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Abstract

We consider the non-uniform multicommodity buy-at-bulk network design problem. In this
problem we are given a graph G(V,E) with two cost functions on the edges, a buy cost b : E −→
R

+ and a rent cost r : E −→ R
+, and a set of source-sink pairs si, ti ∈ V (1 ≤ i ≤ α) with each pair

i having a positive demand δi. Our goal is to design a minimum cost network G(V,E ′) such that
for every 1 ≤ i ≤ α, si and ti are in the same connected component in G(V,E ′). The total cost of
G(V,E′) is the sum of buy costs of the edges in E ′ plus sum of total demand going through every
edge in E′ times the rent cost of that edge. Since the costs of different edges can be different, we say
that the problem is non-uniform. The first non-trivial approximation algorithm for this problem
is due to Charikar and Karagiozova (STOC’ 05) whose algorithm has an approximation guarantee
of exp(O(

√
logn log logn)), when all δi = 1 and exp(O(

√
logN log logN)) for the general demand

case where N is the sum of all demands. We improve upon this result, by presenting the first
polylogarithmic (specifically, O(log4 n) for unit demands and O(log4N) for the general demands)
approximation for this problem. The algorithm relies on a recent result [12] for the buy-at-bulk
k-Steiner tree problem.
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1 Introduction

The non-uniform multicommodity buy-at-bulk problem is defined as follows. An instance of the
problem is an undirected graph G(V,E) and a collection of source-sink pairs T = {(si, ti)|si, ti ∈
V, 1 ≤ i ≤ α}. We have two independent non-negative cost functions on the edges, a buy cost
b : E −→ R

+ and a rent cost r : E −→ R
+. Since r(e) and b(e) of different edges can be different we

use the term non-uniform, otherwise we have the uniform version in which the costs along the edges
are identical. There is a demand δi ∈ Z

+ associated with every pair si, ti. A feasible solution for the
non-uniform multicommodity buy-at-bulk instance is a subset E ′ ⊆ E such that for every i, si and
ti belong to the same connected component in G′(V,E′). Our goal is to find a feasible solution with
minimum total cost, where the cost of a solution G′(V,E′) is the sum of its buy cost, denoted by
B(E′), and its rent cost, denoted by R(E ′). Here B(E ′) and R(E′) are defined as

R(E′) =
∑

e∈E′

f(e) · r(e)

where f(e) is the total amount of demands routed along edge e, and

B(E′) =
∑

e∈E′

b(e).

The total cost of solution E ′ is ψ(E′) = B(E′) + R(E′). Equivalently, R(E ′) is equal to
∑

i δi ·
distG′(si, ti) where the distance here is with respect to r(e)’s. We also use R(G′), B(G′), and ψ(G′) for
R(E′), B(E′), and ψ(E ′), respectively. This model of rent and buy was first introduced by Meyerson
et al. [15] who called it the cost-distance model. There are two other models one can consider: in
the unique-cost model, each edge is given with either a rent cost or a buy cost; in the rent or buy
model each edge has both a rent cost and a buy cost, but it should be decided whether we buy the
edge or rent it (but not both). In [12], it is shown that all these three models, rent and buy, unique
cost, and rent or buy are equivalent. In the single-sink (single-source) version of the problem, all
pairs of T have the same sink (source). Usually the algorithms for the single-sink version and the
single-source version are symmetric.

Meyerson et al. [15] obtained an O(log n)-approximation algorithm for the non-uniform single-
sink multicommodity buy-at-bulk problem. Charikar and Karagiozova [4] obtained an
exp(O(

√
log n log log n)) approximation for the non-uniform multicommodity buy-at-bulk problem for

the special case of unit demands (and exp(O(
√

logN log logN))-approximation factor for the general
demands case whereN is the sum of all demands). Both papers pose as one of the main open problems
the question of existence of a polylogarithmic approximation algorithm for the non-uniform multi-
commodity case. In this paper we answer this open problem affirmatively. Based on a recent result
[12] for the buy-at-bulk k-Steiner tree problem, we obtain the first polylogarithmic approximation
algorithm for the non-uniform multicommodity buy-at-bulk problem. The approximation factor of
our algorithm is O(log4 n) for the unit demands case and O(log4N) for the general demands case.

1.1 Previous work

In the design of communication networks it is required to decide where one should buy and where
one should rent bandwidth to satisfy the demands. The cost of the bandwidth exhibits significant
economies of scale and thus is minimized if we aggregate traffic into large backbone links. Problems
with rent and buy considerations are motivated by practical applications. They have been studied
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for a long time now in both Operation Research and Computer Science. See Salman et al. [16] for
some early work in this area.

The classic generalized Steiner tree or Steiner forest problem is a special case of the multicom-
modity buy-at-bulk problem when all rent costs are zero. The best approximation algorithm for this
problem is a 2 − 1

n−1 approximation algorithm (n is the number of vertices) due to Goemans and
Williamson [8]. The best approximation ratio for the uniform multicommodity buy-at-bulk problem
is in O(log n) due to Awerbuch and Azar [2], Bartal [3], and Fakcharoenphol et al. [7]. Various special
cases of the problem admit constant factor approximation algorithms. Kumar et al. [14] and Gupta
et al. [10] obtain constant factor approximation algorithms for the case in which one can either rent
capacity on each edge at a per unit cost of µ or buy unlimited bandwidth at cost M . Also for the
uniform single-sink case constant-factor approximations are known via randomized combinatorial
algorithms [9, 11] and an LP rounding approach [17].

