique. We show that the class Pd(DENSEc) has p-dimension
0. The proof uses the learning framework of Section 3 and Littlestone’s Winnow algorithm [16].
Suppose that A ≤p

d S, where S is a nondense set. Then there is a reduction g mapping strings to
sets of strings such that x ∈ A if and only if at least one string in g(x) belongs to S. We view the
reduction g as generating examples that we can use to learn a disjunction based on S. Because
S is subexponentially dense, the target disjunction involves a subexponential number of variables
out of exponentially many variables. This is truly a case “when irrelevant attributes abound” [16]
and the Winnow algorithm perfoms exceedingly well to establish our dimension result. In the same
section we also use the learning framework to show that Pc(DENSEc) has p-dimension 0. These
results give new proofs of Watanabe’s aforementioned theorems about ≤p

d-hard and ≤p
c -hard sets

for E.
Our main theorem, presented in Section 5, is that for all α < 1, Pnα−T(DENSEc) has p-

dimension 0. This substantially improves the results of [20, 8, 22]. The resource-bounded measure
proofs in [20, 22] use the concept of weak stochasticity. As observed by Mayordomo [24], this
stochasticity approach can be extended to show a −1st-order scaled dimension [12] result, but it
seems a different technique is needed for an (unscaled) dimension result. Our learning framework
turns out to be just what is needed. We reduce the class Pnα−T(DENSEc) to a family of learnable
disjunctions. For this, we make use of a technique that Allender, Hemaspaandra, Ogiwara, and
Watanabe [1] used to prove a surprising result converting bounded-query reductions to sparse sets
into disjunctive reductions to sparse sets: Pbtt(SPARSE) ⊆ Pd(SPARSE). Carefully applying the
same technique on a sublinear-query Turing-reduction to a nondense set results in a disjunction
with a nearly exponential blowup, but it can still be learned by Winnow in our dimension setting.

The density of complete and hard sets for NP has also been studied often, with motivation
coming originally from the Berman-Hartmanis isomorphism conjecture [5]: all many-one complete
sets are dense if the isomorphism conjecture holds. Since no absolute results about the density
of NP-complete or NP-hard sets can be proved without separating P from NP, the approach has
been to prove conditional results under a hypothesis on NP. Mahaney [23] showed that if P 6= NP,
then no sparse set is ≤p

m-hard for NP. Ogiwara and Watanabe [26] extended Mahaney’s theorem
to the ≤p

btt-hard sets. Deriving a result from P 6= NP about NP-hard sets under unbounded truth-
table reductions is still an open problem, but a measure-theoretic assumption yields very strong
consequences. Lutz and Zhao [22] showed that under the hypothesis “NP does not have p-measure
0,” every ≤p

nα−T-hard set for NP must be dense, for all α < 1. In Section 6 we present the
same conclusion under the weaker hypothesis “NP has positive p-dimension,” and some additional
consequences.

2 Preliminaries

The set of all binary strings is {0, 1}∗. The length of a string x ∈ {0, 1}∗ is |x|. We write λ for the
empty string. For n ∈ N, {0, 1}n is the set of strings of length n and {0, 1}≤n is the set of strings
of length at most n.

A language is a subset L ⊆ {0, 1}∗. We write L≤n = L ∩ {0, 1}≤n and L=n = L ∩ {0, 1}n. We
say that L is sparse if there is a polynomial p(n) such that for all n, |L=n| ≤ p(n). We say that L
is (exponentially) dense if there is a constant ε > 0 such that |L≤n| > 2nε

for all sufficiently large
n. We write SPARSE and DENSE for the classes of all sparse languages and all dense languages.
The complement DENSEc of DENSE is the class of all nondense languages.

3

2.1 Polynomial-Time Reductions

We use standard notions of polynomial-time reducibilities:

• Turing reducibility: A ≤p
T B if there is a polynomial-time oracle machine M such that A =

L(MB).

• Truth-table reducibility: A ≤p
tt B if there is a polynomial-time oracle machine M that makes

nonadaptive queries such that A = L(MB).

• Disjunctive reducibility: A ≤p
d B if there is a polynomial-time computable f : {0, 1}∗ →

P({0, 1}∗) such that for all x, x ∈ A if and only if f(x) ∩ B 6= ∅.

• Conjunctive reducibility: A ≤p
c B if there is a polynomial-time computable f : {0, 1}∗ →

P({0, 1}∗) such that for all x, x ∈ A if and only if f(x) ⊆ B.

