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Abstract. Multisource information theory in Shannon setting is well known. In this article we try to
develop its algorithmic information theory counterpart and use it as the general framework for many
interesting questions about Kolmogorov complexity.

1 Introduction

Multisource information theory deals with information transmission in a network. Such a
network includes information sources (one or many), the destinations (one or many) where
information should be delivered, and channels that are used for transmission; some (or all)
channels may have limited capacity. Classical Shannon approach considers sources as random
variables and is well developed, see, e.g., [4, 14]. It tries to find conditions that make some
information transmission request feasible.

Similar questions could (and should) be asked for algorithmic information theory.
Consider a directed graph whose edges are “channels” and nodes are “processors”. Some

nodes get outside information; this information should be processed (in nodes) and trans-
mitted (via edges) into some other nodes.

More formally, an information transmission request consists of the following parts:
• A finite acyclic directed graph.
• A set of input nodes.
• An input string for each input node.
• A set of output nodes.
• A (desired) output string for each output node.
• An integer capacity for each edge (the value +∞ that means unlimited capacity is also

allowed).
We say that information request is c-feasible if one can find for each edge e a string Me in
such a way that the length of Me does not exceed the capacity of edge e and

K(X|Y1, . . . , Yk) ≤ c

for any node z, any outgoing string X (for z) and incoming strings Y1, . . . , Yk (for z), where
• K stands for (conditional) Kolmogorov complexity, i.e., the length of the shortest

program that gets Y1, . . . , Yk as input and produces X as output, see the textbook [7] or
tutorial [13].

• outgoing strings for node z are strings Me for all outgoing edges e and the output string
for z (if z is an output node);
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• incoming strings for node z are strings Me for all incoming edges e and the input string
for z (if z is an input node).

The integer c measures the amount of new information that is allowed to appear “from
nowhere”; we cannot let c = 0 since Kolmogorov complexity is defined up to an additive
constant. The most natural choice is c = O(log n) for input and output strings of length at
most n. With this choice, it does not matter which version of Kolmogorov complexity (plain,
prefix=self-delimiting, etc.) we are using.

So in fact we should consider not an isolated request but a family of requests (usually for
the same graph and input/output nodes) depending on parameter N ; the size of the strings
used in the request should be at most N (or polynomial in N), and the feasibility means
that N -th request is c log N -feasible for some c and for all N . (This is a standard setting for
algorithmic information theory.)

Our goal is to show how many different results in classical information theory and Kol-
mogorov complexity could be naturally expressed in this language (in terms of feasibility of
informational requests for some networks).

2 A trivial example

Consider a network that has two nodes and one edge (Fig. 1). (Let us agree that all edges
are directed top-down, so the direction arrows are omitted). The top node is an input node
and has input stgring A; the bottom node is an output node and has output string B. The
channel has capacity k. This request is feasible (for small c) if and only if K(B|A) is close to 0
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Fig. 1. The simplest information transmission request

and K(B) does not exceed k significantly: information transmission is possible if and only
if B does not have significant information that is not present in A (conditional complexity
of B given A is small) and total amount of information in B does not exceed (significantly)
the capacity of communication channel.

To express this evident idea formally, we (unfortunately) need a rather obscure statement:

Let An and Bn are sequences of strings and kn be a sequence of integers. Assume that
|An|, |Bn| and kn are bounded by a polynomial in n. Then the following two properties are
equivalent:

(1) there exists a sequence of strings Xn such that |Xn| ≤ kn +O(logn) and K(Xn|An) =
O(log n), K(Bn|Xn) = O(logn);

(2) K(Bn|An) = O(logn) and K(Bn) ≤ kn + O(logn).
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This equivalence follows from two (rather trivial) remarks: first says that

K(B|A) ≤ K(B|X) + K(X|A) + O(log K(A, B, X))

for all strings A, B, X (so (1) implies (2)); the second remark says that for any A, B and k

there exists a string X such that

|X| ≤ K(B), K(X|A) ≤ K(B|A) + O(logK(B)), K(B|X) = O(1)

(hint: let X be the shortest program for B) and implies that (1) follows from (2).
For the case A = B the statement has clear intuitive meaning: a string A can be trans-

mitted through a communication channel if and only if its complexity does not exceed the
capacity of the channel.

3 A less trivial example

Consider the following information transmission request (which can be called “transmission
of A when B is publicly known”), see Figure 2. We need to encode A in the top node (using
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Fig. 2. Transmission of A when B is known

B if needed), transmit the encoding to the bottom node where decoding is performed (using
B, too).

