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Abstract

In this work, we present a generic yet practical transformation from any public-coin honest-verifier
zero-knowledge (HVZK) protocols to normal zero-knowledge (ZK) arguments. By “generic”, we mean
that the transformation is applicable to any public-coin HVZK protocol under any one-way function
(OWF) admitting Σ-protocols. By “practical” we mean that the transformation does not go through
general NP-reductions and only incurs additionally one round (for public-coin HVZK protocols of
odd number of rounds that is the normal case in practice). In particular, if the starting public-coin
HVZK protocols and the underlying Σ-protocols are practical, the transformed ZK arguments are
also practical. In addition, our transformation also preserves statistical/perfect zero-knowledge. To
this end, we develop generic yet practical 3-round perfectly-hiding equivocal (string) commitment
scheme under any OWF admitting Σ-protocols, which is possibly of independent value. We also
show that three rounds is the lower-bound of round-complexity for equivocal commitment schemes.

1 Introduction

Zero-knowledge (ZK) protocols are remarkable since they allow a prover to validate theorems to a verifier
without giving away any other knowledge (i.e., computational advantage). This notion was suggested
by Goldwasser, Micali and Rackoff [27] and its generality was demonstrated by Goldreich, Micali and
Wigderson [25]. Since its introduction ZK has found numerous and extremely useful applications, and
by now it has been playing a central role in modern cryptography.

ZK protocols for general languages (i.e., NP) constitute an important plausibility result since many
important statements are in NP . But, they are normally hard to be directly employed in practice,
particularly due to the underlying general NP-reductions. In addition, ZK has many direct efficient
applications (mainly employing number-theoretic statements). In particular, a very large number of
protocols, named public-coin honest verifier zero-knowledge HVZK protocols, are developed directly
for specific number-theoretic languages, which preserves the ZK property only with respect to honest
verifiers (i.e., they are not normal ZK) but are highly practical. Thus, it’s naturally desirable to develop
a generic yet practical transformation from any public-coin HVZK protocols to (normal) ZK protocols.

1.1 Our contributions

In this work, we present a generic yet practical transformation from any public-coin honest-verifier
zero-knowledge (HVZK) protocols to normal zero-knowledge (ZK) arguments. By “generic”, we mean
that the transformation is applicable to any public-coin HVZK protocol under any one-way function
(OWF) admitting Σ-protocols. (Note that the set of OWFs admitting Σ-protocols is large, which in
particular includes both DLP and RSA.) By “practical” we mean that the transformation does not go
through general NP-reductions and only incurs additionally one round (for public-coin HVZK protocols
of odd number of rounds) or two rounds (for public-coin HVZK protocols of even number of rounds).
Note that public-coin HVZK protocols of odd number of rounds is the normal case in practice. If the
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starting public-coin HVZK protocols and the underlying Σ-protocols are practical, the transformed ZK
arguments are also practical.

To this end, we develop generic yet practical 3-round perfectly-hiding equivocal (string) commitment
scheme under any OWF admitting Σ-protocols (by a novel use of Damg̊ard’s Σ-protocol-based com-
mitment scheme [11] and ΣOR-protocols introduced by Cramer, Damg̊ard and Schoenmakers in [10]),
which is possibly of independent value. The construction is conceptually simple, and its DLP or RSA
based instantiations need only about 8 exponentiations by each participant for both commitment and
decommitment. (We argue that conceptual simpleness of the construction could be a major advantage
(rather than disadvantage) of our contributions.) We also show in this work that three rounds is the
lower-bound of round-complexity for equivocal commitment schemes.

1.2 Related works and comparisons

Converting HVZK protocols into normal ZK protocols has attracted a series of extensive research ef-
forts (and the idea of reducing the problem of security for arbitrary parties to the case of honest parties
can be traced back to the works in secure distributed computing [38, 24]). Converting any (whether
public-coin or not) HVZK protocols into normal ZK protocols was first studied by Bellare, Micali and
Ostrovsky [2] under the DLP assumption, and the intractability assumption was further reduced to any
one-way permutation by Ostrovsky, Venkatesan and Yung [36]. The BMO and OVY transformations
preserve perfect/statistical ZK. The works of Damg̊ard, Goldreich, Okamoto and Wigderson [13, 35]
further achieved that, under any OWF, any (whether public-coin or not) HVZK protocols can be trans-
formed into public-coin normal ZK protocols. The transformation of [13, 35] preserves statistical ZK,
but not perfect ZK. Damg̊ard first presented a transformation from any constant-round public-coin
HVZK protocols to normal ZK protocols without intractability assumptions [12], by using the interac-
tive hashing technique employed in [36]. The transformation of [12] preserves perfect/statistical ZK,
and also proof/argument of knowledge. This (unconditional) approach was carried to its climax in [26]
by showing that any public-coin HVZK proofs can be transformed into normal public-coin ZK proofs
without intractability assumptions, by a deep investigation of the Random Selection technique employed
in [13]. Combined with the result of [35] (i.e., any language that admits honest-verifier statistical ZK
proofs also admits public-coin honest-verifier statistical ZK proofs), it established that the set of lan-
guages admitting honest-verifier statistical ZK proofs coincides with the set of languages admitting
statistical ZK proofs in general. The transformation of [26] preserves perfect/statistical, but it is not
provably applicable to HVZK arguments. These (earlier) works show important general methodology of
achieving ZK protocols in general from HVZK protocols, and demonstrate elegant intersections between
cryptography and complexity theory. But these transformations may still be not efficient enough for
practice, partially due to the high (additional) round-complexity incurred. In more details, the BMO
transformation [2] incurs c ·m(n) additional rounds, where c is a constant and m(n) denotes the round-
complexity of the starting HVZK protocol on common inputs of length n (which implies the number of
incurred rounds is non-constant for non-constant-round starting HVZK protocols); All other transfor-
mations presented in [36, 12, 13, 35, 26] incur at least non-constant additional rounds in getting normal
ZK protocols of negligible soundness error (actually, they incur polynomially many additional rounds for
achieving normal ZK protocols of exponentially vanishing soundness error). Other inefficiencies are due
to the underlying general NP-reductions (e.g., in the transformations of [2, 36]) and/or the (inefficient)
general cryptographic primitives (e.g., OWF-based commitments, et al). In comparison, our transfor-
mation is a practically implementable one (under any OWF admitting Σ-protocols), transforming any
public-coin HVZK protocols into normal ZK arguments with minimal additional rounds incurred and
without going through general NP-reductions. Our transformation preserves perfect/statistical ZK. In
addition, our transformation also preserves argument of knowledge for Σ-protocols (that are a special
form of public-coin HVZK). Note that for HVZK protocols used in practice, the most often case is the
public-coin ones without NP-reductions (mainly for number-theoretic languages).

