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Abstract

In the buy-at-bulk k-Steiner tree (or rent-or-buy k-Steiner tree) problem we are given
a graph G(V,E) with a set of terminals T ⊆ V including a particular vertex s called the
root, and an integer k ≤ |T |. There are two cost functions on the edges of G, a buy cost
b : E −→ R

+ and a rent cost r : E −→ R
+. The goal is to find a subtree H of G rooted

at s with at least k terminals so that the cost
∑

e∈H b(e)+
∑

t∈T−s dist(t, s) is minimize,
where dist(t, s) is the distance from t to s in H with respect to the r cost. Our main result
is an O(log5 n)-approximation for the buy-at-bulk k-Steiner tree problem. To achieve this
we also design an approximation algorithm for bicriteria k-Steiner tree. In the bicriteria
k-Steiner tree problem we are given a graph G with edge costs b(e) and distance costs
r(e) over the edges, and an integer k. Our goal is to find a minimum cost (under b-cost)
k-Steiner tree such that the diameter under r-cost is at most some given bound D. An
(α, β)-approximation finds a subgraph of diameter at most α ·D (with respect to r) and
cost with respect to b of at most β · opt where opt is the minimum cost of any solution
with diameter at most D. Marathe et al [25] gave an (O(log n), O(log n))-approximation
algorithm for the bicriteria Steiner tree problem. Their algorithm does not extend to
the bicriteria k-Steiner tree problem. Our algorithm for the buy-at-bulk k-Steiner tree
problem relies on an (O(log2 n), O(log4 n))-approximation algorithm we develop for the
(shallow-light) bicriteria k-Steiner tree problem, which is of independent interest. Indeed,
this is also one of the main tools we use to obtain the first polylogarithmic approximation
algorithm for non-uniform multicommodity buy-at-bulk [21].

1 Introduction

Recently, there has been growing interest in network design problems with two cost functions
(instead of one) partially due to practical applications. For most of such problems so far there
is no general tool that would facilitate their solutions such as Bartal’s result of embedding a
metric into probabilistic trees. In this paper, we study the buy-at-bulk k-Steiner tree (or rent-
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or-buy k-Steiner tree) problem1. In this problem we are given an undirected graph G(V, E)
with a terminal set T ⊆ V , a specific vertex s ∈ T called the root, and an integer k ≤ |V | = n.
We also have two (independent) cost functions on the edges of G: buy cost b : E −→ R

+

and rent cost r : E −→ R
+. Usually, when r and b of different edges can be different the

term non-uniform is used. We omit this term and note that all the variants studied here are
non-uniform. Our goal is to find a Steiner tree H spanning at least k vertices of T including
the root which minimizes the following:

∑

e∈H

b(e) +
∑

t∈T−s

L(t, s), (1)

where L(t, s) =
∑

e∈P (t,s) r(e) with P (t, s) being the unique path from t to s in H.

Buy-at-bulk network optimization problems with two cost functions, have been extensively
studied, sometimes under different names such as cost-distance (where one function defines
buy cost and another function defines length) and rent and buy problems. These problems
have practical importance. Consider for example the case that every edge can either be bought
or rented (but not both). The chosen edges are required to provide bandwidth to satisfy some
multicommodity demands. As we shall see later, this model is equivalent to the above buy-at-
bulk model (in which every edge has both rent and buy costs). The rent or buy (but not both)
version of the problem captures the practical setting where it is needed to decide whether to
buy an edge and pay b(e) once (typically b(e) is relatively large) or to rent the edge e. If the
user decides to rent the edge, then the pay is r(e) per every commodity that goes via e. For
its practical importance, this problem has been studied through a long line of papers in the
operation research and computer science communities after the problem was introduced by
Salman et al. [29] (see e.g. [2, 8, 16, 17, 18, 19, 24, 26, 30]). We will show in Subsection 1.3
that this model is in fact equivalent to the rent and buy model described earlier.

