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Abstract

We present an efficient reduction mapping undirected graphs G with n = 2k vertices for integers k to
tables of partially specified Boolean functions g : {0, 1}4k+1 → {0, 1,⊥} so that for any integer m, G has
a vertex colouring using m colours if and only if g has a consistent ordered binary decision diagram with
at most (2m+2)n2 +4n decision nodes. From this it follows that the problem of finding a minimum-sized
consistent OBDD for an incompletely specified truth table is NP-hard and also hard to approximate.

1 Introduction

In this paper we consider the following problem: Given a partially defined Boolean function f : {0, 1}k →
{0, 1,⊥} (with ⊥ being interpreted as “don’t care”), find or approximate the minimum representation of f as
an Ordered Binary Decision Diagram (OBDD). For details about OBDDs, see the comprehensive monograph
by Wegener [13]. Throughout the paper, we consider OBDDs with a fixed variable ordering. For concreteness
and simplicity, we assume the ordering to be x1 < x2 < . . . < xk for Boolean functions on k variables and
always define the functions we use with its arguments in the same order, i.e., the i’th argument of a function
g : {0, 1}k → {0, 1} is assigned to the variable xi. The size of an OBDD is the number of its decision
nodes. We say that an OBDD D represents or is consistent with f : {0, 1}k → {0, 1,⊥} when the fully
defined Boolean function gD : {0, 1}k → {0, 1} defined by the diagram is consistent with f , i.e., satisfies
gD(x) = f(x) whenever f(x) 6=⊥.

The corresponding minimization problem for fully defined Boolean functions was shown to be in P in the
original papers introducing OBDDs by Bryant [2, 3]. Indeed, his efficient algorithm for minimizing OBDD
size is one of the main attractions of using OBDD representation for Boolean functions. The minimum-size
OBDD problem for partially defined Boolean functions was considered previously in two almost simultaneous
papers [11, 7], both showing NP-hardness for versions of the problem. The hardness results of the two papers
differ mainly by the way the partially defined Boolean function is to be represented.

More precisely, Sauerhoff and Wegener [11] showed the following decision problem D1 to be NP-complete.

D1: Given two OBDDs representing two Boolean functions g1, g2 : {0, 1}k → {0, 1} and an integer s, does
the partially defined Boolean function f given by f(x) =⊥ for those x for which g1(x) = 0 and f(x) = g2(x)
for those x for which g1(x) = 1 have an OBDD of size less than s?

Hirata, Shimozono and Shonohara [7, 12] showed the following decision problem D2 to be NP-complete.

D2: Given two explicitly listed sets S0, S1 ⊆ {0, 1}k and an integer s, does the partially defined Boolean
function f given by f(x) = 0 for x ∈ S0, f(x) = 1 for x ∈ S1 and f(x) =⊥ otherwise have an OBDD of size
less than s?

To compare the strengths of the two results, we observe that it is immediate that the problem D2

polynomial-time many-one reduces to D1: Given two sets S0 and S1 we can easily construct small OBDDs
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representing functions g1 and g2 so that g1(x) = 1 if and only if x ∈ S0 ∪ S1 and g2(x) = 1 if and only if
x ∈ S1. On the other hand, conversion from representation of the input as two OBDDs to representation as
two explicitly given sets in general incurs an exponential blowup in size and is hence not a polynomial-time
reduction. Hence, the NP-hardness result of Hirata, Shimozono and Shonohara is stronger than the one of
Sauerhoff and Wegener.

In this paper we look at a third input representation and consider the following decision problem.

D3: Given an explicitly given table of f : {0, 1}k → {0, 1,⊥} (as a string of length 2k over {0, 1,⊥}) and an
integer s, does f have an OBDD of size less than s?

The main result of the present paper is that D3 is NP-complete. To be precise, we establish the following
reduction.

Theorem 1. There is a polynomial time computable reduction mapping undirected graphs G with n = 2k

vertices for integers k to tables of partially specified Boolean functions g : {0, 1}4k+1 → {0, 1,⊥} so that for
any integer K, G has a vertex colouring using K colours if and only if g has a consistent ordered binary
decision diagram with at most (2K + 2)n2 + 4n decision nodes.

Then, NP-hardness of D3 follows from the NP-hardness of graph colouring (see, e.g., Garey and Johnson
[6]).