Recently, Micciancio and Petrank presented a practically implementable transformation from any
public-coin HVZK protocols to normal ZK protocols without generalNP-reductions under the decisional
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Diffie-Hellman (DDH) assumption [31]. The Micciancio-Petrank transformation does not preserve
perfect/statistical ZK. In comparison, our transformation converts any public-coin HVZK protocols into
normal ZK arguments under any OWF admitting Σ-protocol (that includes, in particular, both DLP and
RSA). Our transformation also preserves perfect/statistical ZK. For the additional round-complexity
incurred, the Micciancio-Petrank transformation incurs three rounds (for public-coin HVZK protocols of
odd number of rounds) or four rounds (for public-coin HVZK protocols of even number of rounds)∗. In
comparison, our transformation incurs only one round for public-coin HVZK protocols of odd number
of rounds or two rounds for public-coin HVZK protocols of even number of rounds. For additional
computational complexity incurred, the Micciancio-Petrank transformation (that is based on DDH)
incurs additional 2 modular exponentiation operations for each round of the original public-coin HVZK
protocol. The DLP (that is weaker than DDH) or RSA based implementations of our transformation
incur the same additional computational complexity (i.e., 2 exponentiation operation for each round
of the original protocol). As a critical tool, [31] achieved a DDH-based perfectly-binding simulatable
commitment scheme. In this work, we achieve perfectly-hiding 3-round (that is optimal) equivocal
commitment schemes under any OWF admitting Σ-protocols. We also note that the proof of soundness
of the transformed ZK protocols by the Micciancio-Petrank transformation is trivial, guaranteed by the
nicely explored DDH-based perfectly-binding (simulatable) commitment scheme (used by the prover for
setting the random challenges of the starting public-coin HVZK protocols by a coin-tossing mechanism).
But, the soundness proof of the ZK protocols by our generic yet practical transformation turns out to
be complicated and subtle.

Cramer, Damg̊ard and MacKenzie nicely showed how to achieve 4-round perfect ZK proofs of knowl-
edge without general NP-reductions and without intractability assumptions for any language L such
that L admits Σ-protocols and its associated commitment scheme (via the Damg̊ard paradigm for
achieving commitment schemes from Σ-protocols [11]) also admits Σ-protocols [9]. 4-round perfect ZK
arguments of knowledge without general NP-reductions for any language admitting Σ-protocols also
can be achieved by a ΣOR-based implementation of the Feige-Shamir constant-round ZK arguments [21]
(actually, the version appears in [20]). But, the soundness proofs in [9, 21] critically rely on the special
soundness property of Σ-protocols, and thus the techniques of [9, 21] are probably not applicable for
transforming any public-coin HVZK protocols to normal ZK protocols. Recall that any Σ-protocol is
itself a 3-round public-coin special honest-verifier zero-knowledge SHVZK protocol with special sound-
ness. Although Σ-protocols are useful tools, there are also many public-coin HVZK protocols (mainly
for number-theoretic languages) that are not Σ-protocols. We also note that if the starting public-coin
HVZK protocols are just Σ-protocols, the transformed protocols by our generic yet practical transfor-
mation are also 4-round perfect ZK arguments of knowledge (without general NP-reductions) for any
languages admitting Σ-protocols.

2 Preliminaries

We use standard notations and conventions below for writing probabilistic algorithms, experiments and
interactive protocols. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running
A on inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · · ) denote the experiment of picking r at
random and letting y be A(x1, x2, · · · ; r). If S is a finite set then x← S is the operation of picking an
element uniformly from S. (If S is a finite set we also denote by |S| the size of S.) If α is neither an
algorithm nor a set then x← α is a simple assignment statement. By [R1; · · · ;Rn : v] we denote the set
of values of v that a random variable can assume, due to the distribution determined by the sequence
of random processes R1, R2, · · · , Rn. By Pr[R1; · · · ;Rn : E] we denote the probability of event E, after
the ordered execution of random processes R1, · · · , Rn.

Let 〈P, V 〉 be a probabilistic interactive protocol, then the notation (y1, y2) ← 〈P (x1), V (x2)〉(x)
denotes the random process of running interactive protocol 〈P, V 〉 on common input x, where P has
private input x1, V has private input x2, y1 is P ’s output and y2 is V ’s output. We assume wlog that the

∗In [31], the authors only analyzed the additional round complexity incurred for HVZK of odd number of rounds.
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output of both parties P and V at the end of an execution of the protocol 〈P, V 〉 contains a transcript
of the communication exchanged between P and V during such execution.

Definition 2.1 (interactive argument system) A pair of probabilistic polynomial-time interactive
machines, 〈P, V 〉, is called an interactive argument system for a language L if the following conditions
hold:

• Completeness. For every x ∈ L, there exists a string w such that for every string z,
Pr[〈P (w), V (z)〉(x) = 1] = 1.

• Soundness. For every polynomial-time interactive machine P ∗, and for all sufficiently large n’s
and every x /∈ L of length n and every w and z, Pr[〈P ∗(w), V (z)〉(x) = 1] is negligible in n.

An interactive system is called a public-coin system if at each round the prescribed verifier only tosses
a predetermined number of coins and send the outcome (random challenge) to the prover.

Definition 2.2 (witness indistinguishability WI) Let 〈P, V 〉 be an interactive system for a lan-
guage L ∈ NP, and let RL be the fixed NP witness relation for L. That is, x ∈ L if there exists

a w such that (x, w) ∈ RL. We denote by view
P (w)
V ∗(z)(x) a random variable describing the contents of

the random tape of V ∗ and the messages V ∗ receives from P during an execution of the protocol on
common input x, when P has auxiliary input w and V ∗ has auxiliary input z. We say that 〈P, V 〉
is witness indistinguishable for RL if for every PPT interactive machine V ∗, and every two sequences
W 1 = {w1

x}x∈L and W 2 = {w2
x}x∈L for sufficiently long x, so that (x, w1

x) ∈ RL and (x, w2
x) ∈ RL,

the following two ensembles are computationally indistinguishable by any non-uniform PPT algorithm:

{x, view
P (w1

x)
V ∗(z) (x)}x∈L, z∈{0, 1}∗ and {x, view

P (w2
x)

V ∗(z) (x)}x∈L, z∈{0, 1}∗ . Namely, for every PPT non-uniform

distinguishing algorithm D, every polynomial p(·), all sufficiently long x ∈ L, and all z ∈ {0, 1}∗, it
holds that

|Pr[D(x, z, view
P (w1

x)
V ∗(z) (x) = 1]− Pr[D(x, z, view

P (w2
x)

V ∗(z) (x) = 1]| <
1

p(|x|)

Definition 2.3 (zero-knowledge ZK) Let 〈P, V 〉 be an interactive system for a language L ∈ NP,
and let RL be the fixed NP witness relation for L. That is, x ∈ L if there exists a w such that

(x, w) ∈ RL. We denote by view
P (w)
V ∗(z)(x) a random variable describing the contents of the random

tape of V ∗ and the messages V ∗ receives from P during an execution of the protocol on common input
x, when P has auxiliary input w and V ∗ has auxiliary input z. Then we say that 〈P, V 〉 is zero-
knowledge if for every probabilistic polynomial-time interactive machine V ∗ there exists a probabilistic
(expected) polynomial-time oracle machine S, such that for all sufficiently long x ∈ L the ensembles

{view
P (w)
V ∗ (x)}x∈L and {SV ∗

(x)}x∈L are computationally indistinguishable. Machine S is called a ZK
simulator for 〈P, V 〉. The protocol is called statistical ZK if the above two ensembles are statistically close
(i.e., the variation distance is eventually smaller than 1

p(|x|) for any positive polynomial p). The protocol

is called perfect ZK if the above two ensembles are actually identical (i.e., except for exponentially
negligible probabilities, the two ensembles are equal).