Problems that require to satisfy at least k of the demands and often involve (two) cost
functions also attracted considerable attention and so far there seems to be no general unifying
technique for these problems (see e.g. [4, 7, 10, 14, 20, 23, 27]). An example for such a technique
is the Lagrangian relaxation technique together with the primal-dual method that was used
to derive a constant-factor approximation algorithms, e.g., for k-MST or k-Steiner tree [10].
However, this technique does not seem to work when two cost functions are involved.

We give the first approximation algorithm for the buy-at-bulk k-Steiner tree problem, of
ratio O(log5 n). The approximation algorithm we develop for the buy-at-bulk k-Steiner tree
problem uses an approximation for a variant of the shallow-light network design problem that
is of independent interest. A graph G(V, E) and a collection T ⊆ V of terminals are given in
addition to cost and length functions b, r : E −→ R

+ and two bounds, a cost bound B and a
length bound D. The cost of a spanning subtree H(V, E ′) is b(E ′) =

∑

e∈E′ b(e). For a path
P , L(P ) =

∑

e∈P r(e). The distance between u, v in H is distH(u, v) = L(Pu,v) so that Pu,v

is the unique path between u, v in H. The diameter of H is diam(H) = maxu,v distH(u, v).
Assuming a spanning subtree H(V, E ′) with cost at most B and diameter at most D exists,
the shallow-light spanning tree problem is to find H. The more general shallow-light k-Steiner

1Both terms “buy-at-bulk” and “rent-or-buy” are used interchangeably in the literature. We mainly use
the former term in this paper.
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tree problem requires to select for an input k a tree spanning k nodes that meets the diameter
and costs bounds D and B respectively. Even the shallow-light spanning tree (k = n) special
case is NP-hard and also NP-hard to approximate within a factor better than c log n for some
universal constant c [5]. Thus we focus on an approximation algorithm. An (α, β) bi-criteria
approximation algorithm for the shallow-light k-Steiner tree problem is an algorithm that
delivers a tree H ′ with k terminals (vertices in T ) whose diameter is at most α ·D, and whose
cost is at most β times the cost of a D-diameter minimum cost tree.

The constraint that only k < n nodes have to be picked makes this problem considerably
harder than the usual shallow-light spanning tree problem, namely, the k = n case. In [25] the
case k = n is studied and an (O(log n), O(log n))-bicriteria approximation is given. However
no approximation was known for general k prior to this paper.

1.1 Related work

In the buy-at-bulk multicommodity problem we are given p source-sink pairs, {si, ti}p
i=1. A

subset E ′ of the edges is feasible if for every i, an si to ti path exists in G′ = (V, E ′),
namely, si, ti belong to the same connected component in G′. The cost of E ′ is

∑

e∈E′ b(e) +
∑

i distG′(si, ti) where the distance is with respect to r, and it is required to find a minimum
cost feasible E ′. If we are also given an integer k ≤ p and must find a solution that connects k
(out of p) si, ti pairs then we have the buy-at-bulk k-multicommodity problem. It is easy to see
that the buy-at-bulk Steiner (but not k-Steiner) tree problem is a special case of the buy-at-
bulk multicommodity problem in which all the sinks are at a single vertex (namely the root).
The buy-at-bulk k-Steiner tree problem is a special case of the buy-at-bulk k-multicommodity
problem. However, it is shown in [20] that if the buy-at-bulk k-multicommodity problem
admits a polylogarithmic ratio approximation then so does the dense-k-subgraph problem
(see [13]). For a long time now (almost 10 years) the best known approximation for the dense
k-subgraph problem is O(n1/3−ε) for some positive ε > 0 [13], and it is widely believed that
the dense k-subgraph problem admits no polylogarithmic ratio approximation. If indeed, the
dense k-subgraph problem admits no polylogarithmic approximation, then the result in our
paper shows that the case of single source (but many sinks) namely, buy-at-bulk k-Steiner
tree is provably easier to approximate than the general case of arbitrary source-sink pairs.