We write ≤p
q(n)−T or ≤p

q(n)−tt to indicate that the reduction makes at most q(n) queries on any

input of length n. The bounded reducibility A ≤p
btt B means A ≤p

k−tt B for some constant k.
Let ≤p

τ be a polynomial-time reducibility. For any language B, we define Pτ (B) = {A | A ≤p
τ B}.

A language B is ≤p
τ -hard for a class C if C ⊆ Pτ (B). For any class D of languages, Pτ (D) =⋃

B∈D Pτ (B).

2.2 Resource-Bounded Measure and Dimension

Resource-bounded measure and dimension were introduced in [17, 19, 4]. Here we briefly review the
definitions and basic properties. We refer to the original sources and also the surveys [18, 21, 13]
for more information.

The Cantor space is C = {0, 1}∞. Each language A ⊆ {0, 1}∗ is identified with its characteristic
sequence χ

A
∈ C according to the standard (lexicographic) enumeration of {0, 1}∗. We typically

write A in place of χ
A
. In this way a complexity class C ⊆ P({0, 1}∗) is viewed as a subset C ⊆ C.

We use the notation S �n to denote the first n bits of a sequence S ∈ C.
Let s > 0 be a real number. An s-gale is a function d : {0, 1}∗ → [0,∞) such that for all

w ∈ {0, 1}∗,

d(w) =
d(w0) + d(w1)

2s
.

A martingale is a 1-gale.
The goal of an s-gale is to obtain large values on sequences:

Definition. Let d be an s-gale and S ∈ C.

1. d succeeds on S if lim sup
n→∞

d(S �n) = ∞.

2. d succeeds strongly on S if lim inf
n→∞

d(S �n) = ∞.

3. The success set of d is S∞[d] = {S ∈ C | d succeeds on S}.

4. The strong success set of d is S∞
str[d] = {S ∈ C | d succeeds strongly on S}.

Notice that the smaller s is, the more difficult it is for an s-gale to obtain large values. Succeeding
martingales (s = 1) imply measure 0, and the infimum s for which an s-gale can succeed (or strongly
succeed) gives the dimension (or strong dimension):

4

Definition. Let X ⊆ C.

1. X has p-measure 0, written µp(X) = 0, if there is a polynomial-time computable martingale
d such that X ⊆ S∞[d].

2. The p-dimension of X, written dimp(X), is the infimum of all s such that there exists a
polynomial-time computable s-gale d with X ⊆ S∞[d].

3. The strong p-dimension of X, written Dimp(X), is the infimum of all s such that there exists
a polynomial-time computable s-gale d with X ⊆ S∞

str[d].

We now summarize some of the basic properties of the p-dimensions and p-measure.

Proposition 2.1. ([19, 4]) Let X,Y ⊆ C.

1. 0 ≤ dimp(X) ≤ Dimp(X) ≤ 1.

2. If dimp(X) < 1, then µp(X) = 0.

3. If X ⊆ Y , then dimp(X) ≤ dimp(Y) and Dimp(X) ≤ Dimp(Y).

The following theorem indicates that the p-dimensions are useful for studies within the com-
plexity class E.

Theorem 2.2. ([17, 19, 4])

1. µp(E) 6= 0. In particular, dimp(E) = Dimp(E) = 1.

2. For all c ∈ N, Dimp(DTIME(2cn)) = 0.

2.3 Online Mistake-Bound Model of Learning

A concept is a set C ⊆ U , where U is some universe. A concept C is often identified with its
characteristic function fC : U → {0, 1}. In this paper the universe is always a set of binary strings.
A concept class is a set of concepts C ⊆ P(U).

Given a concept class C and a universe U , a learning algorithm tries to learn an unknown target
concept C ∈ C. The algorithm is given a sequence of examples x1, x2, . . . in U . When given
each example xi, the algorithm must predict if xi ∈ C or xi 6∈ C. The algorithm is then told the
correct answer and given the next example. The algorithm makes a mistake if its prediction for
membership of xi in C is wrong. This proceeds until every member of U is given as an example.

The goal is to minimize the number of mistakes. The mistake bound of a learning algorithm
A for a concept class C is the maximum over all C ∈ C of the number of mistakes A makes when
learning C, over all possible sequences of examples. The running time of A on C is the maximum
time A takes to make a prediction.