Definition 2.4 (public-coin HVZK) Let 〈P, V 〉 be a public-coin interactive protocol for a language
L in which the prescribed honest verifier V is supposed to send t− 1, t > 2, random challenges. Denote
by αi, 1 ≤ i ≤ t, the i-th message of honest prover and by ci, 1 ≤ i ≤ t−1, the i-th random challenge of
the honest verifier. The honest prover P is a PPT interactive machine that on the common input x, an
auxiliary input w and a partial transcript T where T is either an empty string or a sequence of messages

(α1, c1, · · · , ci), 1 ≤ i ≤ t − 1, outputs the next message αi+1. We denote by view
P (w)
V (x) a random

variable describing the contents of the random tape of (the honest) V and the messages V receives from
P during an execution of the protocol on common input x when P has auxiliary input w. Such a public-
coin protocol is called honest verifier zero-knowledge (HVZK) if there exists a probabilistic polynomial
time simulator S such that for all sufficiently long x ∈ L the following ensembles are computationally

indistinguishable: {S(x)}x∈L and {view
P (w)
V (x)}x∈L.
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In above definition, we have assumed that the prover initiates the protocol. It also can be easily
extended to deal with the case that the verifier initiates the protocol.

Definition 2.5 (Σ-protocol [8]) A 3-round public-coin protocol 〈P, V 〉 is said to be a Σ-protocol for
a relation R if the following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.

• Special soundness. From any common input x of length n and any pair of accepting conversations
on input x, (a, e, z) and (a, e′, z′) where e 6= e′, one can efficiently compute w such that (x,w) ∈ R.
Here a, e, z stand for the first, the second and the third message respectively and e is assumed to
be a string of length k (that is polynomially related to n) selected uniformly at random in {0, 1}k.

• Perfect SHVZK (Special honest verifier zero-knowledge). There exists a probabilistic polynomial-
time (PPT) simulator S, which on input x (where there exists a w such that (x,w) ∈ R) and a
random challenge string ê, outputs an accepting conversation of the form (â, ê, ẑ), with the same
probability distribution as the real conversation (a, e, z) between the honest P (w), V on input x.

Σ-Protocol for DLP [37]. The following is a Σ-protocol 〈P, V 〉 proposed by Schnorr [37] for
proving the knowledge of discrete logarithm, w, for a common input of the form (p, q, g, h) such that
h = gw mod p, where on a security parameter n, p is a uniformly selected n-bit prime such that
q = (p − 1)/2 is also a prime, g is an element in Z

∗
p of order q. It is also actually the first efficient

Σ-protocol proposed in the literature.

• P chooses r at random in Zq and sends a = gr mod p to V .

• V chooses a challenge e at random in Z2k and sends it to P . Here, k is fixed such that 2k < q.

• P sends z = r + ew mod q to V , who checks that gz = ahe mod p, that p, q are prime and that
g, h have order q, and accepts iff this is the case.

Σ-Protocol for RSA [28]. Let n be an RSA modulus and q be a prime. Assume we are given
some element y ∈ Z∗

n, and P knows an element w such that wq = y mod n. The following protocol is
a Σ-protocol for proving the knowledge of q-th roots modulo n.

• P chooses r at random in Z∗
n and sends a = rq mod n to V .

• V chooses a challenge e at random in Z2k and sends it to P . Here, k is fixed such that 2k < q.

• P sends z = rwe mod n to V , who checks that zq = aye mod n, that q is a prime, that gcd(a, n) =
gcd(y, n) = 1, and accepts iff this is the case.

The OR-proof of Σ-protocols [10]. One basic construction with Σ-protocols allows a prover
to show that given two inputs x0, x1, it knows a w such that either (x0, w) ∈ R0 or (x1, w) ∈ R1,
but without revealing which is the case. Specifically, given two Σ-protocols 〈Pb, Vb〉 for Rb, b ∈ {0, 1},
with random challenges of, without loss of generality, the same length k, consider the following protocol
〈P, V 〉, which we call ΣOR. The common input of 〈P, V 〉 is (x0, x1) and P has a private input w such
that (xb, w) ∈ Rb.

• P computes the first message ab in 〈Pb, Vb〉, using xb, w as private inputs. P chooses e1−b at
random, runs the SHVZK simulator of 〈P1−b, V1−b〉 on input (x1−b, e1−b), and let (a1−b, e1−b, z1−b)
be the output. P finally sends a0, a1 to V .

• V chooses a random k-bit string s and sends it to P .

• P sets eb = s⊕ e1−b and computes the answer zb to challenge eb using (xb, ab, eb, w) as input. He
sends (e0, z0, e1, z1) to V .
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• V checks that s = e0⊕e1 and that conversations (a0, e0, zo), (a1, e1, z1) are accepting conversations
with respect to inputs x0, x1, respectively.

Theorem 2.1 [10] The protocol ΣOR above is a Σ-protocol for ROR, where ROR = {((x0, x1), w)|(x0, w) ∈
R0 or (x1, w) ∈ R1}. Moreover, for any malicious verifier V ∗, the probability distribution of conver-
sations between P and V ∗, where w is such that (xb, w) ∈ Rb, is independent of b. That is, ΣOR is
perfectly witness indistinguishable.

The perfect SHVZK simulator of ΣOR [10]. For a ΣOR-protocol of above form, denote by SOR

the perfect SHVZK simulator of it and denote by Sb the perfect SHVZK simulator of the protocol 〈Pb, Vb〉
for b ∈ {0, 1}. Then on common input (x0, x1) and a random string ê of length k, SOR((x0, x1), ê) works
as follows: It firstly chooses a random k-bit string ê0, computes ê1 = ê ⊕ ê0, then SOR runs Sb(xb, êb)
to get a simulated transcript (âb, êb, ẑb) for b ∈ {0, 1}, finally SOR outputs ((â0, â1), ê, (ê0, ẑ0, ê1, ẑ1)).

Definition 2.6 (trapdoor (string) commitment scheme TC) A (normal) trapdoor commitment
scheme (TC) is a quintuple of probabilistic polynomial-time (PPT) algorithms TCGen, TCCom, TCVer,
TCKeyVer and TCFake, such that

• Completeness. ∀n, ∀v of length k (where k = k(n) for some polynomial k(·)),

Pr[(TCPK, TCSK)
R
← TCGen(1n); (c, d)

R
← TCCom(1n, 1k, TCPK, v) :

TCKeyVer(1n, TCPK) = TCVer(1n, 1k, TCPK, c, v, d) = 1] = 1.