In the uniform version of the buy-at-bulk multicommodity problem all the buy values
along edges are equal. The best approximation known for the uniform case is O(log n) due
to the results of Awerbuch and Azar [3], Bartal [6] and Fakcharoenphol et al. [12]. Kumar et
al. [24] and Gupta et al. [18] present constant factor approximation for a rent-or-buy model
(see Section 1.3) in which the cost of buying each edge is equal to M times the cost of
renting the edge (per unit length) for a fixed M . The single sink uniform version also admits
constant-factor approximation algorithms [17, 19]. For a bit more general setting of the single
sink uniform version in which the cost functions are unknown concave functions, Goel and
Estrin [15] give an O(log n) approximation algorithm.

Meyerson et al. [26] study the buy-at-bulk Steiner tree or equivalently, the non-uniform
single sink buy-at-bulk multicommodity problem for which they give a randomized O(logn)-
approximation that was derandomized by Chekuri, Khanna, and Naor [9] via an LP formula-
tion. Note that none of these algorithms yield any polylogarithmic ratio approximation for the
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k-Steiner tree case. For the most general case, the best known ratio for the non-uniform buy-
at-bulk multicommodity problem is exp(O(

√
log n log log n)) by Charikar and Karagiozova [8].

Recently [21], we have improved this result to a polylogarithmic factor approximation using
the results of this paper.

On the lower bound side, Andrews [1] showed that unless NP ⊆ ZPTIME(npolylog n) the
buy-at-bulk multicommodity problem has no O(log1/2−ε n)-approximation for any ε > 0. Un-
der the same assumption, the uniform variant admits no O(log1/4−ε n)-approximation for any
constant ε > 0. For the single sink case, Chuzhoy et al. [11] show that the problem cannot be
approximated better than Ω(log log n) unless NP ⊆ DTIME(nlog log log n).

Last but not least, the buy-at-bulk k-Steiner tree problem generalizes the classic Steiner
tree, k-MST, and more generally k-Steiner tree problems when the rent cost is zero. For these
problems, there are 1.55-approximation, 2-approximation and 4-approximation algorithms,
respectively (see [28, 14, 10] for a complete literature review of these problems). As we
mentioned above, the buy-at-bulk Steiner tree problem first was studied by Meyerson et
al. [26], but we are not aware of any result on buy-at-bulk k-MST or buy-at-bulk k-Steiner
tree.

1.2 Our results

We give the first approximation algorithm for the buy-at-bulk k-Steiner tree problem:

Theorem 1.1 There is a polynomial time O(log5 n)-approximation for the buy-at-bulk k-
Steiner tree problem

This is achieved by first proving the following bicriteria approximation theorem.

Theorem 1.2 The shallow-light k-Steiner subtree problem admits an (O(log2 n), O(log4 n))
bicriteria approximation that runs in polynomial time

It is worth mentioning that Theorem 1.2 is one of the main tools we use to obtain the first
polylogarithmic approximation algorithm for the non-uniform multicommodity buy-at-bulk
problem [21].

1.3 Equivalent models

There are three different models for the buy-at-bulk k-Steiner tree problem. This holds true
also for the other versions of the problem like the buy-at-bulk multicommodity problem. Below
we describe these three models and show that in fact they are all equivalent.

Model A. The unique cost model: Every edge e of G is given with either a buy cost b(e)
or a rent cost r(e). For buy edges we have to pay b(e) to use them. For rent edges we have to
pay r(e) · f(e) where f(e) is the amount of demand routed over that edge, i.e., the number of
terminals t ∈ T − s for which e lies on the unique s, t-path in the Steiner tree solution.

Model B. The rent or buy model: Every edge e is given with both a buy cost b(e) and
a rent cost r(e). For every edge in the solution, we have to decide whether to buy e and pay
b(e) or rent it and pay r(e) · f(e). However, it is not possible to both buy and rent the edge.
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Model C. The rent and buy or cost-distance model: This is the model we defined
earlier, i.e. every edge is given with both a buy cost b(e) and a rent cost r(e). The cost we
pay for every edge in the solution is b(e) + r(e) · f(e). This model first has been considered
by Meyerson et al. [26].

