
Inferring (Biological) Signal Transduction Networks via Transitive

Reductions of Directed Graphs

Reka Albert∗

Department of Physics

Pennsylvania State University

University Park, PA 16802

Email: ralbert@phys.psu.edu

Bhaskar DasGupta†

Department of Computer Science

University of Illinois at Chicago

Chicago, IL 60607

Email: dasgupta@cs.uic.edu

Riccardo Dondi

Dipartimento di Informatica,

Sistemistica e Comunicazione

Università di Milano-Bicocca

Milano, Italy 20126

Email: riccardo.dondi@unimib.it

Eduardo Sontag‡

Department of Mathematics

Rutgers University

New Brunswick, NJ 08903

Email: sontag@math.rutgers.edu

November 30, 2005

Abstract

In this paper we consider the p-ary transitive reduction (TRp) problem where p > 0 is
an integer; for p = 2 this problem arises in inferring a sparsest possible (biological) signal
transduction network consistent with a set of experimental observations with a goal to minimize
false positive inferences even if risking false negatives. Special cases of TRp has been investigated
before in different contexts; the best previous results are as follows:

(1) The minimum equivalent digraph problem, that correspond to a special case of TR1 with no

critical edges, is known to be MAX-SNP-hard, admits a polynomial time algorithm with
an approximation ratio of 1.617+ ε for any constant ε > 0 [13] and can be solved in linear
time for directed acyclic graphs [1].

(2) A 2-approximation algorithm exists for TR1 [9, 15].

In this paper, our contributions are as follows:

• We observe that TRp, for any integer p > 0, can be solved in linear time for directed
acyclic graphs using the ideas in [1].

• We provide a 1.78-approximation for TR1 that improves the 2-approximation mentioned
in (2) above.

• We provide a 2 + o(1)-approximation for TRp on general graphs for any prime p > 0.

∗Partly supported by a Sloan Research Fellowship in Science and Technology.
†Partly supported by NSF grants CCR-0296041, CCR-0206795, CCR-0208749 and IIS-0346973.
‡Partly supported by NSF grants EIA 0205116 and DMS-0504557.

1

Electronic Colloquium on Computational Complexity, Report No. 10 (2006)

ISSN 1433-8092

1 Introduction

In this paper, we study the p-ary transitive reduction problem which can be defined as follows. We
are given a directed graph G = (V, E) with an edge labeling function w : E 7→ {0, 1, 2, . . . , p − 1}
for some given integer p > 0. The following definitions and notations are used:

• All paths are (possibly self-intersecting) directed paths unless otherwise stated. A non-self-
intersecting path or cycle is called a simple path or cycle.

• If edge labels are removed or not mentioned, they are be assumed to be 0 for the purpose of
any problem that needs them.

• The parity of a path P from vertex u to vertex v is
∑

e∈P w(e) (mod p). For the special
case of p = 2, a path of parity 0 (resp., 1) is called a path of even (resp, odd) parity.

• The notation u
x
⇒ v denotes a path from u to v of parity x ∈ {0, 1, 2, . . . , p− 1}. If we do not

care about the parity, we simply denote the path as u ⇒ v. An edge will simply be denoted
by u

x
→ v or u → v.

• For a subset of edges E ′ ⊆ E, reachable(E ′) is the set of all ordered triples (u, v, x) such that
u

x
⇒ v is a path of the restricted subgraph (V, E ′)1.

The p-ary transitive reduction problem is defined as follows:

Problem name: p-ary Transitive Reduction (TRp)

Instance: A directed graph G = (V, E) with an edge labeling function w : E 7→
{0, 1, 2, . . . , p − 1} and a set of critical edges Ecritical ⊆ E.

Valid Solutions: A subgraph G′ = (V, E′) where Ecritical ⊆ E′ ⊆ E and reachable(E ′) =reachable(E).

Objective: Minimize |E ′|.

We are specially interested in the special case of p = 2; the corresponding TR2 problem will be
simply referred to as the Binary Transitive Reduction (BTR) problem. In the next subsection, we
explain the application of BTR to the problem of inferring signal transduction networks in biology.

