Electronic Collogquium on Computational Complexity, Report No. 5 (2006)

Nash Equilibria in Graphical Games on Trees Revisited*

Edith Elkind Leslie Ann Goldberg Paul W. Goldberg
December 12, 2005

Abstract

Graphical games have been proposed as a game-theoretic model of large-scale dis-
tributed networks of non-cooperative agents. When the number of players is large, and
the underlying graph has low degree, they provide a concise way to represent the play-
ers’ payoffs. It has recently been shown that the problem of finding Nash equilibria on
a general degree-3 graphical game is complete for the complexity class PPAD, indicat-
ing that it is unlikely that there is any polynomial-time algorithm for this problem. We
show here that in contrast, degree-2 graphical games are tractable. Our algorithm uses a
dynamic-programming approach, which was introduced by Kearns, Littman and Singh in
the context of graphical games on trees. The algorithm of Kearns et al. is a generic algo-
rithm which can be used to compute all Nash equilibria. The running time is exponential,
though approximate equilibria can be computed efficiently. Littman, Kearns and Singh
proposed a modification to the generic algorithm in order to find a Nash equilibrium in
polynomial time, provided that the underlying graph is a bounded-degree tree. We show
that this modified algorithm is incorrect — the output is not always a Nash equilibrium.
In this paper, we focus on graphical games in which the underlying graph is a path or
“path-like”. First, we show that Nash equilibria can be computed in quadratic time if
the underlying graph is a path, and therefore in polynomial time if the underlying graph
has maximum degree 2. Our algorithm, which is based on the approach of Kearns et al.,
can be used to compute Nash equilibria of graphical games on arbitrary trees, but the
running time can be exponential, even when the tree has bounded degree. We show that
this is inevitable — any two-pass algorithm of this type will take exponential time, even
on bounded-degree trees with pathwidth 2. It is an open question whether our algorithm
runs in polynomial time on graphs with pathwidth 1 but we show that finding a Nash
equilibrium for a graphical game in which the underlying graph has maximum degree 3
and constant pathwidth is PPAD-complete (so is unlikely to be tractable).

1 Introduction

Graphical games were introduced in the papers of Kearns et al. [4] and Littman et al. [5]
as a succinct representation of games with a large number of players. The classical normal
form (or matrix form) representation has a size that is exponential in the number of players,
making it unsuitable for large-scale distributed games. A graphical game associates each
player with a vertex of an underlying graph G, and the payoff to that player is a function of

*Supported by the EPSRC research grants “Algorithmics of Network-sharing Games” and “Discontinu-
ous Behaviour in the Complexity of randomized Algorithms”. Address: Department of Computer Science,
University of Warwick, Coventry, CV4 7AL, United Kingdom.

ISSN 1433-8092

the actions chosen by himself and his neighbours in G; if G has low degree, this is a concise
way to represent a game with many players.

The papers [4, 5] give a dynamic-programming algorithm for finding Nash equilibria for
graphical games where G is a tree. The first of these papers describes a generic algorithm
for this problem that can be specialized in two ways: as an algorithm that computes approx-
imations to all Nash equilibria in time polynomial in the input size and the approximation
quality, or as an exponential-time algorithm that allows the exact computation of all Nash
equilibria in G. In [5], the author propose a modification to the latter algorithm that aims to
find a single Nash equilibrium in polynomial time. This does not quite work, as we show in
Section 3, though it introduces a useful idea.

Background

The generic algorithm of [4] consists of two phases which we will refer to as the upstream
pass and the downstream pass; ! the former starts at the leaves of the tree and ends at the
root, while the latter starts at the root and ends at the leaves. It is assumed that each player
has two pure strategies, which are denoted by 0 and 1; it follows that any mixed strategy can
be represented as a single number z € [0, 1], where z is the probability that the player selects
1. During the upstream pass, each vertex V computes the set of its potential best responses
to every mixed strategy w of its parent W a strategy v is a potential best response to w if
there is a Nash equilibrium in the graphical game downstream of V' (inclusive) given that W
plays w (for a more technical definition, the reader is referred to Section 2). The output of
this stage can be viewed as a (continuous) table T'(w,v), where T'(w,v) = 1 if and only if v
is a potential best response to w; we refer to this table as the best response policy for V. The
generic algorithm does not address the problem of representing the best response policy; in
fact, the most important difference between the two instantiations of the generic algorithm
described in [4] is in their approach to this issue. The computation is performed inductively:
the best response policy for V' is computed based on the best response policies of V’s children
Ui,...,U;. By the end of the upstream pass, all children of the root have computed their
best response policies.

In the beginning of the downstream pass, the root selects its strategy and informs its
children about its choice. It also selects a strategy for each child. A necessary and sufficient
condition for the algorithm to proceed is that the strategy of the root is a best response to the
strategies of its children and, for each child, the chosen strategy is one of the pre-computed
potential best responses to the chosen strategy of the root. The equilibrium then propagates
downstream, with each vertex selecting its children’s actions. The action of the child is chosen
to be any strategy from the pre-computed potential best responses to the chosen strategy of
the parent.

To bound the running time of this algorithm, the paper [4] shows that any best response
policy can be represented as a union of an exponential number of rectangles; the polynomial
time approximation algorithm is obtained by combining this representation with a polynomial-
sized grid. The main idea of [5] is that it is not necessary to keep track of all rectangles
in the best response policies; rather, at each step of the upstream pass, it is possible to
select a polynomial-size subset of the corresponding policy (in [5], this subset is called a
breakpoint policy), and still ensure that the downstream pass can proceed successfully (a

!Note that the terminology “upstream” and “downstream” are reversed in [4, 5] — our trees are rooted at
the top.

sufficient condition for this is that the subset of the best response policy for V stored by the
algorithm contains a continuous path from w =0 to w = 1).

Our Results

One of the main contributions of our paper is showing that the algorithm proposed by [5] is
incorrect. In Section 3 we describe a simple example for which the algorithm of [5] outputs a
vector of strategies that does not constitute a Nash equilibrium of the underlying game.

In Sections 4, 5 and 6 we show how to fix the algorithm of [5] so that it always produces
correct output.

Section 4 considers the case in which the underlying graph is a path of length n. For
this case, we show that the number of rectangles in each of the best response policies is
O(n?). This gives us an O(n?) algorithm for finding a Nash equilibrium, and for computing a
representation of all Nash equilibria. (This algorithm is a special case of the generic algorithm
of [4] — we show that it runs in polynomial time when the underlying graph is a path.)

We can improve the running time of the generic algorithm using the ideas of [5]. In
particular, we give an O(n?) algorithm for finding a Nash equilibrium of a graphical game on a
path of length n. Instead of storing best response policies, this algorithm stores appropriately-
defined subsets, which, following [5], we call breakpoint policies (modifying the definition as
necessary). We obtain the following theorem

Theorem 1. There is an O(n?) algorithm that finds a Nash equilibrium of a graphical game
on an n-vertex path. There is an O(n3) algorithm that computes a representation of all Nash
equilibria of such a game.

In Section 5 we extend the results of Section 4 to general degree-2 graphs, obtaining the
following theorem.

Theorem 2. There is a polynomial-time algorithm that finds a Nash equilibrium of a graphical
game on a graph with maximum degree 2.

In Section 6 we extend our algorithm so that it can be used to find a Nash equilibrium of
a graphical game on an arbitrary tree. Even when the tree has bounded degree, the running
time can be exponential. We show that this is inevitable by constructing a family of graphical
games on bounded-degree trees for which best response policies of some of the vertices have
exponential size, and any two-pass algorithm (i.e., an algorithm that is similar in spirit to
that of [4]) has to store almost all points of the best response policies. In particular, we show
the following.

Theorem 3. There is an infinite family of graphical games on bounded-degree trees with
pathwidth 2 such that any two-pass algorithm for finding Nash equilibria on these trees requires
exponential time and space.

It is interesting to note that the trees used in the proof of Theorem 3 have pathwidth 2,
that is, they are very close to being paths. It is an open question whether our algorithm runs in
polynomial time for graphs of pathwidth 1. This question can be viewed as a generalization of
a very natural computational geometry problem — we describe it in more detail in Section 8.

In Section 7, we give a complexity-theoretic intractability result for the problem of finding
a Nash equilibrium of a graphical game on a graph with small pathwidth. We prove the
following theorem.

Theorem 4. Consider the problem of finding a Nash equilibrium for a graphical game in
which the underlying graph has mazimum degree 3 and pathwidth k. There is a constant k
such that this problem is PPAD-complete.

Theorem 4 limits the extent to which we can exploit “path-like” properties of the under-
lying graph, in order to find Nash equilibria. To prove Theorem 4, we use recent PPAD-
completeness results for games, in particular the papers [3, 2] which show that the problem of
finding Nash equilibria in graphical games of degree d (for d > 3) is computationally equiv-
alent to the problem of solving r-player normal-form games (for r > 4), both of which are
PPAD-complete.

2 Preliminaries and Notation

We consider graphical games in which the underlying graph G is an n-vertex tree. Each
vertex has two actions, which are denoted by 0 and 1. A mixed strategy is represented as a
single number z € [0, 1], which denotes the probability that the player selects action 1.

Fur the purposes of the algorithm, the tree is rooted arbitrarily. For convenience, we
assume without loss of generality that the root has a single child, and that its payoff is
independent of the action chosen by the child. This can be achieved by first choosing an
arbitrary root of the tree, and then adding a dummy “parent” of this root, giving the new
parent a constant payoff function.

