Electronic Collogquium on Computational Complexity, Report No. 9 (2006)

Evaluating Monotone Circuits on Cylinders, Planes and
Tori

Nutan Limaye, Meena Mahajan, Jayalal Sarma M.N.
The Institute of Mathematical Sciences, Chennai 600 113, India.

Email: {nutan,meena, jayalal}@imsc.res.in

January 10, 2006

Abstract

We re-examine the complexity of evaluating monotone planar circuits MPCVP,
with special attention to circuits with cylindrical embeddings. MPCVP is known to
be in NC3, and for the special case of upward stratified circuits, it is known to be in
LogDCFL. We characterize cylindricality, which is stronger than planarity but strictly
generalizes upward planarity, and make the characterization partially constructive.
We use this construction, and four key reduction lemmas, to obtain several improve-
ments. We show that stratified cylindrical monotone circuits can be evaluated in
LogDCFL, arbitrary cylindrical monotone circuits can be evaluated in AC!(LogDCFL),
while monotone circuits with one-input-face planar embeddings can be evaluated in
LogCFL. For monotone circuits with focused embeddings, we show an upper bound of
AC!(LogDCFL). We re-examine the NC? algorithm for general MPCVP, and note that
it is in AC!(LogCFL) = SAC2. Finally, we show that monotone circuits with toroidal
embeddings can, given such an embedding, be evaluated in NC. Also, special kinds of
arbitrary genus circuits can also be evaluated in NC.

1 Introduction

The Circuit Value Problem CVP is a well-studied problem in complexity theory. When
each gate is labelled AND, OR or NOT, CVP is complete for the complexity class P. It
remains complete if the circuits are monotone (no NOT gates); it also remains complete
if the underlying graph has a planar embedding. However, if the circuit is simultaneously
monotone and planar (MPCVP), then evaluating it is in NC.

The history of MPCVP begins with the papers of Goldschlager, where it is shown that
planar CVP and monotone CVP are P-complete [13], and that a special case of MPCVP,
upward stratified (see Section 2 for a formal definition) is in NC?[14]. Subsequently, Dymond
and Cook [11] improved the upper bound for this special case to LogCFL, and Kosaraju [18§]
extended the result by showing that a less restrictive special case, namely layered upward

ISSN 1433-8092

planar monotone circuits (subsuming Goldschlager’s case), is also in NC, in fact in NC3.
Independently and in parallel, Delcher and Kosaraju [10] and Yang [28] showed that MPCVP
in its full generality is in NC* and in NC? respectively. More recently, Barrington, Lu,
Milterson and Skyum [6] showed that for monotone upward stratified circuits — the special
case considered in [14, 11] — there is in fact an upper bound of LogDCFL. Here, L and
NL stand for deterministic and non-deterministic logspace respectively, while LogDCFL and
LogCFL stand for the classes of languages logspace-many-one-reducible to deterministic and
arbitrary context-free languages respectively. Recall that L C NL C LogCFL, L C LogDCFL C
LogCFL, and LogCFL = SAC! C AC! C NC2. See any standard text on circuit complexity
(e.g. [26]) for more details.

There has recently been a spurt of activity examining topological constraints in small-
width circuits [6, 16, 15, 3]. These works provide more insights into how to exploit the
restricted topology. Using these insights, we review the developments leading up to and
beyond the “MPCVP is in NC” result, and make some improvements on the known bounds
for general MPCVP as well as some special cases. (However, we do not consider width
restrictions in this work.) Our main improvements are obtained while considering circuits
with cylindrical embeddings. Such embeddings strictly subsume upward planar embeddings,
but are not strong enough to capture all of planarity. They have been studied in-depth in
the context of small-width circuits in [16, 15]. Another major contribution we obtain is to
extend the NC upper bound on MPCVP to toroidal (genus one) monotone circuits.

A key limiting problem that arises in our constructions is that of finding the length of a
longest path in a planar DAG. We define PDLP to be the class of problems logspace many-
one reducible to this problem. While finding longest paths in general is hard, finding longest
paths in DAGs reduces to finding shortest paths, and hence even without the planarity
restriction we are still within NL. Thus L € PDLP C L(PDLP) C NL. It is conceivable,
however, that owing to planarity, the problem is considerably easier than NL. Hence when
we need longest paths in planar DAGs, we state our upper bounds explicitly in terms of
PDLP rather than NL.

Our contributions are as follows:

1. We characterize cylindrical graphs as spanning subgraphs of single-source single-sink
planar DAGs (Theorem 4). This is implicit in the result of Hansen (Theorem 2 of
[15]), where layered cylindrical graphs are characterized as subgraphs of single-source
single-sink layered planar DAGs. We state it explicitly because we obtain a partial
logspace-constructive version, even when the given DAG is not layered to begin with.
(Layering, in general, could be harder than logspace.) We obtain partial success in
making the characterization constructive. These results are presented in Section 3.

2. We present four reduction lemmas which are at the heart of the improvements we
obtain. The topological constraints considered are shown in Figure 1. The thick
arrows go from stronger to weaker constraints, the dashed arrows indicate logspace
reductions, and the dotted arrows indicate the reductions in L(PDLP).

3. Using the reduction lemmas, we obtain improved upper bounds; see Table 1. We

2

Upward Stratified Layered Upward Planar Upward Planar

A A
L(PDLP) : L(PDLP) :
Cylindrical Stratified Layered Cylindrical |~ 7] Cylindrical

73 L - X

Ll L(PDLP) .-~ : L(PDLP)
| S :

One-input-face Multi-cylindrical Bi-cylindrical
Focused | Planar Toroidal
I e

Figure 1: Relationship between various topological restrictions in the context of MCVP

Monotone Embedding | Our upper bound Previous

Circuit type bound
Cylindrical stratified | given LogDCFL (Thm. 10) NC? [28] (Sec. 2)
One input face not needed | L(PDLP & LogDCFL) (Thm. 11) | NC? [28] (Sec. 3)
Cylindrical given AC'(LogDCFL) (Thm. 14) -

Planar not needed | AC'(LogCFL) = SAC?*(Thm. 17) | NC? [2§]
Toroidal given AC'(LogCFL) = SAC*(Thm. 20) | P

Table 1: Improved upper bounds

also consider a restricted generalization to higher genus in Section 6.2 and place such
monotone circuits in NC.

2 Basic definitions

2.1 Circuits

The underlying graph of any circuit is a directed acyclic graph (DAG). We consider circuits
with gates labeled AND, OR, NO-OP, 0, 1. A gate labeled AND or OR has fan-in two, a
gate labeled NO-OP has fan-in 1, and a gate labeled by a constant has fan-in zero and is a
source node. Without loss of generality, we assume that constant gates have fan-out 1 and
that no gate has fan-out greater than 2. We do not assume that there is a single sink. The
earlier NC algorithms for MPCVP made this assumption, since if there are multiple sinks,
each of them can be evaluated independently. However, removing nodes with no path to the
designated sink may not be possible in logspace, so we explicitly note this as a computational
requirement.

A circuit with variables is a circuit in which some fan-in zero gates are labeled by variables.

By generalized circuits we mean circuits which also have constant gates with non-zero fan-in
and possible fan-out more than 1; the output of such a gate is independent of its inputs, but
the input wires could play a role in determining the planar embeddings. Generalized circuits,
with or without variables, arise in the recursive steps of the algorithms from [10, 28].

