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Abstract

In this work, we present a generic yet practical transformation from any public-coin honest-
verifier zero-knowledge (HVZK) protocols to normal zero-knowledge (ZK) arguments. By “generic”,
we mean that the transformation is applicable to any public-coin HVZK protocol under any one-way
function (OWF) admitting Y-protocols. By “practical” we mean that the transformation does not
go through general N'P-reductions and only incurs minimal additional rounds. In particular, if the
starting public-coin HVZK protocols and the underlying 3-protocols are practical, the transformed
ZK arguments are also practical. In addition, our transformation also preserves statistical/perfect
zero-knowledge.

To this end, we develop generic yet practical three-round perfectly-hiding equivocal (string) com-
mitment scheme under any OWF admitting YX-protocols, which is of independent value. To our
knowledge, it is also the first constant-round statistically-hiding (not necessarily to be trapdoor or
equivocal) commitment scheme based on any OWF admitting X-protocols. We show that the round-
complexity (i.e., three rounds) is optimal for black-box equivocal commitment schemes. Along the
way, we also make some clarifications that seem to be possibly of independent interest. In partic-
ular, we identify and clarify a seemingly important implication (to the elegant interaction between
cryptography and complexity theory): Y-protocols may witness non-NP-Completeness.

1 Introduction

Zero-knowledge (ZK) protocols are remarkable since they allow a prover to validate theorems to a verifier
without giving away any other knowledge (i.e., computational advantage). This notion was suggested
by Goldwasser, Micali and Rackoff [42] and its generality was demonstrated by Goldreich, Micali and
Wigderson [39]. Since its introduction ZK has found numerous and extremely useful applications, and
by now it has been playing a central role in modern cryptography.

ZK protocols for general languages (i.e., N'P) constitute an important plausibility result since many
important statements are in AP. But, they are normally hard to be directly employed in practice,
particularly due to the underlying general NP-reductions. In addition, ZK has many direct efficient
applications (mainly employing number-theoretic statements). In particular, a very large number of
protocols, named public-coin honest verifier zero-knowledge HVZK protocols, are developed directly
for specific number-theoretic languages, which preserves the ZK property only with respect to honest
verifiers (i.e., they are not normal ZK) but are highly practical. Thus, it’s naturally desirable to develop
a generic yet practical transformation from any public-coin HVZK protocols to (normal) ZK protocols.
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1.1 Owur contributions

In this work, we present a generic yet practical transformation from any public-coin honest-verifier
zero-knowledge (HVZK) protocols to normal zero-knowledge (ZK) arguments. By “generic”, we mean
that the transformation is applicable to any public-coin HVZK protocol under any one-way function
(OWF) admitting Y-protocols. (Note that the set of OWFs admitting Y-protocols is large, which in
particular includes both DLP and RSA.) By “practical” we mean that the transformation does not go
through general N'P-reductions and only incurs additionally one round (for public-coin HVZK protocols
of odd number of rounds) or two rounds (for public-coin HVZK protocols of even number of rounds).
In particular, if the starting public-coin HVZK protocols and the underlying Y-protocols are practical,
the transformed ZK arguments are also practical. We remark that the additional round-complexity
incurred by our transformation is minimal in the sense that: There are a very large number of three-
round public-coin HVZK protocols (e.g., ¥-protocols) and 2-round public-coin HVZK protocols (as we
shall see, any language admits non-interactive zero-knowledge protocols in the common random string
model also admits 2-round public-coin HVZK protocols); But, as shown in [36], only languages in BPP
have three-round zero-knowledge protocols.

To this end, we develop generic yet practical three-round perfectly-hiding equivocal (string) com-
mitment scheme under any OWF admitting Y-protocols, which is of independent value. To the best
of our knowledge, it is also the first constant-round statistically-hiding (not necessarily to be trapdoor
or equivocal) commitment scheme based on any OWF admitting X-protocols. The construction is con-
ceptually simple, and its DLP or RSA based instantiations need only about 8 exponentiations by each
participant for both commitment and decommitment. We show in this work that the round-complexity
(i.e., three rounds) is optimal for black-box equivocal commitment schemes.

We also make clarifications on the relationship between trapdoor commitments and equivocal com-
mitments, the necessity of preimage-verifiable OWF in Damgard’s paradigm of achieving commitments
with Y-protocols. In particular, we identify and clarify a seemingly important implication (to the
elegant interaction between cryptography and complexity theory): Y-protocols may witness non-N7P-
Completeness; in other words, a Y-protocol (without intractability assumption or only with general
complexity assumption) may just be a proof for showing that the language is not N'P-complete (detailed
discussions are presented in Section 3.5). These clarifications might also be of independent interest.

1.2 Related works and comparisons

Converting HVZK protocols into normal ZK protocols has attracted a series of extensive research ef-
forts (and the idea of reducing the problem of security for arbitrary parties to the case of honest parties
can be traced back to the works in secure distributed computing [63, 38]). Converting any (whether
public-coin or not) HVZK protocols into normal ZK protocols was first studied by Bellare, Micali and
Ostrovsky [3] under the DLP assumption, and the intractability assumption was further reduced to any
one-way permutation by Ostrovsky, Venkatesan and Yung [58]. The BMO and OVY transformations
preserve perfect /statistical ZK. The works of Damgard, Goldreich, Okamoto and Wigderson [19, 57]
further achieved that, under any OWF, any (whether public-coin or not) HVZK protocols can be trans-
formed into public-coin normal ZK protocols. The transformation of [19, 57| preserves statistical ZK,
but not perfect ZK. Damgard first presented a transformation from any constant-round public-coin
HVZK protocols to normal ZK protocols without intractability assumptions [17], by using the interac-
tive hashing technique employed in [58]. The transformation of [17] preserves perfect/statistical ZK,
and also proof/argument of knowledge. This (unconditional) approach was carried to its climax in [40]
by showing that any public-coin HVZK proofs can be transformed into normal public-coin ZK proofs
without intractability assumptions, by a deep investigation of the Random Selection technique employed
n [19]. Combined with the result of [57] (i.e., any language that admits honest-verifier statistical ZK
proofs also admits public-coin honest-verifier statistical ZK proofs), it established that the class of lan-
guages admitting honest-verifier statistical ZK proofs coincides with the class of languages admitting
statistical ZK proofs in general. The transformation of [40] preserves perfect/statistical, but it is not
provably applicable to HVZK arguments. These (earlier) works show important general methodology of



achieving ZK protocols in general from HVZK protocols, and demonstrate elegant intersections between
cryptography and complexity theory. But these transformations may still be not efficient enough for
practice, partially due to the high (additional) round-complexity incurred. In more details, the BMO
transformation [3] incurs ¢-m(n) additional rounds, where ¢ is a constant and m(n) denotes the round-
complexity of the starting HVZK protocol on common inputs of length n (which implies the number of
incurred rounds is non-constant for non-constant-round starting HVZK protocols); All other transfor-
mations presented in [58, 17, 19, 57, 40] incur at least non-constant additional rounds in getting normal
ZK protocols of negligible soundness error (actually, they incur polynomially many additional rounds for
achieving normal ZK protocols of exponentially vanishing soundness error). Other inefficiencies are due
to the underlying general N'P-reductions (e.g., in the transformations of [3, 58]) and/or the (inefficient)
general cryptographic primitives (e.g., OWF-based commitments, et al). In comparison, our transfor-
mation is a practically implementable one (under any OWF admitting Y-protocols), transforming any
public-coin HVZK protocols into normal ZK arguments with minimal additional rounds incurred and
without going through general AN'P-reductions. Our transformation preserves perfect/statistical ZK. In
addition, our transformation also preserves argument of knowledge for ¥-protocols (that are a special
case of public-coin HVZK). Note that for HVZK protocols used in practice, the most often case is the
public-coin ones without NP-reductions (mainly for number-theoretic languages).