• Computational Binding. For all sufficiently large n’s and for any PPT adversary A, the following
probability is negligible in n (where k = k(n) for some polynomial k(·)):

Pr[(TCPK, TCSK)
R
← TCGen(1n); (c, v1, v2, d1, d2)

R
← A(1n, 1k, TCPK) :

TCVer(1n, 1k, TCPK, c, v1, d1) = TCVer(1n, 1k, TCPK, c, v2, d2) = 1
∧
|v1| = |v2| = k

∧
v1 6= v2].

• Perfect (or Computational) Hiding. ∀ TCPK such that TCKeyVer(TCPK, 1n) = 1 and ∀ v1, v2

of equal length k, the following two probability distributions are identical (or computationally
indistinguishable):

[(c1, d1)
R
← TCCom(1n, 1k, TCPK, v1) : c1] and [(c2, d2)

R
← TCCom(1n, 1k, TCPK, v2) : c2].

• Perfect (or Computational) Trapdoorness. ∀ (TCPK, TCSK) ∈ {TCGen(1n)}, ∃v1, ∀v2 such
that v1 and v2 are of equal length k, the following two probability distributions are identical (or
computationally indistinguishable):

[(c1, d1)
R
← TCCom(1n, 1k, TCPK, v1); d

′
2

R
← TCFake(1n, 1k, TCPK, TCSK, c1, v1, d1, v2) : (c1, d

′
2)]

and [(c2, d2)
R
← TCCom(1n, 1k, TCPK, v2) : (c2, d2)].

Damg̊ard’s paradigm for achieving perfectly-hiding trapdoor commitment schemes from
Σ-protocols [11]. Recall that by the perfect SHVZK property, the distribution of (â, ê, ẑ) outputted
by the SHVZK simulator S(x, ê) on a random string ê of length k is identical to that of real interaction
transcript (a, e, z) between the honest P , V on x. But, in the real conversation (a, e, z), a is independent
of e and thus reveals no information of e. This means that in the simulated transcript (â, ê, ẑ), â reveals
also no information of ê (perfect hiding). Furthermore, given â, the simulator S also cannot answer
a different challenge ê′ 6= ê because of the special soundness of Σ-protocols (this is just the binding
property of commitments). The important observation here is that even if ê is an arbitrary string of
length k (rather than a random string), â still perfectly hides ê. This is so because of the perfect SHVZK
property of Σ-protocols. This directly brings us the following perfectly-hiding trapdoor commitment
scheme 〈P, V 〉.

Round-1. On a security parameter n, let f be a OWF that admits Σ-protocols (with random challenges
of length k that is polynomially related to n). Then, the commitment receiver V randomly selects
an element x of length n in the domain of f , computes f(x), and sends f(x) to the commitment
sender P .
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Round-2. To commit a message m of length k, P runs the SHVZK simulator S(f(x),m) to get a
simulated transcript, denoted (â,m, ẑ), pretending that it “knows” the preimage of f(x). P sends
â to V as the commitment.

Decommitment Stage. P reveals (m, ẑ) and V accepts if (â,m, ẑ) is an accepting conversation on
f(x).

The perfectly-hiding and computationally-binding properties of the above scheme can be easily
checked according to the above arguments. The trapdoorness property is from the observation that if
one knows the preimage of the (well-formed) f(x) then it can equivocate â at its wish.

3 Generic yet Practical Equivocal Commitments with ΣOR-Protocols

In this section, we present generic yet practical 3-round perfectly-hiding equivocal (string) commitment
schemes under any OWF admitting Σ-protocols. By “generic” we mean our equivocal commitments
can be implemented under any one-way function (OWF) that admits Σ-protocols (note that the set of
OWFs admitting Σ-protocols is large, which in particular includes both DLP and RSA). By “practical”
we mean our equivocal commitment schemes do not go through general NP-reductions and if the
underlying Σ-protocols are practical then the transformed equivocal commitment protocols are also
practical. With DLP or RSA as examples, the DLP-based or RSA-based instantiations need only 8
exponentiations by each participant for both commitment and decommitment. We also clarify in this
section the relationship between trapdoor commitments and equivocal commitments, and show that
three rounds is the lower-bound of round-complexity for equivocal commitment schemes.

Informally speaking, a commitment scheme is equivocal if it satisfies the following additional re-
quirement. There exists an efficient algorithm, called the simulator, which outputs a transcript leading
to a “fake” commitment such that: (1) the “fake” commitment can be decommitted to both 0 and 1;
and (2) the distribution of the simulated transcript is indistinguishable from that of the real view of an
even malicious commitment receiver in a real execution of the protocol. Equivocal commitments could
be viewed as a stronger notion than trapdoor commitments and are widely used as a key ingredient
for achieving various advanced cryptographic protocols, e.g., zero-knowledge [33, 18, 19], secure multi-
party computation [7, 29], and more advanced commitment schemes (like non-malleable commitments
[16, 22, 17, 14], simulation-sound commitments [30] and universally composable commitments [6, 15, 7]),
et al.

Now, we present the formal definition of (black-box) equivocal (string) commitments that is the
black-box and full version of the definition presented in [18].

Definition 3.1 Let 〈P, V 〉 be an interactive protocol. We say that 〈P, V 〉 is a (black-box) equivocal
commitment scheme if it satisfies the following:

Perfect (or computational) hiding. For all sufficiently large n’s, any PPT adversary V ∗ and any
s, s′ of equal length k (where k = k(n) for some polynomial k(·)), the following two probability
distributions are identical (or computationally indistinguishable): [(α, β)← 〈P (s), V ∗〉(1n, 1k) : β]
and [(α′, β′)← 〈P (s′), V ∗〉(1n, 1k) : β′].

Computational Binding. For all sufficiently large n’s, and any PPT adversary P ∗, the following
probability is negligible in n: Pr[(α, β) ← 〈P ∗, V 〉(1n, 1k); (t, (t, v)) ← 〈P ∗(α), V (β)〉(1n, 1k);
(t′, (t′, v′))← 〈P ∗(α), V (β)〉(1n, 1k) : |v| = |v′| = k

∧
v 6= v′].

That is, no PPT adversary P ∗ can decommit the same transcript of the commitment stage to two
different values with non-negligible probabilities.

Simulation indistinguishability and equivocability. There exists a probabilistic polynomial-time
S (who works in two stages: the commitment stage Sc and the decommitment stage Sd) such that
for any probabilistic polynomial-time algorithm V ∗, it holds:
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1. Indistinguishability. For any string s ∈ {0, 1}k, the distributions T (S) and T (P ) are compu-
tationally indistinguishable, where

T (S) = [(α, β) ← Sc
V ∗(1n, 1k); (t, (t, s))← Sd

V ∗(β)(α, s, 1n) : (β, (t, s))]

T (P ) = [(α, β) ← 〈P (s), V ∗〉(1n, 1k); (t, (t, s)) ← 〈P (α, s), V ∗(β)〉(1n, 1k) : (β, (t, s))]

.