The following theorem shows that all these three models are in fact equivalent. We will
be working with Model C in the rest of the paper.

Theorem 1.3 All the three models A, B, and C are equivalent.

Proof: We show how each model can be formulated by the other models. Here, we write,
e.g., C −→ A short for “it is possible to model Model A via Model C”.

1. C −→ A: We mimic model A by model C as follows. We will have the same set of
vertices as in model A. An edge that does not have a buy cost (in A) is given 0 buy
cost in C, and otherwise, it is given 0 rent cost. Note that by definition of Model C zero
rent or buy costs do not affect the overall cost and so can be ignored. This is the same
affect as in model A.

2. B −→ C: An edge e = (v, u) in model C is replaced by two edges e1 = (v, we), e2 =
(we, u) (in model B) for some new and specific for e vertex we. The buy cost of (v, we)
is b(e) and its rent cost is ∞. The rent cost of (we, u) is r(e) and its buy cost is ∞. The
new we nodes are not terminals. The edges e1 cannot be rented and the edge e2 cannot
be bought. Observe that for the two serial edge e1, e2 to be used, a solution both has to
pay b(e) buy cost and r(e) rent cost for using these edges. This mimics model C.

3. A −→ B: An edge e = (u, v) in B is replaced by by two parallel edges e1, e2 between
u, v (it can be replaced by paths of length 2 if parallel edges are needed to be avoided).
The edge e1 will have rent cost r(e) and the edge e2 will have buy cost b(e). Clearly, if
e2 is bought then there is no need to rent e1. Otherwise, e1 needs to be rented, unless
the (u, v) is not used. This is equivalent to choosing exactly either to rent or to buy e
(but not both).

2 The algorithm

2.1 Reducing the problem to a shallow-light k-Steiner tree problem

We show how to reduce the buy-at-bulk k-Steiner tree problem to a shallow-light k-Steiner
tree problem with a logarithmic loss in the value of the optimal solution. A bicriteria network
design problem [25] (A, B, S) is defined by identifying two objective functions, A and B, and
specifying a membership requirement in a class of subgraphs S. Typically, there is a budget
constraint on the first objective and we seek to minimize the second objective function. This
way, the (diameter, cost, k-Steiner tree) problem is naturally defined as follows: we are given
an undirected graph G(V, E) with terminal set T , an integer k ≤ |T |, diameter bound D,
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and two cost functions b : E −→ R
+ and r : E −→ R

+ on the edges. Our goal is to find a
minimum b-cost (i.e. minimizing the cost under the b function) Steiner tree with k terminals
in G such that the diameter of the tree under the r-cost is at most D. We can assume that
a particular terminal s ∈ T , called the root belongs to the solution (we can simply guess this
node s). Therefore, we are solving the rooted shallow-light k-Steiner tree.

We say an algorithm is an (α, β)-approximation for an (A, B, S)-bicriteria problem if in
the solution produced the first objective (A) value is within factor at most α of the budget
and the second objective (B) value is at most β times the minimum for any solution that is
within the budget on A. Marathe et al. [25] gave an (O(log n), O(logn))-approximation for the
(diameter, cost, Spanning tree) problem. We will give an (O(log2 n), O(log4 n))-approximation
for the (rooted) k-Steiner tree problem. Then we show how we can use this as a subroutine
to obtain an O(log5 n)-approximation for the (rooted) buy-at-bulk k-Steiner tree problem.

First note that by doing a binary search:

Observation 2.1 We can assume we know the value of an optimum solution. Let OPT
denote this value.