2.4 Disjunctions and Winnow

An interesting concept class is the class of monotone disjunctions, which can be efficiently learned
by Littlestone’s Winnow algorithm [16]. A monotone disjunction on {0, 1}n is a formula of the
form φV =

∨
i∈V xi, where V ⊆ {1, . . . , n} and we write a string x ∈ {0, 1}n as x = x1 · · · xn.

The concept φV can also be viewed as the set {x ∈ {0, 1}n | φV (x) = 1} or equivalently as
{A ⊆ {1, . . . , n} | A ∩ V 6= ∅}.

5

The Winnow algorithm has two parameters α (a weight update multiplier) and θ (a threshold
value). Initially, each variable xi has a weight wi = 1. To classify a string x, the algorithm predicts
that x is in the concept if

∑
i wixi > θ, and not in the concept otherwise. The weights are updated

as follows whenever a mistake is made.

• If a negative example x is incorrectly classified, then set wi := 0 for all i such that xi = 1.
(Certainly these xi’s are not in the disjunction.)

• If a positive example x is incorrectly classified, then set wi := α ·wi for all i such that xi = 1.
(It is considered more likely that these xi’s are in the disjunction.)

A useful setting of the parameters is α = 2 and θ = n/2. With these parameters, Littlestone proved
that Winnow will make at most 2k log n + 2 mistakes when the target disjunction has at most k
literals. Also, the algorithm uses O(n) time to classify each example and update the weights.

3 Learning and Dimension

In this section we present a framework relating online learning to resource-bounded dimension.
This framework is based on reducibility to learnable concept class families.

Definition. A sequence C = (Cn | n ∈ N) of concept classes is called a concept class family.

We consider two types of reductions:

Definition. Let L ⊆ {0, 1}∗, C = (Cn | n ∈ N) be a concept class family, and r(n) be a time bound.

1. We say L strongly reduces to C in r(n) time, and we write L ≤r
str C, if there exists a sequence

of target concepts (cn ∈ Cn | n ∈ N) and a reduction f computable in O(r(n)) time such that
for all but finitely many n, for all x ∈ {0, 1}n, x ∈ L if and only if f(x) ∈ cn.

2. We say L weakly reduces to C in r(n) time, we write L ≤r
wk C if there a reduction f computable

in O(r(n)) time such that for infinitely many n, there is a concept cn ∈ Cn such that for all
x ∈ {0, 1}≤n, x ∈ L if and only if f(0n, x) ∈ cn.

It is necessary to quantify both the time complexity and mistake bound for learning a concept
class family:

Definition. Let t,m : N → N and let C = (Cn | n ∈ N) be a concept class family. We say that
C ∈ L(t,m) if there is an algorithm that learns Cn in O(t(n)) time with mistake bound m(n).

Combining the two previous definitions we arrive at our central technical concept:

Definition. Let r, t,m : N → N.

1. RLstr(r, t,m) is the class of all languages that ≤r
str-reduce to some concept class family in

L(t,m).

2. RLwk(r, t,m) is the class of all languages that ≤r
wk-reduce to some concept class family in

L(t,m).

6

A remark about the parameters in this definition is in order. If A ∈ RLstr(r, t,m), then A ≤r
str C

for some concept class family C = (Cn | n ∈ N). Then x ∈ A=n if and only if f(x) ∈ cn, where
cn ∈ Cn is the target concept and f is the reduction. We emphasize that the complexity of learning
Cn is measured in terms of n = |x|, and not the size of cn or f(x). Instead Cn is learnable in time
O(t(n)) with mistake bound m(n).

The following theorem is the main technical tool in this paper. Here we consider exponential-
time reductions to concept classes that can be learned in exponetial-time, but with subexponentially-
many mistakes.

Theorem 3.1. Let c ∈ N.

1. RLstr(2
cn, 2cn, o(2n)) has strong p-dimension 0.

2. RLwk(2
cn, 2cn, o(2n)) has p-dimension 0.

Proof. We only prove that RLwk(2
cn, 2cn, o(2n)) has p-dimension 0. The other part of the theorem

is proved similarly. Let s > 0 such that 2s is rational. It suffices to show that the class has
p-dimension at most s.

Let A ∈ RLwk(2
cn, 2cn, o(2n)). Then there is a concept class family C = {Cn | n ∈ N} ∈

L(2cn, o(2n)) such that A ≤2cn

wk C. Let f be this reduction from A to C. The for infinitely many n,
there is a target concept cn ∈ Cn such that

x ∈ A≤n ⇐⇒ f(x) ∈ cn.

Let J be the set of all n such that this concept exists. Let A be a 2cn-time learning algorithm for
C with mistake bound o(2n).