It is easy to see that this request is feasible if and only if K(B|A) ≤ k. (This statement
should be understood also in precise asymptotic way with sequence of requests and O(log n);
we omit the exact formulation.) Indeed, the decoding algorithm knows B and k additional
bits, so its output (A) has conditional complexity (with condition B) at most k. On the
other hand, if K(A|B) ≤ k, let message X (for the limited capacity channel) be the shortest
program that produces A with input B; both unlimited channels transmit B. Note that the
conditional complexity of the shortest program that transforms B to A (with pair A, B as
the condition) is logarithmic: knowing the length of such a program, we may try all programs
of that length in parallel until some of them does the job.

4 A nontrivial example: Muchnik’s theorem

Our next example is Muchnik’s theorem that corresponds to Wolf – Slepyan theorem in
Shannon imformation theory. It says that in the previous example one does not really need
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Fig. 3. Wolf – Slepyan / Muchnik request

B for encoding (for decoding it is still needed, of course). The transmission request graph has
the corresponding edge deleted (Figure 3): Muchnik noted [9] that the condition K(A|B) ≤ k

is still sufficient for the feasibility of this request. (It remains necessary for evident reasons.)
Here is the exact statement of Muchnik’s theorem: Let A and B be arbitrary strings of

complexity at most n. Then there exists a string X of length K(A|B) + O(log n) such that

K(X|A) ≤ O(log n) and K(A|X, B) ≤ O(log n).
The proof of this theorem used expander-like graphs (similar methods were used also

in [5] to get interesting results about resource-bounded Kolmogorov complexity). Roughly
speaking, the message X sent through the restricted channel is a “fingerprint” (hash-value)
of A that is a simple function of A; it happens that this hash value (plus small amount of
additional information) could be sufficient to select A among all strings that have conditional
complexity (with respect to B) at most k if a suitable (and small) family of hash functions
is used.

5 Bidirectional encoding

Our next example is another well known result about Kolmogorov complexity [2] that says
that the length of the shortest program that transforms A into B and at the same time

transforms B to A equals max(K(A|B), K(B|A)) + O(log n) for any strings A, B of size at

most n.
It corresponds to the following transmission request (Figure 4) and says that inequalities
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Fig. 4. Bidirectional encoding

K(A|B) ≤ k and K(B|A) ≤ k are sufficient to make this request feasible (again with O(log n)
terms that we omit). It is also clear that these inequalities are necessary since both strings
that are sent along the lines in the bottom have complexity at most k and allow to get A

from B and vice versa.

4



6 Conditional coding for two conditions

This example generalizes two previous ones. Consider the information transmission request
shown in Figure 5: Again the necessary condition for the feasibility of this request is simple:
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Fig. 5. Coding C with respect to A and B

K(C|A) ≤ k and K(C|B) ≤ k. As Muchnik has shown [9], this condition is also sufficient
(with standard precautions about logarithmic terms). His result says that for any three

strings A, B, C of length at most n and for any k such that K(C|A) ≤ k and K(C|B) ≤ k

there exists a string X of length k such that K(X|C) = O(log n), K(C|A, X) = O(log n)
and K(C|B, X) = O(log n).

Note that this result remains nontrivial even if we omit the condition K(X|C) = O(log n);
no other (simpler) proof is known for this (potentially) weaker statement that corresponds
to a (potentially) easier information transmission request (Figure 6).
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Fig. 6. Coding C with either A or B known

7 Necessary condition for feasibility

All the conditions used in the previous examples could be obtained in an uniform way, by
looking at the information flow through cuts in the network.

A cut is an arbitrary set I of nodes. We are interested in the information flow through
I, i.e., the amount of information that comes to I from outside.

More formally, consider the total capacity of all edges whose starting point does not
belong to I and endpoint belongs to I. If there is an unlimited capacity edge among them,
the cut I gives no necessary condition for feasibility. Assume now that all capacities u1, . . . , us
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of these edges are finite. Then the following necessary condition appears:

K(W1, . . . , Wm|V1, . . . , Vl) ≤ u1 + . . . + us,

where V1, . . . , Vl are input strings for all input vertices in I, and W1, . . . , Wl are output
strings for all output vertices in I. As usually, this inequality should be true with logarithmic
precision, up to O(log n) terms (if all strings are of length at most n).

Indeed, the amount of information that enters I from outside (aside from input string)
is limited by the total capacity of edges that enter I. (This is a standard Ford – Fulkerson
type inequality.) Knowing s strings for edges that come into I and input strings, we can
reconstruct all the strings inside I (there is no loops in the graph, so topological sorting is
possible).

It is easy to see that all necessary conditions appearing in previous sections could be
obtained in this way. For example, the conditions given in Section 5 are obtained through
the following cut and the symmetric one (Figure 7):
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Fig. 7. A cut for bidirectional encodings

A natural question arises whether the necessary conditions obtained in this way (for all
possible cuts) are also sufficient for the feasibility of an information transmission request. In
the situations considered they were; another case where they are sufficient is given in the
next section. However, there are many cases where these conditions are not sufficient, as we
shall see later.

