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Abstract

We consider a general approach to the hoary problem of (im)proving circuit lower bounds. We
define notions of hardness condensing and hardness extraction, in analogy to the corresponding
notions from the computational theory of randomness. A hardness condenser is a procedure
that takes in a Boolean function as input, as well as an advice string, and outputs a Boolean
function on a smaller number of bits which has greater hardness when measured in terms of
input length. A hardness extractor takes in a Boolean function as input, as well as an advice
string, and outputs a Boolean function defined on a smaller number of bits which has close to
maximum hardness. We prove several positive and negative results about these objects.

First, we observe that hardness-based pseudo-random generators can be used to extract
deterministic hardness from non-deterministic hardness. We derive several consequences of this
observation. Among other results, we show that if E/O(n) has exponential non-deterministic
hardness, then E/O(n) has deterministic hardness 2n/n, which is close to the maximum possible.
We demonstrate a rare downward closure result: E with sub-exponential advice is contained in
non-uniform space 2δn for all δ > 0 if and only if there is k > 0 such that P with quadratic
advice can be approximated in non-uniform space nk.

Next, we consider limitations on natural models of hardness condensing and extraction.
We show lower bounds on the length of the advice required for hardness condensing in a very
general model of “relativizing” condensers. We show that non-trivial black-box extraction of
deterministic hardness from deterministic hardness is essentially impossible.

Finally, we prove positive results on hardness condensing in certain special cases. We show
how to condense hardness from a biased function without any advice, using a hashing technique.
We also give a hardness condenser without advice from average-case hardness to worst-case
hardness. Our technique involves a connection between hardness condensing and certain kinds
of explicit constructions of covering codes.

1 Introduction

Proving circuit lower bounds for natural problems is one of the most fundamental problems in com-
plexity theory. Showing superpolynomial circuit lower bounds for a language in non-deterministic
polynomial time would separate non-deterministic polynomial time from deterministic polynomial
time, and showing superpolynomial circuit lower bounds for a language in linear exponential time
would yield subexponential time deterministic simulations of probabilistic algorithms via pseudo-
random generators. However, as is typical in complexity theory, “fundamental” is synonymous with
“fiendishly difficult”: no superlinear lower bounds are known for any function in linear exponential
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time. Indeed, the possibility that all of non-deterministic exponential time can be solved by depth-3
polynomial size circuits with AND, OR and MOD6 gates is consistent with our current state of
knowledge.

There have been attempts to explain the lack of success in coming up with strong lower bound
techniques. Perhaps the most compelling effort in this direction is due to Razborov and Rudich
[RR97]. They showed that several popular combinatorial and algebraic lower bound proofs, such
as those using the polynomial technique of Razborov [Raz87] and Smolensky [Smo93], or the ap-
proximation technique of Razborov [Raz89], fall under the category of “natural proofs”. A natural
proof of a lower bound satisfies two conditions, the “largeness” condition and the “constructivity”
condition. The largeness condition says that the proof of the lower bound holds not just for any
specific function but for most functions. The constructivity condition says that the set of truth
tables of functions for which the lower bound technique works is in some reasonably efficient non-
uniform complexity class (say, polynomial-size circuits). The evidence against existence of natural
proofs comes from the fact that they can be used to break pseudo-random function generators.
A pseudo-random function generator is a procedure producing a small family of “pseudo-random”
Boolean functions on n bits such that no feasible test can distinguish a random function in this
family from a function chosen uniformly in the space of all Boolean functions on n bits. Since there
are constructions of such generators based on widely believed hardness assumptions such as the
hardness of the discrete logarithm function [GGM86], natural proofs of strong circuit lower bounds
are unlikely to exist.

Thus, while the circuit lower bound problem is fundamental, there are significant obstructions
to making progress on it using current techniques. Given this impasse, rather than make a direct
attack on the problem, we consider the following situation. Imagine that we are given a Boolean
function f that does not have circuits of size s(n) on inputs of length n. Is there a procedure
that computes from f , perhaps by “compressing” the truth table of f in some non-trivial way, a
function f ′ on fewer input bits which is harder as a function of its input length? The existence of
such a procedure could be valuable in proving (or at least improving) circuit lower bounds. The
uniform complexity of f ′ as obtained by applying the procedure would be greater than the uniform
complexity of f since the input length of f ′ is smaller, but we do not mind this too much as long
as we gain in hardness.

We call such a procedure a “hardness condenser”. In this paper, we formally define hardness
condensers and a strong version thereof called “hardness extractors”, which output functions that
are close to maximally hard in terms of their input length. We explore the conditions under which
hardness condensers and hardness extractors exist, as well as the limitations on constructing them
in a natural way. We give a more detailed description of our results in Subsection 1.1.

The notions we define are closely analogous to, and indeed inspired by, the notions of “ran-
domness condensing” and “randomness extraction” from the computational theory of randomness.
Randomness condensers are explicit procedures which take as input a sample from a distribution
containing a certain amount of randomness (as measured by the min-entropy of the distribution),
together with a short random seed, and output a sample from a distribution which has greater min-
entropy as a function of its input length. Randomness extractors are strong versions of randomness
condensers in which the output distribution is close to uniform. There is a long line of research (see
[Sha02] for a survey) on randomness extractors, and explicit constructions of these objects with
close to optimal parameters are known. The study of randomness condensers does not have as rich
a history but there has recently been a lot of interesting work [TSUZ01, BIW04, BKS+05, Raz05]
on constructions of these objects.

The fact that we draw an analogy between the theory of randomness and the theory of hard-
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ness is far from accidental. The theory of pseudo-randomness is based on the connection be-
tween hardness and randomness: if a function is hard to approximate by polynomial-size circuits,
then a random input to the function together with the value of the function on that input “ap-
pears” random to any polynomial-size circuit. This idea was originally used [BM84, Yao82] to
construct pseudo-random generators for cryptographic applications. Here a pseudo-random gen-
erator is a procedure mapping short random strings to longer “pseudo-random” strings such that
no polynomial-size circuit can distinguish between random strings and strings drawn uniformly
from the output of the generator. Cryptographic pseudo-random generators are required to be
computable in polynomial time. Nisan and Wigderson [NW94] constructed “complexity-theoretic”
generators for which the efficiency criterion for computing the generator is relaxed to exponen-
tial time in the length of the seed. The Nisan-Wigderson generator yields pseudo-randomness
based on any hard function in E. Following on the Nisan-Wigderson result, a series of papers
[NW94, Imp95, IW97, ISW99, SU01, Uma02] have established a tight relationship between circuit
lower bounds in E and complexity-theoretic pseudo-random generators: E requires circuits of size
s(n)Ω(1) if and only if there is a complexity-theoretic pseudo-random generator mapping a seed of
O(n) bits to s(n)Ω(1) pseudorandom bits.

Thus the problem of proving circuit lower bounds in E is reduced to the problem of constructing
good pseudo-random generators. However, it might seem that this does not help us in terms of
techniques to prove hardness of E since essentially the only known technique for constructing good
pseudo-random generators is to prove hardness of some function and use it in a hardness-based
generator. We break this cycle by observing that pseudo-random generators can be interpreted as
hardness extractors of a certain kind, This observation can be used to derive non-trivial relation-
ships between uniform and non-uniform classes by exploiting properties of known constructions of
hardness-based pseudo-random generators (more details in Subsection 1.1).

Given that the natural application of hardness extractors is to proving circuit lower bounds,
the question immediately arises if the Razborov-Rudich obstacle applies to these objects. Suppose
there is a natural proof of hardness for the input function to a hardness condenser. Does this imply
a natural proof of hardness for the output function? It is an encouraging feature of our approach
that neither condition required of a natural proof seems to be preserved by the hardness condensing
transformation. Since many input functions can be mapped to the same output function by the
hardness condenser, the fact that a proof of hardness works for most input functions does not
imply a proof of increased hardness for most output functions. Thus the largeness condition is
not necessarily preserved. Also, the existence of a small circuit recognizing truth tables of input
functions for which the proof of hardness works does not imply the existence of a small circuit
recognizing truth tables of output functions. This is because the hardness condenser may be a
function which is hard to invert; indeed, the use of a pseudo-random generator as a hardness
condenser drives home this point in a strong way.

Having provided the context for our approach, we move on to a description of our results.

1.1 Our Results

We formalize the notions of “hardness condenser” and “hardness extractor”, and prove three kinds
of results: explicit constructions of hardness extractors with small advice, limitations on construct-
ing relativizing and black-box hardness condensers, and hardness condensers without advice for
special types of functions, namely biased functions and average-case hard functions.

The ideal construction of a hardness condenser would be completely uniform and have the
property that if the input function f is hard for deterministic circuits of a certain size, then the
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output function f ′ is maximally hard for deterministic circuits. We do not know how to achieve
this. However, we can achieve something close. The caveats are firstly that the hardness condenser
is not completely uniform but instead requires a small amount of advice, and secondly that we
only prove that the output function is almost maximally hard for deterministic circuits if the input
function is hard for non-deterministic circuits.