That is, for any string s of length k, S outputs a simulated transcript (of both the commitment
stage and the decommitment stage) that is indistinguishable from the view of V ∗ in real
interactions with P when P commits s in the commitment stage and then reveals s in the
decommitment stage, where the simulation of the commitment stage (i.e, S c) is independent
of the string s that is only given to Sd after the simulation of Sc is finished.

2. Equivocability. For all constant c, all sufficiently large n, any string s ∈ {0, 1}k, where
k = k(n) for some polynomial k(·), it holds that |p0−p1| ≤ n−c, where p0, p1 are, respectively,

Pr[(α, β)← Sc
V ∗(1n, 1k); (t, (t, v)) ← Sd

V ∗(β)(1
n, 1k, α, s) : v = s],

Pr[(α, β) ← 〈P (s), V ∗〉(1n, 1k); (t, (t, v)) ← 〈P (α, s), V ∗(β)〉(1n, 1k) : v = s].

That is, S can decommit the simulated transcript of the commitment stage to any value (of
length k) correctly.

Trapdoor commitments versus equivocal commitments. We first remark that the notions
of trapdoor commitments and equivocal commitments are significantly different in nature. In partic-
ular, the trapdoorness property of a trapdoor commitment scheme is defined with respect to honest
commitment receiver. In other words, the trapdoorness property of a trapdoor commitment scheme is
defined with respect to well-formed TCPK. For the Damg̊ard’s Σ-protocol based trapdoor commitment
scheme (described in Section 2), the TCPK is y = f(x). Then, the trapdoorness property says that
for well-formed y = f(x) (which guarantees the existence of the preimage x), if one knows the preimage
x then it can equivocate commitments at its wish. But, it does not guarantee that the trapdoorness
property still holds if y is maliciously formed. For example, a malicious commitment receiver may send
a maliciously formed y′ such that there exists no preimages of y ′, while it is hard for the honest com-
mitment sender to verify whether or not the preimages of y ′ exist. For example, consider the SQUARE
one-way permutation (over the quadratic residues): f(x) = x2 mod N , where N = p · q and p = q = 3
mod 4. Then the malicious commitment receiver may form y ′ to be a non-square such that there exists
no x satisfying y′ = x2 mod N . Note that the honest commitment sender (that is a PPT algorithm)
cannot efficiently verify whether y′ is a square or not, and thus the trapdoorness property becomes
meaningless in this case. But, for equivocal commitments, the equvocability is defined with respect to
any malicious commitment receiver, whether honest or dishonest. This is a difference in nature between
trapdoor commitments and equivocal commitments.

Now, we present the generic yet practical 3-round equivocal (string) commitment scheme under any
OWF admitting Σ-protocols, which is depicted in Figure 1 (page 9).

The commitment stage of the protocol depicted in Figure 1 runs in 4 rounds, but it can be reduced
into 3 rounds by merging Phase-2 into the second round of Phase-1. As we shall see, 3 rounds is the
optimal round complexity for (black-box) equivocal commitments in the standard model.

Theorem 3.1 Suppose fV be any one-way function that admits Σ-protocols, the protocol depicted in
Figure 1 is a 3-round perfectly-hiding equivocal (string) commitment scheme in the standard model.
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The ΣOR-based equivocal commitment scheme 〈P, V 〉

Commitment Stage. The commitment stage consists of the following two phases:
Phase-1. On a security parameter n, the commitment receiver V selects a OWF fV that admits Σ-

protocols, randomly selects two elements in the domain of fV , x0
V

and x1
V

of length n, and computes
y0

V
= fV (x0

V
) and y1

V
= fV (x1

V
). Finally, V sends (y0

V
, y1

V
) to the commitment sender P , and proves

to P that it knows the preimage of either y0
V

or y1
V

by executing the ΣOR-protocol on (y0
V

, y1
V

)
and playing the role of the knowledge prover. The witness used by V during the execution of the
ΣOR-protocol is xb

V
for a randomly chosen bit b in {0, 1}.

Phase-2. P firstly checks the validity of the ΣOR-protocol and aborts if it is not valid. Otherwise, suppose
m ∈ {0, 1}k be the message to be committed, P runs the perfect SHVZK simulator SOR((y0

V
, y1

V
), m)

(as described in Section 2) to get a simulated transcript, denoted ((â0, â1), m, (ê0, ẑ0, ê1, ẑ1)), pre-
tending that it “knows” either the preimage of y0

V
or the preimage of y1

V
. Finally, P sends (â0, â1)

to V while keeping (m, (ê0, ẑ0, ê1, ẑ1)) in secret as the decommitment information.

Decommitment Stage. P reveals (m, (ê0, ẑ0, ê1, ẑ1)). V checks that m = ê0⊕ ê1 and that for both b = 0
and b = 1 (âb, êb, ẑb) is an accepting conversation with respect to yb

V
. V accepts if all the above are valid,

otherwise it rejects.

Figure 1. Generic yet practical round-optimal equivocal string commitments
under any OWF admitting Σ-protocols

Proof (of Theorem 3.1).

Perfect hiding.

The perfectly-hiding property of the protocol can be easily checked by noting that Phase-1 is in-
dependent of the message m to be committed and Phase-2 also perfectly hides m due to the perfect
SHVZK property of Σ-protocols as discussed in Section 2.

Computational binding.

Note that the binding property of the protocol relies on the secrecy of the preimages of (y0
V , y1

V ) and
V does prove to P such knowledge in Phase-1. But the ΣOR-protocol used in Phase-1 only guarantees
WI property which is a much weaker security notion than zero-knowledge. And thus, one may argue
that by interacting with V , an adversary P ∗ could potentially gain some knowledge about the preimages
and the gained knowledge could help it violate the binding property. What save us here are the key pair
trick (which is originally introduced by Naor and Yung in the PKE setting [34] and is also employed in
the ZK setting [20]) and the (perfect) WI property of ΣOR-protocols.

Specifically, suppose the protocol does not satisfy the binding property, then there exists a PPT
adversary P ∗ such that with non-negligible probability q(n) P ∗ can decommit the transcript of the
commitment stage to two different values. Then we can construct a PPT algorithm E that breaks the
one-wayness of fV with non-negligible probability. On an input y in the range of fV , E works as follows:
It randomly selects an element x′ of length n in the domain of fV , computes y′ = fV (x′), randomly
selects a bit b in {0, 1}, sets yb = y and y1−b = y′. Finally, E sends (y0, y1) to P ∗, and proves to P ∗

that it knows either the preimage of y0 or the preimage of y1 by executing the ΣOR-protocol with x′

as its witness. Now, suppose P ∗ can decommit the transcript of the commitment stage to two different
values with non-negligible probability q(n), then according to the special soundness of Σ-protocols it
means that P ∗ can output a preimage of yb or y1−b with probability q(n). But because the perfect WI
property of ΣOR-protocols, we know with probability 1

2q(n) E will get the preimage of yb = y, which
violates the one-wayness of fV .

Equivocal commitments.