Recently, Micciancio and Petrank presented a practically implementable transformation from any
public-coin HVZK protocols to normal ZK protocols without general NP-reductions under the deci-
sional Diffie-Hellman (DDH) assumption [52]. Note that our transformation converts any public-coin
HVZK protocols into normal ZK arguments under any OWF admitting X-protocol (that includes, in
particular, both DLP and RSA). For the additional round-complexity incurred, the Micciancio-Petrank
transformation incurs three rounds (for public-coin HVZK protocols of odd number of rounds) or four
rounds (for public-coin HVZK protocols of even number of rounds)*. In comparison, our transforma-
tion only incurs minimal additional rounds (specifically, one round for public-coin HVZK protocols of
odd number of rounds or two rounds for public-coin HVZK protocols of even number of rounds). For
additional computational complexity incurred, the Micciancio-Petrank transformation (that is based
on DDH) incurs additional 2 modular exponentiation operations for each round of the original public-
coin HVZK protocol. The DLP (that is weaker than DDH) or RSA based implementations of our
transformation incur the same additional computational complexity (i.e., 2 exponentiations for each
round of the original protocol). The Micciancio-Petrank transformation can be extended to render
concurrent ZK protocols by directly applying the Richardson-Kilian paradigm [60], with non-constant
additional rounds incurred as constant-round black-box concurrent ZK protocols exists only for trivial
languages [11]. This property does not hold for our transformation. In turn, our transformation pre-
serves perfect /statistical ZK, a property does not hold for the Micciancio-Petrank transformation. The
Micciancio-Petrank transformation only preserves computational ZK. As a critical tool, [52] achieved a
DDH-based perfectly-binding simulatable commitment scheme. In this work, we achieve perfectly-hiding
three-round (that is optimal) equivocal commitment schemes under any OWF admitting X-protocols.
We also note that the soundness of the transformed ZK protocols by the Micciancio-Petrank trans-
formation is trivially guaranteed by the nicely explored DDH-based perfectly-binding (simulatable)
commitment scheme, while the soundness proof of the ZK protocols by our transformation turns out to
be (a bit) complicated and subtle.

The notion of equivocal commitments is proposed in [2], where the construction of such a scheme was
left over there as an open problem. Equivocal commitments are firstly achieved in [23] by a modification
of Naor’s scheme [53] in the common reference string model. Equivocal commitments in the standard
model without setup assumptions are firstly achieved in [25]. The approach of [25] is to nicely modify
the schemes of [53, 7] with a coin-tossing on the top, and thus the resulting equivocal commitment
schemes run in at least four rounds. Very recently, Katz and Ostrovsky nicely present a zero-knowledge
based solution for equivocal commitments [50], which can be easily modified to run in three rounds. The
Katz-Ostrovsky scheme is a bit commitment scheme and to commit a string the scheme will be executed

*In [52], the authors only analyzed the additional round complexity incurred for HVZK of odd number of rounds.



in parallel, and thus may not be efficient for committing strings. Note that our scheme is equivocal
string commitment scheme, and can be practically instantiated with a very small constant number
of exponentiations. Also, although three-round equivocal commitment scheme is (implicitly) known
in [50], a proof of the lower-bound of round-complexity (i.e., three rounds are optimal for equivocal
commitments) is unknown previously, to the best of our knowledge.

Recent celebrated advances of general complexity assumption based statistical ZK and
commitments. Recently, celebrated advances are progressed on statistical ZK and statistically-hiding
commitments from general complexity assumptions, in particular from any OWF [45, 56, 46]. Known
general assumption based statistical ZK and commitments are feasible inefficient constructions and are
of non-constant rounds [54, 45, 56, 46]. Furthermore, it is very recently proved that non-constant round-
complexity is intrinsic to black-box constructions of statistical commitments from any one-way permu-
tations (and even from trapdoor permutations) [44] (which improves the previous round-complexity
lower-bound of general complexity assumption based statistical commitments [30, 62]).

2 Preliminaries

We use standard notations and conventions below for writing probabilistic algorithms, experiments and
interactive protocols. If A is a probabilistic algorithm, then A(zq,x2,--- ;7) is the result of running
A on inputs z1,x2,--- and coins r. We let y «— A(x1,x9,---) denote the experiment of picking r at
random and letting y be A(zq1, 22, - ;7). If S is a finite set then x « S is the operation of picking an
element uniformly from S. (If S is a finite set we also denote by |S| the size of S.) If « is neither an
algorithm nor a set then x < « is a simple assignment statement. By [Ry;--- ; Ry, : v] we denote the set
of values of v that a random variable can assume, due to the distribution determined by the sequence
of random processes Ry, Ry, -+, R,. By Pr[Ry; -+ ; Ry, : E] we denote the probability of event E, after
the ordered execution of random processes Ry, - , R,.

Let (P,V) be a probabilistic interactive protocol, then the notation (y1,y2) «— (P(x1), V(x2))(z)
denotes the random process of running interactive protocol (P, V) on common input x, where P has
private input x1, V' has private input zo, y; is P’s output and ys is V'’s output. We assume, w.l.o.g.,
that the output of both parties P and V' at the end of an execution of the protocol (P, V) contains a
transcript of the communication exchanged between P and V during such execution.

Definition 2.1 (one-way function) A function f : {0,1}* — {0,1}* is called a one-way function
(OWEF) if the following conditions hold:

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm A such that on input
x algorithm A outputs f(x) (i.e., A(x) = f(x)).

2. Hard to invert: For every probabilistic polynomial-time PPT algorithm A’, every positive polyno-
mial p(-), and all sufficiently large n’s, it holds Pr[A'(f(Uy,),1") € f~H(f(Uy,))] < ﬁ, where U,

denotes a random variable uniformly distributed over {0,1}".

A OWF f is called preimage-verifiable if there exists a polynomial-time computable predicate, Dy :
{0,1}* — {0,1}, such that for any string y, Ds(y) = 1 if and only if there exists an x such that
y = f(z).

Discussions on preimage-verifiable OWF. Below, with RSA as an example, we give more
clarifications about the relationship among normal OWF, preimage-verifiable OWF and 1-1 OWF.
(More detailed clarifications can be found in [37, 64].) The difference between normal OWF and length-
preserving 1-1 OWF lies in the domain of the function. Given a normal OWF from domain D to Range
R, the 1-1 property of the function is defined however with respect to {0, 1}* — {0, 1}*. In other words,
length-preserving 1-1 OWF is a single object, while a normal OWF could be a member of a function
family. This in particular implies that any length-preserving 1-1 OWF is trivially a preimage-verifiable
OWEF.



For example, given a function description (NN, e) where N = pq for two distinct primes p and ¢ and
ged(e, o(N)) = 1, define this generic RSA-based function (denoted by fgrsa) to be farsa(z) = z¢
mod N. Then, this function fgrsa (specified by (N, e)) is a normal OWF (actually OWP) from Z3; to
Z3;. But, this function is NOT a preimage-verifiable OWF, because given a specific (N, e), one cannot
efficiently verify whether ged(e, $(N)) = 1 or not.

Now, consider the following restricted RSA-based function frrsa (specified by (N,e) such that N
is a composite number and e > N is a prime number). In this case, this function frrga is a preimage-
verifiable OWF from Z3; to Z3, as the additional requirement e > N ensures that ged(e, p(NN)) = 1.
But, this function is clearly not a 1-1 function from {0,1}* — {0, 1}*.

Definition 2.2 (interactive argument system) A pair of probabilistic polynomial-time interactive
machines, (P, V'), is called an interactive argument system for a language L if the following conditions

hold:

o Completeness. For every x € L, there exists a string w such that for every string z,
Pr[(P(w), V(2))(z) = 1] = 1.

e Soundness. For every polynomial-time interactive machine P*, and for all sufficiently large n’s
and every x ¢ L of length n and every w and z, Pr[(P*(w), V(2))(z) = 1] is negligible in n.

An interactive system is called a public-coin system if at each round the prescribed verifier only tosses
a predetermined number of coins and send the outcome (random challenge) to the prover.