Our construction follows from the observation that relativizing hardness-based pseudo-random
generators [NW94, Uma02] can be interpreted as hardness extractors from non-deterministic hard-
ness to deterministic hardness. The basic idea is to interpret the output of the pseudo-random
generator on random seed y as the truth table of a function f ′

y. If f ′
y has deterministic circuits of

size 2n/n for each y, then we can define a non-deterministic circuit that distinguishes the output
of the generator from uniform by guessing a circuit of size 2n/n and checking that the output is
the truth table corresponding to the circuit. This circuit is indeed a distinguisher because the
truth table of a random function has circuit complexity more than 2n/n. The existence of such a
non-deterministic distinguisher implies that the function on which the generator is based has small
non-deterministic circuits, contradicting the assumption on the input function. Thus it must be
the case that the output of the generator is almost maximally hard for some value of the advice.

We remark that the basic idea of interpreting the output of a pseudo-random generator as the
truth table of a function and arguing about the circuit complexity of the function is not new. It
has appeared in several contexts [KC00, Kab01, IKW02, All01]. However, our perspective on it in
the context of hardness extraction and the consequences we derive from it do seem to be new.

The hardness extractors we obtain in this way have interesting consequences for complexity
theory. For instance, we can show that if there is a Boolean function in E with linear advice which
has high non-deterministic circuit complexity, then there is a function in E with linear advice which
has almost maximum deterministic circuit complexity.

Theorem 1. If there is a constant ε > 0 such that E/O(n) 6⊆ NSIZE(2εn), then E/O(n) 6⊆
SIZE(2n/n).

By using the Nisan-Wigderson generator, which is very efficiently computable, as a hardness
extractor, and considering hardness with respect to non-uniform space rather than non-uniform
time, we derive a rare equivalence between simulations of linear exponential time with advice and
simulations of polynomial time with advice.

Theorem 2. (Informal) There is a constant k such that P/n2 can be approximated on a 1/2+1/nk

fraction of inputs of length n in non-uniform space nk if and only if for all constants δ > 0 there
is a constant ε > 0 such that E/2εn is contained in non-uniform space 2δn

One can ask whether there is a fundamental reason why our hardness extractors take advice or
whether it is just an artifact of our specific technique. We provide evidence that the former is the
case by considering a very general model of “relativizing” hardness condensers and showing lower
bounds on the length of advice required for such hardness condensers. A significant aspect of our
lower bounds is that the model of hardness for the input function and the model of hardness for
the output function of the hardness condenser are not required to be the same. Thus, for instance,
our lower bounds also hold for the hardness extractors constructed from pseudo-random generators
above.

Theorem 3. (Informal) Relativizing condensers which take as input any function on n bits having
hardness s and output a function on n′ bits with hardness s′ must take advice of length Ω(n− n′ −
log s).
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We also consider a natural “black-box” model of hardness condensing where the output function
must be hard for deterministic circuits if the input function is hard for deterministic circuits, and
show using Theorem 3 that non-trivial hardness condensing is essentially impossible in this model.

Finally, we consider some special cases in which hardness condensing is possible without advice.
The first case we consider is that of biased functions, i.e., functions where there is an imbalance
between the number of inputs that evaluate to 0 and the number of inputs that evaluate to 1.
We use a technique involving repeated hashing to prove the following condensing result for such
functions.

Theorem 4. (Informal) Let f be an n-bit function such that f is 1 with probability α and requires
circuit size s. Then f can be condensed to a function on n − Ω( 1

H(α) ) bits that requires circuits of

size Ω((s − n)/n).

The second case we consider is that of average-case hard functions, i.e., functions for which no
small circuit can approximate the function on more than a 1/2 + δ fraction of inputs, for some
small function δ. We show how to obtain from such a function another function whose input length
is smaller which has essentially the same hardness in the worst-case. Our technique involves a
connection between hardness condensing in this case and constructions of certain explicit kinds of
covering codes. The constructions of covering codes we obtain may be of independent interest.

Theorem 5. (Informal) Let f be an n-bit function such that no circuit of size s can compute f on
a 1/2 + δ fraction of the inputs. Then f can be condensed to a function on n− (2− o(1)) log 1

δ bits
that cannot be computed by circuits of size s/nc for some constant c > 0.

2 Preliminaries

2.1 Functions and complexity models

We will abuse notation by writing f : m → n to denote f : {0, 1}m → {0, 1}n. We often identify
a Boolean function f on n bits with its truth table, which is a string of size 2n. It will be clear
from the context whether we are referring to the function or its truth table.

In general we consider circuits with only one output. We refer the reader to [BDG88] for
definitions of deterministic, nondeterministic and oracle circuits.

An alternating circuit on n inputs is a dag with n+m sources labelled x1, . . . , xn, (y1, i1), . . . (ym, im).
For each j, ij is either 0 or 1 corresponding respectively to “existential” and “universal” gates. Let
the quantifier Qj be ∃ if j = 0 and ∀ if j = 1. The circuit A computes a function in the following
way: for a 0/1 setting to xj ’s, we say f(x) = 1 if and only if Qi1y1 . . . QimymA(x1 . . . xn, y1 . . . ym).

Given a function f : n → 1, we say that f requires circuits (respectively, non-deterministic
circuits, oracle circuits, etc.) of size s if there is no circuit of size < s that computes f . We will
also say f is worst-case hard (or simply “hard”) for circuits of size s to mean the same thing. For
0 6 δ < 1/2, we say that f is δ-hard for circuits of size s if there is no circuit of size ≤ s that
computes a function that agrees with f on more than a 1 − δ fraction of the inputs.

It is well-known that that almost all functions require circuits of size more than 2n/n ([Lup59])
and that every function can be computed by circuits of size 2n

n (1 + O(log n/n)) ([FM05]). Hence,
functions that require circuits of size 2n/n are essentially as hard as possible.

A language L is a subset of {0, 1}∗. For any n, Ln is the characteristic function of L restricted
to {0, 1}n. A language L′ δ-approximates L if, for each n, L′

n agrees with Ln on at least a δ fraction
of inputs.
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For any function s : N → N, SIZE(s) is the class of languages L such that for each n, Ln has
deterministic circuits of size s(n). NSIZE(s) is the class of languages L such that for each n, Ln

has non-deterministic circuits of size s(n). ASIZE(s) is the class of languages L such that for each
n, Ln has alternating circuits of size s(n).

For a uniform complexity class C and a function a : N → N, C/a is the class of languages L
decidable in C with advice length a.

For a complexity class C and a function s : N → [0, 1], heurs − C is the class of languages L for
which there is a language L′ ∈ C such that L′ s-approximates L.

2.2 Hardness Condensers and Extractors

We begin by formally defining hardness condensers.

Definition 6 ((Hardness Condenser)). Let A and B be complexity models (eg. deterministic
circuits, nondeterministic circuits, circuits with oracle D, formulas, branching programs etc.). An
(n, s, n′, s′) hardness condenser with advice length ` from worst-case (resp. δ-average-case) hardness
for A to worst-case (resp. δ′-average-case) hardness for B is a function

Cn : 2n × ` −→ 2n′

with n′ < n such that if f : n → 1 requires (resp. is δ-hard for) size s in A, then there is a string
y ∈ {0, 1}l for which Cn(f, y) requires (resp. is δ′-hard for) size s′ in B.

An important issue when studying hardness condensers is the efficiency of computing them.
Clearly, (n, s, n′, s′) hardness condensers exist nonuniformly whenever s′ is less than the maximum
possible complexity of a Boolean function on n′ bits, if we fix the complexity models A and B: a
Boolean function on n′ bits with hardness s′ can be encoded into the condenser, and the condenser
could just output that function, ignoring the input function and advice. Thus only uniform con-
structions of condensers are interesting (unless we consider stronger versions of condensers which
work for families of complexity models, as in Section 4). Hence, in future we consider families C
of (n, s, n′, s′) hardness condensers Cn, n ∈ N with advice length `, where s, n′, s′, l are functions
of n, unless otherwise stated. We define two notions of efficiency: the first one corresponds to the
complexity of computing the entire output truth table given the input truth table and advice, while
the second corresponds to the complexity of computing any individual bit of the output truth table
from the advice given oracle access to the input truth table.

Definition 7. An (n, s, n′, s′) hardness condenser C with advice length ` is explicit if C is com-
putable in time polynomial in 2n + `.

Note that we do not need to take the size of the output into consideration when giving our
criterion of efficiency since |C(F, y)| < |F | for any hardness condenser C.

Definition 8. An (n, s, n′, s′) hardness condenser C with advice length ` is super-explicit if there is
a procedure computing the ith bit of C(F, y) in time polynomial in ` + 2n′

when given oracle access
to F .

This is a much stronger criterion of efficiency since it is possible that n′ ¡¡ n.
To give some intuition for the parameters in Definition 6, we explore some special cases.
The first case we explore is where the advice length is very large, larger than the hardness

required of the output function. For this setting of parameters, hardness condensers exist trivially.
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Proposition 9. There is a super-explicit (n, s, n′, s′) hardness condenser C with advice length `
from worst-case hardness for deterministic circuits to worst-case hardness for deterministic circuits
if `/(2 log(`/2)) > s′ and 2n′

is time-constructible.

Proof. C just copies its advice string into the first ` bits of its output and sets all the other bits
of the output to 0. It is not hard to see that C is super-explicit. Let `′ be the largest power of 2
less than `. Then there is some Boolean function f on log(`′) bits which requires circuits of size
`′/ log(`′) > `/(2 log(`/2)) > s′. Now let y ∈ {0, 1}` be some string with prefix f . Clearly, C(F, y)
requires circuits of size s′ for any F ∈ {0, 1}2n

. �

Proposition 9 shows that “interesting” advice lengths for hardness condensers should be less
than the hardness of the output function. Indeed, for the most interesting application of hardness
condensers, where we have a function in some uniform class with high circuit complexity and wish
to derive a function with higher circuit complexity by feeding the original function to a hardness
condenser, if the advice length is too large, the output function is too non-uniform and hence we
do not obtain anything nontrivial.