8 Single-source networks

Consider the network with only one input string and several output strings identical to the
input one. In other words, we have a broadcast request with a single source and several
destinations. This problem is considered (for Shannon setting) in [1, 8]; the same ideas can
be used for algorithmic version.

The main difficulty and the way to overcome it could be illustrated by the following
example. Assume that we want to send a message A of size 2k to three destinations (Figure 8).
Three first channels have limited capacity k; the remaining channels are unlimited. For each
of three destinations (separately) the task is easy: we cut A into two parts of size k and
send these two parts along two channels. But doing the same for all three destinations at
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Fig. 8. Broadcast to three destinations

the same time would require dividing A into “three halves” in such a way that any two are
sufficient to reconstruct A.

It can be done using standard “linear secret sharing”: three messages of length k are A1,
A2 and A1 ⊕ A2, where A1 and A2 are two halves of A and ⊕ stands for bitwise addition.
Knowing any two of these three k-bit strings, we reconstruct the third one as bitwise sum of
the known two and therefore know A.

A similar trick works for an arbitrary broadcast request. Consider an information request

that has only one input string of length n and several output strings identical to the input

one, and some integers as edge capacities. Assume that necessary conditions are fulfilled for

any cut I. More precisely, assume that for any set J of nodes that does not contain input

vertex and contains at least one output vertex, the sum of capacities of edges that go into J

is at least n. Then the request is c log n-feasible for some c that does not depend on n and

input string but may depend on the graph.

The idea of the proof can be explained as follows. If there is only one output string, we
can treat the bits as commodity in Ford – Fulkerson theorem. For each edge we know the
indices of bits that should be sent through it; nodes do just the repacking of bits.

In a general case (of several destinations) we use linear coding. This means that all
messages are considered as elements of vector space over a finite field. A message sent through
some edge is a linear function of A. So each edge carries some vector space of possible
messages (and its dimension is proportional to the capacity of the edge). A node performs a
linear operation (the vector made of incoming strings is linearly transformed into the vector
made of outcoming strings).

If transformation matrices are fixed for each node, we get and input – output linear
mapping for each output node. Its matrix is a product of some parts of node transformation
matrices. If input – output matrix is invertible for all output nodes, we are done. So we need
to prove that it is possible to make all these matrices invertible. It is already known that we
can do this for each matrix. Therefore the determinant as a polynomial function of matrix
elements is not identically zero. Since the number of zeros of a polynomial is bounded, we
can conclude that for some transformation matrices (and even for most of them) all the
determinants are nonzero.

This argument requires technical clarification; in particular, the size of the field should
be chosen carefully. (If it is too small, the zeros of the polynomials could cover the whole
space; if it is too large, the overhead that appears because capacities are not multiples of the
logarithm of the field size, becomes large.) But this clarification is not difficult.
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Now we switch to the examples where the necessary conditions provided by information
flow considerations are not sufficient. Several examples of this type were already considered
in algorithmic information theory.

9 Common information

Consider the following information request (Figure 9): two strings x and y are given. We
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Fig. 9. Common information

should prepare three messages u, v and w of lengths (at most) α, β and γ such that x can
be recontructed from u and v, and at the same time y can be reconstructed from u and w.

The motivation: u contains some “common information” that is present both in x and y,
while v and w are remaining parts of x and y.

The requirements can be reformulated as conditions on u:

|u| ≤ α, K(x|u) ≤ β, K(y|u) ≤ γ

(after u is chosen, v and w could be conditional descriptions of x and y with respect to u).
We can also replace |u| by K(u) (by taking the shortest program for u instead of u itself).

The necessary conditions are

K(x) ≤ α + β, K(y) ≤ α + γ, K(x, y) ≤ α + β + γ.

For example, let us consider the case when K(x) = K(y) = 2n and K(x, y) = 3n. Informally,
both x and y contain 2n information bits each, but are dependent, so the total amount of
information is only 3n instead of 4n. Let α = β = γ = n, then all the flow conditions are
satisfied. And the question can be reformulated as follows: is it possible to extract n bits of
common information so that n additional bits are enough to specify x (or y)?

The answer is: it depends on x and y. It is possible, for example, if x and y are overlapping
substrings of an incompressible string (of length 2n with n common bits). In this case u can
be the intersection of x and y. On the other hands, there exists a triple of strings with the
same complexities for which the request is not feasible.