Lemma 2.2 If there is an (α, β)-approximation for the shallow-light rooted (diameter, cost,
k-Steiner tree) problem then we have an O((α + β) log n)-approximation for (rooted) buy-at-
bulk k-Steiner tree problem

Proof: The algorithm for this lemma is inspired by the algorithm of Awerbuch et al. [4]
for (standard) k-MST. Consider the input graph G(V, E) for the buy-at-bulk k-Steiner tree
problem. By Observation 2.1 we can assume we know OPT (the value of optimum solution).
We mark every vertex with r-distance larger than OPT to s as “to be ignored”. Clearly these
vertices cannot be part of any optimal solution. Then, while k > 0 we do the following steps:

1. Run the (α, β)-approximation algorithm A for the minimum b-cost k
2
-Steiner tree with

diameter (under r-cost) bounded by D = 4OPT
k

.

2. Mark all the terminals (except the root) of the solution of A as Steiner nodes.

3. Decrease k by the number of new terminals found in this stage (i.e. k/2).

Since the root belongs to all the (sub)trees found in each iteration of the while loop, at
the end we will get a connected graph (tree) which spans k terminals. Now we upper bound
the cost of the solution. Note that the number of iterations of this algorithm is O(log k).

Consider an optimal solution H∗ for buy-at-bulk k-Steiner tree instance and iteratively
delete every leaf of H∗ with r-distance to s (the root) larger than 2OPT

k
. We delete at most k

2

terminals. Otherwise, more than k/2 terminals have rent distance at least 2OPT/k and this
is a contradiction as the total cost is more than OPT . So we are left with a tree containing
k
2

terminals in which the r-diameter is at most 4OPT
k

. Thus the first iteration of the while
loop finds a k

2
-Steiner tree H1 with b-cost at most β · OPT and r-diameter at most 4α·OPT

k
.

Similarly, if we delete from (original) H∗ every leaf with r-distance to s larger than 4OPT
k

then
we delete at most k

4
terminals. Therefore, there are still at least k

4
vertices in H∗ − H1 which

are at distance at most 4OPT
k

from s. By a similar argument and proceeding by induction on
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i (the iteration of the while loop), the algorithm finds a k
2i -Steiner tree Hi with b-cost at most

β ·OPT and r-diameter at most 2×2iα·OPT
k

. Overall, after at most O(log k) iterations, we have
a tree with k terminals whose total cost is at most O((α + β)OPT log k).

2.2 Algorithm for shallow-light (diameter, cost, k-Steiner tree)

In this subsection we present an (O(log2 n), O(log4 n))-approximation for the (rooted) shallow-
light k-Steiner tree problem. Our algorithm for shallow-light k-Steiner tree is inspired by the
algorithms of [25] (for shallow-light Steiner tree) and [4] for the (standard) k-MST problem.

The input consists of a graph G(V, E) with two edge costs b and r, D is a bound on the
diameter under the r cost, T ⊆ V is the set of terminals including the root s, k is the number
of terminals we wish to cover, and ε is an error parameter. In this section, whenever we talk
about the cost of a path or the cost of a tree we mean the cost under b-cost and whenever we
say length or diameter we mean under r-cost.

First we transform the input graph G into another graph, Gc, which we call the completion
of G by doing the following. For every pair of vertices u, v ∈ V we find a (1 + ε)-approximate
minimum cost u, v-path under b-cost with length (under r-cost) at most 2D. Let p∗(u, v)
denote this cost. For this, we use the FPTAS algorithm of Hassin [22] which runs in time
O(|E|(n2

ε
log n

ε
)). We add a new edge between u and v with b-cost equal to the cost of p∗(u, v)

and r-cost equal to the length of p∗(u, v). Later on, in any solution of Gc that uses this new
edge, we can replace it with path p∗(u, v) in G at no extra cost and without increasing the
length (diameter). Therefore:

Lemma 2.3 If we have a bicriteria solution of cost X and diameter Y in Gc then we can
find (in polynomial time) a bicriteria solution of cost at most X and diameter at most Y in
G.

By this lemma, and since G ⊆ Gc, it is enough to work with graph Gc. Note that we can
delete every vertex which is not connected to s by a new edge (because the r-distance of it to
s is larger than D). So all the vertices are at distance at most D from s and so are at distance
at most 2D from each other in G. Thus we can assume Gc is a complete (multi)graph.