To compare the strength of our result to the result of Hirata, Shimozono and Shonohara, we observe that
it is immediate that the problem D3 polynomial-time many-one reduces to D2: Given a table of f , we can
certainly efficiently list the sets S0 := {x|f(x) = 0} and S1 := {x|f(x) = 1}. On the other hand, conversion
from representation as two sets S1, S2 to a full table on the domain {0, 1}n may incur an exponential blowup
in size. This happens when the sets S0 and S1 are small (i.e., when f is undefined on most of the domain
{0, 1}n). Hence, our NP-hardness result is stronger than the NP-hardness result of Hirata, Shimozono and
Shonohara. Also, the proof of Hirata, Shimozono and Shonohara uses functions undefined everywhere on
{0, 1}k except on a subset of size kO(1), so their proof does not tell us anything about the hardness of the
problem in a situation where the functions considered are defined on a non-negligible fraction of the domain
{0, 1}k and it does not yield our hardness result.

We find our stronger result well-motivated, as we’ll explain next: A practical relevance of concrete NP-
hardness results are their redirection of attention from the construction of efficient algorithms towards the
construction of good heuristics for the problems at hand. This point is made explicitly by Sauerhoff and
Wegener who cite several studies in the VLSI verification domain where the problem of finding minimum size
OBDDs for given partial Boolean functions arise. For these applications, the input mode of Sauerhoff and
Wegener is indeed the relevant one: The Boolean functions arising when formally verifying correctness of
VLSI chips have truth tables so huge that representing them explicitly is out of the question, so typically, they
are defined by OBDDs to begin with, as assumed by Sauerhoff and Wegener. Thus, for these applications
our result provides no new “redirection signal”.

However, there are other natural applications of using OBDDs for partially defined functions where the
function to be encoded is given explicitly as a table. An application studied in the master’s thesis [10] of
the first author is the compression of endgame tables for chess. Such an endgame table may provide, for
any chess position with a given set of pieces (say, a King and a Queen for White and a King and a Rook
for Black) a Boolean value indicating whether the player with material advantage has a winning strategy.
Given an encoding of chess positions as Boolean vectors, we may think of the table as a Boolean function
f : {0, 1}n → {0, 1} where f(x) is the value of the chess position with Boolean encoding x. One may vary the
way chess positions are represented as Boolean vectors, but any natural and efficiently computable encoding
will have many Boolean vectors not representing any position. The values assigned to such vectors are
inconsequential, so we may think of them as undefined values and hence of the table as defining a partially
defined Boolean function. The potential usefulness of endgame tables for chess playing software is obvious.
However, to be actually useful for such applications, an endgame table must support fast lookup and thus
it should, preferably, reside in fast memory. For most endgame tables, this means that some compression
scheme has to be applied on the table. Unfortunately, most state-of-the-art lossless compression schemes do
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not support efficient retrieval of individual bits of the compressed table (i.e., efficient table lookup). Here,
representing the table by an OBDD seems to be an attractive alternative. From a theoretical point of view,
Kieffer, Flajolet and Yang [9] showed that representation by OBDDs has the important universality property:
The compression rate achieved asymptotically (i.e., for long inputs, and up to a low-order additive term)
matches the block entropy of the string to be compressed (for any constant block size). At the same time,
by construction, a table represented by an OBDD supports fairly fast lookups (we may lookup an entry in
the table by following a path from the root to a leaf in the OBDD). In his master’s thesis [10], the first
author obtained encouraging practical results on using OBDDs to compress endgame tables for chess while
preserving efficient lookup. To achieve this, heuristics had to be used to minimize the OBDDs. The hardness
result of the present paper indicates that such heuristics cannot be replaced with efficient algorithms.

We finally note that we may combine our reduction with known non-approximability results for graph
colouring to show that the minimum consistent OBDD problem is also hard to approximate. In particular
Feige and Killian [5] showed the following theorem1. Recall that ZPP is the class of decision problems which
can be solved in expected polynomial time by a randomized algorithm.

Theorem 2 (Feige and Killian). For any ε > 0, if NP 6= ZPP, no polynomial time algorithm distinguishes
between the following two classes of graphs:

• Graphs G = (V, E) with chromatic number less than |V |ε.

• Graphs G = (V, E) with chromatic number bigger than |V |1−ε.

Combining Theorem 1 with Theorem 2, noticing that we in Theorem 2 without loss of generality can
assume that the graphs considered have n = 2k vertices for an integer k, we immediately obtain:

Corollary 3. Let ε > 0 be an arbitrary constant. If NP 6= ZPP, no polynomial time algorithm distinguishes
between the following two classes of incompletely specified truth tables f : {0, 1}k → {0, 1,⊥}:

• Truth tables for which a consistent OBDD of size less than 2(0.5+ε)k exists.

• Truth tables for which all consistent OBDDs have size more than 2(0.75−ε)k

In particular, unless NP equals ZPP, no efficient approximation algorithm for the minimum consistent
OBDD problem has an approximation factor of 2(0.25−ε)k, for any constant ε > 0. Somewhat weaker non-
approximability results for chromatic number assuming only NP 6= P are known [1]; these may be combined
with our reduction to show similarly weaker non-approximability results for our minimum consistent OBDD
problem. We omit the details.