A circuit is said to be layered if there is a partition V = Vo U V3 U ... UV, such that all
edges go from some layer V; to the next layer V;, ;. The layered circuit is said to be stratified
if all source nodes are in layer V4. (In particular, stratified implies layered.)

2.2 Topological Embeddings and Drawings

In this paper, we are concerned with directed acyclic graphs, denoted DAGs. Though many
of the definitions below apply to general graphs, we will use them specialized to DAGs.

A graph is said to be planar if it can be embedded in the plane without crossings. That
is, the nodes and edges of the graph can be drawn in such a way that the representations
of no two edges cross, except at shared endpoints. A plane graph is a graph along with a
planar embedding. Note that planarity is independent of whether the graph is directed or
not. By the results of [21, 4, 22], deciding if a given graph is planar and if so finding a planar
embedding is in AC!, SL, and now L.

A planar embedding is bimodal if at every vertex v, all outgoing (incoming) edges appear
consecutively around v. It is easy to see ([23], [15] Lemma 5, [28] Lemmas 3.1 and 3.2) that
in a planar DAG with a single source and a single sink, (a) every embedding is bimodal, and
(b) for every face f, the edges incident on f form a simple (undirected) cycle consisting of
two directed paths.

A planar embedding of a DAG is said to be a one-input-face embedding if all source nodes
lie on the same face. Testing if a planar DAG is one-input-face, and if so, uncovering such
an embedding, is easy: add a new source node with edges to all the old sources, and test for
planarity.

A drawing (not necessarily planar) of a digraph on the plane is upward if the drawing of
every edge is monotonically increasing in the vertical direction. Every DAG has an upward
embedding, which can be recovered by a topological sort. (Also, only DAGs have upward
embeddings, since a cycle cannot be embedded in an upward way.)

A digraph is upward planar if it has an embedding that is simultaneously upward and
planar. Though all DAGs are upward, not all planar DAGs are upward planar. Figure 2
shows a standard instance of a planar DAG which is not upward planar (see for instance
[7]). In fact, given a planar DAG, deciding whether it is upward planar is NP-complete [12].
(It is also known that every upward planar graph has an upward planar embedding using
only straight-line drawings of all edges [7]. Furthermore, if the DAG is layered, all nodes in
the same layer will have the same z-coordinate.)

A digraph is cylindrical if it can be embedded on a cylinder surface, in a way such that all
edges are monotonically increasing in the direction of the axis of the cylinder. (Clearly such a
digraph must also be acyclic, a DAG.) As observed in [15], this generalizes upwardness, with
the edges being geodesics on the cylinder surface. Note that the surface of the cylinder can
be embedded on a plane in a straightforward way: place the right end of the cylinder (the

4

Figure 2: A planar DAG that is cylindrical but not upward planar

end towards which all edges flow) on the plane, and dilate the cylinder in a continuous way
into a cone section until its surface lies flat around the end placed first. (In fact, the converse
is also true: any embedding on the plane can be drawn on the surface of the cylinder. But
the edges may not be monotone along the cylinder axis.) Thus a cylindrical embedding
will give rise to a planar embedding where all edges flow in an inward direction towards a
central face. It follows that every cylindrical embedding is also bimodal, even if it is not
single-source single-sink.

Cylindricality strictly generalizes upward planarity, as Figure 2 shows. The example of
Figure 3 shows that cylindricality does not capture all planar DAGs.

/N
AVAAVAY
& !

A

B

Figure 3: A planar DAG that is not cylindrical

A layered cylindrical embedding of a layered digraph is a cylindrical embedding where
layers correspond to disjoint circles of the cylinder (or concentric circles on the plane, in the
corresponding inward drawing). In recent literature in the graph drawing community, the
term radial drawing is used. For instance, the radial leveled planar drawings of [5] are exactly
layered cylindrical embeddings. We continue to use the term cylindrical rather than radial,

since the main issue in radial leveled planar drawings appears to be: given the partition of
the vertex set into sets lying on the same layer, find the ordering on each layer. On the other
hand, we are often concerned with finding the partition as well, which could well be a harder
problem.

Recall that a layered circuit (in general, a layered DAG) is said to be stratified if all
source nodes appear at layer 0. A DAG is said to be upward stratified (cylindrical stratified)
if it is layered, stratified, and has an upward planar (cylindrical respectively) embedding. It
follows that an upward /cylindrical stratified circuit has a one-input-face embedding. Figure 4
shows an example of a layered upward planar DAG that is not stratified. (However, it does
have a cylindrical one-input-face embedding.) In [10], the term restricted stratified is used
to denote circuits which are cylindrical stratified as defined above (without the restricted,
the authors of [10] mean generalized circuits). On the other hand, in [6], stratified refers to
upward stratified as described here.

Figure 4: A layered planar DAG with an upward planar embedding and a one-input-face
embedding but with no upward one-input-face embedding

A planar embedding of a DAG G is focused if there is a subset S of source nodes, all of
which are embedded on a single face, and every node of G not reachable from S is itself a
source node. This is a topological analogue of a skewness condition on circuits. Note that
one-input-face embeddings are (vacuously) focused; S is the set of all source nodes.

We use the terms SSPD and SMPD to mean single-source single-sink planar DAGS and
single-source multiple-sink or multiple-source single-sink planar DAGs respectively.

2.3 Representing embeddings

Planar embeddings: By the results of [21, 4, 22], deciding if a given graph is planar and
if so finding a planar embedding is in AC!, SL, and now L. The embedding so obtained is
a planar combinatorial embedding, specifying the cyclic (clockwise, say) ordering of edges

around each vertex in some plane embedding. (In fact, specifying for each vertex the clock-
wise cyclic ordering of edges around it is what is called a combinatorial embedding, and
corresponds to an embedding of the graph on some orientable surface of appropriate genus.
) Checking whether a given combinatorial embedding corresponds to an embedding on the
plane can be done in logspace.

We briefly discuss how faces are specified in any planar embedding. Recall that embed-
dings ignore directions on edges. In fact, for each (undirected) edge (u,v), the embedding
will specify where arc (u,v) figures in the circular list around u, and where arc (v,) figures
in the circular list around v. The arcs (u,v) and (v,u) are expected to be superimposed in
the corresponding geometric embedding. We use the term edges to refer to directed edges
of the original graph, while we use the term arcs to refer to the directed arcs in the com-
binatorial embedding. For every arc e = (u,v), there are faces L(e) and R(e) to the left
and right, respectively, of the edge. (These could both be the same, if, say, e is a bridge
in the underlying graph.) If G is a connected graph when directions on edges are ignored,
then for every face f, the set of edges with f € {L(e), R(e)} form a connected graph. This
set can be traversed systematically as follows. Start with an arc e = (u, v) such that, say,
f = R(e). Let ¢ = (v,w) be the arc preceding (v,u) in the cyclic ordering around v. Then
f = R(¢'). Keep advancing in this way until the starting arc is encountered again; in the
process, the entire boundary of f will be traversed. We assume that f is “named” by the
lexicographically smallest arc a = (u,v) such that f = R(a). See [20, 27] for more about
representing embeddings.