Before presenting the algorithm, we should note that the “rooted” and “un-rooted” ver-
sions of this problem are reducible to each other at the cost of a constant factor loss in the
approximation ratio. Clearly, if we can solve the rooted version we can also solve the un-rooted
version by simply trying all the terminals as the root and choose the smallest solution. On
the other hand, if we have an algorithm for the un-rooted version we can do the following.
Delete every node v ∈ Gc for which the cost of edge sv is larger than (1 + ε)OPT . Solve the
un-rooted problem and if the solution does not contain the root v then add the root. This
is done by arbitrarily adding an edge from v to some node in T . This will increase the cost
by at most (1 + ε)OPT and the diameter by at most 2D. Hence, it is enough to present an
approximation algorithm for “un-rooted” shallow-light k-Steiner tree.

We focus on graph Gc and give an algorithm which finds a shallow-light k
8
-Steiner tree in it

that has cost at most O(log3 n ·OPT ) and diameter at most O(D log n). Using this algorithm
iteratively similarly to the algorithm of Lemma 2.2, in O(log n) rounds, we find a shallow-light

7



k-Steiner tree with cost at most O(log4 n · OPT ) and diameter at most O(D log2 n).

The algorithm runs in rounds and in every round we may have several iterations (of some
loop). At every round we start with every terminal as a singleton connected component.
Initially, every terminal is the center of its own component. In every iteration of a round we
perform a test. Each test has one of two outcomes: “success” or “failure”. If the test is a
successes, we merge two connected components and go to the next iteration. A single failure
in a round causes the entire round to be a failure (so we end that round). After a failed round
some of the terminals are deleted, we exit the loop, and start the next round of algorithm
with a new (smaller) set of terminals. As stated above we initialize again each terminal to be
a component of size 1, ignoring any mergers that were done in the last failed round.

Our goal is to find a connected component (tree) containing at least k/8 terminals. We say
that a round is failure free if it has no failures at all. The number of connected components is
reduced by 1 by every test that ends with successes. Thus, a failure free round will eventually
end with a connected component with at least k

8
terminals. Clearly, either we fail at every

round, in which case the number of terminals turns eventually empty, or we will eventually
have a failure free round. We later show that the first case above cannot happen.

Assume that in round i of the algorithm the number of terminals is ti, where t1 = t = |T |.
At each iteration of the loop in each round i, we divide the connected components into O(log ti)
clusters, where cluster j contains the connected components whose number of terminals is
between ti/2j+1 and ti/2j, for j ≥ 3.

Definition 2.1 In every iteration of round i (for every i ≥ 1), a cluster is called light if the
total number of terminals in the union of the connected components in that cluster is at most

ti
2 log ti

. Otherwise, it is called heavy.

Lemma 2.4 In every iteration of round i (for every i ≥ 1) there are at least ti
2

terminals in
heavy clusters.

Proof: There are at most log ti light clusters, and therefore they have a total of at most ti
2

terminals. The rest of the terminals must belong to heavy clusters.

In any round i and any iteration of this round, we compute the light and heavy clusters.
Assuming that there are at least k

2
terminals remaining in Gc, we show (in the Main Lemma)

that there is a heavy cluster with at least two connected components. Then we pick such a
heavy cluster arbitrarily, say cluster Cj. Assume that all the components of Cj have between
p and 2p terminals where p = ti/2j+1. For every two components in Cj we consider the
edge connecting their centers (recall that since we are in Gc this edge is obtained from the
approximate minimum cost path with length at most 2D between those vertices in G). Two
connected components ca and cb in Cj are called reachable if the cost of the edge connecting
their centers is at most 16 log2 t · OPT · p/k. We test to see if there is a pair of reachable
connected components in Cj. If there is such a pair of components, then we merge the
components by adding the edge between their centers and then charge every node in the two
components by 8 log2 t ·OPT/k. Since there are at least 2p vertices in ca and cb combined, the
total charge is enough to pay for the cost of connecting the two components. We make one of
the centers of ca or cb (arbitrarily) to be the new center of the new (merged) component and
proceed to the next iteration of this round.
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Otherwise, if our test fails because there are no two reachable centers in Cj (i.e. the cost
of every edge between the centers of components in Cj is larger than 16 log2 t · OPT · p/k)
then we delete all the centers of the connected components of Cj (which are all terminals).
Assuming that Cj has xj components, we set ti+1 = ti − xj, and then exit the loop and start
round i + 1. Below is the formal description of the algorithm.