2 The Reduction

We consider an auxiliary problem. Given a family (si) of truth tables si : {0, 1}k → {0, 1,⊥} of partially
defined Boolean functions and a family (gi) of truth tables gj : {0, 1}k → {0, 1} of fully defined Boolean
functions, we say that the family (gj) covers the family (si) if for every si there is some gj consistent with
si. The minimum truth table cover problem is the following optimization problem: Given a family (si) of
n = 2k truth tables of partially defined Boolean functions (represented as a collection of n strings of length
2k over {0, 1,⊥}), find the smallest family (gj) that covers (si).

We present a reduction from the graph colouring problem to the minimum truth table cover problem:

Lemma 4. There is a polynomial time computable reduction mapping undirected graphs G with n = 2k

vertices for integers k to a collection of n tables of partially specified Boolean functions si : {0, 1}k →
{0, 1,⊥}, i = 1, . . . , n so that for any integer K, G has a vertex colouring using K colours if and only if (si)
has a truth table cover of size K.

1Subsequently, the theorem was refined by Khot [8] and Engebretsen and Holmerin [4] who replaced the constant ε in
Theorem 2 with specific subconstant functions. However, when combining inapproximability results for chromatic number with
our reduction, such improvements are more or less irrelevant.
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Proof. Given a graph G = (V, E) with V = {0, . . . , n − 1}, we define

si(j) =







0 if i 6= j ∧ (i, j) ∈ E;
1 if i = j;
⊥ otherwise.

Note that we in the definition of si identify the integer j with its binary representation. We shall do so in
the following as well. It is an easy observation that the reduction has the desired property.

In the rest of the section, we reduce the minimum truth table cover problem to the minimum consistent
OBDD problem, thus completing the proof of Theorem 1.

We need in our reduction an auxiliary family of functions g
p,m
j : {0, 1}p → {0, 1} where p is an arbitrary

non-negative integer, 1 ≤ m ≤ 22p

and 0 ≤ j ≤ m − 1. The family must have the following properties.

1. For fixed p, m, the functions g
p,m
j , j ∈ {0, . . . , m − 1} are all different.

2. The truth table for g
p,m
j can be generated in time polynomial in 2p (given the parameters p, m, j),

3. For fixed p, m, the family (gp,m
j ), j ∈ {0, . . . , m− 1} is computed by a multi-source OBDD (an OBDD

with m sources, one for each member of the family) of size at most m + 2
√

m + 3p.

Note that the third property makes the construction of the family a bit tricky: The sources of the desired
multi-source OBDD use almost its entire “node budget”. We give an inductively defined construction. For
p = 0, the construction is trivial as we must have m = 1 or m = 2. For p > 0 we let q = d√me. Note that

q ≤ 22p−1

since
√

22p = 22p−1

is an integer. We define for integers i, j ∈ {0, . . . , q − 1}:

g
p,m
jq+i(x1x2 . . . xp) =

{

g
p−1,q
i (x2 . . . xp) if x1 = 0;

g
p−1,q
j (x2 . . . xp) if x1 = 1.

The construction clearly satisfies properties 1 and 2. Also, if we let Bp,m be the size of a multi-source OBDD
computing the family (gp,m

j ) we have by induction that Bp,m = Bp−1,q + m ≤ q + 2
√

q + 3(p − 1) + m ≤
m + 2

√
m + 3p, so it also satisfies property 3.

We consider the values k ≥ 5 and n = 2k fixed in the discussion to follow. For j ∈ {0, . . . , n2 − 1} we let

bj = g
k,n2

j . By property 3 of the family (gk,n2

j ), the family (bj) is computed by a multi-source OBDD of size

at most n2 + 3n.
Our reduction from minimum truth table cover to the minimum consistent OBDD problem is then defined

as follows. It maps the minimum truth table cover instance {si}i=1,...,n, si : {0, 1}k → {0, 1,⊥} to the truth
table of the partial function g : {0, 1}k × {0, 1}2k × {0, 1} × {0, 1}k → {0, 1,⊥} defined by:

g(i, j, t, z) =

{

bj(z) if t = 0;
si(z) if t = 1.

(1)

(where we again identify integers with their binary notation). By property 2 of the family (gk,n2

j ) the
reduction is polynomial time computable. In the remainder of this section, we show that the composition of
the reduction with the reduction of Lemma 4 has the property claimed in Theorem 1.

Lemma 5. For any integer K, if (si) has a cover of size K, then g has a consistent OBDD of size at most
(2K + 2)n2 + 4n.