Meyerson et al. [15] were the first to consider the non-uniform version of the problem and pre-
sented a randomized O(log n)-approximation algorithm for non-uniform single-sink multicommodity
buy-at-bulk. The algorithm of Meyerson et al. [15] was later derandomized using an LP-based ap-
proach by Chekuri, Khanna, and Naor [5]. As mentioned earlier, the only non-trivial result for the
general multicommodity buy-at-bulk problem is due to Charikar and Karagiozova [4]. It seems that
most of the standard tools previously used for the uniform or rooted buy at bulk multicommodity
version fail for the general multicommodity non-uniform buy at bulk problem. For example, for the
uniform case, Awerbuch and Azar [2] used Bartal’s result of embedding a metric into probabilistic
trees [3]. As observed earlier [4, 15], the non-uniform version seems less amenable for using this tool
because the rent function and the buy function are completely unrelated. In addition since we have
multiple sources and sinks, the optimal solution can be quite complex.1

The hardness of buy-at-bulk network design problems is also studied in the literature. Andrews [1]
showed that unless NP ⊆ ZPTIME(npolylog n) the non-uniform multicommodity buy at bulk prob-
lem has no O(log1/2−ε n)-approximation for any ε > 0. Under the same assumption, the uniform
variant admits no O(log1/4−ε n)-approximation for any constant ε > 0. For the non-uniform single-
sink case, Chuzhoy et al. [6] show that the problem cannot be approximated better than Ω(log log n)
unless NP ⊆ DTIME(nlog log log n).

1.2 Our contribution and technique

We present an O(log4 n)-approximation for the unit demands non-uniform multicommodity buy at
bulk problem. For general demands the ratio is O(log4N) where N is the total demands.2

This performance guarantee does not seem to be the best ratio achievable for this problem but
is the first polylogarithmic approximation for this problem and is much closer to the current best
lower bound Ω(log1/2−ε n).

Our techniques: The algorithm mainly uses a recent result [12] regarding shallow-light trees
(described below) followed by an analysis that relies on clustering techniques. The shallow-light
k-Steiner buy at bulk problem is defined as follows. We are given an undirected graph G(V,E), a
collection T of terminals containing a root s, a number k, and a diameter bound D. In addition
two cost functions on the edges, called buy and rent, are also given. A k-Steiner tree is a tree that

1The optimal solution can have cycles. Consider a triangle graph G where each edge has buy cost 1 and rent cost
2 and we have a source-sink pair for each edge.

2Using slight modifications of our algorithm and an adapted version of the result in [12] we can get an O(log3
n·log N)-

approximation. As this factor is still dependent on N we only present the simpler O(log4
N) ratio.
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contains at least k terminals. The goal is to find an s-rooted k-Steiner tree that has rent-diameter at
most D, and among all such subtrees, find the one with minimum buy cost. A (ρ1, ρ2)-approximation
algorithm for the shallow-light k-Steiner buy at bulk problem finds an s-rooted k-Steiner tree with
rent diameter at most ρ1 ·D and buy cost at most ρ2 · B with B being the optimum buy cost for a
k-Steiner tree of rent diameter D.

The organization of this paper is as follows. We start with some preliminary definitions and results
in Section 2. Then we present some structural properties of an optimum solution in Section 3. These
properties will be used in the analysis of our algorithm. The approximation algorithm and its analysis
for non-uniform multicommodity buy-at-bulk are presented in Sections 4 and 5. Finally, we present
extension of our algorithm for the general demand case and concave edge-cost functions in Section 6.

2 Preliminaries

Let I denote the instance and T the set of source-sink pairs. Throughout we denote by α be
the number of source-sink pairs. The variable α′ is used to denote the number of uncovered pairs
remaining at some stage of the algorithm.

We present the algorithm for the slightly simpler case that the source-sink pairs are all distinct
by merging the demands of the pairs that have the same source and sink vertices. Hence we may
assume that α < n2/2. We further assume that the demands δi are 1, i.e., every source needs to
send a single unit of demand to its sink. We explain how to handle the general case after we present
the unit-demand case.

Definition 2.1 Let E ′ be a subset of the edges. The distance distE′(u, v) is the rent distance between
u, v in the graph induced by E ′.

Notation 2.1 Let OPT denote the solution of minimum total cost for the given instance I. Its cost
is denoted by opt.

We assume opt, optR, and optB, opt = optB +optR are known to the algorithm with opt, optR,
and optB being the optimum total cost, rent cost, and buy cost, respectively. We can binary search
for these values. Also, we can only search for opt and use it as a bound for both optR and optB .
While the approximation ratio is not affected, the solution can be qualitatively worse.

If the graph G′(V,E′) induced by a subset E ′ of edges contains an si to ti path, we say that E ′

routes or covers the pair si, ti. Let T ′ be a strict subset of T not containing all source-sink pairs.

Definition 2.2 Suppose that G(V,E ′) routes all the pairs of T ′ but no other pair. The internal cost
of E′ is

ψT ′(E′) = B(E′) +RT ′(E′),

with RT ′(E′) being the sum of rent distances distE′(si, ti) restricted to source-sink pairs of T ′

Pairs that E ′ or G′ do not route (for example if si ∈ G′, ti 6∈ G′) do not influence the internal cost.