We directly deal with the more complicated 3-round case when Phase-2 is combined into the second
round of Phase-1. For any PPT adversary V ∗, the PPT simulator S is depicted in Figure 2 (page 10).
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The equivocability simulator S = (Sc, Sd)

The simulation of Sc: Sc runs V ∗ as a subroutine and goes through the following (at most) two stages:
Stage-1. Denote by a, e, z the first, the second and the third message of the ΣOR-protocol in Phase-1 of

the commitment protocol (depicted in Figure 1) with respect to a pair (y0
V ∗ , y1

V ∗). Sc runs V ∗ as
a subroutine and in the second round (of the combined 3-round protocol) it does the following: Sc

runs SOR((y0
V ∗ , y1

V ∗), 0k) to get a simulated transcript, denoted ((â0, â1), 0
k, (ê0, ẑ0, ê1, ẑ1)) (that is,

Sc tries to commit 0k), randomly selects a random string e in {0, 1}k and send (e, (â0, â1)) to V ∗.
Whenever V ∗ aborts with an incomplete execution of Phase-1 or (a, e, z) is not an accepting conver-
sation with respect to (y0

V ∗ , y1
V ∗), then Sc stops and outputs the transcript up to now. Otherwise,

it goes to Stage-2.

Stage-2. Whenever Sc receives z from V ∗ in Stage-1 and (a, e, z) is an accepting conversation with respect
to (y0

V ∗ , y1
V ∗), Sc does the following:

Repeat Loop: Repeat up to k · 2k times

• Sc rewinds V ∗ to the point that V ∗ just sent a, runs SOR((y0
V ∗ , y1

V ∗), 0k) (with fresh
randomness) to get a simulated transcript, denoted ((â′

0, â
′

1), 0
k, (ê′0, ẑ

′

0, ê
′

1, ẑ
′

1)), randomly
selects e′ from {0, 1}k/e and returns back (e′, (â′

0, â
′

1))) to V ∗.

• Sc runs V ∗ further and if it receives back a z′ such that (a, e′, z′) is an accepting conver-
sation with respect to (y0

V ∗ , y1
V ∗) (this means E gets the preimage of either y0

V ∗ or y1
V ∗)

then Sc outputs ((y0
V ∗ , y1

V ∗), a, e′, z′, (â′

0, â
′

1)) and stop. Otherwise, goto Repeat Loop.

Failure with Error Message. In case all the k · 2k attempts have failed, Sc aborts with an error
message.

The simulation of Sd: Denote by α the output of Sc. In case Sc did not stop in Stage-1 and did not
abort with an error message in Stage-2, then for any string s of length k Sd does the following: it generates
the decommitment information, denoted by (ê′′0 , ẑ′′0 , ê′′1 , ẑ′′1 ), by using the extracted preimage of either y0

V ∗

or y1
V ∗ as its trapdoor such that ((â′

0, â
′

1), s, (ê
′′

0 , ẑ′′0 , ê′′1 , ẑ′′1 )) constitute a successful conversation for showing
the knowledge of the preimage of either y0

V ∗ or y1
V ∗ .

Figure 2. The equivocability simulator

Lemma 3.1 Sc works in expected polynomial-time and the probability that S c aborts with an error
message is negligible.

Proof (of Lemma 3.1). We charge each execution of Phase-1 of the protocol (depicted in Figure
1) as unit cost and our aim is to show that the expected charge accumulated in the Repeat Loop of
Stage-2 is poly(k).

Denote by p the probability that V ∗ successfully finishes Stage-1 in the simulation. As Sc goes
into Stage-2 only if p > 0, below we distinguish two cases: 0 < p < 2−(k−1) and p ≥ 2−(k−1). When
0 < p < 2−(k−1), the repeat loop is iterated at most k · 2k < 2k

p
times. When p ≥ 2−(k−1), each iteration

of the repeat loop extracts a preimage of (y0
V ∗ , y1

V ∗) with probability at least p−2−k. Thus, the expected
number of iterations of the repeat loop in this case is less than (p − 2−k)−1 ≤ 2

p
. Furthermore, as we

shall see, with probability at least 1− 2−k, the repeat loop is not repeated more than 2k
p

times.

Sc may abort with an error messages only in two cases. The first case is when p ≥ 2−(k−1), but in
this case abort happens with probability at most (1 − p

2)k·2
k

< 2−k, since k · 2k ≥ 2k
p

. The second case

is when 0 < p < 2−(k−1), but in this case Sc goes into Stage-2 only with probability p < 2−(k−1). We
conclude that Sc aborts with an error message with probability at most 2−(k−1). �

There are two differences between the simulated transcript outputted by S and the real interaction
transcript between V ∗ and the honest P who is committing to a message s of length k. One is that in
real interactions, P commits s and then reveals s accordingly, but in the simulation S always commits
0k in the commitment stage and then reveals s in the decommitment stage; The second is that in the
simulation S may abort with an error message. But, the first difference makes no distinction due to
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the perfectly-hiding property of the protocol (i.e., the perfect SHVZK property of Σ-protocols), and
the second difference occurs only with negligible probability and thus also cannot make distinguishable
distinction.

For the equivocability property, according to Definition 3.1, p1 = p, and 0 ≤ p0 ≤ p when p < 2−(k−1)

or (1− 2−k) · p ≤ p0 ≤ p when p > 2−(k−1). We conclude |p0 − p1| is negligible. �

Finally, we show that the round-complexity (i.e., three rounds) of our generic yet practical equivocal
commitment scheme is optimal. Specifically, we show that assuming NP 6⊆ BPP , there is no 2-round
(black-box) equivocal commitment scheme of non-interactive decommitment stage (that is the normal
case of commitment schemes).

Theorem 3.2 Assuming NP 6⊆ BPP, there is no 2-round (black-box) equivocal commitment scheme
(of non-interactive decommitment stage).

Proof (of Theorem 3.2). We prove this theorem separately according to whether the prover or the
verifier sends the first-round message. Specifically, we prove the following two propositions:

Proposition 3.1 There is no 2-round (black-box) equivocal commitment scheme in which the verifier
sends the first-round message. Note that this proposition holds unconditionally.

Proof (of Proposition 3.1). For any 2-round commitment scheme, denote by α (sent by the
verifier) the first-round message and by β (sent by the prover) the second-round message. By the
binding property, there is no PPT algorithm that given (a correctly generated) α can generate a valid
β such that it can decommit (α, β) to two different values. This means that even if the commitment
receiver always uses the same α in all its interactions (i.e., the commitment receiver correctly generates
α and then fixes it once and for all) and even just publishes α as its public-key, still no PPT algorithm
can violate the binding property with respect to the same α. Now, suppose the 2-round scheme is a
equivocal commitment scheme, then according to the definition of equivocal commitments there is a
PPT simulator that given the fixed α can generate a valid β such that it can decommit (α, β) to two
different values. This violates the binding property of commitments. �

Proposition 3.2 Assuming NP 6⊆ BPP, there is no 2-round (black-box) equivocal commitment scheme
in which the prover sends the first-round message.

Proof (of Proposition 3.2). Suppose there exists a 2-round black-box equivocal commitment
scheme in which the prover sends the first-round message, then we will construct a 3-round black-box
ZK argument for NP, which contradicts the lower-bound of [23] (i.e., only languages in BPP have
3-round black-box ZK arguments).