Layered cylindrical or Layered upward planar embeddings: We assume that the
embedding is given in the following form: (a) the cyclic ordering of edges around each
vertex (the planar combinatorial embedding) corresponding to the geometric embedding,
and (b) the circular or left-to-right ordering of vertices at each layer. It is straightforward
to see that given such information, we can verify in logspace that it indeed corresponds to
some layered cylindrical or layered upward planar geometric embedding.

Cylindrical embeddings: For cylindrical embeddings of non-layered graphs, we need to
specify some more information. Imagine circles drawn along the surface of the cylinder,
through each vertex. The ordering of the circles along the axis of the cylinder imposes a
partial order on the vertices (total, if no two vertices lie on the same circle); consider any
total order extending this. This ordering corresponds to non-decreasing distance of vertices
from the left end of the cylinder. For each vertex u, we can talk of its left face and its
right face: the left face is the face between u’s leftmost incoming edge (last incoming edge in
clockwise ordering) and leftmost outgoing edge (first outgoing edge in clockwise ordering),
while the right face is the face between its rightmost incoming and outgoing edges. If u is a
source, then the left and the right face are the same, and it is the face containing the (initial
segment of) the ray drawn out of u against the cylinder axis. Similarly, if u is a sink, it is
the face containing the (initial segment of) the ray drawn out of u along the cylinder axis.
Given the clockwise ordering of edges around each vertex, the left and right faces can be

determined for each u that is not a source or sink. For a source / sink u, if we explicitly
specify the leftmost outgoing / incoming edge, then this face can be determined. We call
this edge L(u). For instance, see the example in Figure 5. The total orderis A B E F C' D.
For source A, L(A) = (A, B), while for sink D, L(D) = (C, D). The left faces of B and C
are f; and f, respectively. The right face of B is the region inside the quadrilateral BFE A,
while the right face of C' is the region inside the triangle BC'D.

Figure 5: Representing a cylindrical embedding

With this background, we now assume that the following information about the cylindri-
cal embedding is available: (a) the cyclic ordering of edges around each vertex (the planar
combinatorial embedding), (b) a total order vy, vy, ..., v, of the vertices, extending the par-
tial order induced by the cylindrical embedding, and (c) for each source / sink u, the edge
L(u). In particular, the edges L(vy) and L(v,) specify the faces f; and f, corresponding to
the left and right ends of the cylinder.

It is not clear that given (a), (b), (c) above, one can check in logspace if the corresponding
plane embedding is cylindrical. However, this information is sufficient for the results of this

paper.

3 Graphs on cylinders

Upward planar graphs have been characterized independently in [17] and [7]: A DAG is
upward planar if and only if it is a subgraph of a planar st-digraph, that is, a planar DAG
with a single source s, a single sink ¢, and an edge from s to ¢. Extending this proof, [15]
characterizes layered cylindricality: a layered digraph is layered cylindrical if and only if it
is a subgraph of a layered planar DAG with a unique source and a unique sink (an SSPD).
While the result is implicit in the work of [24], the major contribution in the proof of [15] is to
make the transformation uniform. In a similar vein, we characterize cylindricality (without
the layered property); while the topological ideas are already there in the proofs of [24, 15],
we prove it in a different way to obtain suitable uniformity bounds. We then use these to
evaluate cylindrical circuits.

One direction of our characterization crucially uses a layered embedding algorithm inde-
pendently due to [28] and [10]. The algorithm of [28] is stated for single-sink digraphs where
there is a one-input-face planar embedding (an embedding in which all sources appear on the
same face), while that of [10] is stated for what are called focused circuits. We will use the
algorithm for single-sink one-input-face planar DAGs, and we observe that this includes, as
a special case, SSPDs. ([28] uses the notation layered one-input-face for cylindrical stratified
(all source nodes at the first layer)). An important property of such embeddings is that
all vertices are bimodal; thus left and right faces of a vertex are defined. The algorithm is
described in Figure 6.

Input: a one-input-face single-sink planar directed acyclic graph H.

Output: A layered cylindrical embedding of a graph H’, obtained from H by sub-
dividing edges into directed paths.

Method: Let ¢ be the sink of H.

1. For each node v in H find the longest distance d(v) to t. Let d = maxd(v);
there are d + 1 layers. The input nodes are in V4. A non-input node u is

in layer l(u) = d — d(u).

2. For a directed edge (u, v) in the graph, let k = [(v) —I(u)—1. If £ > 0, then
introduce dummy nodes ny,ns ...n; and add the edges (u,ny),(ny,ng) ...
(ng,v). (That is, we subdivide edge (u,v) into a directed path of length
[(v) = l(u).) The dummy node n; will be in layer [(u) + 1.

3. For each node u (including dummy nodes), the left (or right) neighbour of
u is the node on the boundary of the left (or right, respectively) face of u
with the same layer number as u.

Figure 6: Layered embedding algorithm ([28] Section 3, [10] Section 4)

Steps 1-2 of the algorithm provide the layering, step 3 provides the cylindrical embedding
of the layered graph. To see why the algorithm is correct, see Section 3 of [28] or [10]. We
observe the following;:

Proposition 1 The layered embedding algorithm above runs in L(PDLP).

Now we establish our characterization by the following two lemmas.

Lemma 2 If a planar DAG G is a spanning subgraph of an SSPD H (a planar DAG with
a single source and a single sink), then G has a cylindrical embedding which, given G and
H, can be constructed in L(PDLP).

Proof: Using the algorithm of Fig. 6, a cylindrical embedding can be found for H' obtained
from H by edge subdivision. Replacing the directed paths obtained through subdivision by
original edges, we get a cylindrical embedding of H, and hence of G. The upper bound for
constructing H follows from Proposition 1. B

Lemma 3 If a planar DAG G has a cylindrical embedding, then it is a spanning subgraph
of a cylindrical DAG H with a single source and a single sink.

Proof: Consider the layout of the graph on the cylinder surface, with vertices in order
vy, Vs, ..., U,. If any vertex v; other than v, is a sink, we need to add an edge from it to some
v; with j > ¢ without destroying cylindricality. Such a v; can always be found as follows:
imagine a particle moving out of v; along the direction of the cylinder axis. It aims to avoid
intersecting any edge. So if it encounters an edge, it moves parallel to and infinitesimally
close to the edge. Since all edges are cylindrical, its movement is still monotonic with respect
to the axis. As soon as it reaches (infinitesimally close to) a vertex, we declare that vertex
to be v;. If it never encounters an edge or a vertex, then it will exit at the right end of
the cylinder. In this case we declare v,, to be the desired v;. The movement of the particle
ensures that the edge (v;,v;) can be added preserving cylindricality. A similar procedure
applied after this will work to make all sources other than v; have incoming edges. B

Theorem 4 Let G be any planar directed acyclic graph. The following are equivalent.
1. G has a cylindrical embedding.
2. G is a spanning subgraph of a cylindrical SSPD.
3. G is a spanning subgraph of an SSPD.

It follows that testing for cylindricality is in NP. However, though cylindricality gen-
eralizes upward planarity, testing for which is NP-complete, it is possible that testing for
cylindricality is easier.