We denote by α(G′) (or α(E′)) the number of pairs routed in G′(V,E′). These parameters depend
on T ′ but the term T ′ is omitted for simplicity of the notation.

Definition 2.3 The density of a subset E ′ (subgraph G′) routing T ′ is:

denT ′(E′) =
ψ(E′)

α(E′)
.
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The buy density and rent density are defined by denR(E′) =
∑

si∈T ′ distE′(si, ti)/α(E′) and denB(E′) =
B(E′)/α(G′) respectively.

Pairs si, ti that are not routed by G′ do not affect the density.

We may drop some of the parameters in our notation if they can be deduced from the context.
Unless specified differently all log’s are in base 2. We use the following basic theorem (see e.g., [13]).

Theorem 2.2 Suppose that an algorithm works in iterations and in iteration i it finds and adds to
the partial (infeasible) solution a subset Ei ⊆ E that covers a new subset Ti ⊆ T of pairs. Let ui be
the number of uncovered pairs at the time that Ei is found. If for every i

denTi
(Ei) ≤ f(n) · opt

ui

then the algorithm is an f(n) · (lnn+ 1) ratio approximation algorithm.

3 Structural Properties of an Optimum Solution

Before we present the algorithm, we prove some central lemmas about the structure of the optimum
solution. Consider an optimum solution OPT and let T ′ ⊆ T be the uncovered pairs and let α′ = |T ′|.
Throughout, let Pi be the path between si and ti in OPT.

We rely on the concept of spheres that is defined as follows. The sphere S(v, d) (with center v
and radius d) contains all vertices u so that distOPT(v, u) ≤ d (note that distance is always with
respect to rent). Let S = S(v, d) be a sphere. We say that the pair si, ti belongs to S if every vertex
in Pi belongs to S and write (si, ti) ∈ S. We say that a pair si, ti touches S if it does not belong to
S but at least one vertex of Pi belongs to S. Let T (v, d) be all the pairs that belong to S and let
α(S) = α(v, d) = |T (v, d)|. Let ρ(S) be the number of pairs that touch S. We say that e = (u,w) ∈ S
if both u ∈ S and w ∈ S. Observe that if Pi ∈ S then all the edges of Pi belong to S. The edges
E(S) of S are all the edges that belong to S. Similarly, V (S) are the vertices that belong to S. The
buy value B(S) is defined by B(S) =

∑

e∈E(S) b(e). If Pi ∈ S then the distance distS,OPT(sj , tj) is
the distance between sj , tj in the graph induced by V (S) in OPT. The term R(S) is the sum of rent
distances distS,OPT(sj , tj) over all pairs that belong to S.

Our goal in this section is to show that we can decompose the optimum solution into vertex
disjoint spheres {Si} such that the following holds for the graphs induced by V (Si) in OPT:

(i) for every j so that Pj ∈ Si, distSi,OPT(sj, tj) = O(optR /α
′),

(ii) the total number of pairs that are totally routed inside the spheres is Ω(α ′). Namely,
∑

i α(Si) =
Ω(α′).

(iii) the diameter of sphere is O(log n · optR /α
′),

(iv) the buy density of each sphere is O(optB /α
′),

The following lemmas establish this goal step by step.

Lemma 3.1 There is a subset T ′′ ⊆ T ′ of source-sink pairs such that for every pair si, ti ∈ T ′′

distOPT(si, ti) ≤ 2 optR /α
′, and the number of pairs in T ′′ is α′′ ≥ α′/2.
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Proof: Initially, let T ′′ = T ′. Iteratively, remove all pairs si, ti with distOPT(si, ti) ≥ 2 optR /α
′

from T ′′. Let x be the number of removed pairs. The total rent distance of pairs removed is at most
optR. Thus, x · 2 optR /α

′ ≤ optR. Hence, at least α′′ = α′ − x ≥ α′/2 pairs remain.

The following procedure divides OPT into disjoint spheres. We cannot explicitly build or use these
spheres but they are used in the proof of the algorithm we present later. Below, d(j) = 2j · optR /α

′.
The set T ′′ is the one from Lemma 3.1.

Procedure DECOMPOSITION (OPT)

1. i← 1

2. While T ′′ 6= ∅ Do

(a) Choose some source si

(b) j ← 1

(c) While ρ(S(si, d(j))) > α(S(si, d(j))) set j ← j + 1

(d) Let q be the last index j in Line 2c.

(e) Set Si ← S(si, d(q))

(f) Discard from T ′′ all pairs that belong to or touch S(si, d(q))

(g) i← i+ 1

Every sphere Si computed above is called a close sphere. A sphere Si is minimal if for any e ∈ Si

there is at least one pair in Si like sj, tj such that the path Pj ∈ Si contains the edge e; similarly
every v ∈ Si is used by some Pj path, Pj ∈ Si. The Si’s are made minimal by discarding non-required
edges and vertices. From now on, we assume that the spheres Si computed above are all minimal.
We prove some properties for close spheres.

Let V (Si) be all the vertices that belong to Si. We say that Si, Sj are vertex-disjoint if V (Si) ∩
V (Sj) = ∅.

Lemma 3.2 For every two Si, Sj close spheres where i 6= j, V (Si) ∩ V (Sj) = ∅.