2 Motivations

Most biological characteristics of a cell arise from the complex interactions between its numerous
constituents such as DNA, RNA, proteins and small molecules [2]. Cells use signaling pathways
and regulatory mechanisms to coordinate multiple functions, allowing them to respond to and
acclimate to an ever-changing environment. Genome-wide experimental methods now identify in-
teractions among thousands of cellular components [10, 11, 17, 18]; however these experiments are
rarely conducted in the specific cell type of interest, are not able to probe all possible interactions
and regulatory mechanisms, and the resulting maps do not reflect the strength and timing of the
interactions. The existing theoretical literature on signaling is focused on networks where the ele-
mentary reactions and direct interactions are known [8, 12]; however quantitative characterization

1We will sometimes simply say u
x
⇒ v is contained in E′ to mean u

x
⇒ v is a path of the restricted subgraph (V, E ′).

2

of every reaction and regulatory interaction participating even in a relatively simple function of
a single-celled organism requires a concerted and decades-long effort. The state of the art under-
standing of many signaling processes is limited to the knowledge of key mediators and of their
positive or negative effects on the whole process.

Experimental information about the involvement of a specific component in a given signal trans-
duction network can be partitioned into three categories. First, biochemical evidence, that provides
information on enzymatic activity or protein-protein interactions. For example, in plant signal
transduction, the putative G protein coupled receptor GCR1 can physically interact with GPA1
as supported by split-ubiquitin and co-immunoprecipitation experiments [21]. Second, genetic ev-
idence of differential responses to a stimulus in wild-type organisms versus a mutant organism
implicates the product of the mutated gene in the signal transduction process. For example, the
EMS-generated ost1 mutant is less sensitive to abscisic acid (ABA); thus one can infer that the
OST1 protein is a part of the ABA signaling cascade [20]. Third, pharmacological evidence, in
which a chemical is used either to mimic the elimination of a particular component, or to exoge-
nously provide a certain component, can lead to similar inferences. For example, a nitric oxide (NO)
scavenger inhibits ABA-induced stomatal closure while a NO donor promotes stomatal closure, thus
NO is a part of the ABA network [6]. The last two types of inference do not give direct interactions
but correspond to pathways and pathway regulation. To synthesize all this information into a
consistent network, we need to determine how the different pathways suggested by experiments fit
together.

The BTR problem considered in this paper is useful for determining the sparsest graph consistent
with a set of experimental observations. Note that we are not assuming that real signal transduction
networks are the sparsest possible, since that is clearly not the case. Our goal is to minimize false
positive (spurious) inferences, even if risking false negatives.

The first requirement of our method is to distill experimental conclusions into qualitative regu-
latory relations between cellular components. Following [5, 19, 22], we distinguish between positive
and negative regulation, usually denoted by the verbs “promote” and “inhibit” and represented
graphically as → and a. Biochemical evidence is represented as component-to-component rela-
tionships, such as “A promotes B”. However, both genetic and pharmacological evidence leads to
inferences of the type “C promotes process(A promotes B)”. In this case we use one of the following
three representations (i) if the process describes an enzymatic reaction, we represent it as both A
and C activating B; (ii) if the interaction between A and B is direct and C does not have a catalytic
role, we assume that C activates A; (iii) in all other cases we assume that C activates an unknown
intermediary vertex of the AB pathway.

Most edges of the obtained directed graph will not correspond to direct interactions, but starting
and end points of directed paths in the (unknown) interaction graph, in other words they represent
reachability relationships. Thus our goal is to find the sparsest graph that maintains all reachability
relationships, or the minimal transitive reduction of the starting graph. Arcs of the starting graph
corresponding to direct interactions will be marked as such and will need to be maintained during
the transitive reduction algorithm. A path between node i and j is inhibitory if it contains an odd
number of inhibitory interactions. Thus indirect inhibitory edges will need to be reduced to paths
that that contain an odd number of inhibitory edges. It is this transitive reduction problem that is

formalized as the BTR problem where edge labels 0 and 1 correspond to activations and inhibitions,
respectively, and a set of critical edges Ecritical ⊆ E corresponding to direct interactions.

3

Figure 1: Illustration of the
graph synthesis process in two
cases.

For the sake of completeness, we briefly describe the entire ap-
proach of minimizing the network (see [19] for a specific example
done by manual curation). We start by synthesizing the vertex-
to-vertex reachability relationships, then we turn to the vertex-to-
path influences. If existing paths already explains a vertex-to-path
relationship, no new intermediaries need to be added, otherwise we
incorporate it in one of the three representations described above.
Next we determine the obtained graph’s transitive reduction sub-
ject to the constraints that no edges flagged as direct are elimi-
nated. Finally we identify and collapse pairs of equivalent inter-
mediary vertices (e.g., adjacent vertices in a linear chain) if that
procedure does not change the reachability relationships of the real
vertices.