Definition 2.3 (witness indistinguishability WI [29]) Let (P, V) be an interactive system for a

language L € NP, and let Ry, be the fivred N'P witness relation for L. That is, v € L if there exists
a w such that (z, w) € Rr. We denote by view‘]jgg) (x) a random wvariable describing the contents of
the random tape of V* and the messages V* receives from P during an execution of the protocol on
common input x, when P has auzxiliary input w and V* has auziliary input z. We say that (P, V')
is witness indistinguishable for Ry if for every PPT interactive machine V*, and every two sequences
Wt = {wll,er and W? = {w2},cr for sufficiently long =, so that (z, wl) € Ry and (x, w?) € Ry,
the following two ensembles are computationally indistinguishable by any non-uniform PPT algorithm:
{z, view‘ljgl(vj)) (%) }eer, zeq0, 13+ and {z, view‘ljizg)) (%) }zer, 2cf0,1y+- Namely, for every PPT non-uniform
distinguishing algorithm D, every polynomial p(-), all sufficiently long x € L, and all z € {0,1}*, it
holds that

(x) = 1] = Pr[D(x, z,view‘]jgg)) (x)=1]| <

P(wy)
V*(2)

| Pr[D(z, z, view
p(lz[)

Definition 2.4 (zero-knowledge ZK [42, 33]) Let (P, V) be an interactive system for a language
L € NP, and let Ry, be the fized NP witness relation for L. That is, v € L if there exists a w such
that (z, w) € Rr,. We denote by view‘]jng)
tape of V* and the messages V* receives from P during an execution of the protocol on common input
x, when P has auziliary input w and V* has auziliary input z. Then we say that (P, V) is zero-
knowledge if for every probabilistic polynomial-time interactive machine V* there exists a probabilistic
(expected) polynomial-time oracle machine S, such that for all sufficiently long x € L the ensembles
{view‘ljgw)(az)}xeL and {SV" (2)}zer are computationally indistinguishable. Machine S is called a ZK
simulator for (P, V). The protocol is called statistical ZK if the above two ensembles are statistically

close (i.e., the variation distance is eventually smaller than m for any positive polynomial p). The

)(x) a random variable describing the contents of the random

protocol is called perfect ZK if the above two ensembles are actually identical (i.e., except for negligible
probabilities, the two ensembles are equal).

Definition 2.5 (public-coin HVZK) Let (P, V) be a public-coin interactive protocol for a language
L in which the prescribed honest verifier V is supposed to send t — 1, t > 2, random challenges. Denote
by «;, 1 < i <'t, the i-th message of honest prover and by ¢;, 1 < i < t—1, the i-th random challenge of



the honest verifier. The honest prover P is a PPT interactive machine that on the common input x, an
auziliary input w and a partial transcript T where T is either an empty string or a sequence of messages
(ag,¢1, 0 ,¢), 1 < i <t—1, outputs the next message ;1. We denote by view‘lj “(z) a random
variable describing the contents of the random tape of (the honest) V' and the messages V receives from
P during an execution of the protocol on common input x when P has auxiliary input w. Such a public-
coin protocol is called honest verifier zero-knowledge (HVZK) if there exists a probabilistic polynomial
time simulator S such that for all sufficiently long x € L the following ensembles are computationally

indistinguishable: {S(x)}rer and {view{j(w) () }zer-

In above definition, we have assumed that the prover initiates the protocol. It also can be easily
extended to deal with the case that the verifier initiates the protocol.

Definition 2.6 (X-protocol [13]) A three-round public-coin protocol (P, V') is said to be a X-protocol
for a relation R if the following hold:

o Completeness. If P, V' follow the protocol, the verifier always accepts.

e Special soundness. From any common input x of length n and any pair of accepting conversations
on input x, (a,e, z) and (a, e, 2") where e # €', one can efficiently compute w such that (z,w) € R.
Here a, e, z stand for the first, the second and the third message respectively and e is assumed to
be a string of length k (that is polynomially related to n) selected uniformly at random in {0, 1}".

e Perfect SHVZK (Special honest verifier zero-knowledge). There exists a probabilistic polynomial-
time (PPT) simulator S, which on input x (where there exists a w such that (z,w) € R) and a
random challenge string €, outputs an accepting conversation of the form (a,é, 2), with the same
probability distribution as the real conversation (a,e,z) between the honest P(w), V' on input x.

Y.-protocols have been proved to be a very powerful cryptographic tool and are widely used in
numerous important cryptographic applications. A large number of Y-protocols have been developed
in the literature and we recall the X-protocol examples for DLP and RSA below.

Y-protocols vs public-coin HVZK: Although Y-protocols are a very powerful cryptographic
tool, by definition they are actually a very special case of public-coin HVZK (specifically, three-round
public-coin special HVZK with special soundness). There are many protocols that are public-coin HVZK
but not ¥-protocols. In particular, any non-interactive zero-knowledge NIZK protocol in the common
random string model can be trivially modified into a 2-round public-coin HVZK protocol. The idea
is simple: we let the (honest) verifier send a random string in the first-round, and then the prover
generates the NIZK proof/argument with the first-round message serving as the underlying common
random string. It is also known that proving a number is the product of two safe primes has a public-coin
HVZK (with round-complexity much larger than 3, and thus not ¥-protocols) [8].

Y-Protocol for DLP [61]. The following is a X-protocol (P, V) proposed by Schnorr [61] for
proving the knowledge of discrete logarithm, w, for a common input of the form (p,q,g,h) such that
h = g* mod p, where on a security parameter n, p is a uniformly selected n-bit prime such that
q = (p—1)/2 is also a prime, g is an element in Z; of order ¢. It is also actually the first efficient
>-protocol proposed in the literature.

e P chooses r at random in Z; and sends a = g" mod p to V.
e V chooses a challenge e at random in Z,. and sends it to P. Here, k is fixed such that 2* < ¢.

e P sends z =71 + ew mod q to V, who checks that ¢g* = ah® mod p, that p, ¢ are prime and that
g, h have order ¢, and accepts iff this is the case.

Y-Protocol for RSA [43]. Let n be an RSA modulus and ¢ be a prime. Assume we are given
some element y € Z*, and P knows an element w such that w? =y mod n. The following protocol is
a Y-protocol for proving the knowledge of g-th roots modulo n.



e P chooses r at random in Z), and sends a = r? mod n to V.
e 1 chooses a challenge e at random in Z,. and sends it to P. Here, k is fixed such that 2* < ¢.

e Psendsz =rw® mod ntoV, who checks that z¢ = ay® mod n, that ¢ is a prime, that ged(a,n) =
gcd(y,n) = 1, and accepts iff this is the case.

The OR-proof of Y-protocols [15]. One basic construction with Y-protocols allows a prover
to show that given two inputs zg, 1, it knows a w such that either (xzg,w) € Ry or (z1,w) € Ry,
but without revealing which is the case. Specifically, given two Y-protocols (P, V3) for Ry, b € {0,1},
with random challenges of, without loss of generality, the same length &, consider the following protocol
(P, V), which we call ¥pr. The common input of (P, V) is (zg,z1) and P has a private input w such
that (zp, w) € Rp.

e P computes the first message ap in (Py, V}), using xp, w as private inputs. P chooses e;_; at
random, runs the SHVZK simulator of (P;_j, V;_3) on input (z1_p, €1-p), and lets (a1_p, €14, 21-p)
be the output. P finally sends ag, a1 to V.

e V chooses a random k-bit string s and sends it to P.

e P sets e, = s @ e and computes the answer z, to challenge e, using (xp, ap, €5, w) as input. He
sends (ep, z0,€1,21) to V.

e V checks that s = eg@e; and that conversations (ag, eg, 2,), (a1, €1, 21) are accepting conversations
with respect to inputs xg, x1, respectively.

Theorem 2.1 [15] The protocol Lor above is a ¥-protocol for Ror, where Ror = {((zo, 1), w)|(zo,w) €
Ry or (z1,w) € R1}. Moreover, for any malicious verifier V*, the probability distribution of conver-
sations between P and V*, where w is such that (xp,w) € Ry, is independent of b. That is, Yog is
perfectly witness indistinguishable.