Given an edge (V,W) of the tree G, and a mixed strategy w for W, let Gy, w—. be
the instance obtained from G by (1) deleting all nodes Z which are separated from V by W
(i.e., all nodes Z such that the path from Z to V passes through W), and (2) restricting the
instance so that W is required to play mixed strategy w.

Definition 1. Suppose that (V,W) is an edge of the tree, that v is a mized strategy for V
and that w is a mized strategy for W. We say that v is a potential best response to w
(denoted by v € pbry (w)) if there is an equilibrium in the instance Gv,w)w=yw in which V
has mized strategy v. We define the best response policy for V, given W, as B(W,V) =
{(w,v) | v € pbry(w),w € [0,1]}. Typically, W is the parent of V, and this is just referred
to as “the best response policy for V7. The expression B(W,V)|y—, is used to denote the set
B(W,V)n[0,1]x{v}.

The upstream pass of the generic algorithm of [4] computes the best response policy for V'
for every node V other than the root. With the above assumptions about the root, the
downstream pass is straightforward: Let W denote the root and V' denote its child. The root
selects any pair (w,v) from B(W, V). It decides to play mixed strategy w and it instructs V'
to play mixed strategy v. The remainder of the downward pass is recursive. When a node V
is instructed by its parent to adopt mixed strategy v, it does the following for each child U
— It finds a pair (v,u) € B(V,U) (with the same v value that it was given by its parent) and
instructs U to play u.

3 Algorithm of Littman et al.

The algorithm of [5] is based on the following observation: to compute a single Nash equilib-
rium by a two-pass algorithm, it is not necessary to construct the entire best response policy

for each vertex. As long as, at each step of the downstream pass, the vertex under consid-
eration can select a vector of strategies for all its children so that each child’s strategy is a
potential best response to the parent’s strategy, the algorithm succeeds in producing a Nash
equilibrium. This can be achieved if, at the beginning of the downstream pass, we have a
data structure in which each vertex V with parent W stores a set B(W, V) C B(W,V) (called
a breakpoint policy) which covers every possible w € [0, 1].

We will show later that a sufficient condition for the construction of such a data structure
is the invariant that, at every level of the upstream pass, B (W, V) contains a continuous path
from w =0 to w = 1.

In [5], it is suggested that we can select the breakpoint policy in a particular way. Namely,
the paper uses the following definition:

Definition 2. (¢f. [5]) A breakpoint policy for a node V' with parent W consists of an ordered
set of W-breakpoints wo = 0 < w1 < we < -+ < wi—1 < wy = 1 and an associated set of
V-values v1,...,vs. The interpretation is that for any w € [0,1], if wi—1 < w < w; for some
index i and W plays w, then V shall play v;; and if w = w; for some indez i, then V shall
play any value between v; and viy1. We say such a breakpoint policy has t — 1 breakpoints.

The paper then claims that any vertex V' can compute its breakpoint policy with respect
to its parent W given the breakpoint policies of its children Uy, . .., U. The proof proceeds by
ordering the children’s breakpoints (i.e., the respective values of v) from left to right (it can
be assumed without loss of generality that all these breakpoints are distinct) and considering
them in turn; each such point v; € {v1,...,vr} corresponds to a fixed choice of strategies for
k — 1 children and an interval of admissible strategies for one child. Assume for convenience
that this child is U; and its interval of admissible strategies at v; is [a, b]; assume also that for
Uj, j = 2,...,k, their respective breakpoint policies prescribe them to play u; in response to
v;. Let P'(u,w), i = 0,1, be the expected payoff for V when V plays 4, U; plays u, each U,
J=2,...,k, plays u;, and W plays w, and consider the set

Wi = {w € [0,1] | Ju € [a,b] s.t. P°(u,w) = P (u,w)};

note that for any w € W, we have v; € pbry, (w).

The authors show that for any breakpoint v;, the set W is either empty, a single interval,
or a union of two non-floating intervals (an interval is non-floating if one of its endpoints is 0 or
1); moreover, the union of all sets W, I = 1,..., L, covers the interval [0, 1]. It follows easily
that one can cover [0, 1] with at most L+2 intervals, each of which is a subset of some W,. The
authors then claim that any such cover can be transformed into a breakpoint policy for V.
Namely, they say that for any two intervals W, and W, in the cover, “Any overlap between
W, and W,, can be arbitrarily assigned coverage by W, and W, “trimmed” accordingly
(cf. [5], p. 5). They illustrate their approach in a figure, which is reproduced as Figure 1 here.
In the figure, the dashed horizontal lines represent the breakpoints v1, vs, ..., vy and the solid
intervals along these breakpoints are the sets Wi, Wa, ..., Wy;. The thick connected path is
the corresponding breakpoint policy. It is chosen as follows: begin on the left, and always
“jump” to the interval allowing greatest progress to the right.

To see why this approach does not work in general, consider a path of length 4 consisting
of an indifferent root R, its child W, W’s child V, and V’s child U. Suppose that U receives
a payoff of 1 if it plays differently to V' and 0 otherwise. Thus, if v denotes the mixed
strategy of V' (i.e., V plays 1 with probability v), then the expected payoff that U derives

Figure 1: LKS: Trimming to find breakpoint policies.

u v
1 1

05 |

‘ ; w
05 1 v 0.1 09 1

Figure 2: Best response policies for U and V.

from playing 0 is given by P°(U) = v and the expected payoff that U derives from playing 1
is given by P1(U) = 1 — v. Suppose that V derives no payoff from playing 1 (so P}(V) = 0)

and that its payoff matrix for playing 0 is , 80 if u denotes the mixed strategy of U

9 -1
and w denotes the mixed strategy of W, the expected payoff that V derives from playing 0 is
given by PO(V) = (1 —u)(1 —w) + (1 — w)w(—9) + u(l — w)9 + vw(—1).

Using the techniques of [4] (or, alternatively, those of Section 4), it is not hard to verify
that the best response policies for U and V' (as in Definition 1) are given by the graphs in
Figure 2. The best response policy for U is a breakpoint policy for U (as in Definition 2) with
V-breakpoints vg = 0, v; = 1/2 and v, = 1 with associated values u; = 1 and ug = 0. The
best response policy for V' is not a breakpoint policy (because of how the curve from w = 0
to w =1 “doubles back”).

The LKS algorithm would “trim” to get a breakpoint policy such as the one in Figure 3.
Note that this breakpoint policy B(W,V) is invalid in the sense that it does not satisfy
B(W,V) C B(W,V).

The point is that the payoff matrix of W can now be chosen to prevent the LKS algorithm
from finding a Nash equilibrium. For example, suppose the payoffs are given so that P*(W) =
v and P'(W) = (1 —v)2. The best response policy for W is a horizontal line at w = .1 (This
is the value of w that allows v = 2/3 — see Figure 2, which makes P*(W) = P}(W).) In

05

0.1 09 4

Figure 3: A “trimmed” policy for V

the downward pass, the chosen values are w = .1, then, from the trimming, v =0 and u =1,
which is not a Nash equilibrium since W prefers action 1.

The failure of the algorithm is not caused by the fact that the trimming policy goes as far
to the right as possible. Any other “trimming” would be just as bad. For example, suppose
the breakpoint policy for V' has v = 0 until some point w* < .9 and then jumps to v = 1.
The algorithm is then defeated by the payoff matrix with P*(W) = 2v and P}(W) = (1 —v)
in which the best response policy for W is a horizontal line at w = .9. The algorithm then
gives w = .9, v =1, and u = 0, which is not a Nash equilibrium since W prefers action 0.

We conclude that the LKS algorithm does not always find a Nash equilibrium. In Sec-
tions 4 and 6 we show how to modify the algorithm so that it always finds a Nash equilibrium.
For the modified algorithm, we have to extend the definition of “breakpoint policy” (see Def-
inition 3) so that it includes breakpoint policies such as the best response policy for V in
Figure 2. Unfortunately, such a breakpoint policy may be exponential in size (see Figure 7)
so the corrected algorithm does not run in polynomial time on all trees. In the next section,
we show that it runs in polynomial time on a path.

4 Finding Equilibria on a Path

In this section, we focus on the case when the underlying graph is a path, i.e., its vertex set is
{Vi,...,Va}, and its edge set is {(V;,Vj41) | j =1,...,n — 1}. We show that in this case the
best response policy for each vertex can be represented as a union of a polynomial number of
rectangles, where a rectangle is defined by a pair of closed intervals (Iy, Ir7) and consists of
all points in Iy X Iy; it may be the case that one or both of the intervals Iy, and Iy consists
of a single point.

Theorem 5. For any j =1,...,n, the set B(V},Vj_1) can be represented as a disjoint union
of at most (j + 4)? rectangles. Moreover, given such representation of B(Vj,V;_1), one can
compute a representation of B(Vj41,V;) in time O(5%).

Proof. For any set A C [0,1] that is represented as a union of a finite number of rectangles,
we say that a point u € [0,1] on the U-axis is a U-event point of A if u =0 or u =1 or
A contains a rectangle of the form Iy x Iy and u is an endpoint of I7; V-event points are
defined similarly. Observe that for any u € [0, 1], the number of connected components of
[0,1]x{u} N A is at most the number of V-event points of A.

We use induction on j to show that for each V; the statement of the theorem holds and,
additionally, each B(V},V;_1) has at most 2j + 4 event points.