Proof. We can assume K ≤ n. Let T be the cover. Let s′i be a total function in T consistent with si. Then,
a total function h consistent with g is

h(i, j, t, z) =

{

bj(z) if t = 0;
s′i(z) if t = 1.
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Let us give an upper bound for the size of an OBDD computing h. For each truth table s ∈ T , there
is an OBDD of size at most n − 1 computing s (as n − 1 is the number of decision nodes in a complete
decision tree on k = log n Boolean variables). There is a multi-source OBDD computing all functions bj of
size n2 + 3n by construction. The number of different subfunctions of h of the form (j, t, z) → h(i0, j, t, z)
(for some i0) is K, the size of the cover. Each of these subfunctions can be computed by an OBDD with
an additional 22k+1 − 1 = 2n2 − 1 nodes above the OBDDs for (s′i) and (bj). Having constructed OBDDs
for all these subfunctions, an OBDD for h needs at most an additional n − 1 nodes to read the first k

input bits to decide which subfunction to use. Thus, h can be computed by an OBDD of size at most
(n − 1) + K(2n2 − 1) + K(n − 1) + n2 + 3n ≤ (2K + 2)n2 + 4n.

Lemma 6. Let a minimum-sized OBDD G consistent with g be given. Viewing G as a graph, the subgraph of
G induced by nodes reading variables xk+1, . . . , x3k, x3k+1 (i.e. nodes reading the Boolean variables defining
arguments j and t in equation (1)) forms a forest of disjoint complete binary trees (each tree containing
22k+1 − 1 = 2n2 − 1 nodes).

Proof. Let a minimum-sized OBDD G consistent with g be given, computing a function h. First note that
since all the functions bj are different, any OBDD consistent with g must read all variables xk+1, . . . , x3k

on all paths through the OBDD. For the same reason, the left and right son of any node reading any
variable xk+1, . . . , x3k must be different. Thus, the subgraph of G induced by nodes reading variables
xk+1, . . . , x3k, x3k+1 is a union of complete binary trees. To prove the lemma, we just have to prove that
they are disjoint. This follows if we show that any two nodes v and v′ both reading a variable xk+m,
m ∈ {1, . . . , 2k} cannot share a son u. Assume to the contrary that they do and without loss of generality
that u is a left son of v (corresponding to reading xk+m = 0 in v).

The node v corresponds to a subfunction of h of the form (x, t, z) → h(a1, c1 · x, t, z) for constants
a1 ∈ {0, 1}k and c1 ∈ {0, 1}m−1 and variables x ∈ {0, 1}2k−m+1, t ∈ {0, 1}, z ∈ {0, 1}k. Here c1 · x denotes
concatenation of the bit-strings c1 and x.

The node v′ corresponds to a subfunction of h of the form (x, t, z) → h(a2, c2 · x, t, z) for constants
a2 ∈ {0, 1}k and c2 ∈ {0, 1}m−1 and variables x ∈ {0, 1}2k−m+1, t ∈ {0, 1}, z ∈ {0, 1}k.

Since u is a son of v as well as v′ and all the bj ’s are different we must have that c1 = c2 and that u is a left
son of v′. Also, we must have the partial truth tables sa1

and sa2
are consistent, i.e., that they agree on inputs

where neither has value ⊥. Thus, we can get a smaller OBDD than G also consistent with g by removing
the node v′ and redirecting any incoming arc to v′ to v. This contradicts G being minimum-sized.

Lemma 7. Assume n > 3. For any integer K, if g has a consistent OBDD of size at most (2K +2)n2 +4n,
then (si) has a cover of size at most K.

Proof. We can assume K ≤ n. Let a minimum-sized OBDD consistent with g of size at most (2K+2)n2+4n

be given, computing a function h. According to Lemma 6, the nodes reading variables xk+1, ...x3k+1 induces
a collection of disjoint complete binary trees. There must be at most K trees in this collection: Otherwise
the contribution of nodes from the trees would amount to at least (2n2 − 1)(K + 1) nodes. Also, all
members of the family (bi) are subfunctions of g and since they are distinct and fully defined, each must be
computed at a distinct node in the diagram, yielding n2 additional nodes. In total, there would be at least
(2n2 − 1)(K + 1) + n2 nodes which is strictly more than (2K + 2)n2 + 4n nodes.

Let (vi) be the roots of the trees. The corresponding subfunctions of h are (x, t, y) → h(ai, x, t, y) for
constants ai. The functions j → h(ai, 0, 1, j) then form a cover for the family (si) of size at most K.

Combining Lemma 4, Lemma 5 and Lemma 7, we have proved Theorem 1 and are done.
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