There are several examples of this type (starting from [6], where this question is considered
both from Shannon and algorithmic information theory).
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More geometric example can be obtained as follows: consider a field of size 2n and a two-
dimensional affine plane over it. Let (x, y) be a random pair of concurrent line and point.
With high probability they have complexities as stated above, but there is no common
information. Moreover, one can prove that

K(u) = O(K(u|x) + K(u|y)),

so that if u has small conditional complexity with respect to x and y (and this follows from
our requirements), then u is (unconditionally) simple.

This (together with other constructions of pairs of strings without common information)
is explained in [3].

10 Program simplification

One can look for a simple information transmission request whether the necessary conditions
(based on information flow) are not sufficient. It turns out that Muchnik theorem is quite
close to the boundary: a bit more general request provides an example required.

Consider the following request (suggested by M. Vyugin, Figure 10). The difference with
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Fig. 10. Program simplification

Muchnik’s theorem is that here the output string differs from the both input strings. The
necessary condition here are K(B|A) ≤ k and K(B|A, P ) = 0.

Informally the problem can be explained as follows. There exist a string B which can be
obtained from string A if we know some additional information P (which can be considered
as a program that transforms A to B). This program could be rather long. On the other
hand, we know that conditional complexity of B when A is known does not exceed k; this
means that there exists another (shorter) program that transforms B to A. Our goal is
to find a “simplification” P ′ of program of B that has three properties: (1) it has no new
information compared to B (i.e., K(B ′|B) = 0); (2) it is still enough to transform A to B;
(3) it has minimal possible length among programs that satisty (2).

Muchnik theorem says that is is possible (though not at all trivial) to find such a simpli-
fication if P equals B. But in general it is not true, as shown in [10].

11 Minimal sufficient statistic

Another request where our necessary conditions are not sufficient is motivated by the notion
of minimal sufficient statistic.
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Consider two following example. Imagine that we toss a biased coin (probability θ of
heads is unknown, but all coin tosses are independent) and get a string b1 . . . bn of zeros and
ones. Looking at this string, we try to guess θ. Intuitively it is clear that the only important
information in b1 . . . bn is the number of 1’s; no other information is relevant to θ. So the
number of 1’s is called a “minimal sufficient statistic” for θ. It contains all the information
relevant to θ but nothing else.

Now we consider the information transmission request (Figure 11) that formalizes this
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Fig. 11. Minimal sufficient stgatistic

situation. Consider two strings A and B. The string B contains some infomation about A,
as well as some other information. We try do delete irrelevant information from B and get
a string B′ that is simpler but still contains all information about A that was present in B.

The last requirement can be formalized as follows: K(A|B ′) ≤ K(A|B) (if some informa-
tion were lost when going from B to B ′, then conditional complexity would increase).

In terms of the graph: the simplified version B ′ is sent along the right edge and the
information needed to restore A from B ′ is sent along the left edge. So our goal is to have
p = K(A|B) and q = K(A) − K(A|B).

These values satisfy the information flow conditions, which are

K(A) ≤ p + q, K(A|B) ≤ p

for this graph.

It is easy to see that this goal is achieved (and conditions are sufficient for the feasibility
of the request) if A and B are overlapping parts of a random string; in this case B ′ is the
common part of A and B and the remaining part of A is sent via the left channel.

However, in general the necessary conditions are not sufficient. For simplicity let us
consider strings A and B that both have complexity 2n and the pair (A, B) has complexity 3n.
Then for a given p and q three cases are possible:

• the request is feasible for all strings A and B (from the class considered);

• the request is unfeasible for all strings A and B (from the class considered);

• none of the above (i.e., the answer depends on the choice of A and B),

and the (p, q)-plane is divided to three regions corresponding to this three cases. What
are these regions? The analysis (which we omit now) gives the following answer (Figure 12):
the black part corresponds to the first case (always feasible), the white part corresponds to
the second case (always infeasible), and the gray parallelogram inbetween corresponds to
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Fig. 12. Three possibilities

the third case (may be feasible or not depending on A and B). Note the white region is the
region where information flow conditions are not fulfilled.

(Remark. For simplicity we omitted all the technical precautions about O(log n) precision
that are needed to made the statement precise.)

12 Concluding remarks

One of the goals of multisource algorithmic information theory is to perform a similar analysis
for an arbitrary graph and (for given complexities of input and output strings, as well as
there combinations) divide the space of capacity parameters in three regions.

Our examples shows that even for simple graphs this task could be hard in both directions.
Muchnik theorem shows that an elaborated combinatorial technique is needed to prove the
feasibility of the request for all strings. The constructions of negative examples (in the last
three sections) also involve combinatorial arguments that seem to be rather specific for the
graph considered. (See [10] where three different methods to obtain negative results are
explained.)

It would be interesting to find some more general criteria or, establish some formal
connections between Shannon multisource information theory and algorithmic one (in the
spirit of [11, 12]).
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