One direction of the theorem above is already constructive using Lemma 2. We make
the proof of Lemma 3 constructive via a more complicated construction. This construction
works only for one stage (multiple sinks to single sink or multiple sources to single source),
and yields only a planar (not cylindrical) embedding of H. The advantage is that it is
implementable in logspace.

Lemma 5 Let G be a connected (in the undirected sense) cylindrical DAG with S sources
and T sinks. Given the cylindrical embedding of G, we can construct, in L, a planar single-
source DAG Hg with T sinks and a planar single-sink DAG H; with S sources such that G
s a spanning subgraph of both.

10

Proof: We describe how to construct H,; the construction of H; is symmetric. Since G is
connected, for every face f, the edges incident on f form a connected graph. For each face
f, let @ be the smallest index such that v; is on the boundary of the face. Then there is some
edge e = (v;, v;) such that f = R(e). Start traversing the boundary of f, starting with such
an edge e = (v;,v;). For each vy encountered on the boundary with in-degree 0, add edge
(vi, vx). See Figure 7 (a), (b) for an example.

(b) Eliminating all but one source

4/\%

(c) Eliminating al but one sink

Figure 7: Obtaining H from a connected G.

Clearly this preserves acyclicity, since all new edges are from a lower indexed to larger
indexed vertex. This also preserves planarity. The new edges are inserted, in the order
encountered, into the cyclic ordering around v; immediately after the arc (v;,v;). A new
edge (v;,vx) is inserted into the cyclic ordering around vy immediately after the arc (v, v)
which led to the discovery of vy on this face boundary. Thus we can easily compute the new
planar combinatorial embedding.

As the figure shows, we may end up adding far more edges than is necessary. (Multiple
edges will not get added if we process each face sequentially. But in logspace, we cannot
cascade polynomially many such stages. So while processing each face, we check for in-degree
zero in the original graph.) Since G is connected, every source has a path to v;. Hence every
source lies on the boundary of at least one face with a lower indexed vertex, and hence
acquires an incoming edge. Thus at the end, only v; is a source. B

As figure 7 (b) shows, applying the above construction on a graph to remove multiple
sources may trap a sink. So we cannot sequentially remove multiple sources and then multiple
sinks. In fact, after removing multiple sources, we do not know if the graph H so constructed
necessarily has a cylindrical embedding. Even if it does, we do not know how to recover one.

In the above proof, connectedness ensured that every source other than v; acquired an
incoming edge. We observe in the following lemma that absolute connectedness is not a
critical requirement.

Lemma 6 Let G be a cylindrical DAG where each connected component of the underlying
undirected graph has either a single source or a single sink. Then a planar single-source
single-sink DAG H of which G is a spanning subgraph can be constructed in L.

Proof: Partition the underlying undirected graph of G, in L, into connected components
Gy, ...,G.. For each component, there is a cylindrical embedding inherited from that of
G, which can be efficiently retrieved. By Lemma 5, each G; is a spanning subgraph of a
planar DAG H;, with a single-source s; and single-sink ¢;, and the H; can be constructed in
logspace. All that remains is to combine these H;. Since each H; is acyclic, the graph H
obtained by adding edges t;, s;11 is also acyclic, and has a single source s; and single sink
t.. To see why it is planar, consider planar embeddings of each H; with s; on the external
face. Consider any face f for which ¢; is on the boundary. We insert the embedding of H;,
in this face, and connect ¢; to s;;1. (See Figure 8.)

Figure 8: Patching H; and H, preserving planarity.

To construct a planar embedding of H, we can simply construct afresh a planar embed-
ding of H in L. (Strictly speaking, this is not necessary. Inserting the edge (¢;, s;+1) anywhere
in the cyclic orderings of ¢; and s;;1 will preserve planarity.) B

12

4 Circuits on cylinders

We now show that for circuit evaluation, any technique applicable to layered upward planar
circuits also applies to cylindrical circuits, with a uniformity requirement in L(PDLP) C
L(NL). The result is obtained in two stages: first we show how to deal with layered cylindrical
circuits, and then we show how to layer arbitrary cylindrical circuits. We also show that one-
input-face circuits reduce to upward stratified circuits, with a similar uniformity requirement.

Lemma 7 Given a monotone circuit C' with a layered cylindrical embedding £, we can in
logspace obtain an equivalent monotone circuit C' with a layered upward planar embedding
E’. Further, if € s stratified, so is £.

Proof: Intuitively, what we want to do is as follows. Consider a geometric embedding of
C on the plane, with layers corresponding to concentric circles and edges travelling inwards.
By rotating a ray shooting out of the root, we can find an angular position where it does not
contain the embedding of any node. By deforming edge representations if necessary, we can
ensure that each edge intersects the ray (at this angular position) in at most one point. Now
simply “cut” the circuit C' along the ray. This gives rise to dangling in-edges and out-edges
and a circuit D which is layered upward planar. Patch multiple copies of D side-by-side,
feeding zeroes to the dangling edges of the extremal copies, and let the root of the middle
copy be the new root. (Or, evaluate the OR of the roots of all copies.) See Figure 9.

To translate this into a formal proof, we need to describe (a) how to obtain, in logspace,
the curve along which we will cut the circuit C' to get D, (b) how the copies will be patched
functionally, (c) how the embeddings of the copies will be patched, and (d) why the resulting
circuit is equivalent to C.

We first perform some preprocessing on the circuit. Since we are given the layering as
well as the label r of the circuit output gate, we can throw away all gates at a larger layer
than r. Now, treating all edges as undirected, use the logspace connectivity algorithm to
delete all gates with no (undirected) path to r. Let the resulting circuit be C4, with layers
Vo, Vi,...,V, and r at layer h. We replace each vertex u by vertices u;, and wu,,; with a
directed edge from u;, to u.,. The type of gate u;, is the type of u, while u,,; is a NO-OP
gate. An edge (u,v) is replaced by the edge (uoys, Vin). The resulting circuit, call it Cy, has
2h layers: an out layer for V4, an in layer for V}, and two for all other layers. The layered
cylindrical embedding of () is easily obtained from that of C', and hence of C', in logspace.
The only tricky point is handling sources / sinks of Cy. If u is a source of Cy, we need to
decide where to insert the edge (w;, Uoyt) into the cyclic ordering of edges leaving w,,;. This
is where we need the third part of the representation of cylindrical embeddings: we insert
this edge just before the edge L(u). Similarly for a sink v, we insert (v;,, Voyt) in the ordering
around vy, just after L(v). Cy is clearly equivalent to C; further, it has the nice property
that no layer has a source as well as a sink.

To see (a), we start with vertex r of Cy. At some stage, suppose that the path p under
construction has reached vertex g from above. If ¢ is at the lowest layer, we are done.
Otherwise, move down to any neighbour of g at a lower layer. Suppose there is no such

13

(a%tﬁel & ergg cyligcilgical é:lerd%% (b) After cutting along right end
around the cylTnder

A) @A @A

(c) Joining up copies of cut circuit

Figure 9: Obtaining an upward circuit equivalent to a cylindrical one.

neighbour; that is, g is a source node. Then g is of the form v;, for some v € C;. Traverse
the boundary of the face to the right of (v, vVeus), until it first encounters a vertex ¢’ at a
layer lower than g. Such a vertex must exist, since g has undirected connectivity to r which
has undirected connectivity to the layer below g. The path p now proceeds from g to ¢’.