7

To simplify the base case, we modify the graphical game by appending a dummy vertex
Vo to the beginning of the path: the only neighbour of Vj is Vi, the payoffs of Vj are always
equal to 0, and the payoffs of all other vertices (including V7) are the same as in the original
game.

For j = 0, we have B(V1, V) = [0,1]2, so the statement of the theorem is trivially true.

Now, suppose that j > 0, set V = V; and let U = V; 1 and W = Vj ;1 be the vertices
that precede and follow V', respectively. The payoffs to V are described by a 2 x 2 X 2 matrix
P: Py, is the payoff that V receives when U plays x, V plays y, and W plays z, where
z,y,z € {0,1}. Suppose that U plays 1 with probability u and W plays 1 with probability
w. Then V’s expected payoff from playing 0 is

PO=(1 = u)(1 —w)Pooo + (1 = u)wPoo1 + u(1 — w)Pigo + wwPion,
while its expected payoff from playing 1 is
P'=(1 —u)(1 — w)Pyro + (1 — w)wPy11 + u(l — w)Pr1g + uwPiy;.

If PO > P! V strictly prefers to play 0, if P° < P!, V strictly prefers to play 1, and if
PY = P!, V is indifferent, i.e., can play any (mixed) strategy. Since P° and P! are linear in
w and u, there exist some constants A;, Ay, By, and By that depend on the matrix P, but
not on u and w, such that

P° — P! = w(Byu + By) — (Aju+ Ap). (1)

Depending on the values of Ay, Ag, B1, and By, we subdivide the rest of the proof into
the following cases.

e B, =0,By =0.

In this case, P° > P! if and only if Aju + Ay < 0.

If also A = 0, Ag = 0, clearly, B(W,V) = [0,1]2, and the statement of the theorem is
trivially true.

Otherwise, the vertex V is indifferent between 0 and 1 if and only if A1 # 0 and u =
—Ao/A;1. Let V = {v | v € (0,1),—Ap/A;1 € pbry(v)}. By the inductive hypothesis, V
consists of at most 2(j — 1) + 4 segments and isolated points.

For any v € V, we have B(W,V)|y=, = [0,1]: no matter what W plays, as long as U is
playing —Ag/A1, V is content to play v. On the other hand, for any v € (0,1) \ V we have
B(W,V)|y=y, = 0: when V plays v, U can only respond with u # —Ay/A;, in which case V
can benefit from switching to one of the pure strategies.

To complete the description of B(W, V), it remains to analyze the cases v =0 and v = 1.
The vertex V prefers to play 0 if A3 > 0 and u < —Ay/A;, or A1 < 0 and u > —Ay/A4,
or A1 = 0 and Ay < 0. Assume for now that A; > 0; the other two cases can be treated
similarly. In this case 0 € pbry (w) for some w € [0, 1] if and only if there exists a u € pbry(0)
such that u < —Ap/A;: if no such u exists, whenever V plays 0 either U’s response is not in
pbry(0) or V' can improve its payoff by playing 1. Therefore, either B(W,V)|y=o = [0, 1] or
B(W,V)|y=o = 0. Similarly, B(W,V)|y~1 is equal to either [0, 1] or §, depending on pbr(1).

Therefore, the set B(W, V) consists of at most 2j +4 < (j + 4)? rectangles: B(W,V) N
[0,1]x(0,1) = [0,1] XV contributes at most 25 + 2 rectangles, and the sets B(W, V)|~ and
B(W,V)|y=1 contribute at most one rectangle each. Similarly, its total number of event points

is at most 25 + 4: the only W-event points are 0 and 1, each V-event point of B(W,V) is a
V-event point of B(V,U), and there are at most 25 + 2 of them.

e Biu+ By #0, Ay = aB1, Ay = aBy for some a € R.

In this case, V is indifferent between 0 and 1 if and only if w = «, or B; # 0 and u =
—By/By = —Ag/A;. Similarly to the previous case, we can show that B(W,V)N[0,1]x(0,1)
consists of the rectangle {a}x[0, 1] and at most 2j + 2 rectangles of the form [0, 1]x I}/, where
each Iy corresponds to a connected component of B(V,U)|y—_g, /B

Furthermore, V prefers to play 0 if Bju+ By > 0 and w > a or Bju+ By < 0 and w < a.
Therefore, if Biu*+ By > 0 for some u* € pbr;(0), then B(W,V')|y= contains [a, +00) N[0, 1]
and if Biu** + By < 0 for some u** € pbry(0), then B(W,V)|y=¢ contains [—oo,a] N [0, 1];
if both v* and u** exist, B(W,V)|y=o = [0,1]. The set B(W,V)|y=1 can be described in a
similar manner.

By the inductive hypothesis, B(V,U) has at most 25 + 2 event points; as at least two
of these are U-event points, it has at most 25 V-event points. Since each V-event point of
B(W,V) is a V-event point of B(V,U) and B(W, V) has at most 3 W-event points (0, 1, and
), its total number of event points is at most 25 + 3 < 25 +4. Also, similarly to the previous
case it follows that B(W, V) consists of at most 2j + 4 < (5 + 4)? rectangles.

e Biu + B() $ 0, a(Blu + B()) ;_é Alu =+ Ao.

In this case, one can define the indifference function f(-) as f(u) = % = %ﬁ, where
A(u) and B(u) never turn into zero simultaneously. Observe that whenever w = f(u) and
u,w € [0,1], V is indifferent between playing 0 and 1. For any A C [0,1]2, define fy : [0,1]2 —
Rx[0,1] as fy(4) = {(f(u),v) | (v,u) € A}. Sometimes we drop the subscript V when it is
clear from the context.

Lemma 1. For any (w,v) € [0,1]x(0,1) we have (w,v) € B(W,V) if and only if there ezists
a u € [0,1] such that (v,u) € B(V,U) and w = f(u).

Proof. Fix an arbitrary v € (0,1). Suppose that U plays some u € pbry(v), w = f(u) satisfies
w € [0,1], and W plays w. There exists a vector of strategies v1,...,v_1 = u,v; = v such
that for each Vi, k < j, its strategy is a best response to its neighbours’ strategies. Since
w = f(u), V is indifferent between playing 0 and 1; in particular, it can play v. Therefore,
if we define v; 1 = w, the vector of strategies (v1,...,v;4+1) will satisfy the conditions in the
definition of potential best response, i.e., we have v € pbry, (w).

Conversely, suppose v € pbry(w) for some w € [0,1], v # 0,1. Then there exists a vector
of strategies v1,...,v; 1,v; = v,vj41 = w such that for each Vi, k < j, its strategy is a
best response to its neighbours’ strategies. As v # 0,1, V is, in fact, indifferent between
playing 0 and 1, which is only possible if w = f(v;_1). Choose u = v;_1; by construction,
u € pbry(v). O

Lemma 1 describes the situations when V is indifferent between playing 0 and playing 1.
However, to fully characterize B(W, V'), we also need to know when V prefers a pure strategy.
Define f(0) = Uyepbry, (0)F2u, Where

R :{[f(u),+oo) if B(u) > 0,
"7 (oo, f(w)] if B(u) < 0.

a 1 v
!

00 Vi v, 1V ©0 fb) f(®) 0 i@ 1 W

Figure 4: f is increasing on (—oo,u*) and (u*, +00).

and f(l) = UuprrU(l)R;u where

o [, 400) it B <o

" (=00, f(u)] if B(u) > 0.
Lemma 2. For any w € [0,1], we have (w,0) € f(0) if and only if 0 € pbry(w) and
(w,1) € f(l) if and only if 1 € pbry (w).

Proof. Consider an arbitrary ug € pbry (0). If B(ug) > 0, for u = ug the inequality P° > P!
is equivalent to w > f(ug). Therefore, when U plays ug and W plays w, w > f(ug), V prefers
to play 0; as ug € pbry(u), it follows that 0 € pbry, (w). The argument for the case B(ug) < 0
is similar.

Conversely, if 0 € pbry (w) for some w € [0,1], there exists a vector (v1,...,vj_1,v; =
0,vj41 = w) such that for each Vi, k < j, V}, plays vy, and this strategy is a best response
to the strategies of V}’s neighbours. Note that for any such vector we have v;_; € pbry(0).
By way of contradiction, assume w ¢ UuprrU(O) R,,. Then it must be the case that for any
ug € pbry(0) either f(up) < w and Ry, = (—00, f(ug)] or f(ug) > w and Ry, = [f(uo), +00).
In both cases, when V plays 0, U plays ug, and V plays w, the inequality between f(ug) and
w is equivalent to P° < P!, i.e., V would benefit from switching to 1.

~

The argument for f(1) is similar. O

Together, Lemma 1 and Lemma 2 completely describe the set B(W,V): we have
BW,v) = (f0) U fBV, 1) U f(1)) Mo, 112

It remains to show that B(W, V') can be represented as a union of at most (j + 4)? rectangles,
has at most 2j + 4 event points, and can be computed in O(52) time.

Set u* = —By/By. 2 Consider an arbitrary rectangle R = [vy,v3] % [u1,u2] C B(V,U). If
u* & [u1,up), the function f(-) is continuous on [u1,us] and hence f(R) = [fmin, fmax] X [v1, V2],
where

fmin = min{f(ul)vf(uQ)}afmax = max{f(ul)’ f('u'Q)}’

i.e., in this case f(R) N [0,1]? consists of a single rectangle.
Now, suppose that R is intersected by the line [0, 1]x{u*}; as was noted earlier, there are
at most 2j + 2 such rectangles. Suppose that lim,_,,«— f(u) = +o0; as f(-) is a fractional

2The case By = 0 causes no special problems. For completeness, set u* to be any value outside of [0,1] in
this case.