The perfect SHVZK simulator of Xpg [15]. For a ¥pg-protocol of above form, denote by Sor
the perfect SHVZK simulator of it and denote by S}, the perfect SHVZK simulator of the protocol (P, V3)
for b € {0,1}. Then on common input (x,z;) and a random string é of length k, Sor((xo, x1), é) works
as follows: It firstly chooses a random k-bit string ég, computes é; = é @ éy, then Spr runs Sy(zy, €p)
to get a simulated transcript (ap, é, 2) for b € {0,1}, finally Sogr outputs ((ag, a1), é, (éo, 20, €1, 21))-

Definition 2.7 (trapdoor (string) commitment scheme TC) A (normal) trapdoor commitment
scheme (TC) is a quintuple of probabilistic polynomial-time (PPT) algorithms TCGen, TCCom, TCVer,
TCKeyVer and TCFuake, such that

e Completeness. Vn, Yv of length k (where k = k(n) for some polynomial k(-)),
Pr[(TCPK,TCSK) « TCGen(1"); (c,d) «+ TCCom(1", 1¥, TCPK,v) :
TCKeyVer(1", TCPK) = TCVer(1",1*, TCPK, c,v,d) = 1] = 1.

e Computational Binding. For all sufficiently large n’s and for any PPT adversary A, the following
probability is negligible in n (where k = k(n) for some polynomial k(-)):
Pr[(TCPK,TCSK) « TCGen(1"); (c,v1,v2,dy1,ds) «— A(1",1¥ TCPK) :
TCVer(1",1%, TCPK, c,v1,d1) = TCVer(1", 1% TCPK, c,v2,d2) = 1 \ |v1| = |va| = k \ v1 # va].

e Perfect (or Computational) Hiding. ¥ TCPK such that TCKeyVer(TCPK,1") =1 and ¥V vy, vy
of equal length k, the following two probability distributions are identical (or computationally
indistinguishable):

[(c1,d1) «+ TCCom(1",1¥, TCPK,v1) : c1] and [(ca,ds) < TCCom(1", 1%, TCPK, vs) : c].



e Perfect (or Computational) Trapdoorness. ¥ (I'CPK,TCSK) € {TCGen(1")}, Jvi, Vo such
that v1 and vy are of equal length k, the following two probability distributions are identical (or
computationally indistinguishable):

[(c1,dy1) « TCCom(1",1%¥, TCPK,vy);dy « TCFake(1",1¥, TCPK, TCSK, c1,v1,dy,v2) : (c1,db)]
and [(ca,dy) + TCCom(1",1¥, TCPK,v5) : (c2,d2)].

3 Generic yet Practical Equivocal Commitments from >-Protocols

In this section, we present generic yet practical three-round perfectly-hiding equivocal (string) com-
mitment schemes under any OWF admitting Y-protocols. By “generic” we mean our equivocal com-
mitments can be implemented under any one-way function (OWF) that admits Y-protocols (note that
the set of OWFs admitting ¥-protocols is large, which in particular includes both DLP and RSA). To
the best of our knowledge, it is also the first constant-round statistically-hiding (not necessarily to be
trapdoor or equivocal) commitment scheme based on any OWF admitting X-protocols; By “practical”
we mean our equivocal commitment schemes do not go through general N'P-reductions and if the under-
lying Y-protocols are practical then the transformed equivocal commitment protocols are also practical.
With DLP or RSA as examples, the DLP-based or RSA-based instantiations need only 8 exponentia-
tions by each participant for both commitment and decommitment. We show that three rounds is the
lower-bound of round-complexity for black-box equivocal commitment schemes (the lower-bound holds
unconditionally).

Along the way, we also clarify in this section the relationship between trapdoor commitments and
equivocal commitments, the necessity of preimage-verifiable OWF in Damgard’s Y-protocol-based trap-
door commitments, and identify and clarify a seemingly important implication (to the elegant interac-
tion between cryptography and complexity theory): 3-protocols may witness non-NP-Completeness;
in other words, a X-protocol (without intractability assumption or only with general complexity as-
sumption) may just be a proof for showing the language is not AN'P-complete (detailed discussions are
presented in Section 3.5). These clarifications may also be possibly of independent interest.

3.1 Formalization of equivocal commitments

Informally speaking, a commitment scheme is equivocal if it satisfies the following additional require-
ment. There exists an efficient algorithm, called the simulator, which outputs a transcript leading to
a “fake” commitment such that: (1) the “fake” commitment can be decommitted to both 0 and 1;
and (2) the distribution of the simulated transcript is indistinguishable from that of the real view of
an even malicious commitment receiver in a real execution of the protocol. Equivocal commitments
could be viewed as a stronger notion than trapdoor commitments and are widely used as a key ingre-
dient for achieving various advanced cryptographic protocols, e.g., zero-knowledge [54, 25, 26], secure
multi-party computation [12, 50], and more advanced commitment schemes (like non-malleable com-
mitments [23, 31, 24, 20], simulation-sound commitments [51] and universally composable commitments
[10, 21, 12]), et al.

Now, we present the formal definition of (black-box) equivocal (string) commitments that is the
black-box and full version of the definition presented in [25].

Definition 3.1 Let (P,V) be an interactive protocol. We say that (P,V') is a (black-box) equivocal
commitment scheme if it satisfies the following:

Perfect (or computational) hiding. For all sufficiently large n’s, any PPT adversary V* and any
s,8" of equal length k (where k = k(n) for some polynomial k(-)), the following two probability
distributions are identical (or computationally indistinguishable): [(a, B) « (P(s), V*)(1",1%) : g]
and [(o/,3') «— (P(s'), V*)(1",1%) : B'].

Computational Binding. For all sufficiently large n’s, and any PPT adversary P*, the following
probability is negligible in n: Pr[(a, B) « (P*,V)(1",1%); (¢, (t,v)) « (P*(a), V(B))(1", 1%);

(t', (', 0") — (P*(a), V(B)(1", 1¥) : |v| = || = k v # /).



That is, no PPT adversary P* can decommit the same transcript of the commitment stage to two
different values with non-negligible probabilities.

Simulation indistinguishability and equivocability. There exists a probabilistic polynomial-time
S (who works in two stages: the commitment stage S¢ and the decommitment stage S) such that
for any probabilistic polynomial-time algorithm V*, it holds:

1. Indistinguishability. For any string s € {0,1}*, the distributions T'(S) and T(P) are compu-
tationally indistinguishable, where

T(S) = [(a7ﬁ) — S\C/*(lna 1k); (t7 (t7 S)) — S#/*(ﬁ)(lnv 1k7a7 3) : (ﬁ7 (t7 S))]
T(P) = [(a, ) — (P(s), V) (1", 1%); (¢, (£, 5))  (P(v,s), V() (1", 1%) = (8, (t, 9))]

That is, for any string s of length k, S outputs a simulated transcript (of both the commitment
stage and the decommitment stage) that is indistinguishable from the view of V* in real
interactions with P when P commits s in the commitment stage and then reveals s in the
decommitment stage, where the simulation of the commitment stage (i.e, S€) is independent
of the string s that is only given to S after the simulation of S¢ is finished.

2. Equivocability. For all constant ¢, all sufficiently large n, any string s € {0,1}F, where
k = k(n) for some polynomial k(-), it holds that |po—p1| < n™¢, where py, p1 are, respectively,

Pr{(a, B) « S (1", 1%); (¢, (£,0)) — St (51", 1%, 0, 8) 1 v = o],

Prl(a, 8) < (P(s), V*)(1", 1); (t, (t,0)) — (P(a, ), V¥(8)) (1", 1) s v = s].

That is, S can decommit the simulated transcript of the commitment stage to any value (of
length k) correctly.