Fix an n and let N = 2n+1 − 1. We view the reduction f as generating a sequence of examples

f(s0), f(s1), . . . , f(sN),

one for each string in {0, 1}≤n. The idea is to run the algorithm A on this sequence of examples,
trying to learn cn. We will use A’s predictions to define an s-gale dn inductively as follows.

1. Let N0 = 2n/2. For all strings w with |w| < N0, dn(w) = 2(s−1)|w|.

2. Let ε be a small rational number to be determined later. Let w be any string w with N0 ≤
|w| < N . Run A on the sequence of examples f(sN0), . . . , f(s|w|), telling A that for each i,
N0 ≤ i < |w|,

- If w[i] = 1, then f(si) is a positive example.

- If w[i] = 0, then f(si) is a negative example.

At the end A will output a prediction for f(s|w|).

• If A predicts that f(s|w|) is a member of the target concept cn, then we let

– dn(w1) = 2s(1 − ε)d(w),

– dn(w0) = 2sεd(w).

• Otherwise, A predicts that f(s|w|) is not a member of the target concept cn, and we let

– dn(w0) = 2s(1 − ε)d(w),

– dn(w1) = 2sεd(w).

7

3. For w with |w| ≥ N , we set dn(w0) = dn(w1) = 2(s−1)dn(w).

The reason for making dn wait until N0 to bet is computational efficiency. For |w| < N0, dn(w) is
computable in O(|w|) time. If |w| ≥ N0, then to compute dn(w) we need to execute A on at most
|w| examples, each execution taking O(2cn) time to compute the example and O(2cn) to compute
the label, for a total time of O(|w|2cn). Because |w| ≥ 2n/2, this simplifies to O(|w|2c+1).

Each time A makes a correct prediction, the value of the s-gale is increased by a 2s(1 − ε)
factor. When A makes a mistake, the value is multiplied by 2sε. Let wn be the length N prefix of
A’s characteristic sequence and suppose that n ∈ J . In the computation of dn(wn), observe that
A is told the correct labels for the examples according to the target concept cn. Let mn be the
number of mistakes that A makes on this sequence of examples when learning cn; we know that
mn = o(2n). Then

d(wn) = 2s(N−N0) · (1 − ε)N−N0−mn · εmn · 2(s−1)N0

= 2sN+[(N−N0−mn) log(1−ε)]+[mn log ε]−N0

≥ 2
sN−

�
N log

1
1−ε+mn log

1−ε
ε � −N0 .

We choose ε ∈ Q so that log 1
1−ε < s and let 0 < δ < s − 1

1−ε . Then since mn and N0 are both
o(N), when n ∈ J is large enough we have

dn(wn) ≥ 2δN .

Let d be the s-gale d =
∑∞

n=1 2−ndn. Then A ∈ S∞[d]. A standard technique is that taking the first
|w|+ r terms of the sum, we can approximate d(w) to precision 2−r in time O((|w|+ r) ·max{|w|+
r, |w|2c+1}). Such an s-gale can be defined for every set in RLwk(2

cn, 2cn, o(2n)). These gales are
all computable within the same time bound, so we can apply a union lemma [19] to conclude that
RLwk(2

cn, 2cn, o(2n)) has p-dimension at most s.

4 Disjunctive and Conjunctive Reductions

In this section, as a warmup to our main theorem, we present two basic applications of Theorem
3.1. First, we consider disjunctive reductions.

Theorem 4.1. Pd(DENSEc) has p-dimension 0.

Proof. We will show that Pd(DENSEc) ⊆ RLwk(2
2n, 22n, o(2n)). For this, let A ∈ Pd(DENSEc) be

arbitrary. Then there is a set S ∈ DENSEc and a reduction f : {0, 1}∗ → P({0, 1}∗) computable
in polynomial time p(n) such that for all x ∈ {0, 1}∗, x ∈ A if and only if f(x) ∩ S 6= ∅. Note that
on an input of length n, all queries of f have length bounded by p(n). Also, since S is nondense,
for any ε > 0 there are infinitely many n such that

|S≤p(n)| ≤ 2nε

. (4.1)

Let Qn =
⋃

|x|≤n f(x) be the set of all queries made by f up through length n. Then |Qn| ≤

2n+1p(n). Enumerate Qn as q1, . . . , qN . Then each subset of R ⊆ Qn can be identified with its
characteristic string χ

R
∈ {0, 1}N according to this enumeration. We define Cn to be the concept

class of all monotone disjunctions on {0, 1}N that have at most 2nε
literals. Our target disjunction

is
φn =

∨

i:qi∈S

qi,

8

which is a member of Cn whenever (4.1) holds. For any x ∈ {0, 1}≤n,

x ∈ A ⇐⇒ φn(χ
f(x)

) = 1.