10

linear function, this implies that lim,,_,,«+ f(u) = —oo and also f(u1) > f(ug). Since f(-) is
continuous on [u1,u*) and (u*, ug], it is easy to see that

F(vr, va] X [ug, w*)) = [f (w1), +00) X [v1, v2]

and

F([vr, v2]x (u”, ug]) = (=00, f(uz)]x[v1, v2],
i.e., in this case f(R)N[0,1]2 consists of at most two rectangles. The case lim,,_,,«— f(u) = —o0
is similar.

As f(B(V,U)) = Urcaw, f(R), it follows that f(B(V,U)) consists of at most (j +
3)2 4 25 + 2 rectangles. Also, it is easy to see that both f(0) and f(1) consist of at most
2 line segments each. We conclude that B(W, V) can be represented as a union of at most
(5 +3)2+2j +6 < (j +4)? rectangles.

Moreover, if v is a V-event point of B(W, V'), then v is a V-event point of B(V,U) (this
includes the cases v = 0 and v = 1, as 0 and 1 are V-event points of B(V,U)) and if w is a
W-event point of B(W, V), then either w = 0 or w = 1 or there exists some u € [0, 1] such
that w = f(u) and u is a U-event point of B(V,U). Hence, B(W, V) has at most 2j + 4 event
points.

The O(j?) bound on the running time in Theorem 5 follows from our description of the
algorithm. The O(n?®) bound on the overall running time for finding a Nash equilibrium (and
a representation of all Nash equilibria) follows. O

Finding a Single Nash Equilibrium in O(n?) Time

The upper bound on the running time of our algorithm is tight, at least assuming the straight-
forward implementation, in which each B(Vj1,Vj) is stored as a union of rectangles: it is not
hard to construct an example in which the size of B(Vj11,V;) is Q(52).

However, in some cases it is not necessary to represent all Nash equilibria; rather, the goal
is to find an arbitrary equilibrium of the game. In this section, we show that this problem
can be solved in quadratic time, thus obtaining a proof of Theorem 1. Our solution is based
on the idea of [5], i.e., working with subsets of the best response policies rather than the best
response policies themselves; following [5], we will refer to such subsets as breakpoint policies.
While it is not always possible to construct a breakpoint policy as defined in [5], we show how
to modify this definition so as to ensure that a breakpoint policy always exists; moreover,
we prove that for a path graph, the breakpoint policy of any vertex can be stored in a data
structure whose size is linear in the number of descendants this vertex has.

Definition 3. A breakpoint policy B(V, U) for a vertezx U whose parent is V is a non-self-
intersecting curve of the form

X UYiU - UYpo1 U X,

where X; = [vi—1,vi]x{ui}, Yi = {vi}x[uwi, uit1] and u;,v; € [0,1] for i =0,...,m. We say
that a breakpoint policy is valid if vg = 0, vy, = 1, and B(V,U) C B(V,U).

We will sometimes abuse notation by referring to B(V, U) as a collection of segments
X;,Y; rather than their union. Note that we do not require that v; < v+ or u; < uiq1;
consequently, any segment in this paper is to be treated as a directed segment. Observe

11

that any valid breakpoint policy B(V, U) can be viewed as a continuous 1-1 mapping y(t) =
(Yo (), u (1)), v : [0,1] = [0,1]?, where v(0) = (0,u1), ¥(1) = (1,u,,) and there exist some
to = 0,%1,...,t9n—2 = 1 such that {’)’(t) | top <t < t2k+1} = Xk+1, {’)’(t) | topy1 <t <
tok+2} = Ygi1.

As explained in Section 3, we can use a valid breakpoint policy instead of the best response
policy during the downstream pass, and still guarantee that in the end, we will output a
Nash equilibrium. In what follows, we describe an algorithm that inductively computes valid
breakpoint policies for all vertices on the path.

Theorem 6. For any V = Vj, one can find in polynomial time a valid breakpoint policy

~

B(W,V) that consists of at most 2j + 1 segments.

The proof of this theorem can be found in the appendix.

5 Nash Equilibria on Graphs with Maximum Degree 2

In this section we show how the algorithm for paths can be applied to solve a game on any
graph whose vertices have degree at most 2. A graph having maximum degree 2 is, of course,
a union of paths and cycles. Since each connected component can be handled independently,
to obtain a proof of Theorem 2, we only need to show how to deal with cycles.

Given a cycle with vertices Vi,. ..,V (in cyclic order), we make two separate searches for
a Nash equilibrium: first we search for a Nash equilibrium where some vertex plays a pure
strategy, then we search for a fully mized Nash equilibrium, where all vertices play mixed
strategies. For ¢ < k let v; denote the probability that V; plays 1.

The first search can be done as follows. For each i € {1,...,k} and each b € {0,1}, do
the following.

1. Let P be the pa‘th (V;-i-la ‘/i-f-Q SRR Vvka va R V;—la sz)
2. Let payoff to V41 be based on putting v; = b (so it depends only on v;1; and v;t2.)
3. Apply the upstream pass to P

4. Put v; = b; apply the downstream pass For each vertex, Vj}, keep track of all possible
mixed strategies v;

5. Check whether V;;1 has any responses that are consistent with v; = b; if so we have a
Nash equilibrium. (Otherwise, there is no Nash equilibrium of the desired form.)

For the second search, note that if V; plays a mixed strategy, then v;1; and v;—; satisfy
an equation of the form v;11 = (Ao + A1v;—1)/(Bo + Biv;—1). Since all vertices in the cycle
play mixed strategies, we have v;y3 = (A + Alvit1)/(Bh + Biviy1). Composing the two
linear fractional transforms, we obtain v;y3 = (Aj + Afvi—1)/(B{ + B{vi_1). for some new
constants Aj, A, B{, BY.

Choose any vertex V;. We can express v; in terms of v;12, then v;14, vy etc. and
ultimately v; itself to obtain a quadratic equation (for v;) that is simple to derive from the
payoffs in the game. If the equation is non-trivial it has at most 2 solutions in (0,1). For an
odd-length cycle all other v;’s are derivable from those solutions, and if a fully mixed Nash
equilibrium exists, all the v; should turn out to be real numbers in the range (0,1). For an

12

even-length cycle, we obtain two quadratic equations, one for v; and another for v;11, and we
can in the same way test whether any solutions to these yield values for the other v;, all of
which lie in (0, 1).

If the quadratic equation is trivial, there is potentially a continuum of fully-mixed equilib-
ria. The values for v; that may occur in a Nash equilibrium are those for which all dependent
vj values lie in (0, 1); the latter condition is easy to check by computing the image of the
interval (0,1) under respective fractional linear transforms.

6 Finding Equilibria on an (Arbitrary) Tree

For arbitrary trees, the general structure of the algorithm remains the same, i.e., one can
construct a best response policy (or, alternatively, a breakpoint policy) for any vertex based
on the best response policies of its children. We assume that the degree of each vertex is
bounded by a constant K, i.e., the payoff matrix for each vertex is of size O(2X).

Consider a vertex V whose children are Uj,...,U; and whose parent is W; the best
response policy of each U; is B(V,U;). Similarly to the previous section, we can compute V’s
expected payoffs P? and P! from playing 0 or 1, respectively. Namely, when each of the U;
plays u; and W plays w, we have P% = L(uy, ... ,ux, w), P' = L'(uy,...,ug, w), where the
functions L°(-,...,-),L'(-,...,-) are linear in all of their arguments. Hence, the inequality
PY > P! can be rewritten as

’LUB(’U,l,... ,’U,k) > A(ul,... ,uk),

where both A(-,...,-) and B(-,...,-) are linear in all of their arguments. Set @ = (u1, ..., ux)
and define the indifference function f : [0,1]¥ + [0,1] as f(@) = A(@)/B(i); clearly, if each
U, plays u;, W plays w and w = f(%), V is indifferent between playing 0 and 1. For any
X = X1 x --- x Xy, where X; C [0,1]? define

F(X) ={(f(@),v) | (v,u) € Xiyi = 1,....k}

Also, set
£(0) = {(w,0) | 3T s.t. u; € pbry, (0) and wB(@) > A(i)}

and
F(1) = {(w,1) | 3 s.t. u; € pbry, (1) and wB(@) < A(1)}.

As in previous section, we can show that B(W,V) is equal to

(FO U FBW,T) x - x BV, U) U f1)) (0,17

also, any path from w = 0 to w = 1 that is a subset of B(W, V') constitutes a valid breakpoint
policy.

Exponential Size Breakpoint Policy

While the algorithm of Section 4 can be generalized for bounded-degree trees, its running
time is no longer polynomial. In fact, the converse is true: we can construct a family of trees
and payoff matrices for all players so that the best response policies for some of the players
consist of an exponential number of segments. Moreover, in our example the breakpoint

13

Figure 5: The tree T, that corresponds to exponential-size breakpoint policy.

policies coincide with the best response policies, which means that even finding a single Nash
equilibrium using the approach of [4, 5] is going to take exponentially long time. In fact, a
stronger statement is true: for any polynomial-time two-pass algorithm (defined later) that
works with subsets of best response policies for this graph, we can choose the payoffs of the
vertices so that the downstream pass of this algorithm will fail.