The second special case is when the hardness required of the output function is very small,
i.e., logarithmic in the size of the original truth table. In this case, hardness condensing can be
accomplished by exhaustive search.

Proposition 10. There is an explicit (n, s, n′, s′) hardness condenser with no advice from worst-
case deterministic hardness to worst-case deterministic hardness if s′ = O(n) and n′ is time-
constructible.

We would like (n, s, n′, s′) hardness condensers with advice length l where l is as small as
possible, s′ is as close to s as possible, and n′ is as close to log(s′) as possible. These requirements
have different motivations: l as small as possible means the construction is as uniform as possible,
s′ as close to s as possible means that most of the hardness of the input function is retained in
the output function, and n′ as close to log(s′) as possible means the output function has close to
maximum possible hardness as a function of its input length.

In analogy with the computational theory of randomness, we call a hardness condensers with
close to ideal parameters a “hardness extractor”.

Definition 11 ((Hardness Extractor)). An (n, s) hardness extractor is an (n, s, n ′, s′) hardness
condenser with advice length O(log(n)) for which n′ = Ω(log(s) and s′ > 2n′

/n′.

2.3 Pseudo-random generators

Pseudo-random generators are functions mapping short random seeds to “pseudo-random” strings
such that no efficient adversary can distinguish a random string from a string in the range of the
generator. There is a long line of research [[NW94, IW97, KvM02, SU01, Uma02]] on deriving
pseudo-random generators from “hard” functions, where the hardness required of the function is
related to the efficiency of the adversary. Our main construction of hardness condensers are actually
pseudo-random generators. To make the connection more transparent, we define pseudo-random
generators in close correspondence to hardness extractors :

Definition 12. (Pseudo-random generators) Let A be a complexity model. An (n, s,m) PRG with
error parameter ε and seed length l based on hardness (resp. δ average-case hardness) for A is a
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function G : 2n × ` → m such that if f is a Boolean function on n bits which requires (resp. is
δ-hard for) size s in A, then for any Boolean function C on m bits which has size m in A,

| Pr
x∼{0,1}`

[C(G(F, x)) = 1] − Pr
x∼{0,1}m

[C(x) = 1]| ≤ ε

This definition differs from the standard definition of PRGs in that we only consider hardness-
based PRGs, i.e., PRGs that can be based on any hard function. All known PRGs based on
hardness for deterministic circuits or more powerful classes are hardness-based.

In future, we assume that the output length of the generator is a power of 2. Any PRG can be
modified to satisfy this condition without changing the other parameters by only outputting the
first m′ bits, where m′ is the highest power of 2 less than m.

Again, we look at infinite families of PRGs, one for each n, and call the family explicit if Gn

can be computed in time polynomial in 2n + `. Again, it’s super-explicit if each bit of its output
can be computed in time polynomial in m + ` with oracle access to the first input F .

There are several known constructions of hardness-based PRGs. In this paper, we will mainly
be concerned with a construction due to Nisan and Wigderson [NW94], and a construction due to
Umans [Uma02].

The Nisan-Wigderson PRG was originally based on average-case hardness for deterministic
circuits. Arvind and Kobler [AK97] observed that the construction could also be based on average-
case hardness for non-deterministic circuits. An important property of this construction for our
applications is that it is super-explicit - each output bit is a bit in the input truth table whose
index can be determined from the seed in polynomial time.

Theorem 13 ([NW94, AK97]). Let s(n) be any constructible function. There is a super-explicit
(n, s,

√
s) PRG GNW with error parameter ε and seed length O(n2/ log(s)) based on 1/2 − ε/s

average-case hardness for non-deterministic circuits.

The PRG due to Umans does not satisfy such a strong efficiency criterion; however, it is based
on worst-case hardness rather than average-case hardness.

Theorem 14 ([Uma02]). Let s(n) be any constructible function. There is an explicit (n, s, sΩ(1))
PRG GU with error parameter 1/s and seed length O(n) based on worst-case hardness for deter-
ministic circuits.

3 Extracting deterministic hardness from non-deterministic hard-

ness

3.1 A little non-deterministic hardness goes a long way

In this section, we prove that pseudo-random generators against non-deterministic adversaries
are hardness extractors from hardness for non-deterministic circuits to hardness for deterministic
circuits. In particular, the PRG in Theorem 13 is a super-explicit hardness extractor from average-
case hardness, and the PRG in Theorem 14 is an explicit hardness extractor from worst-case
hardness.

Lemma 15. If G is an (n, s, sΩ(1)) PRG with error parameter 1 − 1/s and seed length l based
on worst-case (resp. δ average-case) hardness for non-deterministic circuits, then G is an (n, s)-
hardness extractor with advice length l from worst-case (resp. δ average-case) hardness for non-
deterministic circuits to worst-case hardness for deterministic circuits.
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Proof. The proof is straightforward in contrapositive form. Interpreting the output of G as the
truth table of a Boolean function f ′, if f ′ had small circuit size, a non-deterministic adversary could
guess a small circuit for f ′. It could then verify that the circuit is correct by running the circuit for
each possible input and checking that the output is the same as the corresponding bit of the truth
table of f ′. This would distinguish the output from random since a random truth-table will have
very high circuit complexity.

More formally, let G be an (n, s, sc) PRG with error parameter 1− 1/s and seed length l based
on worst-case hardness for non-deterministic circuits, for some constant c > 0. Now consider the
following non-deterministic test A. Given an input x of length m (where m is a power of 2), A
first guesses a deterministic circuit B of size m/ log(m). Then, interpeting x as the truth table of
a function fx on log(m) bits, A checks that the circuit B accepts fx. It does this by cycling over
possible values of i between 1 and m, and for each such i checking that xi is the same as the output
of B on input i. A single such check can be done in time O(m) and hence all the checks can be
done in time O(m2). If all the checks accept, A accepts, otherwise it rejects. The time taken by A
is the time required to guess B plus the time required to perform all checks, which is O(m2). Thus
A can be implemented as a non-deterministic circuit of size am2 log(m), for some constant a.

Now, set m to be the largest power of 2 such that am2 log(m) < sc. A accepts an input x of
length m if and only if fx has circuits of size m/ log(m). Since a random function on log(m) bits
has circuit complexity less than m/ log(m) with probability at most 1/mω(1), the probability that
A accepts on a random input is bounded above by 1/s. If A accepts whenever it is fed the first
m bits of an output of G, then A is a non-deterministic test of size sc distinguishing the output
of G from random with probability at least 1 − 1/s. Since G is a pseudo-random generator based
on worst-case non-deterministic hardness, this implies that the function on which G is based has
non-deterministic circuits of size s. Contrapositively, if the function on which G is based does not
have non-deterministic circuits of size s, there must be some seed of length l for which the first
m = sΩ(1) bits of the output of G constitute the truth table of a function that does not have
deterministic circuits of size m/ log(m). This is just a re-statement of what it means to be an (n, s)
hardness extractor with advice length l from worst-case hardness for non-deterministic circuits to
worst-case hardness for deterministic circuits.

Precisely the same argument works to establish that a PRG based on average-case non-deterministic
hardness is a hardness extractor from average-case hardness for non-deterministic circuits.

�

Lemma 15 shows that pseudo-random generators yield hardness extractors, but in fact hardness
extractors correspond more naturally to hitting-set generators which are only required to hit any
efficiently recognizable sets of high enough density rather than approximate such sets. It is known
that hitting-set generators and pseudo-random generators are essentially equivalent for most in-
teresting complexity models, hence we use the strongest known constructions of PRGs here. As a
consequence, our hardness extractors yield very hard functions for most values of the advice.

Lemma 15 works equally well for extracting average-case hardness from average-case hardness.
However, the parameters we obtain for such an adaptation depend on the hardness of a random
function; we stick to extraction of worst-case hardness in this paper because the parameters are
simpler to state.

It follows from Lemma 15 that the Nisan-Wigderson generator and the Umans generator are
hardness extractors.

Corollary 16. GNW is a super-explicit (n, s) hardness extractor with advice length n2/ log(s) from
1/2−1/s average-case hardness for non-deterministic circuits to hardness for deterministic circuits.
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Corollary 17. GU is an explicit (n, s) hardness extractor with advice length O(n) from hardness
for non-deterministic circuits to hardness for deterministic circuits.

An interesting application of Corollary 17 is that if E with linear advice has a Boolean function of
exponential non-deterministic circuit complexity, then E with linear advice has a Boolean function
of close-to-maximum deterministic circuit complexity. The following theorem is a restatement of
Theorem 1.

Theorem 18. If there is a constant ε > 0 such that E/O(n) 6⊆ NSIZE(2εn), then E/O(n) 6⊆
SIZE(2n/n).

Proof. Let f be a Boolean function requiring non-deterministic circuits of size 2εn for some ε > 0.
The basic idea is to apply the hardness extractor GU to f to obtain a new function f ′ with close-
to-maximum deterministic hardness. Using explicitness of GU , we would ideally like to show f ′ ∈ E

if f ∈ E. Two issues arise when trying to show this. First, we do not know how to generate f ′

uniformly from f . We only know that for some advice string y, the output function f ′ of the
hardness extractor is very hard. Secondly, when we are trying to compute f ′ on some input length
n′, it is not immediately clear which input length n we should evaluate f at. Since the hardness
extractor effectively compresses truth tables, many different input lengths n map to the same input
length n′. The function f may be easy on some input lengths and hard on others. We need to
evaluate f at an input length where it is hard in order to ensure the hardness extraction property
helps us.