Proof: For the sake of contradiction, assume u ∈ Sj∩Si. Then, (by minimality) there are two paths
Pa ∈ Si and Pb ∈ Sj both containing u. Without loss of generality, assume Si was computed before
Sj. As u ∈ Pa and Pa ∈ Si, the vertex u belongs to Si. However, u ∈ Pb as well. Hence, at least
one vertex of Pb belongs to Si. Thus by the definition pair sb, tb either belongs to Si or touches Si.
But this is a contradiction, since pairs that either belong to Si or touch Si are discarded after the
computation of Si ends, and cannot belong to a new sphere (namely to Sj).

The following corollary is immediate from the above lemma.

Corollary 3.3 For any two close spheres Si, Sj and paths Pi ∈ Si and Pj ∈ Sj, Pi and Pj are
edge-disjoint.

Let T1 be the set of all pairs that belong to close spheres, that is:

T1 =
⋃

close sphere Si

T (Si).

Let d(Si) be the radius of Si. Namely, d(Si) is the radius stop point for Si in the loop in Line 2c in
Procedure DECOMPOSITION .
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Lemma 3.4 |T1| ≥ α′/4.

Proof: By the inequality in Line 2c in Procedure DECOMPOSITION , when the sphere stops
growing, the number of Si−touching pairs is at most the number of pairs that belong to Si. Hence
among discarded sources, at least a 1/2 fraction belong to some sphere. The lemma follows from
Lemma 3.2 and because T ′′ ≥ α/2 by Lemma 3.1.

Recall that α(Si) = |T (Si)|, i.e., it is the number of pairs sj, tj so that all the edges and vertices
of Pj belong to Si.

Lemma 3.5 There exist a subset S ′ of close spheres such that each Si ∈ S ′ has B(Si)/α(Si) ≤
8 optB /α

′ and for T2 =
⋃

Si∈S′ T (Si) we have |T2| ≥ α′/8.

Proof: Start with S which contains all the close spheres (so T2 ← T1). Remove from S every Si

such that
B(Si)

α(Si)
>

8 optB

α′
.

Let S ′ be the remaining set and T2 denote the set of pairs that belong to spheres in S ′. Observe
that:

∑

Si 6∈S′

8 · optB ·α(Si)

α′
≤

∑

Si 6∈S′

B(Si) ≤ optB .

The last inequality follows as the Si’s are edge-disjoint (Corollary 3.3). This implies that
∑

Si 6∈S′ α(Si) ≤
α′/8. By Lemma 3.4, |T1| ≥ α′/4, and hence the number of non-removed pairs is at least α′/4−α′/8 =
α′/8

Lemma 3.6 For every i, d(Si) ≤ 4 log n·optR /α
′; thus the diameter of Si is at most 8 log n·optR /α

′.

Proof: Every pair sj, tj that is touching Si in one iteration of the while loop in Line 2c will become
a pair included in Si after the radius grows by additional 2 optR /α

′ (i.e., j incremented by 1). This
is because if u ∈ Si and u ∈ Pj , then distOPT(u, sj) + distOPT(u, tj) ≤ 2 · optR /α

′ by Lemma 3.1.

By the condition in Line 2c of DECOMPOSITION , the number of pairs in Si at least doubles
each time one iteration of the while loop in Line 2c is executed (there were at least as many touching
pairs as pairs belonging to Si). Recall that α′ ≤ α < n2/2. Hence, j can not increase more than
log α′ + 1 < 2 log n times. Thus the radius is at most 4 log n · optR /α

′. The bound for diameter
follows too.

From Lemmas 3.1-3.6 we obtain:

Corollary 3.7 The following holds for S ′ and the pairs T2 that belong to them:

1. The cardinality property: |T2| ≥ α′/8.

2. The diameter property: The diameter of every Si ∈ S ′ is at most 8 log n · optR /α
′.

3. The rent-distance property: If Pi ∈ Sj then distE(Sj)(si, ti) ≤ 2 · optR /α
′.

4. The disjointness property: For every pairs i 6= j, Si and Sj are vertex (and also edge) disjoint.

5. The density property: For every Si: B(Si)/α(Si) ≤ 8 · optB /α
′.
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4 The approximation algorithm

Our algorithm relies on the bicriteria k-Steiner tree algorithm of [12]. The following theorem is
immediate from [12]:

Theorem 4.1 [12] There exist two universal constants c1, c2 and a polynomial time algorithm A
for which the following holds. Consider a graph G(V,E) with two cost functions on the edges (buy
b : E −→ R+ and rent r : E −→ R+), a set T ⊆ V of terminals, parameter k ≤ |T |, a root s ∈ T ,
and a bound D (on the diameter). Then A produces a Steiner tree rooted at s containing k other
terminals with (buy) cost at most c2 log4 n · opt and diameter (w.r.t rent) at most c1 log2 n ·D, where
n = |V | and opt is the cost of an optimum k-Steiner tree with diameter bounded by D.

It is easy to see that we can modify this algorithm to approximate the slightly modified problem
of finding an s-rooted Steiner tree (with given diameter bound D), with at least k other terminals
and minimum buy density among all such trees. This is achieved by calling algorithm A of Theorem
4.1 for all values k′ ≥ k and computing the buy density with respect to k ′, and taking minimum
among them. Since we use this modified algorithm frequently, we refer to it in this paper by KMST
algorithm.