Trapdoor commitments versus equivocal commitments. We first remark that the notions
of trapdoor commitments and equivocal commitments are significantly different in nature. In partic-
ular, the trapdoorness property of a trapdoor commitment scheme is defined with respect to honest
commitment receiver. In other words, the trapdoorness property of a trapdoor commitment scheme is
defined with respect to well-formed TCPK . For the Damgard’s Y-protocol based trapdoor commitment
scheme (described in Section 2), the TCPK is y = f(z). Then, the trapdoorness property says that
for well-formed y = f(x) (which guarantees the existence of the preimage ), if one knows the preimage
x then it can equivocate commitments at its wish. But, it does not guarantee that the trapdoorness
property still holds if y is maliciously formed. For example, a malicious commitment receiver may send
a maliciously formed 3’ such that there exists no preimages of 3, while it is hard for the honest com-
mitment sender to verify whether or not the preimages of 3’ exist. For example, consider the SQUARE
one-way permutation (over the quadratic residues): f(z) = 2> mod N, where N =p-gand p=gq =3
mod 4. Then the malicious commitment receiver may form %’ to be a non-square such that there exists
no z satisfying ' = 22 mod N. Note that the honest commitment sender (that is a PPT algorithm)
cannot efficiently verify whether 1/ is a square or not, and thus the trapdoorness property becomes
meaningless in this case. But, for equivocal commitments, the equivocability is defined with respect to
any malicious commitment receiver, whether honest or dishonest. This is a difference in nature between
trapdoor commitments and equivocal commitments.

3.2 Warm-up for equivocal commitments based on any OWF admitting >-protocols

Before describing our generic yet practical equivocal (string) commitment scheme, we first provide the
warm-up for achieving equivocal commitments from -protocols.

Damgard’s paradigm for achieving perfectly-hiding trapdoor commitment schemes from
any preimage-verifiable OWF admitting Y-protocols [16]. Recall that by the perfect SHVZK



property, the distribution of (a,é, 2) outputted by the SHVZK simulator S(z,é) on a true statement
x € L and a random string é of length k is identical to that of real interaction transcript (a, e, z) between
the honest P, V on z. But, in the real conversation (a,e, 2), a is independent of e and thus reveals no
information of e. This means that in the simulated transcript (a, €, 2), @ reveals also no information of é
(perfect hiding). Furthermore, given a, the simulator S also cannot answer a different challenge &' # é
because of the special soundness of 3-protocols (this is just the binding property of commitments). The
important observation here is that even if é is an arbitrary string of length k (rather than a random
string), a still perfectly hides é. This is so because of the perfect SHVZK property of ¥-protocols. This
directly brings us the following perfectly-hiding trapdoor commitment scheme (P, V) [16].

Round-1. On a security parameter n, let f be a preimage-verifiable OWF that admits Y-protocols
(with random challenges of length &k that is polynomially related to n). Then, the commitment
receiver V randomly selects an element x of length n in the domain of f, computes y = f(x), and
sends y to the commitment sender P.

Round-2. P first checks that y is well-formed (i.e., whether preimages of y exist) and aborts if the
check fails. Otherwise, to commit a message m of length k, P runs the SHVZK simulator S(y, m)
to get a simulated transcript, denoted (a,m, 2), pretending that it “knows” the preimage of y. P
sends a to V' as the commitment.

Decommitment Stage. P reveals (m,Z2) and V accepts if (a,m, 2) is an accepting conversation on .

The perfectly-hiding and computationally-binding properties of the above scheme can be easily
checked according to the above arguments. The trapdoorness property is from the observation that: if
one knows the preimage of the f(z) (that can be efficiently checked due to the preimage-verifiability of
f), then it can equivocate a at its wish.

On the critical role of preimage-verifiability of OWF. We note that preimage-verifiable
OWF plays an essential role for the perfectly-hiding property of the above commitment scheme. The
underlying reason is: for Y-protocols, the simulated transcript output by the SHVZK simulator may
be arbitrarily different from the real interaction transcript w.r.t. false common input, i.e., when y is
maliciously generated such that no preimage exists. To make it clearer, consider the commitment scheme
got by applying Damgard paradigm on the X-protocol for Quadratic Residues [43]: for such commitment
scheme, if the malicious receiver sends a non-quadratic residue at the first round, then the commitment
to 0 is always a quadratic residue, but the commitment to 1 is always a non-quadratic residue, which
is clearly not perfectly-hiding. Similar issue also arises when applying Damgard’s paradigm on the Y-
protocol for Graph Isomorphism (GI) [33]: suppose the receiver sends a pair of non-isomorphic graphs
(Go, G1) at the first-round, then a commitment to a bit b is always a graph isomorphic to GjT.

This raises the question that whether constant-round perfectly-hiding trapdoor (actually more
advanced, say, equivocal) commitments could be implemented from any (not necessarily preimage-
verifiable) OWF admitting 3-protocols, which is answered in next section.

High-level discussions of our solution. Starting from the Damgard’s preimage-verifiable OWF
based 2-round trapdoor commitment scheme, a first intuitional attempt for constructing equivocal
commitment schemes from any OWF admitting 3-protocols might be that: we let the verifier not only
send f(z) but also prove to the prover the knowledge of the preimage = by executing the Y-protocol
on common input f(z). But, this simple solution does not yield an equivocal commitment scheme.
Actually, it even does not constitute a normal commitment scheme. The reason is that we cannot
prove the binding property of the resulting protocol, as ¥-protocol is only HVZK (rather than normal
ZK). Then, a second attempt is: we let the verifier prove to the prover the knowledge of the preimage
by executing a normal ZK proof/argument of knowledge protocol on the top. But, this solution is
inefficient: ZK proof/argument of knowledge protocols are normally less efficient and run in at least

fWe note that the situation with GI-based commitments is a bit different, as we do not know how to well define OWFs
from GI.
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The Yor-based equivocal commitment scheme (P, V)

Commitment Stage. The commitment stage consists of the following two phases:

Phase-1. On a security parameter n, the commitment receiver V selects a OWF fi, that admits X-
protocols, randomly selects two elements in the domain of fy, 2, and z{, of length n, and computes
vy = fv(2Y,) and yi, = fv (x},). Finally, V sends (yV,y{) to the commitment sender P, and proves
to P that it knows the preimage of either y{ or yi, by executing the ¥og-protocol on (¥, yi)
and playing the role of the knowledge prover. The witness used by V during the execution of the
Yogr-protocol is 28, for a randomly chosen bit b in {0,1}.

Phase-2. Suppose m € {0,1}* be the message to be committed, P runs the perfect SHVZK sim-
ulator Sor((yY,yi,),m) (as described in Section 2) to get a simulated transcript, denoted
((ao, a1), m, (o, 20, €1, 21)), pretending that it “knows” either the preimage of y¥, or the preimage of
yi,. Finally, P sends (ao,a1) to V while keeping (m, (éo, 20, €1, 21)) in secret as the decommitment
information. (We remark that P aborts in case the Yo g-protocol of Phase-1 is not valid or V' does
not successfully finish the Yo r-protocol.)

Decommitment Stage. P reveals (m, (g, 20, €1, 21)). V checks that m = éy® é; and that for both b =0
and b =1 (dp, ép, 2p) is an accepting conversation with respect to y%}. V accepts if all the above are valid,
otherwise it rejects.

Figure 1. Generic yet practical round-optimal equivocal string commitments
under any OWF admitting >-protocols

four rounds (which means the resulting equivocal commitment scheme will also run in at least four
rounds).

Our observation here is that: normal ZK proof/argument of knowledge protocols are not necessary
for the above approach of achieving equivocal commitment schemes from Y-protocols. Actually, WI
protocols (i.e., ¥pog) could suffice for our purpose with some careful investigations. In particular, to
guarantee the binding property and the equivocability property simultaneously, as we shall show, both
the verifier and the prover need to employ the OR-technique.

3.3 The actual construction and analysis

Now, we present the generic yet practical three-round equivocal (string) commitment scheme under any
OWF admitting 3-protocols, which is depicted in Figure 1 (page 11).

The commitment stage of the protocol depicted in Figure 1 runs in 4 rounds, but it can be reduced
into 3 rounds by merging Phase-2 into the second round of Phase-1. As we shall see, 3 rounds is the
optimal round complexity for (black-box) equivocal commitments in the standard model.

Theorem 3.1 Suppose fy be any one-way function that admits X-protocols, the protocol depicted in
Figure 1 is a three-round perfectly-hiding equivocal (string) commitment scheme in the standard model.
Proof (of Theorem 3.1).
Perfect hiding.

The perfectly-hiding property of the protocol can be easily checked by noting that Phase-1 is in-
dependent of the message m to be committed and Phase-2 also perfectly hides m due to the perfect
SHVZK property of X-protocols as discussed in Section 2.