In the rest of this subsection, we describe this construction. Consider the tree 7, given
by Figure 5; let V,, be the root of this tree. For every kK = 1,...,n, let the payoffs of Sy and
Ty be the same as those for the U and V described in Section 3; recall that the breakpoint
policies for U and V are shown in Figure 2. It is not hard to see that the indifference function
for T}, is given by f(s) = .8s+ .1.

The payoff of Vj is 1 if V7 selects the same action as Vj and 0 otherwise; V;’s best response
policy is given by Figure 6.

Lemma 3. Fiz k < n, and let u, t, v, and w denote the strategies of Vi_1, Tk, Vi, and Vi1,
respectively. Suppose that Vi prefers playing 0 to playing 1 if and only if .5t + .1u + .2 > w.
Then B(Vii1, Vi) consists of at least 3F segments. Moreover,

{(v,w) | (v,w) € B(Vit1,Vk),0 <w < .2} =0,.2]x{0}

and
{(v,w) | (v,w) € B(Vi41, Vk),.8 <w <1} =[.8,1]x{1}.

Proof. The proof proceeds by induction on k. For & = 0, the statement is obvious. Now,
suppose it is true for B(Vj, Vi_1).

One can view B(Vj41, Vi) as a union of seven components: f(0) N [0,1], £(1) N[0,1], and
five components that correspond to the segments of B(Vj,Ty). Let us examine them in turn.

To describe f(0) N[0,1], note that f(u,t) = .5t 4 .1u 4 .2 is monotone in ¢ and u and
satisfies f(0,0) = .2. Also, we have pbrvk_l(()) = {0} and pbry, (0) = {0}. For any w € [0, 1]
we have f(0,0) > w if and only if w € [0,.2]. We conclude that f(0) N [0,1] = [0,.2]x{0}.
Similarly, it follows that f(1) N[0,1] = [.8,1]x{1}.

Define

S1=A{(f(u,0),v) | (v,u) € B(Vk, Vk-1) N[0,.9]x[0,1]},

So = {(f(u7 '5)1U) | (’l),’u) € B(‘/lm Vk—l) N ['1’ .9]X[O, 1]}3

Ss ={(f(u,1),v) | (v,u) € B(Vy, Vp_1) N[.1,1]x][0,1]};
these sets correspond to horizontal segments of B(Vy, Tk).

It is easy to see that S1, 52, S35 C B(Vi41, Vk). Since f is a continuous function, the number
of segments in each S; is at least the number of segments in B(Vj, Vi_1) N[.1,.9]x[0, 1], which

14

05 1 v

Figure 6: Breakpoint policies for Vj and V.

is at least 3*~! by induction hypothesis. Moreover, as f is monotone in u and f(1,0) <
f(0,.5) < f(1,.5) < f(0,1), all S;, i =1,2,3, are disjoint.

Finally, the set B(Vk1, Vi) contains two segments that correspond to the vertical segments
of B(Vk,Tk), i.e.,

Sy = {(f(oat)a 1) ‘ te [5a 1])
S5 = {(f(lat)a 9) ‘ LS [Oa 5])
Clearly, S; connects Sy and S3, S5 connects S; and S, and S4 and S5 do not intersect each

other. We conclude that B(Vj,1,V}) is a continuous line that consist of at least 3% segments
and satisfies the condition of the lemma. O

[.45,.7]x{.1} and
[.3,.55]x{.9}.

To complete the construction, we need to show that we can design the payoff matrix for
Vi so that it prefers playing 0 to playing 1 if and only if .5¢ + .1u 4+ .2 > w. To this end, we
prove a more general statement, namely, that the indifference function of a vertex can be an
arbitrary fractional multilinear function of its descendants’ strategies.

We say that a function of k variables is multilinear if it can be represented as a sum
of monomials and each of these monomials is linear in all of its variables. Note that this
definition is different from a more standard one in that we do not require that all of the
monomials have the same degree. Recall that the payoffs of a vertex with k£ + 1 neighbours
are described by matrices P° and P!, where Pz']oil...z'k is the payoff that V gets when it plays 7,
and its neighbours play i, ..., i, and j,4,...,i € {0,1}. Let P[j] = P[j](w,u1,...,u) be
the expected payoff obtained by this vertex when it plays j and the (mixed) strategies of its
neighbours are given by a vector (w,u1,...,ug), i.e., P[j] = E[mel%] where g, ...,%; are
independent Bernoulli random variables, each of which is 1 with the respective probabilities

W, Uly---yUk-

Lemma 4. Given a tree vertex V whose parent is W and whose children are Uy,..., Uy, for
any function f = f(ui,...,ux) that can be represented as a ratio of two multilinear functions
fi, fo, de., f= %, there exist payoff matrices P® and P for V such that

P[0] — P[1] = wfa(u,- .., ug) — fi(ui, ..., uk).

The proof of this lemma can be found in the appendix.

15

I
Ty, 02 0.8 1v

Figure 7: Breakpoint policy for V5.

Irreducibility of the Best Response Policy for 7,

While the best response policy constructed in the previous subsection has exponential size, it
is not clear @ priori that it is necessary to keep track of all of its line segments rather than to
focus on a small subset of these segments. However, it turns out that for two-pass algorithms
such as the algorithm of [4], the best response policy cannot be simplified. More precisely, we
say that an algorithm A is a two-pass algorithm if

e A consists of an upstream pass and a downstream pass.

e During the upstream pass, for each vertex V with parent W, A constructs a set
BB(W,V) C B(W, V). This set is produced from the sets {BB(V,U) | U is a child of V'}
by applying the procedure from the beginning of Section 6 (substituting BB(V,Uj) for
B(V,Uj) for all children U; of V') , and then possibly omitting some of the points of the
resulting set (which is then stored explicitly).

e The downstream pass is identical to the downstream pass of [4] as described in Section 2
except that it operates on the sets BB(W, V') rather than on the sets B(W, V).

In the rest of this section, we show that any two-pass algorithm will fail during the
downstream pass on Ty, if there is an index j such that the set BB(V;,1, V;) omits any interior
point of any of the (at least 37) segments of B(Vj1,V;). This implies Theorem 3. The proof
of the main theorem, Theorem 7, is by induction on j. The main idea in the proof is that we
can “zoom in” on any part of a best response policy (including the part that was omitted!) by
using an appropriate indifference function. The proof relies on the following technical lemma.

Lemma 5. Suppose that T is a child of U which is a child of V' which is a child of W. For
any a,b,c € (0,1) with b # ¢ we can select the payoffs for T, U and V so that B(W,V) is
as depicted in Figure 8. The two diagrams correspond to the case b < ¢ and the case b > ¢
respectively.

Proof. Set the payoff matrices for T as P*(T) = 1 — u and PY(T) = u to get B(U,T) as in
Figure 9. Set the payoff matrices for U so that P°(U) — PY(U) = v(B1t + By) — (A1t + Ay)
where Ag = b, A1 =0, Bp =1 and B; = —1 + b/c. This gives fy(t) = b/((—1 +b/c)t + 1),
so fu(0) = b and fy(1) = ¢. Since B(t) > 0, the “tails” of B(V,U) (that is, the restriction of
B(V,U) tou =0 and u = 1) are as depicted in the figure (and the picture is similar for ¢ < b).
Finally, choose payoff matrices for B so that P°(V) — P}(V) = w(B{v + B}) — (A}v + A})
where Ay =0, A} = —a/(1 —a), B) = —1 and B} = (1 — 2a)/(1 — a). Then fy(0) = 0 and
fv(1/2) = a and fy(1) =1, so B(W,V) is as required. O

16

v
b
c
a w a w
Figure 8: Achievable best response policies.
I U
1/2
12 U b ¢ %

Figure 9: Intermediate policies

When we use Lemma 5 it will be helpful to see B(W, V) with the axes oriented the other
way, as in Figure 10.

Theorem 7. For any two-pass algorithm A for which there exists an index j, j € [1,n/4], a
segment S of B(V},Vj_1), and an interior point (z,y) of S such that BB(V;,V;_1) does not
contain (x,y), we can choose payoff matrices of the vertices Vj, ..., V, so that the downstream
pass of A will fail, and, additionally, payoffs to Vy;,...,Vy, are identically 0.

Proof. The proof is by induction on j.

For j = 1, the statement is easy to prove. Recall that P°(Vy) = 1 — v; and PY(V}) = vy,
where v; denotes the strategy of V;. Now, if our algorithm computes a set BB(Vi,Vy) that
does not contain a point of the form (.5,y), y € (0,1), we can select the payoffs of V; as
P°(V1) =0 and P'(V1) = vo(1 — 1/y) + (1 —vp) = 1 — vp/y. The payoffs of all other vertices
can be set to 0. In all Nash equilibria of this game, V; plays .5 and V} plays y, but the
downstream pass will not discover this point.

If BB(V1,Vp) does not contain a point of the form (z,0), z € (0,.5), we can select the

W

b c 1% c b 14
Figure 10: Achievable best response policies.

17

payoffs as PO(V}) = 1 — vy, PL(V}) = vy, P°(V3) = 0 and P (V5) = v1(1 — 1/z) + (1 —v1) =
1 —wv1/z. Now, in every Nash equilibrium we have v; = z, vo = .5 and vy = 0, but this point
is not discovered. If BB(V1, V) does not contain a point of the form (z,1) where z € (.5,1)
then the same payoff matrices force all Nash equilibria to have v; = =, vo = .5 and vy = 1,
and this point is not discovered.