We first present an algorithm with approximation ratio O(log5 n). In the last subsection of this
section we show how some small modification to the algorithm, together with a refined use of the
results in [12] yields an O(log4 n)-approximation algorithm.

4.1 Overview of the algorithm

Our algorithm for non-uniform multicommodity buy-at-bulk relies on the KMST algorithm described
above (which finds a low buy density and bounded diameter Steiner tree with at least k terminals).
The main procedure in our algorithm is Procedure PARTIAL that tries to find a partial solution
which routes some new pairs at low density (low buy cost and low rent cost with respect to the
number of pairs that are routed). Once a partial solution is obtained, the pairs routed in this partial
solution are removed from the set of all pairs and the algorithm calls PARTIAL on the remaining pairs
until all the pairs are routed. At the end, the union of all these partial solutions covers all the pairs
and using Theorem 2.2 we show that the total cost of this solution is bounded by a polylogarithmic
factor of the optimum.

Procedure PARTIAL works in rounds. Every round is divided into two phases: the sources phase
and the sinks phase. The sources phase gradually builds a tree Fs that grows in iterations. Any
iteration can be a success or a failure. The sources phase continues as long as there was no failed
iteration. Hence, there is only one failed iteration which ends the sources phase of a round.

After the sources phase ends a single iteration of the sinks phase takes place. This iteration can
be a success, or a failure. If the single iteration in the sinks phase is a success then PARTIAL finds
a partial solution of low density routing a subset of the pairs, and the entire round is successful.
Otherwise the entire round is a failure.

If the round succeeds then the algorithm discards covered pairs and recurses. Otherwise, part
of the pairs are temporarily discarded and a new round of PARTIAL is performed restricted to
undiscarded pairs. A key point is that if all rounds are failures and pairs keep being discarded we
risk discarding all pairs before we cover new pairs. A key claim we prove is that this scenario does
not happen.

Below we describe each of these two phases (in each round of) PARTIAL in more details. Assume
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that at the beginning of the first round we have α′ remaining pairs and all are undiscarded.

Phase 1: Sources phase

Take an arbitrary source s that belongs to one of the remaining pairs. For this phase, only the
sources are terminals (ignore the sinks for now).

We start with growing a Steiner tree (with the sources being terminals) with root s by calling
KMST repeatedly in several iterations. All trees found are contracted into s to create a compound
node. The compound node after iteration j is denoted f j

s . The total number of sources in the
contracted node is denoted by ks. Initially, f 1

s = s and ks = 1. In iteration j, KMST is called with
root f j−1

s and diameter boundD = 16 log n·optR /α
′ and required number of new terminals (sources)

to be covered dks/20e. If in iteration j we find a low buy density Steiner tree F j
s the iteration is a

success. The buy density is low if it is at most 16c2 · log4 n ·optB /α
′. In such case we contract all the

nodes of F j
s into f j−1

s to form f j
s and update ks (the total number of terminals in f j

s ). The union of
all these Steiner trees found so far is kept in Fs (i.e., Fs =

⋃j−1
i=1 F

i
s).

We repeat this process until the first failure. A failure occurs when the buy density of the new
tree found is too large. Let q be the iteration of last success. Then q+1 is the unique failed iteration.
Clearly the buy density of Fs =

⋃q
i=1 F

i
s is bounded by 16c2 · log4 n · optB /α

′. In other words, if ks

is the total number of sources in Fs then B(Fs)/ks ≤ 16c2 · log4 n · optB /α
′.

Phase 2: Sinks phase

The sinks phase works as follows. Let Xs be all the sources in Fs (recall that all of Xs was
contracted into f j

s ). Let Ys be the sinks corresponding to Xs. Our goal in this phase is to route a
constant fraction of the sources located at the root to their corresponding sinks. For this purpose we
call KMST with the root f q

s , Ys as terminals, a number k = d ks

20e of required terminals to be covered
(vertices in Ys), and diameter bound D = 4optR /α

′. Let Ft be the resulting Steiner tree, Yt ⊆ Ys

the sinks in Ft and kt = |Yt|. This single iteration is a success if B(Ft)/kt ≤ 16c2 · log4 n · optB /α
′.

In such a case we have obtained a low cost way of routing a fraction of the sources (contracted to
f j

s ) to their corresponding sinks. We show that Fs ∪ Ft has small rent diameter. This immediately
leads to a small rent density cover of this fraction of the pairs.

Otherwise, we discard (temporarily) all the sources in Fs and their corresponding sinks and try
to find a partial solution in the rest of the pairs (in the next round of PARTIAL).

4.2 The algorithm

The edges of the solution are maintained in the variable SOL. As long as SOL is not a feasible
solution, i.e., there is an unrouted pair we call procedure PARTIAL to find a partial solution routing
some remaining pairs and then discard those pairs from T . For a subtree F , α(F ) is the number of
source-sink pairs that are routed in F . Let T ′ be the set of remaining pairs.