The path p constructed uses some circuit edges and some dummy edges. Let C3 be the
graph C5 U p. The above procedure of constructing p also gives us a layered cylindrical
embedding of Cs.

We cut C5 to the immediate right of the path, starting at r, to obtain a layered upward
planar circuit Cy. The embedding of Cj is specified as follows: Retain edges (u,v) where
neither u nor v is on p. For uw on p, retain edges leaving or entering u to / from the left of
p. Replace an edge (u,v) leaving p on its right by the edges (z,v) and (u, '), where x and
x’ are new gates of fan-in/fan-out zero. Similarly, replace an edge (w, u) entering p from its
right by the edges (y/,u) and (w,y), where 3’ and y are new gates of fan-in/fan-out zero.
It is clear that this can be performed in logspace. Cj is the circuit D informally described
earlier.

Now in circuit C}y, suppose we feed the constant 0 to all new fan-in zero nodes. It
is straightforward to see, due to monotonicity, that if a gate now evaluates to 1, it also
evaluates to 1 in C;. However, there could be false zeros.

14

Let d be the depth of C5. Place 2d + 1 copies of Cy side by side in a row. Identify new
node 2’ of copy i with new node x of copy i 4+ 1. New nodes z of the leftmost copy, and new
nodes ' of the rightmost copy, are fed constant 0. (See Figure 9 (c).) Designate as the new
root, the root of copy d+ 1. (Alternatively, place at a higher layer an OR gate whose inputs
are the roots of each copy.) Let this circuit be called D. It is easy to see that D is layered
upward planar, and that its embedding can be obtained from that of Cy in logspace. Also,
if Cy is stratified, so are Cy and D.

We claim that D is equivalent to C'5, and hence to C'. The reason is simple: at the lowest
level, all nodes of D are correct (they evaluate to the same value as corresponding nodes in
Cy). If at level [, the copies i — 1,4,i+ 1 of Cy are correct, then at level the (I + 1)th copy of
Cj is correct. Thus over 2d + 1 levels, we may lose at most 2d copies, but the central copy
will correctly evaluate the root of Cy. B

In the above proof, the layering of the given circuit appears crucial. We observe below
that without layering, the same conversion can be performed in L(PDLP).

Lemma 8 Fuvaluating a monotone circuit C' with a cylindrical embedding £ reduces in
L(PDLP) to evaluating a monotone layered cylindrical circuit C' with embedding £°. Further,
if £ is one-input-face, then £’ is stratified.

Proof: We proceed in four steps.

1. We remove from C' all nodes with no directed path to the output gate of C'. This gives
an equivalent circuit G with a single sink, and with an inherited cylindrical embedding.

2. From the given cylindrical embedding of GG, we construct the SSPD H with the same
vertices as G and containing all the edges of G.

3. Using the layered embedding algorithm of Figure 6, we obtain a layered cylindrical
embedding of an SSPD H’, obtained by subdividing edges of H into directed paths.

4. We recover a layered cylindrical embedding of a digraph G’ from that of H’ by simply
throwing away all directed paths corresponding to edges in H \ G. We convert G’ to a
circuit by specifying that all the new subdivision vertices have type NO-OP.

Since C' is a planar DAG, Step (1) can be performed in L(PDLP). Step (2) uses Lemma 5,
and can be performed in logspace. Step (3) uses Lemma 2, and runs in L(PDLP). It is
straightforward to see that Step (4) can be performed in logspace. B

Note that the layered embedding algorithm needs a single-sink one-input-face embed-
ding. In the above proof, the one-input-face condition is achieved in step 2 by exploiting
cylindricality. However, if the given circuit already has a one-input-face embedding, then
cylindricality is not needed. Thus we have:

Lemma 9 Fvaluating a monotone circuit C' with a one-input-face embedding £ reduces in
L(PDLP) to evaluating a monotone stratified cylindrical circuit C' with embedding E .

15

5 Improved Upper bounds for MPCVP

In this section we revisit some of the MPCVP algorithms in the literature. We observe that
some of these algorithms have tighter bounds than claimed. Wherever possible, we apply
(some of) the reduction lemmas of Section 4 to expand the class of circuits for which the
algorithm applies. Wherever possible, we also try to weaken the input requirements.

Goldschlager [14] considered upward stratified circuits. He showed that in this special
case, if the corresponding embedding is given with the input, then MPCVP is in NC?. This
upper bound was improved to LogCFL by Dymond and Cook [11] by giving a polynomial
time AuxPDA algorithm.

The main idea behind obtaining the LogCFL bound is as follows: since the circuit is
monotone, intervals of contiguous 1s at the input level travel upwards as contiguous seg-
ments which may shrink, expand, or merge, but never split. (This last property breaks down
if the embedding is not stratified.) So evaluating the given circuit C' amounts to proving
that an interval is true (or valid), by finding a set of intervals at the previous level which
imply its validity, and recursively proving their validity. An important property of a minimal
set of intervals proving validity of the root (a “proof tree” on intervals) is that it is poly-
nomial sized; hence an auxiliary push-down automaton performing the recursive verification
nondeterministically will run in polynomial time. But this is precisely the class LogCFL.

The work of Barrington et.al.[6] brings the evaluation of monotone upward stratified
circuits, presented along with such an embedding, down to LogDCFL by evaluating the
circuit in a bottom up fashion. The DAuxPDA algorithm repeatedly transforms the input
by (a) detecting when a 0- or 1- interval at the input layer fails to propagate high enough,
and (b) replacing the interval by all 1s or all 0s. The transformation thus preserves the value
of the output gate. The stack is used to keep track of the frontier upto which simplifying
transformations have been made. Polynomial running time is ensured, amongst other things,
by the placement of a virtual blocking interval of 0s on either extreme at each level. The
algorithm requires the upward stratified embedding to be supplied as input. Though not
stated explicitly, it also works for circuits with multiple sinks. (The only point to be checked
is that intervals of 1s may merge though separated not just by a 0 interval but by 0- and 1-
intervals, all arising at sinks; see the discussion preceding Proposition 8 of [6]. This makes
no difference to the technical claims.)

Since virtual blocking intervals cannot be placed at extremes of each layer for a cylindrical
embedding, we do not see how to extend this algorithm to work for stratified cylindrical
circuits. However, we can still obtain this upper bound by using Lemma 7 in conjunction
with this algorithm:

Theorem 10 Given a monotone planar circuit C' with a stratified cylindrical embedding,
determining whether C' evaluates to 1 is in LogDCFL.

What if the embedding needed for Theorem 10 is not explicitly given, but there is the
promise that such an embedding exists? At some cost, we can recover a suitable embedding.
The cost is high enough that we can weaken the premise further. Note that stratified

16

cylindrical embeddings are one-input-face, though the converse may not hold. But one-
input-face embeddings can be constructed in logspace. With such an embedding, we can
apply Lemma 9 and Theorem 10; thus we get a slightly weaker upper bound for a more
general class:

Theorem 11 Given a monotone planar circuit C, if C' has a one-input-face embedding,
then C' can be evaluated in L(PDLP @& LogDCFL) C L(NL @ LogDCFL) C LogCFL.