For the inductive step, suppose first that some point (z,0) is absent from BB(Vj;1,V}),
where z € (0,.2). This case is similar to the base case, but more complicated. Choose the
payoff matrices for V; 1 so that

PO(VJ'H) - Pl(VjH) = —vj42 + .1+ .8v;.

Now take P%(Vji9) = 0 and P'(Vji2) = 1 — vj11/z. As in the base case, we find that
every Nash equilibrium has v;11 = z. To see this, suppose that v; 11 > z. Then the payoff
matrices for Vj o force vj; o = 0 which, by the payoff matrices for V1, forces v;11 = 0, a
contradiction. A similar contradiction arises if v;; < z since v;49 = 1 implies vj41 = 1. If
we have a Nash equilibrium with v;; = = then V; has to be indifferent, so v; 2 = .1+ .8v;.
But this is a problem because v; 1 = = implies v; = 0 (by Lemma 3) and (vj41,v;) = (z,0) is
omitted from BB(Vj1,V}), so the algorithm can’t find this point. A similar argument applies
if a point (z,1) is absent from BB(Vj1,V;) where z € (.8,1).

Now suppose that A omits an interior point (z,y) of Sy or S from BB(Vj1,V;). We can
use Lemma 5 with W =V;, V=V, 1, U = Vj;2 and T = V3 to choose payoff matrices for
Vit1, Viyo and Vji3 so that B(Vj,Vj41) is as depicted in Figure 10. (When we do this, we
set the rest of the payoffs Vj4,...,V, to zero.) Then we can choose the payoffs so that the
intersection of the curve B(V}, Vj41) as depicted in Figure 10 and the curve B(Vj11,V}) (see
Figure 7) is the point (z,y). That is,

{(wjt1,95) | (vj11,v5) € B(Vjs1, V) A (vj,v541) € B(V, Vi) = {(z,9)}-

This would mean that in any Nash equilibrium of this game V;, plays z and V; plays v,
but the downstream pass will not discover this point. The same is true if BB(Vj1,V;) omits
an interior point from any of the six segments of S1, So or S3 that are adjacent to the four
horizontal segments that we have already handled.

Now, suppose that .4 omits an interior point (z,y) from some segment of S; that is not
adjacent to S5 and is not adjacent to the horizontal tail segment Ty = [0,.2] x {0}. Select the
payoffs to Vji1, Vji2, and Vji3 as follows. First, set PO(V;;1) = vj, and P}(Vj41) = vj40.
Note that fy, (v;) = v;. Writing P°(Vj;1) =P (Vj11) = vj42B(v;)—A(v;) we have B(v;) < 0
so the “tails” that get added in the construction go towards (0,0) and (1,1). Since fy;,(0) =0
and fy;,, (1) =1, no tails are added. Now, set P°(Vj;2) = 10v;41 and P*(Vj12) = vj43 + 2.
Then fyv;,,(vj+1) = 10vj41 — 2. Once again, the tails go towards (0,0) and (1,1), but
since fv;,,(0) < 0 and fy, ,(1) > 1, no tails are added. Finally, set P°(Vj,3) = vj;2 and
PY(Vj+3) = vj1a. Then we get fviys(vj+2) = vj12 and tails towards (0,0) and (1,1), so no
tails are added.

Now consider a line segment {a} x [b, c| in B(V}, V;_1). Because S is the image of fy; (u,0),
this segment is transformed by fy; to the segment [.16+.2,.1c+.2]x{a} in B(V}1,Vj). and by
fvig to{a} x[[16+.2,.1c+.2] in B(Vj12,Vj41) and by fv,_, to [b,c] x{a} in B(V;3,Vj;2) and
finally by fv;,, to the segment {a} x [b,c] € B(Vj14, Vj+3). Similarly, the segment [d, e] x {f}
in B(V;,V,_1) is transformed to {.1f + .2} x [d, €] in B(Vj41,V;) which is transformed to the

18

segment [d, e] X {f} in B(Vj 4, Vj43). Thus, the net effect of the transformation is the identity.
We conclude that B(Vj4,Vj43) is identical to B(V}, V;_1).

Now, we are supposing that we have (v;11,v;) = (z,y) missing from B(V1,V;) where
(z,y) is an interior point on a segment of S that is not adjacent to S5 or Ty. First fy;,,
maps this point to (vj12,vj41) = (y,2). Since 0 <y <1 and 0 < z < 1 this is in the range
of B(Vj42,Vjt+1). Also, since z ¢ {0,1} this is not a “tail” point, so the point (y,z) is indeed
missing from BB(Vj2,Vjy1). Then fy, , maps this point to (vj13,vj12) = (10z — 2,y) €
B(Vjt3,Vj42). Since (z,y) is in S;, we have .2 < 2 < .3 50 0 < 10z —2 < 1 and we have a
valid point of B(Vjy3,Vj42). Also, since y ¢ {0, 1}, this is not a “tail” point, so it is indeed
missing from BB(Vjy3,Vj3). Finally, fy; , maps this point to (vj14,v51+3) = (y,10z — 2) €
BB(Vjt4,Vjt3). Since (z,y) is not adjacent to S5 or Tp, the expression 10z — 2 is neither 0
nor 1, so (y,10z — 2) is not on a tail segment, and it is indeed missing from BB(Vj;4, Vji3).

We are now in the position that we have BB(Vj4, Vj43) with the internal point (y, 10z —2)
missing. Since B(Vji4,Vjy3) = B(V;},V;—1) we already know, by induction, how to set the
following payoff matrices so that the downward pass makes an error. This requires us to set
47 more payoff matrices to non-zero values. Counting the four that we have already set, this
is 4(7 + 1), so we have dealt with the point (z,y).

The case in which A omits a point from S3 is similar. In this case, the point (v;,v;—1) =
(a, b) is transformed by fy; to (vj+1,v;) = (.1b+.7,a) so we choose the payoffs for V2 so that
fvi42(vj1) = 10041 — 7. The case in which A omits a point from Sy is also similar. In this
case, the point (vj,v;-1) is transformed by fy; to (vj11,v;) = (.16 + .45,a) so fy,; ,(vj+1) =
IO’UJ'_H —4.5.

O

7 PPAD-Completeness of Bounded Pathwidth Graphical Games

So far we have identified an obstacle to the dynamic-programming approach to finding Nash
equilibria in graphical games, for trees that are almost but not quite paths. We next show
that a milder path-like graph property allows us to construct graphical games for which it is
unlikely that any polynomial-time algorithm will find Nash equilibria.

Pathwidth

A path decomposition of a graph G = (V| E) is a sequence of subset S;(V) C V such that for
each edge (v,v") € E, v,v' € S;(V) for some i, and furthermore, for each v € V', if v € S;(V)
and v € S;(V) for j > 4, then v € Si(V) for all i < k < j. The path decomposition has width
k if all sets S;(V') have cardinality at most k + 1. The pathwidth of G is the minimum width
of any path decomposition of G.

Pathwidth is a restriction of ¢reewidth (in which one would seek a tree whose vertices were
the sets S;(V'), and the sets containing some vertex would have to form a subtree). For any
constant k it can be decided in polynomial time whether a graph has pathwidth (or treewidth)
k. Furthermore many graph-theoretic problems seem easier to solve in polynomial time, when
restricted to fixed treewidth, or pathwidth, graphs, see [1] for an overview. Note that a path
has pathwidth 1 and a cycle has pathwidth 2.

19

PPAD-completeness

We review some basic definitions from the computational complexity theory of search prob-
lems. A search problem associates any input (here, a graphical game) with a set of solutions
(here, the Nash equilibria of the input game), where the description length of any solution
should be polynomially bounded as a function of the description length of its input. In a total
search problem, there is a guarantee that at least one solution exists for any input. Nash’s
theorem assures us that the problem of finding Nash equilibria is total.

A reduction from search problem S to problem &’ is a mechanism that shows that any
polynomial-time algorithm for &’ implies a polynomial-time algorithm for S. It consists of
functions f and g, computable in polynomial time, where f maps inputs of S to inputs of §’,
and g maps solutions of S’ to solutions of S, in such a way that if Is is an input to S, and
Ss is a solution to f(Is), then g(Ss) is a solution to Is.

Observe that total search problems do not allow the above reductions from problems such
as CIRCUIT SAT (where the input is a boolean circuit, and solutions are input vectors that
make the output true) due to the fact that CIRCUIT SAT and other NP-complete problems
have inputs with empty solution sets. Instead, recent work on the computational complexity
of finding a Nash equilibrium [3, 2, 7] has related it to the following problem.

Definition 4. END OF THE LINE. Input: boolean circuits S and P, each having n input and
n output bits, where P(0™) = 0" and S(0™) # 0™. Solution: = € {0,1}" such that S(z) = z,
or alternatively z € {0,1}" such that P(S(z)) # z.

S and P can be thought of as standing for “successor” and “predecessor”. Observe that
by computing S¢(0") (for i = 0,1,2,...) and comparing with P(S*+1(0")), we must eventu-
ally find a solution to END OF THE LINE. END OF THE LINE characterizes the complexity
class PPAD (standing for parity argument on a graph, directed version), introduced in Pa-
padimitriou [9], and any search problem § is PPAD-complete if END OF THE LINE reduces to
S. Other PPAD-complete problems include the search for a ham sandwich hyperplane, and
finding market equilibria in an exchange economy (see [9] for more detailed descriptions of
these problems).