The solution to both issues is to use a small amount of advice when computing f ′. The advice
will tell us which input length n to evaluate f at, as well as which advice string for the hardness
extractor results in an output function that is very hard.

Now assume f ∈ E/O(n). We apply Corollary 17 with s = 2εn. Since GU is an (n, 2εn) hardness
extractor, there is some constant ε′ > 0 such that GU is an (n, 2εn, n′ = bε′nc, 2n′

/n′) hardness
condenser from hardness for non-deterministic circuits to hardness for deterministic circuits. We
define f ′ implicitly by defining an advice-taking machine M running in linear exponential time and
a sequence of advice strings {am},m = 1 . . .∞ such that for each m, M with advice am decides
f ′

m.
On input length m, the advice string am consists of three parts. The first part of the advice

string codes an integer n such that m = bεnc. This part of the advice is of a fixed constant size,
since there are only d1/ε′e possible values for n. The second part of the advice is a string y which
is of length O(n), corresponding to the advice string for GU . The third part is a string z which is
also of length O(n), corresponding to the advice required for computing f .

The machine M operates as follows on input x: after determining n and z from its advice, it
generates the truth table of fn. This can be done in linear exponential time since f ∈ E/O(n) and
z is the correct advice string for computing f on inputs of length n. Then M determines y from
its advice and computes GU (fn, y). This can be done in linear exponential time by explicitness of
GU . Finally, M reads off f ′(x) from the truth table output by GU .

Clearly, |am| = O(m), thus f ′ ∈ E/O(m). We argue that if there are infinitely many n such
that fn does not have circuits of size 2εn, then there are infinitely many m such that f ′

m does not
have circuits of size 2m/m. We do this by specifying which advice string to pick for each m. If
there is n such that m = bε′nc and fn does not have circuits of size 2εn, we pick the first such n
and code it into the first part of the advice. If not, the first part of the advice is arbitrary. For the
third part of the advice, we pick a string z which is the correct advice for computing f in linear
exponential time on inputs of length n.
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In the second part of the advice, if there is some y such that GU (fn, y) requires circuits of size
2m/m, we code the first such y. If fn is hard enough, such a string y exists since GU is a hardness
extractor. Now if there are infinitely many n for which fn are hard, there are infinitely many m
for which the first part of the advice codes a hard input length for f . In this case, by the hardness
extraction property of GU , there is some string y such that GU (f, y) requires circuits of size 2m/m.
Thus it follows that f ′ requires circuits of size 2m/m for infinitely many m. �

We could get rid of the non-uniformity in the definition of f ′ above if we could argue that
E/O(n) 6⊆ 2n/n implies E 6⊆ 2n/n−O(n). However, standard arguments only give that E/cn 6⊆ 2n/n
implies E 6⊆ 2n/c/n − O(n), which does not yield any non-trivial improvement in hardness in this
context. In Section 4, we show that the introduction of non-uniformity is intrinsic to the approach
to hardness extraction we take in this section.

We can derive a result where the extracted function is uniform by moving to a higher uniform
class.

Theorem 19. If there is a constant ε > 0 such that E 6⊆ NSIZE(2εn), then ENP 6⊆ SIZE(2n/n).

Proof Sketch. Applying Theorem 18, we have f ′ ∈ E/O(n) such that f ′ 6∈ SIZE(2n/n). We can
now derive a function f ′′ ∈ ENP with hardness 2n/n by cycling over all advice strings and using the
first one which yields a function with hardness 2n/n. Checking whether the output on a specific
advice string has hardness 2n/n is an NP question. �

3.2 Downward closures

We use Corollary 16 to show some rare downward closure results. It is common in complexity
theory, and usually straightforward, to show that inclusion of one complexity class in another can be
translated “upward”, meaning that the inclusion also holds if the classes are given proportionately
more resources. For instance, if NP = P, then NEXP = EXP, and the proof is a simple padding
argument. However, interesting examples of the converse, i.e., showing that inclusion of one class
in another implies an inclusion where the classes have proportionately fewer resources (this is
equivalent to translating separations of classes “upward”), are much rarer. The only non-trivial
examples we know are the result of Impagliazzo and Naor [IN88] showing that if NP = P, then
NPOLYLOG ∩ coNPOLYLOG = DPOLYLOG and the result [IKW02, For97] that BPE = EE if and
only if BPP = EXP.

Theorem 20. If P 6⊆ heur1/2+1/nk − NSIZE(nk) for any fixed k, then for each ε > 0, E/2εn 6⊆
SIZE(2n/n).

Proof. The proof is analogous to the proof of Theorem 18, except that we use GNW as a hardness
extractor rather than GU .

Given the assumption, we fix ε > 0 and show that there is a language in E/2εn which doesn’t
have deterministic circuits of size 2n/n. From Corollary 16, we have that GNW is an (n, s, n′ =
bc log(s)c, 2n′

/n′) condenser with advice length O(n2) from 1/2 − 1/s average-case hardness for
non-deterministic circuits to hardness for deterministic circuits, for some constant c > 0. Let k =
2c/ε.We consider GNW with parameter s = nk, which implies n′ = b2 log(n)/εc. By assumption,
there is a Boolean function f in P which is not 1/2 − 1/nk approximated by non-deterministic
circuits of size nk.

We construct a Boolean function f ′ ∈ E/2εm such that f does not have deterministic circuits of
size 2m/m. As in the proof of Theorem 18, we define f ′ implicitly by specifying an advice-taking

11



machine M operating in linear exponential time and a sequence of advice strings {am},m = 1 . . .∞
with |am| 6 O(2εm), such that for each input length m, M with advice am computes f ′

m.
The advice string consists of two parts: the first part codes a number n such that m =

b2 log(n)/εc, and the second part is a string y of length O(n2). M operates as follows: on an input
of length m, it first determines n and y from the advice. It then computes the bit of GNW (fn, y)
corresponding to its input. Since GNW is super-explicit, the computation takes time polynomial in
2m +n2 < 2m+1 with oracle access to fn. Note that there can be at most poly(2m) oracle calls made
to fn (in fact, GNW satisfies a stronger condition: it makes just one oracle call!), and each oracle
call can be answered in time poly(2m) by running the polynomial-time algorithm for f . Thus, M ′

takes linear exponential time.
The argument that f ′ is hard is essentially the same as in the proof of Theorem 18. It follows

from the fact that for infinitely many m, there must be a “good” advice string, i.e., an advice string
which codes an input length n on which f is hard, and advice y for GNW such that GNW (fn, y) is
a function with hardness 2m/m, by the hardness extraction property of GNW . �

It would be nice to have an equivalence rather than a one-way implication in the statement of
Theorem 20. There are two obstacles to this. The first is that the assumption on hardness of P

concerns non-deterministic circuits, while the assumption on hardness of E with advice concerns
hardness with respect to deterministic circuits. A traditional upward translation technique would
work only if the hardness assumptions were with respect to the same kind of circuit. The second
is that the assumption on hardness of P is an average-case assumption, while the assumption on
hardness of E with advice is a worst-case assumption.

We circumvent these obstacles by considering hardness with respect to non-uniform space rather
than non-uniform time. Non-uniform space is closed under non-deterministic reductions, thus we
get around the first obstacle. To get around the second obstacle, we give an upward translation
technique for average-case simulations, and then show that worst-case hardness of E with advice is
essentially equivalent to average-case hardness.

The non-uniform space model we consider is the model of alternating circuits, which generalizes
non-deterministic circuits by allowing an arbitrary number of alternations. The fact that the Nisan-
Wigderson generator relativizes [KvM02] yields a generator against alternating circuits.

Theorem 21 ([NW94, AK97]). Let s(n) be any constructible function. The generator GNW in
Theorem 13 is a super-explicit (n, s,

√
s) PRG with error parameter ε and seed length O(n2/ log(s))

based on 1/2 − ε/s average-case hardness for alternating circuits.

Next, we utilize the connection of pseudo-random generators with hardness extraction.

Theorem 22. GNW is a super-explicit (n, s) hardness extractor with advice length n2/ log(s) from
1/2 − 1/s average-case hardness for alternating circuits to hardness for alternating circuits.

Proof Sketch.
We relativize the proof of Lemma 15 to alternating time. If the output of GNW did not have

close-to-maximum hardness for any advice string, a non-deterministic circuit with oracle access
to alternating time could distinguish the output of the generator from a random string. A non-
deterministic circuit with oracle access to alternating time can be simulated by an alternating circuit
of size polynomially bounded in the size of the original circuit. Such a distinguisher would yield
an approximation to the input function by Theorem 21, contradicting the hardness assumption on
the input function. Hence there must be some advice string on which the output function of GNW

has close to maximum alternating size, thus proving the hardness extraction property. �
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The novel feature of Theorem 22 as compared to our previous results on hardness extraction is
that the complexity model we extract from is the same as the complexity model we extract to. By
a proof exactly analogous to the proof of Theorem 20, we obtain the following result.

Theorem 23. There is a constant γ such that if P/n2 6⊆ heur1/2+1/nk − ASIZE(nk) for any fixed
k, then for each ε > 0, E/2εn 6⊆ ASIZE(2n/γn).