Proof: We first construct a one-input-face embedding of C' in logspace, as described in
Section 2.2. Then we apply Lemma 9 to obtain an equivalent cylindrical stratified circuit
C’, and use Theorem 10. ®

Layered one-input-face circuits were considered by Yang [28] as a step towards placing
general MPCVP in NC. Note that these are precisely cylindrical stratified circuits. In Section
2 of [28], an upper bound of NC? is obtained for evaluating such circuits. Rather than use
a tool like Lemma 7 followed by the bound of [14], Yang devised a somewhat different
algorithm, since a modification of it was used in a later section. The essence of his algorithm
was the same as in [11]: evaluating the given circuit C' is equivalent to evaluating a circuit
C" which tries to determine, for each interval or segment of gates at each level, whether this
interval evaluates to all 1s. Further, he carried the range of inputs used in proving validity
as a parameter. That is, for each interval i, j of gates numbered between i and j at level [,
and for each input range x,y, determine if the interval ¢, j,[can be proved valid using only
inputs from the range z,y. (Note: it is not claimed that all inputs in the range x,y are 1s,
merely that 1s outside this range are not needed for proving validity.) By doing this, he was
able to establish that C” has polynomial algebraic degree. Then he appealed to [19] to obtain
the NC? bound. However, it is now known that circuits of degree polynomial in circuit size
can be evaluated in LogCFL [25]. Thus we have

Proposition 12 The algorithm of Section 2, [28], for evaluating instances of MPCVP pre-
sented with cylindrical stratified embeddings, has a LogCFL implementation.

Another notable point is that though Yang assumed a single-sink circuit, his algorithm works
also in the presence of multiple sinks.

This bound was independently obtained by Delcher and Kosaraju [10], who observed that
the algorithm of [11], though presented only for upward stratified circuits, works also for the
cylindrical stratified case. This is because even for such embeddings, the proving sub-circuit
for validity of intervals has a tree structure which is polynomial-sized.

In [18], the requirement that the circuit be stratified was dropped for the first time.
The input is required to be a monotone layered upward planar circuit, with the witnessing
embedding supplied. Dropping the stratified (one-input-face, for layered circuits) condition
means that intervals of contiguous 1s can split due to the presence of an input node at
an intermediate layer, and this makes all the preceding algorithms for upward-planar or
cylindrical stratified circuits inapplicable. Kosaraju’s idea is, however, quite simple and
elegant: repeatedly split the circuit horizontally at a layer such that both pieces are between

17

1/4 and 3/4 of the entire circuit in size. Evaluate each piece recursively, replacing cut off
wires by variables. (The details of the recursive splitting are a bit sketchy in [18] but are
supplied in full in [10] for the stratified case.)

But what does it mean to evaluate a circuit with variables? Due to monotonicity, if a
gate evaluates to 1 (0) even when all variables are set to 0 (1, respectively), then the gate
evaluates to 1 (0, respectively) for all settings of the variables. So by evaluating such a circuit
on two settings — all variables 1, and all variables 0 — the gates can be partitioned into
three sets: evaluating to 1, or 0, or depending on the input variables. Once the recursive
evaluation is done, the bottom piece is entirely evaluated and the top piece has some variable
gates. But now the values of all its variable inputs are known from the bottom piece, so this
piece can be fully evaluated.

Clearly, the recursion depth is logarithmic, and the base case of recursion is a monotone
upward stratified circuit with variables. As observed above, [18] used the fact that the NC?
bound of [14] applies also in the presence of variables to obtain the three-part partition.
Using this bound for the base case, [18] reported an upper bound of NC3.

It is worthwhile noting that at internal stages of the recursion, the circuits could become
generalized; they could have constant gates with non-zero fan-in (e.g. an OR gate could get
as inputs one 1 and one variable from the preceding level of recursion). So, to apply Gold-
schlager’s algorithm to the base case, the constant gates with non-zero fan-in are explicitly
removed. That is, to patch up the two pieces, only the sub-circuit induced by gates which
depend on variables is considered.

It is also worthwhile noting that this algorithm is also insensitive to multiple sinks, since
the strategy evaluates not just a designated sink but every gate in the circuit.

Kosaraju’s upper bound can be tightened by noting that a log-recursion-depth algorithm,
using the algorithm of [6] rather than [14] for the base case, yields an implementation in

AC!(LogDCFL).

Proposition 13 The algorithm of [18], for evaluating instances of MPCVP presented with
layered upward planar embeddings, has an AC'(LogDCFL) implementation.

Further, the class of circuits for which this bound applies can be expanded to cylindrical
circuits:

Theorem 14 An instance of MPCVP, presented with a cylindrical embedding, can be solved
in AC'(LogDCFL).

Proof: Let C be the given circuit with a cylindrical embedding. Using Lemma 8, we obtain
in L(PDLP) C NL C AC! an equivalent circuit C’ with a layered cylindrical embedding
E. Applying Lemma 7 gives, in L C AC!, an equivalent layered upward planar circuit C”,
to which the preceding Proposition can be applied. Note that for subcircuits evaluated at
recursive steps, embeddings are inherited from £. B

Bi-cylindrical Circuits : We now consider a generalization of cylindrical circuits, which
we call bi-cylindrical circuits. These strictly subsume cylindrical, while still lying within
planar circuits.

18

Definition 15 (Bi-cylindrical circuits) A DAG or circuit G is bi-cylindrical if it has an
embedding on the surface of the cylinder such that there is a circle C going around the
cylinder surface, and all edges go towards C'.

Thus C splits G into two pieces (overlapping only on C') where each piece is cylindrical. (See

Figure 10.)
—_— > - >

Figure 10: Bi-cylindrical embeddings

Now each piece can be evaluated separately, and the the root gate can then be evaluated
from its values in the two pieces. Depending on whether the pieces are layered or not, and
whether they have one-input-face embeddings or not (if both do, then all inputs lie on the
two extreme ends of the bi-cylinder), we have the following upper bounds:

bi-cylindrical circuit type | layered not layered
inputs only at extremes | LogDCFL L(PDLP & LogDCFL)
inputs anywhere AC'(LogDCFL) | AC'(LogDCFL)

Focused circuits : Focused embeddings are considered in [10], since they arise in recursive
stages of their final algorithm for general MPCVP. Recall that a focused embedding is one
where all sources other than those in a designated face f feed into a node reachable from a
source in f. This is a topological analogue of a skewness condition on circuits. Such a circuit
C' can be converted to an equivalent upward stratified one C’ (with such an embedding
explicitly obtained) by simplifying the neighbours of the inputs not on the special face and
then using Lemma 9 followed by Lemma 7. One consequence is that some internal nodes
may be constant nodes; e.g. an OR gate with a skew 1 input from outside f simplifies to a
constant gate, but still has another input wire feeding into it. We could cut off such wires
as well. (But we must do this after obtaining the stratified cylindrical embedding; if we do
it before that, then the resulting circuit is no longer one-input-face, so Lemma 9 does not
apply.) After this cutting, the resulting circuit C” won’t be stratified, so we can only use
the bound of Theorem 14 and not that of Theorem 10. Since C’ can be obtained from C' in
L(PDLP) C AC!, and since C” can be obtained from C' in logspace, we have:

Theorem 16 Given a monotone planar circuit C with a focused embedding, determining
whether C' evaluates to 1 is in AC'(LogDCFL).