Given x, χ
f(x)

can be computed in O(22n) time. Therefore A ≤
O(22n)
wk C = (Cn | n ∈ N).

Since Winnow learns Cn making at most 2 · 2nε
log |Qn| + 2 = o(2n) mistakes, it follows that

A ∈ RLwk(2
2n, 22n, o(2n)).

Next, we consider conjunctive reductions.

Theorem 4.2. Pc(DENSEc) has p-dimension 0.

Proof. We will show that Pc(DENSEc) ⊆ RLwk(2
n, 22n, o(2n)). For this, let A ≤p

c S ∈ DENSEc.
Then there is a reduction f : {0, 1}∗ → P({0, 1}∗) computable in polynomial time p(n) such that
for all x ∈ {0, 1}∗, x ∈ A if and only if f(x) ⊆ S.

Fix an input length n, and let Qn =
⋃

|x|≤n f(x). Let ε > 0 and consider the concept class

Cn = {P(X) | X ⊆ Qn and |X| ≤ 2nε

}.

Our target concept is
Cn = P(S ∩ Qn).

For infinitely many n, |S ∩ Qn| ≤ |S≤p(n)| ≤ 2nε
, in which case Cn ∈ Cn. For any x ∈ {0, 1}≤n, we

have
x ∈ A ⇐⇒ f(x) ∈ Cn.

Therefore A ≤
p(n)
wk C = (Cn | n ∈ N).

The class Cn can be learned by a simple algorithm that makes at most |X| mistakes when
learning P(X). The hypothesis for X is simply the union of all positive examples seen so far. More
explicitly, the algorithm begins with the hypothesis H = ∅. In any stage, given an example Q, the
algorithm predicts ‘yes’ if Q ⊆ H and ‘no’ otherwise. If the prediction is ‘no,’ but Q is revealed to
be a positive example, then the hypothesis is updated as H := H ∪ Q. The algorithm will never
make a mistake on a negative example, and can make at most |X| mistakes on positive examples.

This algorithm shows that C ∈ L(22n, o(2n)), so A ∈ RLwk(p(n), 22n, o(2n)). It follows that
Pc(DENSEc) ⊆ RLwk(2

n, 22n, 2nε
).

Since dimp(E) = 1, we have new proofs of the following results of Watanabe.

Corollary 4.3. (Watanabe [27]) E 6⊆ Pd(DENSEc) and E 6⊆ Pc(DENSEc). That is, every ≤p
d-hard

or ≤p
c -hard set for E is dense.

5 Adaptive Reductions

In this section we prove our main theorem, which concerns adaptive reductions that make a sub-
linear number of queries to a nondense set. It turns out that this problem can also be reduced to
learning disjunctions.

In a surprising result (refuting a conjecture of Ko [14]), Allender, Hemaspaandra, Ogiwara,
and Watanabe [1] showed that Pbtt(SPARSE) ⊆ Pd(SPARSE). The disjunctive reduction they
obtain will not be polynomial-time computable if the original reduction has more than a constant
number of queries. However, in the proof of the following theorem we are still able to exploit
their technique, and obtain an exponential-time reduction to a disjunction. Then we can apply the
Winnow algorithm as in the previous section.

9

Theorem 5.1. For all α < 1, Pnα−T(DENSEc) has p-dimension 0.

Proof. Let L ≤p
nα−T S ∈ DENSEc via some oracle machine M . We will show how to reduce L to

a class of disjunctions.
Fix an input length n. For an input x ∈ {0, 1}≤n, consider using each z ∈ {0, 1}nα

as the
sequence of yes/no answers to M ’s queries. Each z causes M to produce a sequence of queries
wx,z

0 , . . . , wx,z
k(x,z), where k(x, z) < nα, and an accepting or rejecting decision. Let Zx ⊆ {0, 1}nα

be
the set of all query answer sequences that cause M to accept x. Then we have x ∈ L if and only if

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) S[wx,z
j] = z[j],

which is equivalent to

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) z[j] · wx,z
j ∈ Sc ⊕ S,

where Sc ⊕ S is the disjoint union {0x | x ∈ Sc} ∪ {1x | x ∈ S}.
A key part of the proof that Pbtt(SPARSE) ⊆ Pd(SPARSE) in [1] is to show that P1−tt(SPARSE)

is contained in Pd(SPARSE). The same argument yields that

P1−tt(DENSEc) ⊆ Pd(DENSEc).