Computational binding.

Note that the binding property of the protocol relies on the secrecy of the preimages of (y?/, y‘l/) and
V' does prove to P such knowledge in Phase-1. But the Ypgr-protocol used in Phase-1 only guarantees
WI property which is a much weaker security notion than zero-knowledge. And thus, one may argue
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that by interacting with V', an adversary P* could potentially gain some knowledge about the preimages
and the gained knowledge could help it violate the binding property. What save us here are the key pair
trick (which is originally introduced by Naor and Yung in the PKE setting [55] and is also employed in
the ZK setting [27]) and the (perfect) WI property of ¥og-protocols.

Specifically, suppose the protocol does not satisfy the binding property, then there exists a PPT
adversary P* such that with non-negligible probability ¢(n) P* can decommit the transcript of the
commitment stage to two different values. Then we can construct a PPT algorithm E that breaks the
one-wayness of fy, with non-negligible probability. On an input y in the range of fy, E works as follows:
It randomly selects an element 2’ of length n in the domain of fi/, computes y' = fy(2'), randomly
selects a bit b in {0,1}, sets y* = y and y'~® = ¢/. Finally, E sends (3°,%') to P*, and proves to P*
that it knows either the preimage of 4% or the preimage of y' by executing the Yog-protocol with 2’
as its witness. Now, suppose P* can decommit the transcript of the commitment stage to two different
values with non-negligible probability ¢(n), then according to the special soundness of Y-protocols it
means that P* can output a preimage of y® or y'~* with probability ¢(n). But because the perfect WI
property of Ypgr-protocols, we know with probability %q(n) E will get the preimage of y® = y, which
violates the one-wayness of fy .

Equivocal commitments.

We directly deal with the more complicated three-round case when Phase-2 is combined into the
second round of Phase-1. For any PPT adversary V*, the PPT simulator S is depicted in Figure 2

(page 13).

Lemma 3.1 S¢ works in expected polynomial-time and the probability that S¢ aborts with an error
message is negligible.

Proof (of Lemma 3.1).  We charge each execution of Phase-1 of the protocol (depicted in Figure
1) as unit cost and our aim is to show that the expected charge accumulated in the Repeat Loop of
Stage-2 is poly(k).

Denote by p the probability that V* successfully finishes Stage-1 in the simulation. As S¢ goes
into Stage-2 only if p > 0, below we distinguish two cases: 0 < p < 2= (k=1 and p > 2=* =1 When
0 < p< 2 =1 the repeat loop is iterated at most k- 28 < % times. When p > 271 each iteration
of the repeat loop extracts a preimage of (yg/* , y‘l,*) with probability at least p—2~%. Thus, the expected
number of iterations of the repeat loop in this case is less than (p — 27%)71 < %. Furthermore, as we

shall see, with probability at least 1 — 27%, the repeat loop is not repeated more than % times.

S¢ may abort with an error messages only in two cases. The first case is when p > 2=*=1_but in
this case abort happens with probability at most (1 — g)k'Qk < 27F since k- 2F > 2]7]“. The second case
is when 0 < p < 2=+~ but in this case S¢ goes into Stage-2 only with probability p < 2=*=1_ We
conclude that S¢ aborts with an error message with probability at most 2~ (1. g

There are two differences between the simulated transcript outputted by S and the real interaction
transcript between V* and the honest P who is committing to a message s of length k. One is that in
real interactions, P commits s and then reveals s accordingly, but in the simulation S always commits
0* in the commitment stage and then reveals s in the decommitment stage; The second is that in the
simulation S may abort with an error message. But, the first difference makes no distinction due to
the perfectly-hiding property of the protocol (i.e., the perfect SHVZK property of 3-protocols), and
the second difference occurs only with negligible probability and thus also cannot make distinguishable
distinction.

For the equivocability property, according to Definition 3.1, p1 = p, and 0 < py < p when p < 2—(k=1)
or (1—27%).p < py<pwhen p>2-*-1 We conclude |py — p1| is negligible. O
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The equivocability simulator S = (S¢, S9)

The simulation of S¢ S¢ runs V* as a subroutine and goes through the following (at most) two stages:

Stage-1. Denote by a, e, z the first, the second and the third message of the ¥pr-protocol in Phase-1 of
the commitment protocol (depicted in Figure 1) with respect to a pair (y).,yi.). S runs V* as a
subroutine and in the second round (of the combined three-round protocol) it does the following: S°
runs Sor((yY-, yi.),0%) to get a simulated transcript, denoted ((do, @1), 0%, (€0, 20, €1, %1)) (that is,
S¢ tries to commit 0%), randomly selects a random string e in {0, 1}* and sends (e, (ao,a1)) to V*.
Whenever V* aborts with an incomplete execution of Phase-1 or (a, e, z) is not an accepting conver-
sation with respect to (y0..,yi.), then S¢ stops and outputs the transcript up to now. Otherwise,
it goes to Stage-2.

Stage-2. Whenever S° receives z from V* in Stage-1 and (a, e, z) is an accepting conversation with respect
to (Y9, yir ), S¢ does the following:

Repeat Loop: Repeat up to k- 2% times

e S¢ rewinds V* to the point that V* just sent a, runs Sor((y{-,yi),0F) (with fresh
randomness) to get a simulated transcript, denoted ((a, a}), 0%, (ép, 20, €}, 21)), randomly
selects e’ from {0,1}%\ {e} and returns back (¢’, (@}, a;))) to V*.

e S¢runs V* further and if it receives back a 2z’ such that (a,€’, 2’) is an accepting conver-
sation with respect to (y¥.,yi,.) (this means F gets the preimage of either y{.. or yi.)
then S¢ outputs ((y%-,yir),a, €', 2, (af,a})) and stops. Otherwise, goto Repeat Loop.

Failure with Error Message. In case all the k - 2* attempts have failed, S¢ aborts with an error
message.

The simulation of S%: Denote by a the output of S¢. In case S¢ did not stop in Stage-1 and did not

abort with an error message in Stage-2, then for any string s of length & S¢ does the following: it generates

the decommitment information, denoted by (€, 2/, &/, 2}), by using the extracted preimage of either y9..
or y{,. as its trapdoor such that ((ay, a}), s, (€g, 20, €1, 2)) constitute a successful conversation for showing

the knowledge of the preimage of either y{,. or yi..

Figure 2. The equivocability simulator

3.4 Optimal round-complexity

Finally, we show that the round-complexity (i.e., three rounds) of our generic yet practical equivocal
commitment scheme is optimal. Specifically, we show that there is no 2-round (black-box) equivocal
commitment scheme of non-interactive decommitment stage (that is the normal case of commitment
schemes).

Theorem 3.2 There is no 2-round (black-box) equivocal commitment scheme (of non-interactive de-
commitment stage). Note that this theorem holds unconditionally.

Proof (of Theorem 3.2).  We prove this theorem separately according to whether the prover or the
verifier sends the first-round message. Specifically, we prove the following two propositions:

Proposition 3.1 There is no 2-round (black-box) equivocal commitment scheme in which the verifier
sends the first-round message.

Proof (of Proposition 3.1). For any 2-round commitment scheme, denote by « (sent by the
verifier) the first-round message and by ( (sent by the prover) the second-round message. By the
binding property, there is no PPT algorithm that given (a correctly generated) o can generate a valid
[ such that it can decommit (a, 3) to two different values. This means that even if the commitment
receiver always uses the same « in all its interactions (i.e., the commitment receiver correctly generates
a and then fixes it once and for all) and even just publishes « as its public-key, still no PPT algorithm
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can violate the binding property with respect to the same «. Now, suppose the 2-round scheme is a
equivocal commitment scheme, then according to the definition of equivocal commitments there is a
PPT simulator that given the fized a can generate a valid § such that it can decommit («, 3) to two
different values. This violates the binding property of commitments. O

Proposition 3.2 There is no 2-round (black-box) equivocal commitment scheme in which the prover
sends the first-round message.