Using the fact that ASIZE(s) ⊆ DSPACE(s2)/s2 ⊆ ASIZE(s4), we get the following corollary,
which we state in contrapositive form.

Corollary 24. There is a constant δ > 0 such that the following holds: if there is a constant ε > 0
for which E/2εn ⊆ DSPACE(2δn)/2δn, then there is a constant k such that P/n2 ⊆ heur1/2+1/nk −
DSPACE(nk)/nk.

We now proceed to show that the converse to Corollary 24 holds. We use a translation tech-
nique translating average-case simulations upward to show this. The technique only works if the
average-case simulation has at least a constant advantage over random, so we first need a hardness
amplification lemma.

We use a version of Yao’s XOR lemma [GNW95] with appropriate parameters for the hardness
amplification.

Lemma 25. For a Boolean function f on n bits, define f⊕t to be the Boolean function on tn bits
which is the parity of t independent copies of f . For any k ′ > 1, there is k > 1 such that if f is a
Boolean function on n bits which is 1/n-hard for DSPACE(nk)/nk, then f⊕n2

is a Boolean function
on m = n3 bits which is 1/2 − 1/mk′

hard for DSPACE(mk′

)/mk′

.

Lemma 25 can be obtained from Lemma 1 in the survey of Goldreich, Nisan and Wigderson
[GNW95] by appropriate parameter substitutions. The lemma in the survey pertains to amplifica-
tion with respect to deterministic circuits but the proof can be seen to go through for amplification
with respect to non-uniform space.

Notice that if f is computable in P with a(n) bits of advice, then so is f⊕n2
(and indeed the

advice length for computing f⊕n2
is smaller as a function of its input length). Thus we have the

following corollary to Lemma 25.

Corollary 26. If there is a constant k ′ such that P/n2 ⊆ heur1/2+1/nk′ − DSPACE(nk′

)/nk′

, then

there is a constant k such that P/n2 ⊆ heur1−1/n − DSPACE(nk)/nk.

We are now ready to give the argument for the upward translation.

Lemma 27. If there is a constant k such that P/n2 ⊆ heur1/2+1/nk − DSPACE(nk), then for each

constant δ > 0, there is a constant ε > 0 for which E/2εn ⊆ DSPACE(2δn)/2δn.

Proof. Assume there is a constant k such that P/n2 ⊆ heur1/2+1/nk − DSPACE(nk)/nk. Then,

by Corollary 26, there is a constant k ′ such that P/n2 ⊆ heur1−1/n − DSPACE(nk′

)/nk′

. We will

show that for each constant δ′ > 0, there is a constant ε′ > 0 such that E/2ε′n ⊆ heur1−1/nω(1) −
DSPACE(2δ′n)/2δ′n. The consequent of the theorem follows from this by using a standard worst-case
to average-case reduction via random self-reducibility [BF90, Lip90] .

Upward translation results for worst-case simulations are typically proved using a padding
argument. We adapt the padding argument to the average-case setting, as in [FS04]. Let δ ′ > 0 be
a constant, and let ε′ = 2δ′/k′. Let L be a language in E/2ε′n.
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Now, define the language L′ = {xy|x ∈ L, |x| + |y| = 2δ′|x|/k}. It is not hard to see that
L′ ∈ P/n2, and hence L′ ∈ heur1−1/n − DSPACE(nk′

)/nk′

. Let M ′ be an advice-taking space

bounded machine running in space nk′

and {an}, n = 1 . . .∞ be a sequence of advice strings such
that for each n, |an| = nk′

and M ′ with advice an solves L′ on at least a 1− 1/n fraction of strings
of length n. We define an advice-taking machine M operating in space 2δ′m and a sequence of
advice strings {bm} with |bm| = 2ε′m such that M with advice bm solves L on at least a 1 − 2/m
fraction of strings of length m.

M operates as follows: on input x of length m, it runs M ′ with advice bm on input xy for each
string y of length 2δ′m/k − m, and outputs the majority answer. The space required by M is the
space needed to store y plus the space needed to run M ′, which is bounded above by 2δ′m. Set
n = 2δ′m/k. We show that for the sequence of advice strings bm = an, M approximates L well.

Call an input x of length m “good” if M ′(xy) with advice bm = an is the same as L′(xy) for the
majority of strings y of length n −m. Since M ′ solves L′ correctly on a 1 − 1/n fraction of strings
of length n, by an averaging argument, at least a 1 − 2/n fraction of inputs of length m are good.
Since n >> m, we have that at least a 1 − 1/mω(1) fraction of inputs of length m are good. M
computes L correctly on each good input when given advice bm, hence the theorem is proved. �

Lemma 27 and Corollary 24 together yield the formal version of Theorem 2, which we state
below.

Theorem 28. There is a constant k such that P/n2 ⊆ heur1/2+1/nk − DSPACE(nk) if and only if

for each constant δ > 0, there is a constant ε > 0 for which E/2εn ⊆ DSPACE(2δn)/2δn.

An interesting feature of Theorem 28 is that while the statement does not involve randomized
classes, the proof goes through pseudo-random generators! Indeed, since probabilistic alternating
time can be simulated polynomially in alternating time, derandomization is not an issue here,
however we still obtain non-trivial relationships between deterministic time classes and alternating
size using pseudo-random generators.

It would be interesting to prove a version of Corollary 24 which involves uniform classes. We
are able to derive a version where the classes in the consequent are uniform. We do this by showing
that a simulation of P on average in non-uniform space implies a simulation of P on average in
uniform space. The corresponding implication for worst-case simulation is a standard Karp-Lipton
style result [KL82], where the non-uniformity is eliminated by enumerating over all advice strings
and using the local checkability of languages in P to find the right advice string. The standard
notion of local checkability does not help us in the average-case setting. Nevertheless, we are able
to use the fact that there are “error-tolerant” proofs for languages in P derive our result. This fact
follows from known results about probabilistically checkable proofs (PCPs); however, we do not
need the full power of PCPs and it suffices for us to encode the conventional proofs with a good
locally decodable error-correcting code. We omit the details.

Theorem 29. There is a constant δ > 0 such that the following holds: if there is a constant
ε > 0 such that E/2εn ⊆ DSPACE(2δn)/2δn, then there is a constant k such that P ⊆ heur1−1/n −
DSPACE(nk)

Proof Sketch.
First, using the proof technique of Corollary 24, an average-case simulation of P in a fixed

non-uniform space bound follows from the assumption. The proof proceeds by showing that an
average-case simulation of P in non-uniform space implies an average-case simulation of P in uniform
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space. This is an “average-case” Karp-Lipton theorem. The technique involves encoding locally-
checkable proofs of membership for a language in P with a locally decodable code, and then arguing
that there must be some non-uniform space algorithm which can be verified to work on a large
proportion of the inputs. Such a non-uniform algorithm can be found space-efficiently by cycling
over all possibilities and determining the one for which the verification has the highest probability
of success. �

4 Limitations of hardness condensers

A couple of natural questions arise, given the results in the previous section. First, whether
hardness condensers require access to an advice string. If it were possible to eliminate the advice, the
condensing transformation would preserve uniformity and we could derive stronger results. Second,
whether there are hardness condensers from deterministic hardness to deterministic hardness. This
is the most interesting case if one is trying to use hardness condensing to prove (or at the least
improve) circuit lower bounds in NP or even in E.

In this section, we consider two natural classes of hardness condensers: relativizing condensers
and the more restricted class of black-box condensers. We show advice lower bounds for relativizing
condensers, thus giving a negative answer to the first question in this setting. Also, we show that
essentially no deterministic hardness condensing is possible in the black-box model. We interpret
these negative results to indicate that radically new techniques are required to obtain completely
uniform hardness condensers or to extract deterministic hardness.

4.1 Relativizing extractors

We begin by defining relativizing condensers. The idea behind the definition is very simple: we
require a condenser from hardness in complexity model A to hardness in B to work even when the
elements of A and B are given access to an oracle. It is implicit in this definition that it is meaningful
for complexity models A and B to have access to an oracle. We refer to such complexity models
as “relativizable”. We do not define this notion formally, merely observing that most interesting
complexity models such as formulas or circuits of any depth are relativizable.

We assume that all complexity models in this section come with a bit-encoding scheme. In
this section, we will always take the size or complexity of an element of A or B to be the length
of its bit-encoding. So in the notation “(n, s, n′, s′)-hardness condenser,” s and s′ refer to lengths
of bit-encodings. For concreteness, we assume that an element of A or B that makes a single call
to an oracle with n bits of input and immediately outputs the result is encoded by a bit string of
length O(n).

Definition 30. Let A and B be relativizable complexity models. For any oracle D, let AD and
BD be the complexity models induced by giving A and B access to D. C is a relativizing hardness
condenser from A to B if for any oracle D, C is a hardness condenser from hardness in AD to
hardness in BD.

Relativizing hardness condensers are a very general construct. We note that all the hardness
condensers in the previous section are relativizing hardness condensers. From a more conceptual
point of view, we emphasize the following features of Definition 30:

1. There is no restriction on the relation between complexity models A and B; the only condition
on them is that they are relativizable.
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2. There is no restriction on the efficiency of computing the hardness condenser. The hard-
ness condenser is not required to be uniform (note that the argument from Section 2 that
non-uniform hardness extractors exist trivially does not hold for relativizing hardness extrac-
tors). Nor is there any explicitness condition - a hardness condenser could require circuits of
exponential size to compute and still satisfy the definition.