Therefore, there is a set U ∈ DENSEc such that Sc ⊕ S ≤p
d U . Letting g be this polynomial-time

disjunctive reduction, we have x ∈ L if and only if

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) g(z[j] · wx,z
j) ∩ U 6= ∅.

For each z ∈ Zx, let

Hx,z = {〈u0, . . . , uk(x,z)〉 | (∀0 ≤ j ≤ k(x, z)) uj ∈ g(z[j] · wx,z
j)}.

Define
An = {〈u0, . . . , uk〉 | k < nα and (∀0 ≤ j ≤ k) uj ∈ U}.

Then we have x ∈ L if and only if

(∃z ∈ Zx)(∃v ∈ Hx,z) v ∈ An.

Letting

Hx =
⋃

z∈Zx

Hx,z,

we can rewrite this as
x ∈ L ⇐⇒ Hx ∩ An 6= ∅. (5.1)

Let r(n) be a polynomial bounding the number of queries g outputs on an input of form z[j]·wx,z
j ,

where |x| ≤ n. Then |Hx,z| ≤ r(n)nα
, so

|Hx| ≤ |Zx| · r(n)nα

≤ 2nα·(1+log r(n)). (5.2)

Also,
|An| ≤ nα · |U≤r(n)|

nα

.

10

Let ε ∈ (0, 1 − α), and let δ ∈ (α + ε, 1). Then since U is nondense, for infinitely many n, we have
|U≤r(n)| ≤ 2nε

. This implies

(∃∞n) |An| ≤ nα · 2nα+ε

≤ 2nδ

. (5.3)

Let
Hn =

⋃

x∈{0,1}≤n

Hx.

Then from (5.2), |Hn| ≤ 22n if n is sufficiently large.
Enumerate Hn as h1, · · · , hN . We identify any R ⊆ Hn with its characteristic string χ(n)

R
∈

{0, 1}N according to this enumeration. Let Cn be the concept class of all monotone disjunctions on

{0, 1}N that have at most 2nδ
literals.

Define the disjunction

φn =
∨

i:hi∈An

hi,

φn =
∨

i:hi∈An

hi, which by (5.3) is in Cn for infinitely many n. For any x ∈ {0, 1}≤n, from (5.1) it

follows that
x ∈ L ⇐⇒ φn(χ(n)

Hx
) = 1.

Given x ∈ {0, 1}≤n, we can compute χ(n)
Hx

in O(2n ·poly(n)+ |Hn|) time. Therefore, letting C = (Cn |

n ∈ N), we have L ≤22n

wk C. Since Cn is learnable by Winnow with at most 2 ·2nδ
· log |Hn|+2 = o(2n)

mistakes, it follows that L ∈ RLwk(2
2n, 22n, o(2n)).

As a corollary, we have a positive answer to the question of Lutz and Mayordomo [21] mentioned
in the introduction:

Corollary 5.2. For all α < 1, Pnα−T(DENSEc) has p-measure 0.

Corollary 5.3. For all α < 1, E 6⊆ Pnα−T(DENSEc). That is, every ≤p
nα−T-hard set for E is

dense.

If we scale down from nondense sets to sparse sets, the same proof technique can handle more
queries.

Theorem 5.4. Po(n/ log n)−T(SPARSE) has strong p-dimension 0.

Proof. Let L ≤p
f(n)−T S ∈ SPARSE via some oracle machine M , where f(n) = o(n/ log n).

Fix an input length n. For an input x ∈ {0, 1}n, each query answer sequence z ∈ {0, 1}f(n)

causes M to produce a sequence of queries wx,z
0 , . . . , wx,z

k(x,z), where k(x, z) < f(n), and an accepting

or rejecting decision. Let Zx ⊆ {0, 1}f(n) be the set of all query answer sequences that cause M to
accept x. Then we have x ∈ L if and only if

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) z[j] · wx,z
j ∈ Sc ⊕ S.

Since P1−tt(SPARSE) ⊆ Pd(SPARSE), there is a set U ∈ SPARSE such that Sc ⊕ S ≤p
d U .

Letting g be this polynomial-time disjunctive reduction, we have x ∈ L if and only if

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) g(z[j] · wx,z
j) ∩ U 6= ∅.