3-GRAPHICAL NASH is the problem of finding a Nash equilibrium for a graphical game
whose graph has degree 3. Daskalakis et al. [2] show PPAD-completeness of 3-GRAPHICAL
NASH by a reduction from 3-DIMENSIONAL BROUWER, introduced in [2] and defined as
follows.

Definition 5. 3-DIMENSIONAL BROUWER. Input: a circuit C' having 3n input bits and 2
output bits. The input bits define a “cubelet” of the unit cube, consisting of the 8 coordinates
of its points, given to m bits of precision. The output represents one of four colours assigned
by C to a cubelet. C must assign colour 1 to cubelets adjacent to the (y, z)-plane, colour
2 to remaining cubelets adjacent to the (x,z)-plane, colour 8 to remaining cubelets on the
(z,y)-plane, and colour 0 to all other cubelets on the surface of the unit cube.

A solution is a panchromatic vertex, a verter adjacent to cubelets that have 4 distinct
colours.

The reason why a solution is guaranteed to exist, is that an associated Brouwer function
¢ can be constructed, i.e. a continuous function from the unit cube to itself, such that
panchromatic vertices correspond to fixpoints of ¢. Brouwer’s Fixpoint Theorem promises
the existence of a fixpoint.

20

The proof of Theorem 4 uses a modification of the reduction of [2] from 3-DIMENSIONAL
BROUWER to 3-GRAPHICAL NASH. To prove the theorem, we begin with some preliminary
results as follows. Each player has 2 actions, denoted 0 and 1. For a player at vertex V let
p[V] denote the probability that the player plays 1.

Lemma 6. [3] There exists a graphical game Ggpift of fized size having vertices V., V' where
p[V'] is the fractional part of 2p[V].

Corollary 1. There exists a graphical game Gn_shipt of size ©(n) of constant pathwidth,
having vertices V, V,, where p[V,,] is the fractional part of 2".p[V].

Proof. Make a chain of n copies of Gpir¢ in Lemma 6. Each subset of vertices in the path
decomposition is the vertices in a copy of Ggp; ft- O

Let I,(z) denote the n-th bit of the binary expansion of z, where we interpret 1 as true
and 0 as false.

Corollary 2. There exists k such that for all n, and for all ni, ny, ng < n, there exists
a graphical game of size O(n) with pathwidth k, having vertices Vi, Va, V3 where p[V3] =
p[Vi] + 27" (I, p[VA] A I, P[V2]).

Proof of Theorem 4. Let C be the boolean circuit describing an instance of 3-DIMENSIONAL
BROUWER. Let g1,...,gpn) be the gates of C indexed in such a way that the input(s) to any
gate are the output(s) of lower-indexed gates. g1, ..., gs, will be the 3n inputs to C.

All players in the graphical game G constructed in [2] have 2 actions denoted 0 and 1.
The probability that V' plays 1 is denoted p[V]. G has 3 players V,, V,, and V, for which
p[Vz], p[Vy] and p[V,] represent the coordinates of a point in the unit cube. G is designed
to incentivize V;, V,, and V, to adjust their probabilities in directions given by a Brouwer
function which is itself specified by the circuit C. In a Nash equilibrium, p[v,], p[vy] and
p|[v.] represent coordinates of a fixpoint of a function that belongs to the class of functions
represented by 3-DIMENSIONAL BROUWER. _ _

For 1 < i < p(n) we introduce a vertex V(Ef) such that for 1 < j < 4, Ij(p[V(gj)]) is the
output of gate g;; for i < j < p(n), Ij(p[Vé])]) is 0.

Construct V(gz) from Vc(f_l) using Corollary 2. Let G() be the graphical game that does this.
Let $1(GM),...,8,(G®) be a length n path decomposition of G(*), where V(Ef_l) € S1(G®)
and V) € S,(G®).

Then, a path decomposition of Ui <j<pn)G (9) is obtained by taking the union of the separate
path decompositions, together with S,,(G¢1) U 81(G¥) for 2 < i < p(n).

Let G¢o be the above graphical game that simulates C. G¢ has 3n inputs, consisting of
the first n bits of the binary expansions of p[v,], p[vy] and p[v,]. Similarly to [2], the output
of G¢ affects vy, vy and v, as follows. Colour 0 incentivizes v;, vy and v, to adjust their
probabilities p[vz], p[vy] and p[v,] in the direction (—1,—1,—1); colour 2 incentivizes them
to move in direction (1,0, 0); colour 2, direction (0,1, 0); colour 3, direction (0,0, 1).

We need to ensure that at points at the boundaries of adjacent cubelets, the change of
direction will be approximately the average of directions of surrounding points. That way,
all four colors/directions must be nearby so that they can cancel each other out (and we are
at a panchromatic vertex). This is achieved using the same trick as [2], in which we make a
constant number M of copies of G¢, which differ in that each copy adds a tiny displacement

21

vector to its copies of plv,], p[vy] and plv,] (which are derived from the original using the
addition gadget of [3]). Using the addition and multiplication gadgets of [3] we average the
directions and add a small multiple of this average to (p[vs], Plvy], P[v2])-

At a Nash equilibrium the outputs of each copy will cancel each other out. The pathwidth
of the whole game is at most M times the pathwidth G¢. O

8 Open Problems

The most important problem left open by this paper is whether it is possible to find a
Nash equilibrium of a graphical game on a bounded-degree tree in polynomial time. Our
construction shows that any two-pass algorithm that explicitly stores breakpoint policies
needs exponential time and space. However, it does not preclude the existence of an algorithm
that is based on a similar idea, but, instead of computing the entire breakpoint policy for
each vertex, uses a small number of additional passes through the graph to decide which
(polynomial-sized) parts of each breakpoint policy should be computed. In particular, such
an algorithm may be based on the approximation algorithm of [4], where the value of € is
chosen adaptively.

Another intriguing question is related to the fact that the graph for which we constructed
an exponential-sized breakpoint policy has pathwidth 2, while our positive results are for
a path, ie., a graph of pathwidth 1. It is not clear if for any bounded-degree graph of
pathwidth 1 the running time of (the breakpoint policy-based version of) our algorithm will
be polynomial. In particular, it is instructive to consider a “caterpillar” graph, i.e., the graph
that can be obtained from 7, by deleting the vertices Si,...,S,. For this graph, the best
response policy of a vertex Vi in the “spine” of the caterpillar is obtained by combining the
best response policy of its predecessor on the spine V; 1 and its other child Tj; since the
latter is a leaf, its best response policy is either trivial (i.e., [0, 1]2, [0,1]x {0}, or [0,1]x{1})
or consists of two horizontal segments and one vertical segment of the form {a}x[0, 1] that
connects them. Assuming for convenience that

B(Vi, T) = [0,a]x{0} U{a}x[0,1] U [a, 1]x {0},

and f is the indifference function for Vj, we observe that the best response policy for V
consists of 5 components: f(0), f(1), and three components that correspond to [0, a]x{0},
{a}x]0,1], and [a, 1]x{1}.

Hence, one can think of constructing B(Vj 1, Vi) as the following process: turn B(Vj, Vi_1)
by 7/2, cut it along the (now horizontal) line vy = «, apply a fractional linear transform to
the horizontal coordinate of both parts, and reconnect them using the image of the segment
{a}x[0,1] under f. This implies that the problem of bounding the size of the best response
policy (or, alternatively, the breakpoint policy), can be viewed as a generalization of the
following computational geometry problem, which we believe may be of independent interest:

Problem 1. Given a collection of azis-parallel segments in R?, consider the following opera-
tion: pick an azis-parallel line l; (either vertical or horizontal), cut the plane along this line,
and shift one of the resulting two parts by an arbitrary amount d;; as a result, some segments
will be split into two parts. Reconnect these parts, i.e., for each segment of the form [a,b] x {c}
that was transformed into [a,t] X {c+ 6;} and [t,b] x {c}, introduce a segment {t} x [c,c+ d;].
Is it possible to start with the segment [0,1] and after n operations obtain a set that cannot

22

be represented as a union of poly(n) line segments? If yes, can it be the case that in this set,
there is no path with a polynomial number of turns that connects the endpoints of the original
segment?

It turns out that in general, the answer to the first question is positive, i.e., after n steps,
it is possible to obtain a set that consists of ©(c") segments for some ¢ > 0. This implies
that even for a caterpillar, the best response policy can be exponentially large. However, in
our example (which is omitted from this version of the paper due to space constraints), there
exists a polynomial-size path through the best response policy, i.e., it does not prove that the
breakpoint policy is necessarily exponential in size. If one can prove that this is always the
case, it may be possible to adapt this proof to show that there can be an exponential gap
between the sizes of best response policies and breakpoint policies.

References

[1] H. BODLAENDER AND T. KLOKS, Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. Journal of Algorithms, 21, 358-402 (1996)

[2] C. DASKALAKIS, P.W. GOLDBERG AND C.H. PAPADIMITRIOU, The Complexity of
Computing a Nash Equilibrium. ECCC 05-115

[3] P.W. GOLDBERG AND C.H. PAPADIMITRIOU, Reducibility Among Equilibrium Prob-
lems. ECCC 05-090

[4] M. KEARNS, M. LITTMAN, AND S. SINGH, Graphical Models for Game Theory. Pro-
ceedings of UAI, pp. 253-260 (2001).