3. There is no restriction on the proof that C is a relativizing hardness condenser. In particular,
it is conceivable that there is no easy way to derive a small element of A computing the input
function from a small element of B computing the output function.

Relativizing hardness condensers do exist, as evidenced by the constructions in the previous
section. We show that advice is necessary for relativizing hardness condensers by giving lower
bounds for the advice length in terms of the other parameters of the condenser.

Our lower bounds work via counting arguments. In the following, we will think of a (n, s, n ′, s′)
hardness condenser C as a bipartite graph GC = (L,R,E), where E ⊆ (L × R). The left set L
represents the set of functions from which we condense hardness, and the right set R represents
the set of functions to which we condense hardness. There is an edge between a node u on the left
and a node v on the right if there is some advice string y such that C(u, y) = v (actually, we use a
slightly different graph for our formal argument, but this is the most natural graph to use).

A natural lower bound approach would be to show that GC is a disperser a la Trevisan [Tre01].
This does not seem to be immediate, since different nodes in R could conceivably have different
degrees. However, a modified counting argument does work.

To gain intuition, we first sketch the argument that hardly any non-trivial hardness extraction
is possible for a relativizing hardness extractor with no advice. If there is no advice, then every
node in L has exactly one neighbour in R. Also, in the case of extraction, the size of the truth tables
in R is about s. The basic idea is that if s is not too close to 2n, there must be some node vmax on
the right with large degree, by the pigeon-hole principle. Now consider an oracle which is precisely
the function represented by vmax. With respect to the oracle, vmax has very low complexity. On
the other hand, since vmax has a large number of neighbours, one of these neighbors must have
high complexity even relative to the oracle vmax, again by the pigeon-hole principle. This is a
contradiction to the hardness extraction assumption.

We now present a more formal and more general argument:

Theorem 31. Any (n, s, n′, s′) relativizing hardness condenser requires ` bits of advice where

2` >
2n + Ω(s′) − s

2n′+1
.

Theorem 31 is the formal version of Theorem 3. Before proving it, we observe a few implications
of this bound. First of all, in the case of no advice (` = 0), it’s clear that s′ cannot be much bigger
than s, because n > n′. This makes sense since it should be impossible to make a problem harder
without adding any information to it. Secondly, to extract all the hardness of the original function
(that is, s′ is almost s and is exponential in n′), we get ` ∈ Ω(n− log s). This bound is tight up to
a constant factor, since the hardness extractor in Corollary 17 has advice length O(n) for any s.

Theorem 31 also explains why we could not get rid of the advice in Theorem 1 and obtain an
improvement in hardness for a uniform function in E.

Proof of Theorem 31. Let A and B be complexity models and let C be an (n, s, n′, s′) relativizing
hardness condenser with ` bits of advice from A to B.
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Now consider the bipartite graph GC = (L,R,E) corresponding to C. L is the set of all truth-
tables of size 2n. R is the set of all `-tuples of truth-tables of size 2n′

. Hence, |L| = 22n

and

|R| = 22`+n
′

. Each node in L maps to one node in R corresponding to the outputs for each advice
string.

The average degree of a node in R is 22n−2`+n

. For r to be fixed later, let Xr denote the set
of r nodes of largest degree in R. Let N(Xr) denote the set of neighbors of Xr. Then we have

|N(Xr)| > r22n−2`+n
′

.
We define the oracle D as follows: D is a function on log(r) + ` + n′ bits. The first log(r) bits

are an index to a node v in Xr, the next ` bits are an index to one of the functions at node v and
the remaining bits index an entry of that function. The output of D is simply the corresponding
entry of the function. For any node v in Xr, the complexity of every function at v in BD is
O(log(r) + ` + n′), since just one oracle call to D is required to compute any bit of each of these
functions. These functions are “easy” if this complexity is less than s′, so set r as big as possible
such that this holds. So, we have r = 2Ω(s′)−`−n′

. Then,

|N(Xr)| ≥ 22n+Ω(s′)−`−n′−2`+n
′

.

By the defining property of the condenser, every function in Xr must have complexity less than
s. So, it better be that

2s > 22n+Ω(s′)−`−n′−2`+n
′

s > 2n + Ω(s′) − ` − n′ − 2`+n′

> 2n + Ω(s′) − (2` + 1)(2n′

+ 1)

> 2n + Ω(s′) − 2(2`)(2n′

).

So,

2` >
2n + Ω(s′) − s

2n′+1
.

�

4.2 Black-box hardness condensers

We now turn to the question of whether there is a hardness condenser from hardness for determin-
istic circuits to hardness for deterministic circuits. One approach to constructing them would be to
follow our construction of condensers from nondeterministic circuits to deterministic circuits; that
is, to try to show that a deterministic adversary can estimate the circuit size of given truth-table.
This is essentially the Minimum Circuit Satisfiability Problem (MCSP). Unfortunately, Kabanets
and Cai [KC00] show that if MCSP were in P, the discrete logarithm problem could be solved
efficiently, which is considered unlikely.

Barring that, the most natural approach would be to use a construction that allows some sort of
“black-box” reconstruction technique. We define a natural black-box model of hardness condensing
and show an impossibility result in this model.

The defining feature of the black-box model is that given a set of small circuits for all the
outputs of a given input into the hardness condenser, it should be possible to construct a small
circuit for the input truth table.

Definition 32. An (n, s, n′, s′) hardness condenser C for deterministic circuits is said to be t-black
box if C is relativizing and there is an oracle circuit of size t which computes the input function of
C when given oracle access to the outputs of C.
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Theorem 33. Any t-black box (n, s, n′, s′) hardness extractor has t > 2n+Ω(s′)−s

2n′+1
.

Proof. Theorem 31 shows that there are at least 2n+Ω(s′)−s

2n′+1 outputs. An oracle circuit for the input
function must make at least that many oracle calls. �

Any black box proof of (n, s, n′, s′) hardness condensing would require a t-black box condenser
such that ts′ < s. In other words, the proof would construct a circuit of size less than s for an
input function given circuits of size less than s′ for each of the possible output functions and the
oracle circuit for the condenser.

To argue that this can’t happen, we first need to revisit what it means to be an effective hardness
condenser. The point of a hardness condenser is to output a function that is relatively harder than
the input function. In the case of an infinite family of hardness condensers, we can express this
by saying that any (n, s(n), n′(n), s′(n))-hardness condenser should satisfy s′(n) ∈ ω(s(n′(n))).
We assume that s(n) ∈ o(2n), since otherwise not much condensing is necessary. In this case,
s(n′(n))

2n′(n)
≥ s(n)

2n and s′(n)

2n′(n)
∈ ω

(

s(n)
2n

)

.

Finally, we can explore the relationships between t, s and s′. We have

ts′ > 2n+Ω(s′)−s

2n′+1
s′

> s2n+Ω(s′)−s
s

s′

2n′+1

> s
(

2n

s − 1
)

s′

2n′+1

> s Ω
(

2n

s
s′

2n′

)

for sufficiently large n

> s

5 Hardness condensing in special cases

In this section we give two cases where we can achieve hardness condensing from deterministic
circuits to deterministic circuits. In both cases, the input hard function has some clear redundancy
to it that can be eliminated to form a smaller function without sacrificing much hardness.

5.1 Biased functions

Lupanov ([Lup65]) shows that any function F : {0, 1}n → {0, 1} that outputs 1 (or, respectively,
0) with probability at most α ≤ 1/2 can be computed by a circuit of size O(H(α)2n) (actually,
Lupanov proves a much more precise bound). There is a proof of this fact due to [Imp05] that
can be adapted to show that there is a hardness condenser for biased functions that reduces the
truth table to O(H(α)2n). Of course, this is the answer that one would expect by analogy to
information theory. Another way to interpret this is, if a function is biased towards, say, 0 and has
some hardness, then one can sort of throw out excess 0’s to form a smaller, balanced function that
is relatively harder (recall H(α) = −α log α − (1 − α) log(1 − α), which, for α ≤ 1/2 is O(α log 1

α).
This is not much more than the 2α that would arise from “throwing out” all the excess 0’s).

Definition 34. For F : {0, 1}n → {0, 1}, let αF = min{Prx(F (x) = 1),Prx(F (x) = 0)}.

Clearly αF ≤ 1/2.

Theorem 35. For some constant c, there is an explicit (n, s, n − bc log 1
H(αF )c,Ω((s − n)/n))-

hardness condenser from deterministic worst-case hardness to deterministic worst-case hardness
that requires no advice.
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Theorem 35 is the formal version of Theorem 4. Of course, the theorem is meaningful only when
s(n) is somewhat bigger than n. To get actual hardness-condensing, however, there is a tradeoff
between αF and s(n). For instance, if αF = O(1/n2) and F requires circuits of size 2εn, then the
output is in fact relatively harder than the input.

Proof of Theorem 35. Throughout the proof, we will use constructions of pairwise-independent
hash functions from {0, 1}n to {0, 1}` for various values of `. In particular, let U ⊂ {0, 1}n and
V ⊂ {0, 1}` such that |V | = 2`−1. We assume that in time 2O(n) we can find a hash function
h : n → ` such that at most 3|U |/4 elements of U hash to V . Moreover, h should be computable in
time O(n). Such parameters can be achieved by doing an exhaustive search over all hash functions
in the affine subspace construction of a pairwise-independent, universal family of hash functions
(see [LWly], for example).