The final algorithms of both [28] and [10] make no assumptions about the embedding;
given an instance of MPCVP with any planar embedding, they show that evaluation is
in NC. Both algorithms repeatedly evaluate carefully chosen smaller circuits with special

19

embeddings (cylindrical stratified or focused). But the noteworthy point is that these special
embeddings for the smaller circuits can always be obtained, in NC, from the given planar
embedding.

Yang’s analysis proceeds by showing that O(logn) iterations of the following suffice: For
each face f containing some inputs, consider the subcircuit C'; reachable (in a directed sense)
from f. C} can have some dangling in-edges from the rest of the circuit; replace these by
variables to get a circuit with variables and a focused embedding. FEvaluate this circuit
as far as possible (the variables , or unknown wires, do not allow complete evaluation),
using a generalization of the scheme leading to Proposition 12. Then perform some obvious
simplifications, and reiterate.

The generalization does not permit the use of [6] or Theorem 10. However, the strategy
is the same as originally used by Yang for one-input-face embeddings; namely, there is an
equivalent polynomial degree circuit doing this partial evaluation. Hence, by [25], it can be
performed in LogCFL. Hence, a careful analysis of Yang’s algorithm allows us to conclude
that MPCVP is in AC'(LogCFL). However, it can be seen that this class is the same as SAC.
Thus we have the following:

Theorem 17 Given a monotone planar circuit C', determining whether C' evaluates to 1 is
in SAC?.

6 Extensions to higher genus circuits

In this section we extend these ideas developed in the previous sections to some non-planar
cases.

6.1 Monotone circuits on the torus

We start with the case of a torus which is the canonical surface of genus 1. A digraph is
toroidal if it can be embedded on a torus. We look at circuits whose underlying DAG is
toroidal. We assume that the toroidal embedding is given as a combinatorial embedding;
verifying that this embedding has genus one can be done in logspace.

Any closed curve separates the plane into disconnected regions, but a closed curve can
disconnect the surface of a torus or leave it connected. In the latter case, it is called a surface
non-separating curve. Any non-planar toroidal graph has at least one surface-non-separating
cycle. The following lemma is from [2]:

Lemma 18 ([2]) Given a non-planar graph G with an embedding on the torus, a surface
non-separating cycle in G can be found in log space.

Using this result, we establish the following reduction lemma, which along with Theorem 17,
immediately gives the main result of this section.

Lemma 19 A monotone circuit C' with a toroidal embedding can be converted in log space
to an equivalent monotone circuit C' with a planar embedding.

20

Proof: The lemma is proved by essentially using the idea from [2]. Intuitively what we want
to do is as follows. Consider a given toroidal embedding. Using Lemma 18, we will find a
cycle (in the undirected sense) such that “cutting” the circuit along the cycle will make the
remaining graph planar. Now we will paste together several copies as in the cylindrical case
such that at least one copy evaluates to the same function as the original circuit. Also, the
pasting will be done preserving planarity.

As in Lemma 7, to translate this into a formal proof, we need to describe (a) how to
obtain, in logspace, the curve along which we will cut the circuit (b) how the embeddings of
the copies will be patched, (c¢) how the copies will be patched functionally, and (d) why the
resulting circuit is equivalent to C.

For (a) and (b), we use Lemma 18 from [2]. Borrowing the notation from [2], let
v1, Vs ... v, be the non-separating cycle returned by the logspace procedure. Let G’ be the
graph obtained after cutting along this cycle. This graph will have two copies of the vertices
on the cycle on each end of the cylinder. Let these be vy 1,v21,...0,1 and v19,v29,... 0,2
respectively. Let d be the depth of the original circuit, we make 2d + 1 copies of the circuit
and place them side by side, identifying the corresponding vertices and edges. The com-
binatorial embedding of C’ is obtained exactly as in Section 3 of [2], see Figure 11 for an
illustration. Clearly, C’ is planar, since it has an embedding on the surface of the cylinder.
(Note, however, that the embedding may not be “cylindrical”.)

For (c), each gate in each copy behaves exactly as in the original circuit. Edges coming
into the extreme copies from outside are set to source nodes with value 0. Let this new
circuit be called C’.

€1

ei>/ €2
.

€r4+1

L €1
A
A
€2 N eq €2 —eg
N)) ,,,,,,
] \ L
.7 ert1 €o41
#
€r—1 €r—1 y
ey ce

Figure 11: Patching the copies

21

Now to argue (d), we introduce the notion of cycle-height. Let ¢ be the non-separating
cycle with respect to which cutting has been performed. The cycle-height of gate g is the
smallest non-negative integer k such that every path from a leaf to g “crosses” the cycle
¢ at most k£ times. By a simple inductive argument, we can establish that if gate ¢ has
cycle-height &, then all copies of g in C’, except those in the leftmost & and rightmost &
copies of C, evaluate to the same value as g in C. If follows that in the middle copy, all the
gates will get evaluated correctly. B

Theorem 20 A monotone circuit, given with an embedding on a torus, can be evaluated in

SAC2.

An obvious question is whether the above technique can be extended to give an NC upper
bound for higher genus circuits. The limitation is that if we do not get a genus 0 surface to
make copies, then the process of making copies will increase the genus.

6.2 Monotone multi-cylindrical circuits

We extend the idea of bi-cylindrical circuits in a natural way to what we call multi-cylindrical
circuits. Such circuits strictly subsume the bi-cylindrical case, but are incomparable with
planar circuits. A noteworthy point is that a multi-cylindrical circuit can be of arbitrary
genus.

A k-cylindrical circuit can be presented as a set of k& components. Each of these has a
cylindrical embedding. The edges of each cylindrical component flow towards the right rim.
And the right rims of each can be identified (let us call that curve ¢). Another circuit sits on
the gates in ¢ such that all the inputs to this circuit come only from gates in ¢. This circuit
can be cylindrical stratified, cylindrical or toroidal.

A multi-cylindrical circuit is a k-cylindrical circuit, for some k.

Figure 12: Multi-cylindrical embeddings

22

For example, in a trivial case, ¢ contains only the root gate. Given any such circuit,
assuming fanin of all the gates is 2, the incoming edges for the root will be embedded in at
most two of the components. Since all the nodes except those on these components become
unreachable from the root (in the undirected sense), we can reduce the given embedding to
the case of bi-cylindrical embedding.

Let C” be the subcircuit sitting over the nodes in ¢. Now C” can be thought of as a circuit
which has ¢ as its set of input nodes. We can evaluate each of the cylindrical components
separately in parallel. With this, we get the value of each node in ¢. Now we can evaluate C’
using the values of nodes in ¢. Depending on the complexity of evaluating each component,
and of evaluating C’ from ¢, we have the following upper bounds:

Inputs on ¢;’s Type of C’ layered not layered

only at extremes | cylindrical stratified | LogDCFL L(PDLP @ LogDCFL)
anywhere cylindrical AC'(LogDCFL) | AC!(LogDCFL)
anywhere toroidal — SAC?

As one can see, this gives upper bounds only for the promise problem. Also, one limitation
is that we do not know the complexity of obtaining such an embedding if one exists, and
hence the embedding need to be explicitly given along with the input. As far as we know, this
is the first result on evaluating a class of monotone circuits which contains some arbitrary
genus circuits. Clearly, if P # NC, there are arbitrary genus circuits which do not have
multi-cylindrical embeddings.