[6] M. LiTTMAN, M. KEARNS, AND S. SINGH, An Efficient Exact Algorithm for Singly
Connected Graphical Games. In NIPS 2001.

[6] L. OrTiZz AND M. KEARNS, Nash Propagation from Loopy Graphical Games. In NIPS
2003.

[7] X. Chen and X. Deng, 3-NASH is PPAD-Complete Electronic Colloquium in Computa-
tional Complezity TR-05-134, 2005.

[8] C. DASKALAKIS AND C.H. PAPADIMITRIOU, Three-Player Games Are Hard Electronic
Colloquium in C18gomputational Complezity TR-05-139, 2005.

[9] C.H. PApPADIMITRIOU, On the Complexity of the Parity Argument and Other Inefficient
Proofs of Existence. J. Comput. Syst. Sci. 48, 3, pp. 498-532, 1994.

9 Appendix

Proof of Theorem 6. The proof is by induction on j. For 5 = 1, the statement is easy to
verify. Now, suppose that j > 1 and let U =V, 1 and W = V} 1 be the vertices that precede
and follow V', respectively.

By induction hypothesis, there exists a valid breakpoint policy B (V,U) ={X1,Y1,..., X},
m < j. In what follows, we show how to transform it into a valid breakpoint policy B(W, V)

23

for V in polynomial time; also, we prove that the resulting B (W, V) consists of at most 2m+1
segments.

Recall that the payoffs to V satisfy P — P! = w(Byu + Bg) — (Aju + Ag). We start by
considering the case Biu + By =0, i.e., P’ — P! = —(Aju + Ap). We show that in this case
B(W,V) is guaranteed to contain a segment of the form [0,1]x{v}, and hence we can select
this segment as B(W, V).

Indeed, from the proof of Theorem 5 we know that if A; # 0 and (v, —Ag/A1) € B(V,U)
for some v € [0,1], then we have [0,1]x{v} C B(W,V). If A, = 0 or (v, —A/A;) & B(V,U)
for any v € [0, 1], as u(t) = y,(¢) is a continuous function, the expression A;u + Ay does not
change its sign along B(V,U), i.e., either Aju; + Ay < 0 or Aju, + Ag > 0. In the former
case, we have 0 € pbry (w) for all w € [0,1]; in the latter case, we have 1 € pbry (w) for all
w € [0, 1];

The case Aju + Ay = a(Biu + By) for some a € R is similar: if B(V, U) intersects the
horizontal line v = —By/B; at some point v, we can set B(W,V) = [0,1]x{v}; otherwise,
either Biv,(t) + By > 0 for all t € [0,1] and we can set B(W, V) to be

([, +00]x{0} U [—o0, a]x{1} U {a}x[0,1]) ﬂ[O, 1]?
or Biv,(t) + By < 0 for all t € [0,1] and we can set B(W, V) to be

([or, +00] x {1} U [~00, a] x {0} U {a} x [0, 1]) ([0, 1]°.

Therefore, we can assume that f(u) = ggzg ‘gigi‘go is well-defined and A(u) and B(u)
never turn into zero simultaneously. Recall that whenever w = f(u) and u,w € [0,1], V is
indifferent between playing 0 and 1.

The following two statements follow easily from the proof of Theorem 5.
Claim 1. For any segment X; = [v;_1,vi]x{u;} C B(V,U) such that B(u;) # 0, if w; = f(u;)
satisfies 0 < w; < 1, then f(X;) C B(W,V).

Claim 2. For any segment Y; = {v;}x[uj,ujt1] C B(V,U), if —Bo/B1 €& [us,uiy1], then
f(Y;))n[0,1)> C B(W,V), and if —Bo/B1 € [ui,uit1], i.e., —Bo/B1 = yy(t) for some t €
[toi—1,t2;], then we have W;yx{v;} C B(W,V) where

Wi = ([f (us), +00) U (=00, f(uit1)]) N[0, 1]
if lim,_; f(yu(t)) = +o0, and
Wi = ((—o0, f(ui)] U [f (uir1), +00)) N[0, 1]

if lim, ;- f(u(t) = —cc.

Claims 1 and 2 show that f transforms any horizontal segment of B(V,U) into a vertical
segment, and any vertical segment of B (V,U) into at most two horizontal segments.

Consider the set B = f(0) U f(B(V,U)) U f(1). It is easy to see that F(0) N f(Xo) =
(f (11),0) and f(Xm) N f(1) = (F(um),1). Also, we have £(X;) N f(¥:) = (f(us),v;) and
f() f(Z+1):(f(ui+1)7vi) fori:1,...,m—~1,

Hence, the only source of discontinuities in B are values of ¢ such that B(y,(t)) = 0.
Observe that B C Rx[0,1] and therefore B N [0,1]? has the same number of connected

24

components as B. It remains to prove that we can select a connected subset B¢ of BN [0,1)?
that contains points of the form (0,v') and (1,v") and consists of at most 2j + 1 segments;
we can then easily construct B(W, V) from Be.

We have to consider three cases:

e 7y(-) does not intersect the line u = —By/Bj.

In this case, B(7y,(t)) # 0 for all ¢ € [0,1], which means that f(B(V,U)) (and hence
B) is connected and, by continuity, B(u;) and B(u,,) have the same sign. Assume that
B(u1), B(uy) > 0; the opposite case is similar. We have f(0) = [f(u1), +00)x{0}, f(1) =
(o0, f(um)]x{1}. If f(u) < 0, we can select B¢ = [0,1]x{0}, and if f(up,) > 1, we
can select Bo = [0,1]x{1}; therefore, let us assume f(u;) > 0, f(um) < 1. Consider
an arbitrary w € [0,1]. If w > f(uy), then (w,0) € f(0) C B and if w < f(uyp), then
(w,1) € f(1) C B; if f(um) > f(u1), this covers all w € [0,1]. Finally, if f(un) < f(u1) and
w € [f(um), f(u1)], by continuity of f(y,(-)) there exists a ¢t € [0,1] such that w = f(y,(t))
and hence (w,v) € f(B(V,U)) for some v € [0,1]. Therefore, in this case for any w € [0, 1]
there exists a v € [0,1] such that (w,v) € B, and we can set Bc = BN [0,1]>.

e () intersects the line u = —By/B1, but v(0) and (1) are on the same side of u =
—Bo/Bl.

Set t* = min{t € [0,1] | v (t) = 0}, t** = max{t € [0,1] | 7 () = 0}. We have
B(u1) * B(up,) > 0 and also

lim f(y(t) = lm f(yu(2))-

t—t*— totret

Assume that B(u1), B(uy,) > 0; the opposite case is similar. We have f(O) = [f(u1), +00),
f(l) (—o0, f(um)]- Whenever lim;_,;«— f(y,(t)) = —o0, we can set Be = (f(O) U f(I‘O)) N
[0,1])2, where Ty = {7(t) | t € [0,t*)}. Otherwise, we have lim; e+ f(7y(t)) = +00, and we
can set Bo = (f(I')U f(1)) n [0,1]%. where 'y = {(t) | t € (t**,1]}.

e 7y(-) intersects the line u = —By/Bj, and y(0) and <y(1) are on the opposite sides of
u = —Bo/Bl.

Define t*,¢** as in the previous case. We have B(u1) * B(u,,) < 0 and also

lim f(yu(t) == lim f(y(?))-

>t et

Assume B(u;) > 0, B(u,) < 0; the opposite case is similar. We have f(0) = [f(u1),+00),
F1) = [Flwm), +00). T Timy e fa(8)) = —00, we can set Bo = (£(0) U F(T9)) 1 [0, 1],
where Tg = {7(t) [¢ € [0,%")}. Otherwise, we have lim;_, -+ f(74(t)) = —00, and we can set
Be = (f(T1) U f(1)) N[0,1]%. where Ty = {(t) | ¢ € (", 1]}.

To determine the total number of segments in B¢, observe that whenever f(3) consists
of two segments, these segments belong to different connected components of F(B(V,U)), i
they cannot be both included in B¢. Therefore, B(W V') consists of at most 2j +1 segments.
£(0), f(1), and at most 2j — 1 segments in a connected component of f(B(V,U)). Finally,
if B¢ intersects itself, one can always select a non-self-intersecting subset of it that contains

points of the form (0,v') and (1,0"). O
Proof of Lemma 4. For convenience we set ug = w and g(ug,...,ux) = wfo(uy,...,ux) —
fi(ui,...,ug); observe that g(ug,...,u) is a multilinear function, i.e., it can be represented

25

Z G,S(U())so...(uk)sk,

5=80...5, €Lk +1

where ©¥T1 is the set of all binary strings of length k + 1. Set P&)Zk = (0 for all 4g,...,9; €
{0,1}; obviously, this implies P[1] = 0.

We can express P[0] as

S Pug) (1 —ug) T ()™ (1 —) T

t=tg...tp e Tk+1

clearly, P[0] is also a multilinear function of ug, ..., ug. To show that we can pick the coeffi-
cients P so that P[0] = g(ug,. .., ug), it suffices to represent every monomial as(ug)*° ... (uy)*
of g as

S Ciluo)(1 —ug) R (ug) (1 — uy) T

t=to...lx exk+1

for some Cj, t € {0,1}**1; the representation for g can then be obtained by summing up the
representations for the monomials. Finally, it is easy to see that the desired representation

for a monomial au' ...u" is given by Cy, 4, =aift;, =t;, =---=t;, =1l and Cy. 4, =0
otherwise. O
ECCC ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject *help eccc’

26