Let T1 be the set F−1(1) and let U1 be F−1(0). Let `1 = dlog(2|T1|)e. Choose a hash function
h1 : {0, 1}n → {0, 1}`1 such that at most 3|U1|/4 elements of U1 hash to h1(T1), where h1(T1)
denotes the range of h on T1. Let U2 be those elements of U1 and let T2 = T1. Define F1 : {0, 1}`1 →
{0, 1} to be 1 on input x iff there exists a y ∈ T1 such that h1(y) = x.

In general, given Ui and Ti such that |Ui| ≥ |Ti| (if |Ui| < |Ti|, reverse the roles of Ui and Ti and
0 and 1), let `i = dlog(2|Ti|)e and define Fi : {0, 1}`i → {0, 1} analogously: choose a hash function
hi : {0, 1}n → {0, 1}`i that hashes at most 3|Ui|/4 elements of Ui to hi(Ti)—call these elements
Ui+1. Let Ti+1 = Ti and let Fi(x) = 1 iff there exists a y ∈ Ti such that hi(y) = x.

Let k be the first stage at which each of Uk and Tk has at most, say, 512 elements. Let
hk : {0, 1}n → {0, 1}200 be a hash function that hashes Uk∪Tk perfectly. Define Fk : {0, 1}1024 →
{0, 1} in the usual way. Finally, let F ′ be the boolean function whose truth table is the concatenation
of the truth-tables of F1, . . . , Fk (if this is not a power of 2, pad it out with 0’s). The hardness
condenser outputs F ′.

Now that we have described the construction, we must argue its correctness. First of all,
k ∈ O(n). This is because U1 and T1 are at most 2n and, in each iteration, one of them shrinks by
a factor of 3/4.

We now compute the size of the truth-table of F ′. Let α = αF . In each iteration (1...k − 1),
we add 2min{|Ui|, |Ti|} bits to the truth-table of F ′ (and a constant number in iteration k). Split
the sequence of iterations into two parts: let j be the first point at which |Uj | ≤ |T1|. In iterations
1...j − 1, we add 2|T1| = 2α2n bits to the truth-table of F ′. Since |U1| = (1 − α)2n and it shrinks
by 3/4 in every iteration before j, it must be the case that j − 1 ∈ O(log 1−α

α ), which is O(− log α).
After iteration j − 1, the value min{|Ui|, |Ti|} shrinks by 3/4 every two iterations, so from then
on, we add O(α2n) bits to the truth-table of F ′. Hence, the truth-table of F ′ has size at most
O((α log 1

α)2n), which is O(H(α)2n).
Finally, we show that if F ′ can be computed by a circuit of size t, then F can be computed by

a circuit of size O(n(t + n)). The circuit for F will need access to h1, . . . , hk and will need to know
whether |Ui| ≥ |Ti| for each iteration. To compute F (x), first compute y1 = h1(x) and use the
circuit for F ′ to compute F1(y1). If it’s 0, answer 0. Otherwise continue. In general, if we haven’t
output a value in the first i − 1 iterations, let yi = hi(x) and look up Fi(yi) using the circuit for
F ′. If the value is 0 and |Ui| ≥ |Ti|, answer 0; if the value is 1 and |Ti| > |Ui|, answer 1; otherwise
continue. We need size O(n) to compute each hash function and there are O(n) rounds. �

The circuit upper bound for biased functions gives a proof that functions that are hard for very
large circuits have some average-case hardness (this is very similar to a proof of [ACR99]). More
precisely, let f be any function that requires circuits of size s = ω(H(δ)2n). Assume f is not δ-hard
for circuits of size s/2. In other words, there is a function g that agrees with f on a 1 − δ fraction
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that can be computed by circuits of size s/2. Then, the function f ⊕ g must require circuits of size
at least s/2, but αf⊕g ≤ δ which contradicts the circuit upper bound.

We can use a similar argument to show that any hard language in E either has average-case
hardness of a sort or is not as hard as some other function in E. In particular, if there is a language in
the PH that is as hard as any language in E, then that function must have this type of average-case
hardness. This is perhaps interesting due to the difficulty of black-box worst-case to average-case
reductions within the polynomial hierarchy [FF93, BT03, Vio05].

Theorem 36. Let s(n) ∈ Ω(2εn) for some ε > 0 and let δ = δ(n) ∈ o(1). If L is a language in E

that requires circuits of size s(n) almost everywhere, then either
(1) There is a language in E that requires circuits of size Ω(s(n)/(nH(δ))) almost everywhere; or
(2) L cannot be δ-approximated by any language in E that has circuits of size s(n)/2.

Proof. Assume there is a language A ∈ E that δ-approximates L and has circuits of size s(n)/2.
View An and Ln as boolean functions from {0, 1}n to {0, 1} and define B to be the language such
that Bn = An ⊕ Ln for each n. B is then a language that requires circuits of size at least s(n)/2
and Pr(Bn(x) = 1) ≤ δ for each n. Let Cn be the hardness-condenser of Theorem 35 and let c be
the constant there. Apply Cn to Bn for each n. Let L′

n′ be the function computed by choosing an
n such that n′ = n − bc log 1

H(δ) and applying Cn(Bn). For almost all n′, L′
n′ will require circuits

of size Ω( s(n)/2−n
n ) for the corresponding n.. Hence, L′ is a language in E that requires circuits of

size at least Ω(s(n)/(nH(δ))) almost everywhere. �

5.2 Average-case hard functions

In this subsection, we show how to non-trivially condense average-case deterministic hardness to
worst-case deterministic hardness. Our technique involves a connection between a certain kind of
explicit construction of covering codes and hardness condensing. Before we describe this connection,
we give a simple illustrative example which already yields some non-trivial hardness condensing.

Let f be a Boolean function on n bits which is γ average-case hard for deterministic circuits
of size s. Let δ = 1/2 − γ; this is often called the advantage for circuits of size s on f . We show
how to explicitly condense f to a function f ′ on n− blog(1/δ)c bits which is hard for deterministic
circuits of size s−O(n). Assume wlog that 1/δ is an odd integer (if not, perturb δ slightly so that
this becomes true). Imagine the string tt(f) to be divided into blocks Bi, i = 1 . . . γ2n, each block
consisting of 1/ε consecutive bits in tt(f). Now we define f ′ on input i to be the majority function
on the bits in Bi. Clearly, f ′ can be derived explicitly from f .

We show that f ′ has worst-case hardness s − O(n). Let C ′ be a circuit of size s′ computing
f ′. Then the following circuit C computes a 1/2 + δ approximation to f : C first determines which
block Bi its input is mapped to. This can be done with a linear number of gates. C then runs C ′

on i. Since C ′ computes the majority value of the bits in Bi and since |Bi| is odd, C computes a
1/2 + δ approximation to f over inputs mapped to Bi. Since this is true for each i, C computes a
1/2 + δ approximation to f over all n-bit inputs. The size of C is bounded above by s ′ +O(n). By
the assumption on average-case hardness of f , s′ + O(n) > s, which implies s′ > s − O(n).

Note that the input size of the condensed function depends only on the maximum advantage
a circuit can achieve on the input function, and not on the size of such a circuit. If the advan-
tage is exponentially small, the input size is condensed by a constant factor. We now describe
a strengthening of the above approach, which involves a connection between hardness condensing
and covering codes. From here on, we will assume we are dealing with a function and circuit size
such that δ ∈ o(1), since otherwise the condensing is minimal.
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First we define covering codes.

Definition 37. A (K,N,R) covering code is a function A : K → N such that for each y ∈ {0, 1}N ,
there is some string x ∈ {0, 1}K such that the Hamming distance between y and A(x) is at most R.

Intuitively, a covering code corresponds to a set of N -bit strings such that the set of Hamming
balls of radius R centered on these strings covers the whole space of N -bit strings. The smaller K
and R are as functions of N , the better the covering code.

Given fixed N and R, a simple lower bound on K, known as the “sphere-covering bound” can be
shown by a counting argument. Let V (N,R) denote the number of N -bit strings within a Hamming
ball of radius R. Then:

Proposition 38. K > N − log(V (N,R))

It can be shown using a probabilistic argument that covering codes with parameters that almost
meet this lower bound exist non-explicitly.

Proposition 39 ([CHLL97]). For any N and R, there exists a (K,N,R) covering code with
K = N − log(V (N,R)) + log(N) + O(1).

We will require explicit covering codes with the additional properties of local computability and
efficient recoverability. We now define these concepts.

Definition 40. A (K,N,R) covering code A is t-local if for each x ∈ {0, 1}K there is a circuit
of size poly(t, log(N)) with oracle access to x which, given as input an index i between 1 and N ,
outputs the ith bit of A(x). A is efficiently recoverable if there is a polynomial time procedure recA

which given a string y ∈ {0, 1}N as input, outputs a string x ∈ {0, 1}K such that the Hamming
distance between A(x) and y is at most R.

Since the notion of efficient recoverability is concerned with uniformity, in the definition above
we are implicitly referring to a family of (k, n, r) covering codes, where k and r are functions of n.
In future, we only consider families of covering codes.

We are interested in t-local efficiently recoverable covering codes with t as small as possible.
We now attempt to give some intuition about the connection between such codes and hardness
condensing.