1. Set the counter i (for round) to 1 and let t1 = t = |T |.

2. Every terminal is a connected component by itself and is the center of that component.

3. Repeat until there is a connected component with k
8

terminals:

(a) Compute light and heavy clusters.

(b) Throw away (ignore) every heavy cluster which has only one connected component
and pick an arbitrary heavy cluster, say Cj, which has at least two components.

(c) If there are two components ca and cb in Cj such that the cost of the edge connecting
their centers is at most 16 log2 t · OPT/k then:
/* The test succeeded */

i. Merge the components by adding that edge.

ii. Select arbitrarily one of the two centers as the center of the merged component

iii. Charge every node in the two components by 8 log2 t · OPT/k.

iv. Make one of the two centers the center of the new (merged) component and
goto step (a).

(d) Otherwise, /* The test failed */

i. Delete all the centers of components of Cj and reset the charges of all nodes
to 0.

ii. Set ti+1 = ti − xj where xj is the number of components of Cj.

iii. Set i = i + 1, exit this loop and goto Step 2.

Lemma 2.5 In any round i ≥ 1, every component participates in at most O(log n) merger
operations.

Proof: Each time a component participates in a merger the number of terminals of the
components it belongs to is multiplied by at least 3

2
. This follows as the size of the large

component is at most 2p for some integer p and of the smaller one at least p. Therefore there
are at most O(log n) (or more precisely O(log k)) iterations involving that component.

Lemma 2.6 In any round i ≥ 1 of algorithm, for every component ca that is obtained from
α merge operations, the length (under r-cost) between the center of ca and any other node in
ca is at most 2αD.

Proof: The proof is by induction on α and noting the fact that whenever we merge two
components the length of the edge we add (between the centers) is at most 2D.

Corollary 2.7 In any round i ≥ 1, every component has diameter at most O(D log n), always.

Proof: Follows from Lemmas 2.5 and 2.6.
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Lemma 2.8 In any round i ≥ 1, every terminal is charged at most O(log n) times and the
total charge of every terminal is O(log3 n · OPT/k).

Proof: Recall that every time a terminals is charged, the number of terminals in its new
(merged) cluster grows by at least a 3/2 factor. Thus, each terminal participates in at most
O(log n) mergers before we find a component with k

8
terminals or before the round fails

(after which the charges are all reset to zero). Furthermore, each time a terminal is charged
8 log2 t ·OPT/k. So the total charge of every terminal at any given time is O(log3 n ·OPT/k)

By this lemma, if the algorithm terminates with a k
8
-Steiner tree then the cost of the tree

is at most O(log3 n · OPT ). Also, by Corollary 2.7 the diameter is at most O(D log n). Thus
we only need to argue that the algorithm does find a k

8
-Steiner tree and for that we need to

show that the algorithm terminates before the number of terminals goes down below k
8
. Since

at every failed round the number of terminals is reduced, after at most t rounds the number
of terminals becomes zero unless the algorithm terminates earlier with a feasible solution.
Hence, if we show that the the set of terminals can never be smaller than k

2
then it means that

the algorithm terminates before we have fewer than k
2

terminals. We also need to prove that
we can perform step 3(b) of algorithm (i.e. find a heavy cluster with at least two connected
components). These are proved in our main lemma, below. For that, we use the following
pairing lemma:

Lemma 2.9 [25] Let T be an arbitrary tree and let v1, v2, . . . , v2q be an even number of vertices
in T . There exists a pairing of the vi (into q pairs) so that the unique paths joining the
respective pairs are edge-disjoint.