11

As before, we can define sets Hx and An so that

x ∈ L ⇐⇒ Hx ∩ An 6= ∅.

Let r(n) be a polynomial bounding the number of queries g outputs on an input of form z[j]·wx,z
j ,

where |x| = n. Then
|Hx| ≤ |Zx| · r(n)f(n) ≤ 2f(n)·(1+log r(n)),

so we have |Hx| ≤ 2n if n is sufficiently large because f(n) = o(n/ log n) . Letting Hn =⋃
x∈{0,1}n Hx, we have |Hn| ≤ 22n.

Also,
|An| ≤ f(n) · |U≤r(n)|

f(n).

Let q(n) be a polynomial such that |U≤r(n)| ≤ q(n) for all n. Then

|An| ≤ f(n) · q(n)f(n) ≤ 2f(n) log q(n)+log f(n).

Let v(n) = f(n) log q(n) + log f(n). Notice that v(n) = o(n) because f(n) = o(n/ log n).
As before, we enumerate Hn as h1, · · · , hN and identify any R ⊆ Hn with its characteristic

string χ(n)
R

∈ {0, 1}N . Let Cn be the concept class of all monotone disjunctions on {0, 1}N that

have at most 2v(n) literals. The disjunction φn =
∨

i:hi∈An

hi, is in Cn for every n. For any x ∈ {0, 1}n,

we have
x ∈ L ⇐⇒ φn(χ(n)

Hx
) = 1.

Given x ∈ {0, 1}n, we can compute χ(n)
Hx

in O(2n ·poly(n)+ |Hn|) time. Therefore, letting C = (Cn |

n ∈ N), we have L ≤22n

str C. Since Cn is learnable by Winnow with at most 2·2v(n) ·log |Hn|+2 = o(2n)
mistakes, it follows that L ∈ RLstr(2

2n, 22n, o(2n)).

The following corollary improves the result of Fu [8] that E 6⊆ Po(n/ log n)−T(TALLY).

Corollary 5.5. E 6⊆ Po(n/ log n)−T(SPARSE).

Since Wilson constructed an oracle relative to which E ⊆ PO(n)−tt(SPARSE) [28, 20], Corollary 5.5
is near the limits of relativizable techniques.

In Theorem 5.4, we used strong dimension, which raises a technical point. The results about
reductions to DENSEc cannot be strengthened to strong p-dimension simply because the class
DENSEc itself has strong dimension 1. This is because being nondense is an infinitely-often property
[9]. However, if we replace DENSEc by SPARSE in any of our results, the proofs can be adapted
to show that the resulting class has strong p-dimension 0. We can also obtain strong dimension
results by substituting the larger class DENSEc

i.o., where DENSEi.o. is the class of all L that satisfy
(∃ε > 0)(∃∞n) |L≤n| > 2nε

.

6 Hard Sets for NP

The hypothesis “NP has positive p-dimension,” written dimp(NP) > 0, was first used in [11] to
study the inapproximability of MAX3SAT. This positive dimension hypothesis is apparently much
weaker than Lutz’s often-investigated µp(NP) 6= 0 hypothesis, but is a stronger assumption than
P 6= NP:

µp(NP) 6= 0 ⇒ dimp(NP) = 1 ⇒ dimp(NP) > 0 ⇒ P 6= NP.

12

The measure hypothesis µp(NP) 6= 0 has many plausible consequences that are not known to follow
from P 6= NP (see e.g. [21]). So far few consequences of dimp(NP) > 0 are known. The following
corollary of our results begins to remedy this.

Theorem 6.1. If dimp(NP) > 0, then every set that is hard for NP under ≤p
d-reductions, ≤p

c -
reductions, or ≤p

nα−T-reductions (α < 1) is dense, and every set that is hard under ≤p
o(n/ log n)−T-

reductions is not sparse.

The consequences in Theorem 6.1 are much stronger than what is known to follow from P 6= NP.
If P 6= NP, then no ≤p

btt-hard or ≤p
c -hard set is sparse [26, 3], but it is not known whether hard

sets under disjunctive reductions or unbounded Turing reductions can be sparse.
Another result is that if NP 6= RP, then no ≤p

d-hard set for NP is sparse [7, 6]. It is interesting
to see that while the hypotheses dimp(NP) > 0 and NP 6= RP are apparently incomparable, they
both have implications for the density of the disjunctively-hard sets for NP.