Specifically, consider the Blum’s protocol for the NP-Complete language Directed Hamiltonian Cy-
cle DHC (that is depicted in Appendix A). We replace the underlying perfectly-binding commitment
scheme used in the first-round of Blum’s protocol by the assumed 2-round prover-initiated black-box
equivocal commitment scheme. The resultant protocol still runs in three rounds. The black-box ZK
property of the resultant protocol is direct from the simulation indistinguishability and equivocabil-
ity property of the assumed 2-round black-box equivocal commitment scheme. The computational
soundness of the resultant protocol is from the computational binding property of the assumed 2-round
equivocal commitment scheme. Specifically, the ability to answer two different challenges (sent in the
second-round) with respect to the same equivocal commitments (executed in the first-round and a
part of the second-round) implies breaking the computational binding property of the assumed 2-round
equivocal commitment scheme. � �

Comments and Comparisons. By a novel use of Damg̊ard’s Σ-protocol-based commitment
scheme [11] and ΣOR-protocols introduced by Cramer, Damg̊ard and Schoenmakers in [10], our construc-
tion for achieving generic yet practical round-optimal equivocal commitments are actually of concep-
tual simpleness. We argue that conceptual simpleness of the construction could be one major advantage
(rather than disadvantage) of our contributions.
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The notion of equivocal commitments is proposed in [1], where the construction of such a scheme
was left over as an open problem. Equivocal commitments are firstly achieved in [16] by a modification
of Naor’s scheme [32] in the common reference string model. Equivocal commitments in the standard
model without setup assumptions are firstly achieved in [18]. The approach of [18] is to nicely modify
the schemes of [32, 4] with a coin-tossing on the top, and thus the resultant equivocal commitment
schemes run in at least four rounds. Very recently, Katz and Ostrovsky nicely present a zero-knowledge
based solution for equivocal commitments [29], which can be easily modified to run in three rounds.
The Katz-Ostrovsky scheme is a bit commitment scheme and to commit a string the scheme will be
repeated in parallel, and thus may not be efficient for committing strings. Note that our scheme is
equivocal string commitment scheme, and can be practically instantiated with a very small constant
number of exponentiations. Also, although 3-round equivocal commitment scheme is (implicitly) known
in [29], a proof of the lower-bound of round-complexity (as demonstrated in Theorem 3.2) is unknown
previously, to the best of our knowledge.

4 Generic yet Practical Transformation from any Public-Coin HVZK
Protocol to ZK Argument

The high-level overview of the transformation. Given a public-coin HVZK protocol 〈PL, VL〉 for
a language L. Let 2t − 1 (t ≥ 2) be the number of rounds of the protocol. Without loss of generality
we assume all random challenges of the honest verifier VL are of the same length. More precisely, the
prover PL is a PPT interactive machine that on input a string x ∈ L of length n, an auxiliary input w,
and a partial transcript T where T is either an empty string or a sequence of messages (α1, c1, · · · , ci),
1 ≤ i ≤ t− 1, outputs the next message αi+1. The verifier algorithm VL answers each prover message
αi with a challenge ci of length k (that is polynomially related to n) taken uniformly at random from
{0, 1}k , and at the end of interactions applies a verification procedure VL(x, α1, c1, · · · , αt−1, ct−1, αt) to
determine whether to accept or reject x. We also denote by SL the HVZK simulator of 〈PL, VL〉.

To transform 〈PL, VL〉 into a normal ZK protocol 〈P, V 〉 for the same language L, we design a coin-
tossing mechanism to set the random challenges of 〈PL, VL〉 jointly by the prover and the (possibly
malicious) verifier, by employing the generic yet practical equivocal commitment scheme developed in
Section 3. The observation here is that all these t−1 equivocal commitments can share the same Phase-1
of the commitment stage (as described in Figure-1), and thus the incurred additional round-complexity
could be minimal. The transformed protocol 〈P, V 〉 is depicted in Figure 3 (page 13).

Comments on the incurred round-complexity: It’s easy to check that, in comparison with the
starting public-coin protocol 〈PL, VL〉, the number of the incurred additional rounds is that of Phase-1.
Furthermore, the second-round and the third-round of Phase-1 can be merged into the first two rounds
of Phase-2. Thus, the transformation only incurs additionally one round. (For public-coin HVZK
protocols of even number of rounds, the transformation incurs additionally two rounds.)

Theorem 4.1 Assuming fV be any OWF admitting Σ-protocols, the transformed protocol 〈P, V 〉 (de-
picted in Figure 3) is a ZK argument for (the same) language L.

Proof (of Theorem 4.1).

Zero-knowledge.

The strategy of the ZK simulator S is as follows: it first runs the HVZK simulator SL(x) (of the
starting public-coin HVZK protocol 〈PL, VL〉) to get a simulated transcript (α1, c1, · · · , αt−1, ct−1, αt);
Then, by running the malicious V ∗ as a subroutine, S tries to mimic the simulated transcript in the
Phase-2 interactions (in case V ∗ successfully finishes Phase-1), by setting the outcome of the underlying
coin-tossing to be ci for each i, 1 ≤ i ≤ t − 1. Then, the ZK property can be easily derived from
the simulation indistinguishability and equivocability of the underlying (generic yet practical) equivocal
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The transformed ZK argument 〈P, V 〉

Common input. An element x ∈ L ∩ {0, 1}n.

P private input. An NP-witness w for x ∈ L.
Phase-1. On a security parameter n, V selects a OWF fV that admits Σ-protocols, randomly selects two

elements in the domain of fV , x0
V

and x1
V

of length n, and computes y0
V

= fV (x0
V

) and y1
V

= fV (x1
V

).
Finally, V sends (y0

V
, y1

V
) to P , and proves to P that it knows the preimage of either y0

V
or y1

V
by

executing the ΣOR-protocol on (y0
V

, y1
V

) and playing the role of the knowledge prover. We denote by
SOR the perfect SHVZK simulator of the underlying ΣOR-protocol. The witness used by V during
the execution of the ΣOR-protocol is xb

V
for a randomly chosen bit b in {0, 1}. If V successfully

finishes the ΣOR-protocol, P moves into Phase-2; otherwise P aborts.

Phase-2. For i := 1 to t do: (Step-3 and Step-4 below can be merged with Step-1 and Step-2 of the
following iteration.)

Step-1. If i = t then P runs PL to compute αt = PL(x, w, c1, · · · , ct−1), sends αt to V , and
the protocol 〈P, V 〉 goes to “Verifier’s decision”. If i ≤ t − 1, the prover P randomly

selects c
(i)
P

of length k, and runs the perfect SHVZK simulator SOR((y0
V

, y1
V

), c
(i)
P

) (as de-

scribed in Section 2) to get a simulated transcript, denoted ((â
(i)
0 , â

(i)
1 ), c

(i)
P

, (ê
(i)
0 , ẑ

(i)
0 , ê

(i)
1 , ẑ

(i)
1 )),

pretending that it “knows” the preimage of either y0
V

or y1
V

. Then, P runs PL to com-
pute αi = PL(x, w, c1, · · · , ci−1), where c0 is set to be an empty string. Finally, P sends

((â
(i)
0 , â

(i)
1 ), αi) to V .