Procedure PARTIAL (T ′)

1. Let T ′′ ← T ′ and α′ = |T ′|

2. While T ′′ 6= ∅ Do

(a) let s be an arbitrary source of a pair in T ′′.
/* Phase 1: sources phase starts here*/

(b) lowdensity ← true
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(c) j ← 1, k1 ← 1, f1
s ← s,

(d) Let Fs ← s and ks ← 1 /* Fs is the Steiner tree found so far */

(e) Let D = 16 log n · optR /α
′

(f) repeat

i. j ← j + 1

ii. Find a Steiner tree F j
s rooted at f j−1

s by calling KMST with parameter kj
s = dks/20e

and diameter bound D; (so cover kj
s new sources)

iii. If B(F j
s )/(kj

s) ≤ 16c2 · log4 n · optB /α
′ then

/* A successful iteration */

Fs ← Fs ∪ F j
s

ks ← ks + kj
s

Contract all of F j
s into a node, call it f j

s

iv. Else lowdensity ← False
/* A failed iteration */

(g) until lowdensity = False

(h) Let X(Fs) be the set of terminals (i.e., sources) in Fs (so ks = |X(Fs)|), and let Ys be
their sinks and let q be the last successful iteration.
/* Phase 2: sinks phase starts here*/

(i) Call KMST with f q
s as the root, Ys as terminals, k = dks/20e, and D = 4optR /α

′. Let
Ft be the resulting Steiner tree and kt = k be the number of terminals in Ft.

(j) If B(Ft)/kt ≤ 16c2 · log4 n · optB /α
′ then return E(Fs) ∪E(Ft) and stop.

/* The round was successful */

(k) Else, discard from T ′′ all the pairs whose sources are in X(Fs).
/* The entire round failed */

The main algorithm is as follows.

Algorithm APPROX

1. SOL← ∅

2. T ′ ← T , guess optB and optR by doing binary search

3. While α′ = |T ′| is non-zero do

(a) X ← PARTIAL(G, T ′)

(b) SOL← SOL ∪X
(c) remove pairs routed in X from T ′

4. Return (SOL)

5 Analysis of the Algorithm

We show that every call to PARTIAL finds some partial solution. After that we analyze the density
of the solution returned and also the total cost of the final solution returned by APPROX.
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Consider one iteration of APPROX and suppose that PARTIAL is called with parameter T ′ (and
α′ = |T ′|). Assume that optB and optR are the buy cost and rent cost of the optimal solution to
the original instance (so optB and optR are fixed during all rounds of APPROX). The closed spheres
are defined based on α′ and optR and we focus only on the spheres in S ′ as stated in Corollary 3.7
under the same notation:

Notation 5.1 The pairs that S ′ included (i.e., those that remain in T2) are called good pairs. The
rest of the pairs are called bad.

One round of PARTIAL is one iteration of the while loop. For every round of PARTIAL, trees
Fs and Ft are the trees obtained at the end of the sources phase and sinks phases, respectively.
Parameters ks and kt as defined in the algorithm are the number of sources in Fs and sinks in Ft,
respectively. A source is good if it belongs to a good pair.

Definition 5.1 A round of PARTIAL is a bad round if the number of good sources in Fs is at most
bks/10c. The rest of the rounds are called good rounds.

For example, if ks < 10 then the round is bad if and only if Steiner tree Fs obtained in Phase 1
contains no good sources at all.

Definition 5.2 A closed sphere Si ∈ S ′ that intersects Fs is called sparse with respect to Fs if Fs

contains at most half the sources of the pairs that belong to Si.

Definition 5.3 A good round is a sparse round if among all good sources in Fs, at least half of them
belong to spheres that are sparse with respect to Fs. Other good rounds are dense rounds.

By this definition, every round is either:

1. A bad round, or

2. A good sparse round, or

3. A good dense round.

We later show that there are no good sparse rounds at all. Only bad rounds or good dense
rounds exist. We also show that if a round is good and dense, then the sinks phase cannot fail and
so PARTIAL finds a partial solution. Thus, to show that PARTIAL does find a partial solution it
remains to show that not all rounds of PARTIAL are bad. This is the first thing we prove below.

Note that as long as at least one source remains undiscarded, PARTIAL will start a new round.
The only way for PARTIAL (and therefore Algorithm APPROX) to fail is if all sources are discarded
before any new pair is covered.

Lemma 5.2 In every call to PARTIAL, either the procedure finds a partial solution and returns or
there is at least one good round before all the pairs are discarded from T ′′.

Proof: Suppose by contradiction that all the rounds are bad and the rounds continue until all the
pairs are discarded from T ′′. Let ki denote the number of pairs discarded in round i, i.e., ki is the
value of ks (number of terminals of Fs) in round i. This implies that:

∑

i

ki = α′.

By cardinality property in Corollary 3.7, the number of good sources is at least dα ′/8e. Since we
assumed each round is bad, in round i at most bki/10c good sources are discarded among the total
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of ki discarded sources. But

dα′/8e =
⌈

∑

ki/8
⌉

≥
∑

i

ki/8 >
∑

i

ki/10.

Since the right hand side upper bounds the number of discarded good sources, the Procedure PAR-
TIAL could not have removed all sources as some good sources remain. Therefore, there must be a
good round.

Lemma 5.3 There are no good and sparse rounds.

Proof: We proceed by contradiction. Consider a good sparse round and let q be the last successful
iteration at line 2f before the single failed (q + 1)th iteration. Therefore Fs =

⋃q
i=1 F

i
s . We derive a

contradiction by showing that the (q + 1)th iteration should have been a success. This is shown by
finding a new set F q+1

s of sources and a Steiner tree with the appropriate diameter bound containing
F q+1

s , that could be added to Fs. Moreover, we show that this tree has buy density at most 16c2 ·
log4 n · optB /α

′.