Figure 1 shown here illustrates the graph synthesis process in
two cases (specified by the reachability sets and pathway influence
information displayed on the left side) that differ in a single reacha-
bility relationship only. In both cases the edges marked as dashed
on the top graph will be eliminated. In the first case the path-
way regulatory information is already incorporated thus no new
intermediary vertices need to be added. In the second case the relationship between C, A and E
necessitates the addition of a new vertex x. The addition of the BE edge would make B and x

equivalent in terms of reachability; thus x could be identified with B.

3 Previous Results

Obviously, TRp is NP-complete since TR1 includes the problem of finding directed Hamiltonian
cycle in a graph. If Ecritical = ∅, TR1 is known as the minimum equivalent digraph (MED) problem.
MED is known to be MAX-SNP-hard, admits a polynomial time algorithm with an approximation
ratio of 1.617 + ε for any constant ε > 0 [13] and can be solved in polynomial time for directed
acyclic graphs [1]. A weighted version of the MED problem, in which each edge has a non-negative
real weight and the goal is to find a solution with a least value of the sum of weights of the edges
in the solution, admits a 2-approximation [9, 15]; this implies a 2-approximation for TR1 without
the restriction Ecritical = ∅.

4 Summary of Our Results

In this paper we investigate the TRp problem with a special emphasis on p > 1 since TR2 captures
the most important part of the network minimization algorithm mentioned in the introduction,
namely that of finding efficient approximate solution of the binary transitive reduction (BTR)
problem. The rest of the paper is organized as follows:

• In Section 6, we observe that TRp for any p > 0 can be solved in polynomial time for directed
acyclic graphs using the ideas in [1]. The solution is valid even if there are parellel edges or
edges with multiple labels.

4

• In Section 7.3 we provide a 1.78-approximation for TR1 and a 2 + o(1)-approximation for
TRp for any prime p > 1 when the given graph is strongly connected.

• In Section 7.4 we generalize the approximation results of the previous section to provide a
1.78-approximation for TR1 and a a 2 + o(1)-approximation for TRp for any prime p > 1 for
any given graph; the 1.78-approximation for TR1 for arbitrary graphs improves the previous
2-approximation for this case [9, 15].

Informally, our approach for solving TRp for general graphs involve developing approximate so-
lutions for strongly connected components and then combining these solutions. Because of the
presence of edge labels which participate via a modulo p addition in the parity of a path and the
existence of critical edges, our solution differs from that in [9, 13, 15]. We combine these solutions
via appropriate modifications to our solutions for TRp on DAG and designs of “gadgets” that would
ensure that parities of various paths are preserved.

5 Basic Notations and Terminologies

An approximation algorithm for a minimization problem, that seeks to minimize an objective
function, of performance or approximation ratio α (or simply an α-approximation) is a polynomial-
time algorithm that provides a solution with a value of the objective function that is at most α times
the optimal value of the objective function. We also use the following notations for convenience:

• OPT (G) = |Eopt(G)| denotes the number of edges in an optimal solution Eopt(G) of TRp for
the graph G.

• ⊕p , 	p and =p denote addition, subtraction and equality modulo p.

The following fact from elementary number theory will prove very useful to us.

Fact 1 For any prime p > 1 and any integer 0 < x < p, {i · x (mod p) | 0 < i < p + 1} =
{0, 1, . . . , p − 1}.

6 Polynomial-time Solution for Directed Acyclic Graphs (DAG)

Lemma 1 TRp can be solved in polynomial time when the given graph G is a DAG even if G has

• parallel edges,

• edges that are labeled by {0, 1, 2, . . . , p − 1}, i.e., edges of the form u
0,1,2,...,p−1

−→ v such that

traversing the edge provide a path of parity x for every x ∈ {0, 1, 2, . . . , p − 1}.

Proof. We first remove edges, if necessary, to ensure that no two parallel edges have the same label.
Also, obviously, if there is an edge from a vertex u to another vertex v labeled by {0, 1, 2, . . . , p−1},
we can remove any other edge that exists from u to v. After this, the algorithm shown below can
be used; it essentially uses ideas similar to that in [1].