Proof (of Proposition 3.2). Suppose there exists a 2-round black-box equivocal commitment
scheme, then by the results of [48] that commitments imply OWF, we conclude that there exists a OWF.
In other words, there exists an N'P-language Low r specified by the OWF such that Lowr & BPP.
That is, NP Z BPP.

Now, suppose there exists a 2-round black-box equivocal commitment scheme in which the prover
sends the first-round message, we will construct a three-round black-box ZK argument for NP. As only
languages in BPP have three-round black-box ZK arguments [36], this implies that NP C BPP (i.e.,
no OWF exists), which contradicts the above observation that commitments imply OWF.

Specifically, consider the Blum’s protocol for the N"P-Complete language Directed Hamiltonian Cy-
cle DHC (that is depicted in Appendix A). We replace the underlying perfectly-binding commitment
scheme used in the first-round of Blum’s protocol by the assumed 2-round prover-initiated black-box
equivocal commitment scheme. The resulting protocol still runs in three rounds. The black-box ZK
property of the resulting protocol is direct from the simulation indistinguishability and equivocabil-
ity property of the assumed 2-round black-box equivocal commitment scheme. The computational
soundness of the resulting protocol is from the computational binding property of the assumed 2-round
equivocal commitment scheme. Specifically, the ability to answer two different challenges (sent in the
second-round) with respect to the same equivocal commitments (executed in the first-round and a
part of the second-round) implies breaking the computational binding property of the assumed 2-round
equivocal commitment scheme. ] O

3.5 Implication and observation: Y-protocols may witness non-N"P-Completeness

A list of long-standing and fundamental open problems, both in cryptography and complexity the-
ory, are about the N'P-Completeness of many popular OWFs used in cryptography (e.g., Quadratic
Residues, Factoring or RSA, etc) and some important problems in complexity theory (e.g., the Graph
Isomorphism problem). Specifically, these problems are commonly believed to be not N'P-Complete,
but developing formal proofs has been being the long-standing fundamental open problem in cryptogra-
phy and complexity theory. In general, studying the (im)possibility of basing OWFs and/or public-key
cryptography on N'P-Completeness is a puzzling question of fundamental nature [6, 32, 35, 5, 1].

In this work, we identify that the recent advances on statistical ZK and commitments may shed new
light on these fundamental open problems. The reasoning is as follows:

Recall that, motivated to investigate the seemingly inherent (round) inefficiency of general com-
plexity assumption based statistical commitments, it is very recently proved that non-constant round-
complexity is intrinsic to fully-black-box constructions of statistical commitments from any one-way
permutations (and even from trapdoor permutations) [44]. Intuitively, a fully-black-box reduction of a
primitive P (e.g., statistical commitments in our case) to a primitive @ (e.g., OWF/OWP) is a con-
struction of P out of @ that ignores the internal structure of the implementation of ) and just uses it
as a “subroutine” (i.e., as a black-box). In addition, in the case of fully-black-box reductions, the proof
of the security (showing that an adversary that breaks the implementation of P implies an adversary
that breaks the implementation of @), is also black-box (i.e., the internal structure of the adversary
that breaks the implementation of P is ignored as well) [44]. The study of various black-box reductions
between cryptographic primitives is originated from the seminal paper of Impagliazzo and Rudich [49],
motivated to investigate the seemingly inherent limitation of basing some cryptographic primitives (e.g.,
key-agreement) on OWFs and to investigate the seemingly inherent inefficiency of OWF/OWP-based
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cryptographic primitives (with pseudorandom generator as a salient example). For precise definition of
black-box reductions between cryptographic primitives, the reader is referred to [59].

Now, suppose there exists an NP-Complete problem that admits X-protocols without intractability
assumptions or based on general OWF/OWP assumptions. Then, by reducing any OWF/OWP to this
NP-Complete problem via N'P-reductions, and applying the construction of our statistical (equivocal)
commitments from any OWF admitting Y-protocols, we can get a three-round statistical (equivocal)
commitments from any OWF/OWP. But, as the protocol construction and security analysis employ
NP-reductions, the assumed OWF-based statistical commitment protocol is not a black-box one. Nev-
ertheless, in view of the seemingly inherent round inefficiency of general complexity assumption based
statistical commitments [54, 45, 56, 46, 44], it naturally brings us to the conjecture:

Conjecture 3.1 Any language admitting Y-protocols (without intractability assumptions or based on
OWF) is not N'P-Complete. In other words, a X-protocol is just a proof (witness) for showing that the
language is not N'P-Complete.

It would be significantly interesting to note that many popular OWFs (e.g., Quadratic Residues
[42, 43]) and the Graph Isomorphism problem [33] indeed admit X-protocols without intractability
assumptions, and the N’P-Completeness of them are long-standing open problems; On the other hand,
it is indeed true that no known NP-Complete language admits X-protocols (without intractability
assumptions or based on OWF/OWP)!. We hope that the above conjecture could be turned out to
be true in the future, which would be a significant demonstration of the elegant interaction between
cryptography and complexity theory.

4 Generic yet Practical Transformation from any Public-Coin HVZK
Protocol to ZK Argument

The high-level overview of the transformation. Given a public-coin HVZK protocol (Pr, V) for
a language L. Let 2t — 1 (¢ > 2) be the number of rounds of the protocol. Without loss of generality
we assume all random challenges of the honest verifier V;, are of the same length. More precisely, the
prover P, is a PPT interactive machine that on input a string = € L of length n, an auxiliary input w,
and a partial transcript 7' where T is either an empty string or a sequence of messages (g, ¢1,- -, ¢;),
1 <i <t —1, outputs the next message a; 1. The verifier algorithm V7, answers each prover message
a; with a challenge ¢; of length & (that is polynomially related to n) taken uniformly at random from
{0,1}*, and at the end of interactions applies a verification procedure Vi (z, a1, c1, -+ ,as_1,¢1, ) to
determine whether to accept or reject . We also denote by Sr the HVZK simulator of (Pr, V7).

To transform (Pr,, V) into a normal ZK protocol (P, V') for the same language L, we design a coin-
tossing mechanism to set the random challenges of (Pr,Vy) jointly by the prover and the (possibly
malicious) verifier, by employing the generic yet practical equivocal commitment scheme developed in
Section 3. The observation here is that all these t—1 equivocal commitments can share the same Phase-1
of the commitment stage (as described in Figure-1), and thus the incurred additional round-complexity
could be minimal. The transformed protocol (P, V') is depicted in Figure 3 (page 16).

Comments on the incurred round-complexity: It’s easy to check that, in comparison with the
starting public-coin protocol (Pr, V), the number of the incurred additional rounds is that of Phase-1.
Furthermore, the second-round and the third-round of Phase-1 can be merged into the first two rounds
of Phase-2. Thus, the transformation only incurs additionally one round. (For public-coin HVZK
protocols of even number of rounds, the transformation incurs additionally two rounds.)

Tt is interesting to note that Blums’s protocol for DHC [4] is of computational ZK (based on general complexity
assumption), but not statistical ZK as required by X-protocols; Note also that Blum’s protocol for DHC can be converted
into statistical HVZK argument, but under specific complezity assumption (by using collision-resistant hashing based non-
interactive statistical commitments [22, 47] in the first-round).
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The transformed ZK argument (P, V)

Common input. An element x € LN {0,1}".

P private input. An N'P-witness w for z € L.

Phase-1. On a security parameter n, V selects a OWF fy, that admits X-protocols, randomly selects two
elements in the domain of fy, ¥, and z{, of length n, and computes v, = fy (29,) and y{, = fv(z1,).
Finally, V sends (y{,,y;,) to P, and proves to P that it knows the preimage of either y{, or yi, by
executing the X g-protocol on (y{,,y{,) and playing the role of the knowledge prover. We denote by
Sor the perfect SHVZK simulator of the underlying Yo g-protocol. The witness used by V' during
the execution of the Yog-protocol is x% for a randomly chosen bit b in {0,1}. If V successfully
finishes the X g-protocol, P moves into Phase-2; otherwise P aborts.

Phase-2. For i := 1 to ¢t do: (Step-3 and Step-4 below can be merged with Step-1 and Step-2 of the
following iteration.)