Let S ′′ ⊆ S ′ be the collection of all the sparse (with respect to Fs) closed spheres that belong to
S ′. If some Si has no intersection with Fs then it is not included in S ′′. The following fact from the
diameter properties of Corollary 3.7 and since each of Si ∈ S ′′ intersects Fs.

Fact 1: All the vertices of V (S ′′) =
⋃

Si∈S′′ V (Si) are within distance 8 log n · optR /α
′ of some

vertex u ∈ Fs.

Since all spheres in S ′′ are sparse, at most half the sources of the pairs in each Si ∈ S ′′ are
actually in Fs (by the definition of a sparse round). Therefore, at least

C =
∑

Si∈S′′

α(Si)

2

sources do not belong to Fs. First we show that C ≥ dks/20e. By the definition of a good round, the
number of good sources in Fs is at least dks/10e. By the definition of a sparse good round at least
1/2 of them are by sparse spheres. Hence, the number of good sources in Fs that come from sparse
spheres (i.e., from spheres in S ′′) is at least dks/20e. Since for each Si ∈ S ′′, the number of sources
of Si that intersect Fs is no more than α(Si)/2, it follows that

C ≥ dks/20e. (1)

Consider the failed iteration q+1. Let E(S ′′) be the set of edges of the spheres in S ′′ and compute
the shortest path tree rooted at f q

s which is obtained by taking the shortest path (with respect to
rent) from f q

s to every node in every Si ∈ S ′′. By Fact 1, we obtain a tree with diameter at most
16 log n · optR /α

′ (since every node in Si is at distance at most 8 log n · optR /α
′ from f q

s ) and by
Inequality (1), it contains at least d ks

20e new sources. Let Hq+1
s denote this tree. Thus in iteration

j = q + 1 of the repeat loop in Phase 1, there is a Steiner tree H q+1
s (over E(S ′′)) with dks

20e sources
with diameter at most D = 16 log n · optR /α

′. By the density and disjointness property of Corollary
3.7 the density of Hq+1

s is at most
∑

Si∈S′′ B(Si)
∑

Si∈S′′ α(Si)/2
≤ 16 · optB

α′
.

Since the buy density of the Steiner tree returned by KMST algorithm is at most a factor c2 log4 n
larger than buy density of Hq+1

s , the buy density of the tree F q+1
s that the algorithm finds is at most
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16c2 · log4 n · optB

α′ . Therefore, the buy density of F q+1
s is no larger than 16 · c2 · log4 n · optB

α′ and thus

we should have added F q+1
s to Fs and the iteration should have not failed.

Lemma 5.4 If the round is good and dense, the sinks phase finds a low density tree and so PARTIAL
finds a partial solution.

Proof: If a round is good, there are at least dks/10e good sources in Fs. If it is a good and dense
round then at least dks/20e good sources of Fs belong to dense spheres Si. Let H be the set of these
good sources (good sources in dense spheres). Define S ′′ ⊆ S ′ to be the set of dense spheres that
intersect Fs. For every si ∈ H, its distance to ti in E(S ′′) is at most 2 optR /α

′ (by the rent-distance
property of Corollary 3.7). Thus, this is also a bound on the distance from f q

s to ti. Hence, after
E(S ′′) is added, the shortest path tree from f q

s to all the sinks of si ∈ H has radius 2 ·optR /α
′. This

gives a tree with diameter at most 4 · optR /α
′ which is the appropriate bound. The buy density of

this tree is at most
∑

Si∈S′′ B(Si)/|H|. Since all Si ∈ S ′′ are dense,
∑

Si∈S′′ α(Si)/2 ≤ |H|. This
implies that

∑

Si∈S′′ B(Si)

|H| ≤
∑

Si∈S′′ B(Si)
∑

Si∈S′′ α(Si)/2
≤ 16. optB /α

′, (2)

where the last inequality follows form the density property of Corollary 3.7. Therefore, there is
a Steiner tree containing f q

s and the sinks of H with diameter bound 4 optR /α
′ and buy density at

most 16 optB /α
′. Since |H| ≥ dks/20e, it follows that the sinks phase must find a Steiner tree with

the required bounds and thus PARTIAL finds a partial solution.

Corollary 5.5 Every call to PARTIAL covers some source-sink pairs.

Proof: By Lemma 5.2, before PARTIAL discards all sources, there must be at least one good round.
By Lemma 5.3, there are no good and sparse rounds. Thus there exists at least one good dense round.
By Lemma 5.4 such a round must succeed.

As we can always cover some uncovered pairs by calling PARTIAL, when Algorithm APPROX
terminates SOL is a feasible solution. It remains to analyze the density of partial solutions.

Lemma 5.6 In every call to PARTIAL, the buy density of the partial solution returned is at most
O(log4 · optB /α

′) and the rent density is at most O(log4 · optR /α
′).

Proof: In Phase 1, the buy density of Fs is at most O(log4 · optB /α
′). This is explained as follows.

Since every new tree added to Fs has density at most O(log4 n · optB /α
′), this bounds the density

of Fs as well. But this is only with respect to the number of sources ks in Fs which can be different
from the number of pairs covered. However, the number of pairs covered is at least dks/20e and so
the density with respect to covered pairs is only affected by a constant. In Phase 2, the buy density
of Ft is also at most O(log4 n · optB /α

′). Hence the total buy density is at most O(log4 · optB /α
′).