Let f be a function on n bits which is R/2n average-case hard for circuits of size s. We wish
to “compress” f to a function with smaller input size which is worst-case hard for circuits of size
approximately s. Sudan, Trevisan and Vadhan [STV01] showed that a worst-case hard function
can be converted to an average-case hard function by encoding it with a locally list-decodable
error correcting code. Our technique is a dual to theirs. Let A be a t-local efficiently recoverable
(2k, 2n, R) covering code. Our condensed function f ′ will be the function on k bits with truth table
recA(tt(f)). The efficient recoverability property implies that our putative hardness condenser is
explicit.

To prove the hardness condensing property, we need to show that f ′ does not have small circuits.
Suppose f ′ has circuits of size s′. By t-locality of A, g = fn(A(tt(f ′))) is a function on n bits with
circuits of size poly(t, n)s′. Also, since A is a (2k, 2n, R) covering code, g is a 1−R/N approximation
to f . This is a contradiction to average-case hardness of f if poly(t, n)s′ < s.

We now give a formal statement of the connection.

Theorem 41. If there is a t-local efficiently recoverable (2k, 2n, R) covering code, then there is a
constant c such that there is an explicit (n, s, k, s/(t +n)c) hardness condenser from R/2n average-
case hardness for deterministic circuits to worst-case hardness for deterministic circuits.
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To derive the benefits of this connection, we need to find constructions of local, efficiently
recoverable covering codes with good parameters. We first investigate the best-case scenario: what
would the best possible code (by Proposition 38) give us? In other words, if we fix R = γN , what
is the smallest K can be? It is K = N − log V (N, γN). We can estimate (see, for example, [Ash65],
p. 121)

1

8N
2NH(γ) ≤ V (N, γN) ≤ 2NH(γ).

Computing H(γ), we get

H(γ) = −γ log γ − (1 − γ) log(1 − γ)
= (1

2 − δ) log 2
1−2δ + (1

2 + δ) log 2
1+2δ

= (1
2 − δ)(1 − log(1 − 2δ)) + ( 1

2 + δ)(1 − log(1 + 2δ))
= (1

2 − δ)(1 + 2δ + 2δ2 + o(δ2)) + (1
2 + δ)(1 − 2δ + 2δ2 − o(δ2))

= 1 − (2 + o(1))δ2.

So, V (N, γN) ≤ 2(1−(2+o(1))δ2 )N and K ≥ (2+o(1))δ2N . If K were actually equal to this expression,
then this would lead to condensing from input size n to n−2 log 1

δ +O(1) if the code were sufficiently
local and s were sufficiently large as a function of n.

Our approach to finding a good code will be iterative: we first describe a way of composing
covering codes which preserves the locality, and later give a “basic” construction which we compose
with itself several times to get the parameters we want.

Definition 42. Let A be a (K1, N1, R1) covering code and B be a (K2, N2, R2) covering code. The
direct sum A ⊕ B of A and B is the function f : K1 + K2 → N1 + N2 such that f(x1 ◦ x2) =
A(x1) ◦ B(x2) for any x1 ∈ {0, 1}K1 and x2 ∈ {0, 1}K2 , where ◦ is the concatenation operator on
strings. ⊕mA denotes the m-fold direct sum of A with itself.

The direct sum operation has some nice properties.

Proposition 43. If A is a t-local efficiently recoverable (K1, N1, R1) covering code and B is a t-
local efficiently recoverable (K2, N2, R2) covering code, then A⊕B is a t-local efficiently recoverable
(K1 + K2, N1 + N2, R1 + R2) covering code. Moreover, for any m, ⊕mA is a t-local efficiently
recoverable (mK1,mN1,mR1) covering code.

With this notation, we can interpret the example at the beginning of this subsection in terms
of our methodology. Let RD be the (1, D, bD/2c) repetition code, meaning that the output bit
is merely repeated D times in the output. Clearly, RD is 1-local. The covering code ⊕εNR1/ε

was implicit in the construction of the example, and the fact that the construction is a hardness
condenser follows from Theorem 41 and Proposition 43. As we can see, however, this code is not
optimal since it condenses from n to about n− log 1

δ rather than the optimal n− 2 log 1
δ . The hope

is that we can get better parameters using more sophisticated constructions of codes.
Indeed, we do achieve this by using Nisan’s pseudo-random generator for L as a basic construc-

tion and then taking the direct sum of this construction with itself several times.

Definition 44. A function G : K → N is a pseudorandom generator for space S with error ε if,
for all space-S algorithms A and all inputs to A,

| Pr
y∼{0,1}N

(A(y) accepts) − Pr
x∼{0,1}K

(A(G(x)) accepts)| ≤ ε.
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Lemma 45. There is a constant a such that any PRG G : K → N for space a log N with error ε
is a (K,N,R) covering code, provided that V (N,R) > ε2N .

Proof. Let A be the following algorithm: on input x ∈ {0, 1}N and random string y ∈ {0, 1}N ,
compare x and y bit by bit. If they differ in at most R positions, accept. Certainly A can be
implemented in logspace. Moreover, on truly random y, A accepts with probability p = V (N,R)

2N , so
on G(x) for random x, A accepts with probability at least p − ε > 0. Hence, for any x, there is an
output of G that is within hamming distance R of x. �

Theorem 46 (Nisan [Nis92]). For any S,N ≤ 2S, there is a PRG G : O(S log N) → N for
space S with error 2−S. Moreover, each output bit of G is computable in linear time.

Lemma 47. Let γ = γ(n) < 1/2 and δ = 1/2 − γ ∈ o(1). For any constant c, there is a
(O(log2 Q), Q, γQ) covering code where Q = δ−2.

Proof. By Theorem 46, for any a, there is a b such that PRG G : O(log2 Q) → Q for space a log Q
with error b/Q. By Lemma 45, this is a (O(log2 Q), Q, γQ) covering code if V (Q, γQ) > b

Q2Q. As
shown above, for small δ,

V (Q, γQ) ≥ 1√
8Q

2H(γ)Q

= 1√
8Q

2(1−(2+o(1))δ2)Q.

So,
V (Q, γQ)

2Q
≥ 1√

8Q
2(−(2+o(1))δ2 )Q.

If Q = δ−2, this is certainly less than b/Q. �

Theorem 48. Let γ = γ(n) < 1/2 and δ = 1/2 − γ ∈ o(1). Let N = 2n. There is a

(O(δ2 log2(1
δ )N), N, γN) covering code that is O(log2 1

δ )-local and recoverable in time poly(N, 2log2 1
δ ).

Proof. Simply apply Proposition 43 to the code of Lemma 47 with m = δ2N . Certainly the code
of Lemma 47 is O(log2 1

δ )-local since that is the size of the entire input. Also, since we can recover

that code in time poly(δ−2, 2log2 1
δ ) by trying every possible input, recovering the direct-product

code can be done in the same amount of time times m, which is less than N . �

As an immediate corollary using Theorem 41, we get:

Corollary 49. There is an almost-explicit (running in time poly(2n, 2log2 δ−1
)) (n, s, n−b2 log 1

δ +
2 log log 1

δ +O(1)c, s/nc) hardness condenser from γ = 1/2−δ = 1/2−o(1) hardness for deterministic
circuits to worst-case hardness for deterministic circuits. The condenser uses no advice.

Corollary 49 is the formal version of Theorem 5. The condenser is “almost-explicit” because if
δ = 2−εn, then the condenser takes time polynomial in 2n2

.
As an immediate consequence, we get:

Theorem 50. If there is a language L ∈ EXP such that no circuit of size 2εn achieves advantage
2−δn almost everywhere, then there is a language L′ ∈ EXP that is worst-case hard for circuits of
size 2ε′n) almost everywhere, where ε′ > ε/(1 − 2δ) − o(1).

Proof. Define L′
n′ as follows: choose n such that n′ = n − b2 log 2δn + 2 log log 2δ)n + O(1)c =

(1 − 2δ)n + o(n) and apply the condenser of Corollary 49. �
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6 Concluding Remarks

Our positive results on hardness extraction in the general case suffer from two deficiencies: we
are only able to extract deterministic hardness from non-deterministic hardness, and our hardness
extraction method requires an auxiliary advice string. In this section, we speculate on the possibility
of removing these deficiencies.

In the direction of extracting from deterministic hardness, it would be interesting to give an
alternate proof of Theorem 1. Our proof goes via pseudo-random generators but perhaps a more
direct proof could be obtained using some kind of restriction method.

Such a proof may also be useful in the context of improving lower bounds for constant-depth
circuits. No strongly exponential lower bounds (i.e., lower bounds of the form 2εn, where ε > 0 is
a constant) for Boolean functions in E are known relative to circuits of depth d > 3. The lower
bounds obtained by Hastad [H̊as86] are still essentially the best known. Using some variant of
hardness extraction, it may be possible to obtain strongly exponential lower bounds for Boolean
functions in E/nk for some fixed k. Such a lower bound would imply an unconditional simulation
of probabilistic AC0 in P/polylog(n). Currently it is not even known whether probabilistic AC0 can
be simulated unconditionally in P/o(n).

We believe that the non-uniformity is a much more critical issue for hardness extraction, as
evidenced by our lower bounds in Section 4. Performing hardness extraction uniformly is likely to
require a more sophisticated understanding of the structure of Boolean circuits than we currently
possess. It is an interesting question, though, whether the non-uniformity can be avoided when
condensing hardness with respect to constant-depth circuits, for which fairly strong structural
theorems are known [H̊as86, LMN93].
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