Step-1. If ¢ = ¢ then P runs P to compute oy = Pr(x,w,cq1, - ,¢:—1), sends oy to V, and

the protocol (P, V) goes to “Verifier’s decision”. If i < ¢t — 1, the prover P randomly

selects cgg) of length k, and runs the perfect SHVZK simulator Sor((4Y, i), cgg)) (as de-

scribed in Section 2) to get a simulated transcript, denoted ((G l) A(Z ), ;), (6 (Z)a A(Z)a 2y AO)))
pretending that it “knows” the preimage of either v{, or yi,. Then P runs Pp, to com-

pute o; = Pr(z,w,c1, -+ ,ci—1), where ¢g is set to be an empty string. Finally, P sends
(@y,al"), a0) to V.

Step-2. The verifier V' sends back P a random challenge c(Z of length k.
() and sends (¢, (e{”,2{”, e, 2} to the verifier V.

Step-4. The verifier V checks that whether or not ((a, o (1)), cgi), (égl) , ,é’él), égl), 2; ))) is an accepting
conversation for showing the knowledge of the prelmage of either y¥, or y{,. If it is accepted

Step-3. The prover P computes ¢; = cP) @y

then V computes ¢; = CS) ®cp () otherwise V' aborts.

Verifier’s decision The verifier accepts z if and only if Vi, (x, a1,¢1, -+, a¢—1, -1, ) outputs 1.

Figure 3. The generic yet practical transformation from public-coin HVZK to (normal) ZK argument.

Theorem 4.1 Assuming fy be any OWF admitting X-protocols, the transformed protocol (P, V') (de-
picted in Figure 3) is a ZK argument for (the same) language L.

Proof (of Theorem 4.1).
Zero-knowledge.

The strategy of the ZK simulator S is as follows: it first runs the HVZK simulator Sz (x) (of the
starting public-coin HVZK protocol (Pr,Vy)) to get a simulated transcript (aq,c1,-«+ ,ap—1,¢t—1,%);
Then, by running the malicious V* as a subroutine, S tries to mimic the simulated transcript in the
Phase-2 interactions (in case V* successfully finishes Phase-1), by setting the outcome of the underlying
coin-tossing to be ¢; for each i, 1 < ¢ < t — 1. Then, the ZK property can be easily derived from
the simulation indistinguishability and equivocability of the underlying (generic yet practical) equivocal
commitment scheme. The fact that our transformation preserves statistical/perfect ZK is from the
observation that, according to the analyses of the simulation procedure of the equivocability simulator
S = (5¢,8%) presented in the proof of Theorem 3.1, except for exponentially negligible probabilities the
ZK simulator generates exactly the correct conversation.

Computational soundness.

Note that if the underlying equivocal commitment scheme (for coin-tossing) was perfectly-binding,
the soundness of the transformed protocol (P, V') would trivially follows from the soundness of the start-
ing public-coin HVZK protocol (Pp, Vg ). This is the case in [52], where the nicely explored DDH-based

16



The algorithm F(1",y)

' —{0,1}" vy — fy(a)).

b+ {0,1}.

Set y¥ be v/, 2% be 2’ and yi,” be y.

i—{1,2,---,t—1}.

S runs P* as a subroutine and acts accordingly by playing the role of the honest verifier, until F receives
from P* the message (cg*, (é (()Z), é(()l), égz), égl))). Note that in the interactions of Phase-1, E uses 2’/ = 28,
as its witness. _ )

If (cgi)*,( (1), (”,é?), A(Z))) is valid (i.e., P* correctly decommits (aéz), §>) with respect to the random
challenge CE/) sent by E), then E rew1nds P* to the state that P* just sent (al”,al").

ey — {0, 13\ {e).

Returns back cg)/ to P* and runs P* further, looking forward to receiving again a valid decommitment
message of the same (aé ), dY)) but to a different value cng # cgi)* from which E can extract the preimage
of either yY, or yi,.

Figure 4. The algorithm E(1"™,y)

(simulatable) commitment scheme is perfectly-binding. But, for our case, the underlying equivocal com-
mitment scheme is actually computational binding (actually, it seems that any equivocal commitment
scheme intrinsically could not be perfectly-binding). Also, for any starting public-coin HVZK protocol,
we cannot count on the special soundness as guaranteed by Y-protocols. Thus the soundness proof here
s (a bit) more complicated and subtle.

The key observation here is that, conditioned on a malicious polynomial-time (w.l.0.g., deterministic)
P* can successfully convince the honest verifier V' of a false statement “x € L” while x ¢ L, then there
must exist an 7, 1 <7 <¢—1, a positive polynornial q(*) and two disjoint sets, denoted S and &', where
SC{0,1}*and S’ C {0 1}* and |S| > o 2’“ and |S'] = o5 2k such that P* can decommit (g 0 A(()Z))

(),

to a value, denoted c (6 {0,1}*%), for all random challenges cy/’s fallen into the set S, and decommit
(aé),agz)) to another different value, denoted c (E {0,1}%\ {CP*}), for all random challenges cg) s
fallen into the set §’. The underlying reason is that, if the above does not hold then the computational
soundness of the protocol (P, V) just follows from the soundness of the starting public-coin HVZK
protocol (Pr, V7).

Now, suppose the transformed protocol (P, V') does not satisfy computational soundness, then we
will use the above observation to reach a contradiction to the one-wayness of fy,. Specifically, we
will construct a PPT algorithm E that on common input y outputs a preimage of y under fy with
non-negligible probabilities in polynomial-time. The algorithm F is depicted in Figure 4 (page 17).

Suppose P* can convince the honest verifier of a false statement “x € L” while z ¢ L with non-
negligible probability ( ) for some positive polynomial p( ), then it is easy to check that E will output a

preimage of either yV or yv with probability at least ) in polynomial-time. Due to the (perfect)

t- q(n)
WI property of the Xpgr-protocol executed in Phase-1, we conclude with probability at least W

FE will output the preimage of y = y‘lfb in polynomial-time, which violates the one-wayness of fiy,. O
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A Blum'’s protocol for DHC [4]

Blum’s protocol for the N"P-Complete language DHC (Directed Hamiltonian Cycle) is n-parallel rep-
etitions of Blum’s basic protocol for proving the knowledge of Hamiltonian cycle on a given directed
graph G [4]. The following is the description of Blum’s basic protocol for DHC:

Common input. A directed graph G = (V, E) with ¢ = |V/| nodes.
Prover’s private input. A directed Hamiltonian cycle Cq in G.

Round-1. The prover selects a random permutation, m, of the vertices V, and commits (using a
perfectly-binding commitment scheme) the entries of the adjacency matrix of the resulting per-
mutated graph. That is, it sends a ¢-by-¢ matrix of commitments so that the (7(4), 7(5))%" entry
is a commitment to 1 if (i,7) € E, and is a commitment to 0 otherwise.

Round-2. The verifier uniformly selects a bit b € {0,1} and sends it to the prover.

Round-3. If b = 0 then the prover sends 7 to the verifier along with the revealing of all commitments
(and the verifier checks that the revealed graph is indeed isomorphic to G via 7); If b = 1, the
prover reveals to the verifier only the commitments to entries (7 (i), 7(j)) with (7, j) € Cg (and the
verifier checks that all revealed values are 1 and the corresponding entries form a simple g-cycle).

B Result Strengthening and Extension in the Current Version

In comparison with the original version of the ECCC report, the results presented in the current version
are strengthened and extended in the following aspects:

1. The proof of Theorem 3.2 (for showing the round-complexity lower-bound of equivocal commit-
ments) is made to be unconditional, by noting the result of [48] that commitments imply OWF.
The proof in the original version is conditioned on NP € BPP.

2. We clarify the necessity of preimage-verifiable OWF in Damgard’s paradigm of constructing
perfectly-hiding trapdoor commitments with »-protocols. This implies, to the best of our knowl-
edge, that our round-optimal equivocal commitment scheme is the first constant-round statistically-
hiding (not necessarily to be trapdoor or equivocal) commitment scheme based on any OWF
admitting Y-protocols.

3. The implication that Y-protocols may witness N P-Completeness is clarified and observed in
Section 3.5.
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