7 Discussion
This investigation leaves many questions unanswered.

1. Is cylindricality testing NP-hard? Recall that cylindricality strictly generalizes upward
planarity, testing for which is NP-hard ([12]), and is strictly stronger than planarity,
testing for which is in L([21, 4, 22]). Actually, upward planarity testing becomes hard
only in the presence of multiple sources, but is in AC! for single-source planar DAGs

8]-

2. How can a cylindrical embedding be represented so that given a representation of this
form, verifying if it is indeed cylindrical can be done in logspace? The representation
we have used does not seem to have enough information for this.

3. Given a graph with the promise that it is cylindrical / layered cylindrical / layered
upward planar, what is the complexity of recovering a witnessing embedding?

4. Let DLP; denote the class of problems logspace many-one reducible to DAGLONGPATH
where the DAGs are unrestricted for ¢ = 0, planar for ¢ = 1, planar single-source or
planar single-sink for ¢ = 2, and planar single-source single-sink for ¢ = 3. (Thus,
DLP; is what is referred to as PDLP till now in this paper.) Let DR; denote the class

23

8

of problems logspace many-one reducible to reachability in the corresponding DAGs.
Clearly, DR; C DLP;, and DLPy = DRy = NL. What other relationships can be deduced
between these classes?

Notice that the layering algorithm of Figure 6 already needs a one-input-face single-
sink planar DAG. A circuit on such a DAG can trivially be converted to an equivalent
instance of DR3 by adding a dummy source. Thus, the upper bounds of L(PDLP),
obtained in Proposition 1 and Lemma 2, can actually be replaced by DLP3, which may
conceivably be stronger. In recent work by [1], DR3 and DR, are shown to be in L.
Thus, if DLP3 can be shown to be equivalent to DRj3, or reducible to DR,, then the
upper bounds of this paper will drop further. We need to be a bit careful: Lemma 8§,
for instance, uses Proposition 1 as well as DR; (step 1 uses DR; to obtain an equivalent
instance of DRy), and thus has a fine upper bound of L(DLP; & DR;). To establish
Lemma 9, on the other hand, L(DLP3) suffices, since the first step is also dispensable.
These finer bounds can be carried over to all the results of Section 5.

. Recently, via a different approach bypassing Figure 6, one-input-face MPCVP has

been shown to be reducible to layered upward planar monotone circuits, and hence is
in LogDCFL[9]. It appears that focused MPCVP also be captured in LogDCFLvia this
approach.

. Are there natural topological restrictions which, placed on MPCVP, give instances

complete for LogDCFL, NL and LogCFL? In particular, is stratified cylindrical MPCVP
hard for LogDCFL?

. We can also impose bounds on the placement of negation gates in the circuit and then

study the complexity of evaluating them under different topological restrictions. We
have some preliminary results in this direction which will be reported in a separate
work.

Acknowledgements

The authors thank the anonymous referees of STACS 2006 for useful comments.

References

[1] E. Allender, D. A. Mix Barrington, T. Chakraborty, S. Datta, and S. Roy. Grid graph

reachability problems. Technical Report TR05-149, ECCC, 2005.

[2] E. Allender, S. Datta, and S. Roy. The directed planar reachability problem. In Proc.

25th FSTTCS, LNCS vol. 3821, pages 238-249, 2005.

[3] E. Allender, S. Datta, and S. Roy. Topology inside NC*. In Proc. 20th IEEE Conference

on Computational Complezity, pages 298-307, 2005.

24

[4]

[5]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

E. Allender and M. Mahajan. The complexity of planarity testing. Information and
Computation, 189(1):117-134, 2004.

C. Bachmaier, F.-J. Brandenburg, and M. Forster. Radial level planarity testing and
embedding in linear time. In Proc. Graph Drawing, LNCS vo. 2912, pages 393-405,
2003.

D. A. Mix Barrington, C.-J. Lu, P. Bro Miltersen, and S. Skyum. On monotone planar
circuits. In IEEE Conference on Computational Complexity, pages 24-31, 1999.

G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic di-
graphs. Theoretical Computer Science, 61:175-198, 1988.

P. Bertolazzi, G. Di Battista, C. Manning, and R. Tamassia. Optimal upward planarity
testing of single-source digraphs. SIAM Journal on Computing, 27:132-169, 1998.

T. Chakraborty and S. Datta. personal communication, 2005.

A. L. Delcher and S. R. Kosaraju. An NC algorithm for evaluating monotone planar
circuits. SIAM Journal of Computing, 24(2):369-375, 1995.

P. W. Dymond and S. A. Cook. Complexity Theory of Parallel Time and Hardware.
Information and Computation, 80(3):205-226, 1989.

A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear
planarity testing. SIAM Journal on Computing, 31(22):601-625, 2001.

L. M. Goldschlager. The monotone and planar circuit value problems are logspace
complete for P. SIGACT News, 9(2):25-29, 1977.

L. M. Goldschlager. A space efficient algorithm for the monotone planar circuit value
problem. Information Processing Letters, 10(1):25-27, 1980.

K. Hansen. Constant width planar computation characterizes ACCY. In Proc. 21st
STACS, LNCS wvol. 2996, pages 44-55, 2004.

K. Hansen, P. Bro Miltersen, and V Vinay. Circuits on cylinders. In Proc. 14th FCT,
LNCS vol. 2751, pages 171-182, 2003.

D. Kelly. Fundamentals of planar ordered sets. Discrete Mathematics, 63(2,3):197-216,
1987.

S. R. Kosaraju. On the parallel evaluation of classes of circuits. In Proc. 10th FSTTCS
Conference, LNCS vol. 472, pages 232-237, 1990.

G.L. Miller, V. Ramachandran, and E. Kaltofen. Efficient parallel evaluation of straight-
line code and arithmetic circuits. SIAM Journal of Computing, 17:687-695, 1988.

25

[20]

[21]

[22]

[23]

[24]

B. Mohar and C. Thomassen. Graphs on Surfaces. John Hopkins University Press,
Maryland, 2001.

V. Ramachandran and J. Reif. Planarity testing in parallel. Journal of Computer and
System Sciences, 49:517-561, 1994.

O. Reingold. Undirected st-conenctivity in logspace. In Proc. 37th STOC, pages 376—
385, 2005.

R. Tamassia and 1. G. Tollis. A unified approach to visibility representations of planar
graphs. Discrete and Computational Geometry, 1(1):312-341, 1986.

R. Tamassia and I. G. Tollis. Tessellation representations of planar graphs. In Proc.
27th Annual Allerton Conference on Communications, Control and Computing, UIUC,
pages 48-57, 1989.

H. Venkateswaran. Properties that characterize LogCFL. Journal of Computer and
System Sciences, 42:380-404, 1991.

H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer New
York Inc., 1999.

A. T. White. Graphs, Groups and Surfaces. North-Holland, Amsterdam, 1973.

H. Yang. An NC algorithm for the general planar monotone circuit value problem. In
Proc. 3rd IEEE Symp. on Parallel and Distributed Processing, pages 196-203, 1991.

26

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc

ECCC ISSN 1433-8092
ftpmail @ftp.eccc.uni-trier.de, subject *help eccc’