Step-2. The verifier V sends back P a random challenge c
(i)
V

of length k.

Step-3. The prover P computes ci = c
(i)
P
⊕ c

(i)
V

and sends (c
(i)
P

, (ê
(i)
0 , ẑ

(i)
0 , ê

(i)
1 , ẑ

(i)
1 )) to the verifier V .

Step-4. The verifier V checks that whether or not ((â
(i)
0 , â

(i)
1 ), c

(i)
P

, (ê
(i)
0 , ẑ

(i)
0 , ê

(i)
1 , ẑ

(i)
1 )) is an accepting

conversation for showing the knowledge of the preimage of either y0
V

or y1
V

. If it is accepted

then V computes ci = c
(i)
V
⊕ c

(i)
P

, otherwise V aborts.

Verifier’s decision The verifier accepts x if and only if VL(x, α1, c1, · · · , αt−1, ct−1, αt) outputs 1.

Figure 3. The generic yet practical transformation from public-coin HVZK to (normal) ZK argument.

commitment scheme. The fact that our transformation preserves statistical/perfect ZK is from the
observation that, according to the analyses of the simulation procedure of the equivocability simulator
S = (Sc, Sd) presented in the proof of Theorem 3.1, except for exponentially negligible probabilities the
ZK simulator generates exactly the correct conversation.

Computational soundness.

Note that if the underlying equivocal commitment scheme (for coin-tossing) was perfectly-binding,
the soundness of the transformed protocol 〈P, V 〉 would trivially follows from the soundness of the start-
ing public-coin HVZK protocol 〈PL, VL〉. This is the case in [31], where the nicely explored DDH-based
(simulatable) commitment scheme is perfectly-binding. But, for our case, the underlying equivocal com-
mitment scheme is actually computational binding (actually, it seems that any equivocal commitment
scheme intrinsically could not be perfectly-binding). Also, for any starting public-coin HVZK protocol,
we cannot count on the special soundness as guaranteed by Σ-protocols. Thus the soundness proof here
is (a bit) more complicated and subtle.

The key observation here is that, conditioned on a malicious polynomial-time (wlog, deterministic)
P ∗ can successfully convince the honest verifier V of a false statement “x ∈ L” while x 6∈ L, then there
must exist an i, 1 ≤ i ≤ t− 1, a positive polynomial q(·) and two disjoint sets, denoted S and S ′, where

S ⊆ {0, 1}k and S ′ ⊆ {0, 1}k and |S| ≥ 1
q(n) ·2

k and |S ′| ≥ 1
q(n) ·2

k, such that P ∗ can decommit (â
(i)
0 , â

(i)
0 )

to a value, denoted c
(i)
P ∗(∈ {0, 1}k), for all random challenges c

(i)
V ’s fallen into the set S, and decommit

(â
(i)
0 , â

(i)
0 ) to another different value, denoted c

(i)′
P ∗ (∈ {0, 1}k/c

(i)
P ∗), for all random challenges c

(i)
V ’s fallen
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The algorithm E(1n, y)

x′
R
←− {0, 1}n; y′ ←− fV (x′).

b
R
←− {0, 1}.

Set yb

V
be y′, xb

V
be x′ and y1−b

V
be y.

i
R
←− {1, 2, · · · , t− 1}.

S runs P ∗ as a subroutine and acts accordingly by playing the role of the honest verifier, until E receives

from P ∗ the message (c
(i)
P∗ , (ê

(i)
0 , ẑ

(i)
0 , ê

(i)
1 , ẑ

(i)
1 )). Note that in the interactions of Phase-1, E uses x′ = xb

V

as its witness.
If (c

(i)
P∗ , (ê

(i)
0 , ẑ

(i)
0 , ê

(i)
1 , ẑ

(i)
1 )) is valid (i.e., P ∗ correctly decommits (â

(i)
0 , â

(i)
1 ) with respect to the random

challenge c
(i)
V

sent by E), then E rewinds P ∗ to the state that P ∗ just sent (â
(i)
0 , â

(i)
1 ).

c
(i)′
V

R
←− {0, 1}k/c

(i)
V

.

Returns back c
(i)′
V

to P ∗ and runs P ∗ further, looking forward to receiving again a valid decommitment

message of the same (â
(i)
0 , â

(i)
1 ) but to a different value c

(i)′
P∗ 6= c

(i)
P∗ from which E can extract the preimage

of either y0
V

or y1
V

.

Figure 4. The algorithm E(1n, y)

into the set S ′. The underlying reason is that, if the above does not hold then the computational
soundness of the protocol 〈P, V 〉 just follows from the soundness of the starting public-coin HVZK
protocol 〈PL, VL〉.

Now, suppose the transformed protocol 〈P, V 〉 does not satisfy computational soundness, then we
will use the above observation to reach a contradiction to the one-wayness of fV . Specifically, we
will construct a PPT algorithm E that on common input y outputs a preimage of y under fV with
non-negligible probabilities in polynomial-time. The algorithm E is depicted in Figure 4 (page 14).

Suppose P ∗ can convince the honest verifier of a false statement “x ∈ L” while x 6∈ L with non-
negligible probability 1

p(n) for some positive polynomial p(·), then it is easy to check that E will output a

preimage of either y0
V or y1

V with probability at least 1
t·q(n)·p(n) in polynomial-time. Due to the (perfect)

WI property of the ΣOR-protocol executed in Phase-1, we conclude with probability at least 1
2·t·q(n)·p(n)

E will output the preimage of y = y1−b
V in polynomial-time, which violates the one-wayness of fV . �
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A Blum’s protocol for DHC [3]

Blum’s protocol for the NP-Complete language DHC (Directed Hamiltonian Cycle) is n-parallel rep-
etitions of Blum’s basic protocol for proving the knowledge of Hamiltonian cycle on a given directed
graph G [3]. The following is the description of Blum’s basic protocol for DHC:

Common input. A directed graph G = (V,E) with q = |V | nodes.

Prover’s private input. A directed Hamiltonian cycle CG in G.

Round-1. The prover selects a random permutation, π, of the vertices V , and commits (using a
perfectly-binding commitment scheme) the entries of the adjacency matrix of the resulting per-
mutated graph. That is, it sends a q-by-q matrix of commitments so that the (π(i), π(j))th entry
is a commitment to 1 if (i, j) ∈ E, and is a commitment to 0 otherwise.

Round-2. The verifier uniformly selects a bit b ∈ {0, 1} and sends it to the prover.

Round-3. If b = 0 then the prover sends π to the verifier along with the revealing of all commitments
(and the verifier checks that the revealed graph is indeed isomorphic to G via π); If b = 1, the
prover reveals to the verifier only the commitments to entries (π(i), π(j)) with (i, j) ∈ CG (and the
verifier checks that all revealed values are 1 and the corresponding entries form a simple q-cycle).
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