Now we bound the rent density. First consider Phase 1 (sources phase). By the property of
Theorem 4.1, the rent diameter of each Steiner tree F i

s found in each iteration i is at most c1 ·
log2 nD = 16c1 · log3 n · optR /α

′. Thus the total rent diameter of Fs, denoted by rs, is at most
rs ≤ 16 · c1 · q · log3 n · optR /α

′, where q is the last successful iteration. Since in every iteration
of the repeat loop, the number of sources in Fs is multiplied at least by 21/20, the number of
iterations (and therefore q) is in O(log n). Thus rs = O(log4 n · optR /α

′). The diameter of Ft is
at most O(log2 n · optR /α

′) by the bound D passed to KMST in Phase 2. In total the diameter is
O(log4 n · optR /α

′). Hence, if we cover q pairs using Fs and Ft then the total rent density is at most
q · O(log4 n · optR /α

′)/q which is O(log4 · optR /α
′).
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Theorem 5.7 The approximation ratio of Algorithm Approx is O(log5 n).

Proof: Follows from Lemma 5.6 and Theorem 2.2.

5.1 Improving the approximation ratio to O(log4
n)

In this section we describe how some simple modifications in Algorithm APPROX will reduce the
approximation factor to O(log4 n). The main source of this saving comes from using a refined version
of the KMST algorithm described below.

The algorithm of [12] for bicriteria k-Steiner tree (Theorem 4.1) works by calling O(log n) times
a subroutine which finds a k

8 -Steiner tree. Let’s call this subroutine sub-KMST. The k
8 -Steiner tree

found in each call to sub-KMST has diameter bound at most d1 · log n ·D and the buy cost is at most
d2 · log3 n · opt, for some universal constants d1, d2 > 0. In APPROX, instead of calling KMST we
call sub-KMST (which has better approximation ratio both for buy cost and rent diameter bound).
We also have to make the following changes:

• Line 2(f)iii in the sources phase changes to:
Let qj

s be the number of terminals in F j
s (so qj

s ≥ kj
s/8);

If B(F j
s )/(qj

s) ≤ 16× 8 · d2 · log3 n · optB /α
′ then

Fs ← Fs ∪ F j
s

ks ← ks + qj
s

Contract all of F j
s into f j−1

s to form f j
s

• Line 2j in the sinks phase changes to:
If B(Ft)/kt ≤ 16× 8 · d2 · log3 n · optB /α

′ then return E(Fs) ∪E(Ft) and stop.

The analysis of the algorithm follows the same lemmas. In particular, we first show that there
is at least one good round (as in Lemma 5.2). Then we prove that there are no good and sparse
rounds. For that, in the proof of Lemma 5.3, Steiner tree F q+1

s that we find has at least 1
8 · dks

20e
terminals. So its buy density is at most 16 · optB

α′ × 8d2 · log3 n. Similarly, in Lemma 5.4 the density
of tree Ft is at most 16× 8 · d2 log3 n · optB /α

′. Therefore, we save a factor O(log n) in the analysis
of Lemma 5.6 and thus in the approximation ratio of APPROX.

6 Discussion and open problems

General demands: For the case of general demand case we can easily get anO(log4N)-approximation
as follows. For every pair si, ti with demand δi > 1, replace it with δi new pairs, with sources
s1i , . . . , s

δi

i and sinks t1i , . . . , t
δi

i , where all sj
i ’s are connected to si and all tji ’s are connected to ti with

zero buy and rent cost edges (note that we can just simulate this without actually adding any new
nodes). It is an interesting question we are still working on to devise an algorithm of ratio indepen-
dent of N . We can actually get O(log3 n · logN)-approximation ratio with a slight modification of
the KMST algorithm. Since in any case the ratio still depends on N , details are omitted. Moreover,
it seems to us that the general demand case might admit a polylogarithmic in n approximation. Our
results in this direction are preliminary and may be reported separately.
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Concave functions: In another variant of the multicommodity buy-at-bulk network design prob-
lem that has been considered before (see e.g. [1, 4, 15]) instead of two buy and rent costs on each
edge, we have a function fe : Z

+ → R
+ on each edge e that gives the cost fe(x) of transporting

demand x along e. In addition we also assume that fe exhibits economies of scale, i.e., it is concave
monotone and fe(0) = 0. Our aim is to route all the demands while minimizing

∑

e fe(xe) where
xe is the amount routed along edge e. Note that xe’s are non-negative integers. As it is known
previously [15], we can compute a tight approximation of each concave function fe by viewing it as
the minimum (at any demand passing through an edge) of a series of lines of decreasing slope and
increasing y-intercept. Now this model can be interpreted as our rent and buy model by viewing
the y-intercept of a line as the buy cost and its slope the rent cost. Thus we can simulate concave
function fe for each edge e in the original graph by providing many parallel edges in replacement of
e each with its (different) buy and rent costs.

An obvious problem left open is closing the gap between the upper and lower bound on approx-
imability of non-uniform multicommodity buy-at-bulk. At the moment, neither of these bounds (our
polylogarithmic approximation factor, nor the sublogarithmic hardness result of [1]) seem to be tight.
As we pointed out above an open problem we hope to address in a subsequent report is designing a
polylogarithmic in n approximation factor for the general demand case.
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