7 Conclusion

Our connection between online learning and resource-bounded dimension appears to be a powerful
tool for computational complexity. We have used it to give relatively simple proofs and improve-
ments of several previous results.

An interesting observation is that for all reductions ≤p
τ for which we know how to prove “every

≤p
τ -hard set for E is dense,” by the results presented here we can actually prove “Pτ (DENSEc) has

p-dimension 0.” Indeed, we have proven the strongest results for Turing reductions in this way.

References

[1] E. Allender, L. A. Hemachandra, M. Ogiwara, and O. Watanabe. Relating equivalence and
reducibility to sparse sets. SIAM Journal on Computing, 21(3):521–539, 1992.

[2] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

[3] V. Arvind, Y. Han, L. Hemachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, and T. Thierauf. Reductions to sets of low information content. In
K. Ambos-Spies, S. Homer, and U. Schöning, editors, Complexity Theory: Current Research,
pages 1–45. Cambridge University Press, 1993.

[4] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong dimension
in algorithmic information and computational complexity. SIAM Journal on Computing. To
appear.

[5] L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete sets.
SIAM Journal on Computing, 6(2):305–322, 1977.

[6] H. Buhrman, L. Fortnow, and L. Torenvliet. Six hypotheses in search of a theorem. In
Proceedings of the 12th Annual IEEE Conference on Computational Complexity, pages 2–12.
IEEE Computer Society, 1997.

[7] J. Cai, A. V. Naik, and D. Sivakumar. On the existence of hard sparse sets under weak
reductions. In Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer
Science, pages 307–318. Springer-Verlag, 1996.

13

[8] B. Fu. With quasilinear queries EXP is not polynomial time Turing reducible to sparse sets.
SIAM Journal on Computing, 24(5):1082–1090, 1995.

[9] X. Gu. A note on dimensions of polynomial size circuits. Technical Report TR04-047, Elec-
tronic Colloquium on Computational Complexity, 2004.

[10] L. A. Hemachandra, M. Ogiwara, and O. Watanabe. How hard are sparse sets? In Proceed-
ings of the Seventh Annual Structure in Complexity Theory Conference, pages 222–238. IEEE
Computer Society Press, 1992.

[11] J. M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has positive dimension.
Theoretical Computer Science, 289(1):861–869, 2002.

[12] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Scaled dimension and nonuniform complexity.
Journal of Computer and System Sciences, 69(2):97–122, 2004.

[13] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fractal geometry of complexity classes.
SIGACT News, 36(3):24–38, September 2005.

[14] K. Ko. Distinguishing conjunctive and disjunctive reducibilities by sparse sets. Information
and Computation, 81(1):62–87, 1989.

[15] W. Lindner, R. Schuler, and O. Watanabe. Resource-bounded measure and learnability. Theory
of Computing Systems, 33(2):151–170, 2000.

[16] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2(4):285–318, 1987.

[17] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System
Sciences, 44(2):220–258, 1992.

[18] J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and A. L.
Selman, editors, Complexity Theory Retrospective II, pages 225–254. Springer-Verlag, 1997.

[19] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236–1259,
2003.

[20] J. H. Lutz and E. Mayordomo. Measure, stochasticity, and the density of hard languages.
SIAM Journal on Computing, 23(4):762–779, 1994.

[21] J. H. Lutz and E. Mayordomo. Twelve problems in resource-bounded measure. Bulletin of
the European Association for Theoretical Computer Science, 68:64–80, 1999. Also in Current
Trends in Theoretical Computer Science: Entering the 21st Century, pages 83–101, World
Scientific Publishing, 2001.

[22] J. H. Lutz and Y. Zhao. The density of weakly complete problems under adaptive reductions.
SIAM Journal on Computing, 30(4):1197–1210, 2000.

[23] S. R. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis.
Journal of Computer and System Sciences, 25(2):130–143, 1982.

[24] E. Mayordomo. Personal communication, 2002.

14

[25] A. R. Meyer, 1977. Reported in [5].

[26] M. Ogiwara and O. Watanabe. On polynomial bounded truth-table reducibility of NP sets to
sparse sets. SIAM Journal on Computing, 20(3):471–483, 1991.

[27] O. Watanabe. Polynomial time reducibility to a set of small density. In Proceedings of the
Second Structure in Complexity Theory Conference, pages 138–146. IEEE Computer Society,
1987.

[28] C. B. Wilson. Relativized circuit complexity. Journal of Computer and System Sciences,
31(2):169–181, 1985.

15

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