In the following lemma, we claim some properties on terminals not previously discarded by
some failed round. We fix some optimal tree OPT and use that tree for proving these claims.
As some of the terminals in OPT may have been deleted by the failed rounds, the original
OPT as defined over G does not exist any longer (the removal of deleted terminals may have
destroyed that tree). Nevertheless, we can still use this original OPT to prove properties on
Gc.

Lemma 2.10 (Main Lemma) At the beginning of any round i ≥ 1, if the number of termi-
nals is ti ≥ k

2
then:

1. There is at least one heavy cluster with at least two connected components (so we can
perform step 3(b) of the algorithm).

2. The number of terminals in round i + 1 (if there is such a round) is at least k/2.

Proof:

1) By Lemma 2.4 there are at least ti
2
≥ k

4
terminals in heavy clusters. Throw away every

cluster with only one connected component. These components have a total of at most
k
8

+ k
16

+ . . . < k
4

terminals. Therefore, there is at least one heavy cluster with at least two
components.

2) We prove that the number of remaining terminals is always at least k
2
. We use OPT to

refer to both an optimal solution and the cost of that optimal solution. Let ki be the number
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of terminals of OPT that are in Gc at the beginning of round i; so k1 = k. Note that always
ki ≤ ti. Suppose at some iteration of round i and for some heavy cluster Cj chosen by the
algorithm, no pair of centers are reachable to each other; so we have to delete all the centers
of Cj from Gc. Assume that all the components of Cj have size between pi and 2pi.

Claim 2.11 The number of centers of components of Cj that belong to OPT is at most
k/(8pi log2 t).

Proof: Otherwise, using the pairing lemma (Lemma 2.9), we can pair those centers in OPT
such that the paths connecting the pairs in OPT are all edge-disjoint. By averaging, there is
at least one path with cost at most 16pi log2 t ·OPT/k contradicting our assumption (because
if there was such a path we would have merged the two components).

Therefore, by Claim 2.11, the number of terminals of OPT in Gc goes down by a factor
of at most 1 − 1/(8pi log2 t). On the other hand, since Cj is a heavy cluster and we have at
most 2pi nodes in every component of Cj, there are at least ti/(2 log ti)/(2pi) = ti/(4pi log ti)
components in Cj. This is also a lower bound on the number of centers (terminals) that are
deleted in round i. Therefore, the number of terminals in Gc goes down by a factor of at least
1 − 1/(4pi log ti). Hence:

ki

(

1 − 1

8pi log2 t

)

≤ ki+1 ≤ ti+1 ≤ ti

(

1 − 1

4pi log ti

)

≤ ti

(

1 − 1

4pi log t

)

We now use the following two inequalities:

If x ≤ 1/2, then 1 − x ≥ exp(−2x) (2)

and
1 − x ≤ exp(−x) (3)

Using Inequality (2) and since 1/(8pi log2 t) < 1/2, it follows that 1 − 1/(8pi log2 t) ≥
e−1/(4pi log2 t). On the other hand from Inequality (3): (1 − 1

4pi log t
) ≤ e−1/(4pi log t). Thus

k · exp

(

−
i
∑

`=1

1

4p` log2 t

)

≤ k
i
∏

`=1

(

1 − 1

8p` log2 t

)

≤ ki+1 ≤ ti+1

≤ t
i
∏

`=1

(

1 − 1

4p` log t

)

≤ t · exp

(

−
i
∑

`=1

1

4p` log t

)

.

Note that both sequences ti and ki are decreasing but at different rates and ti is lower bounded
by ki.

Note that
∑i

`=1
1

4p`

≤ log t · ln t which is O(log2 t), because for this value ti+1 ≤ t ·e− ln t = 1.

Plugging this upper bound on
∑i

`=1
1

4p`

in the ki+1 lower bound we get that ki+1 ≥ k/2.

Therefore, kj is always at least k/2 and so tj ≥ kj ≥ k/2.
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