5

compute in O(|V | + |E|) time a topological sorting of G with
v1, v2, . . . , vn as the topological order of nodes

for j = n, n − 1, n − 2, . . . , 1
for i = j − 1, j − 2, . . . , 1

if vi
S
→ vj exists for some S ⊆ {0, 1, 2, . . . , p − 1}:

then

if there exists another path vi
x
⇒ vj for every x ∈ S and vi

S
→ vj 6∈ Ecritical

then

delete edge vi
S
→ vj

The algorithm can be obviously implemented in polynomial time. Moreover, no edge belong-
ing to Ecritical is deleted and since an edge is deleted only if there is an alternate path of same
parity between its two endpoints, reachable(E ′) =reachable(E); thus the algorithm returns a valid
solution.

Now we show that solution is optimal. We will prove the claim by induction on |V |. The claim
is trivial for |V | = 1. Suppose that the claim is true for all |V | < k. Consider the case of |V | = k.
Consider the subgraph G′ = (V ′, E′) of G = (V, E) induced by the vertices V ′ = {v2, . . . , vk}
for which our algorithm an optimal solution EG′

opt. Remember that vi → vj ∈ E implies i < j,

thus EG
opt ⊆ EG′

opt

⋃
(

∪v1→vj∈E{v1 → vj}
)

. Now, consider running our algorithm on G and let

v1
S
→ vj be the first edge in which our solution differs from every optimal solution for some

S ⊆ {0, 1, 2, . . . , p − 1}. There are now two cases to consider:

• We select v1
S
→ vj but no optimal solution selects it. But, any optimal must contain the path

v1
x
⇒ vj for each x ∈ S. Since vi → vj ∈ E implies i < j and no two parallel edges have

the same label, the optimal solution contains a path of the form v1
x′

→ vi
x	p x′

=⇒ vj for some

1 < i < j and each x ∈ S. But then these paths ensure that we will not select v1
S
→ vj , a

contradiction.

• We did not select v1
S
→ vj but every optimal solution selected it. Then, in fact, we are

selecting fewer edges than any optimal solution upto this point.

❑

7 Efficient Approximation Algorithms for TRp

The goal of this section is to design an efficient approximation algorithm for TRp by proving the
following result.

Theorem 2 There is a 2 + o(1)-approximation algorithm for TRp for any prime p > 1 and a

1.78-approximation algorithm for TR1.

The next few subsections prove the above theorem step-by-step.

6

7.1 Characterization of Strongly Connected Components

Consider a strongly connected component C = (VC , EC) of the given graph G. We consider two
types of such components:

Multiple Parity Components: for any two vertices u, v ∈ VC , u
x
⇒ v exists in C for every

x ∈ {0, 1, 2, p − 1}.

Single Parity Components: for any two vertices u, v ∈ VC , u
x
⇒ v exists in C for exactly one x

from ∈ {0, 1, 2, p − 1}.

Lemma 3
(a) Every strongly connected component of G is either of single parity or of multiple parity.

(b) A strongly connected component C is of multiple parity if and only if C contains a simple cycle

of non-zero parity.

Proof. Suppose that C is not a single parity component. Then there exists a pair of vertices u and

v such that u
α
⇒ v and u

β
⇒ v exists in C with α 6= β. Since C is strongly connected, there exists a

path, say of parity γ, from v to u. Since α 6= β, either α + γ 6= 0 (mod p) or β + γ 6= 0 (mod p).
Thus, we have a cycle u

x
⇒ u for some x ∈ {1, 2, . . . , p− 1}. By Fact 1 and traversing this cycle an

appropriate number of time, we therefore have a cycle u
x
⇒ u for every x ∈ {0, 1, 2, . . . , p − 1}. If

the cycle is not simple, then either it contains a simple cycle of non-zero parity or it contains only
simple cycles of zero parity whose removals will make it a simple cycle of non-zero parity. This
proves the “only if” part of (b) of the lemma.

Thus, suppose that u
x
⇒ u for every x ∈ {0, 1, 2, . . . , p − 1}. Now, consider any two vertices u′

and v′ in C and consider any x ∈ {0, 1, 2, . . . , p − 1}. To prove (a), we wish to show that u′ x
⇒ v′

exists in C. Since C is strongly connected, there exists a path of some parity z from u′ to u

and there exists a path of some parity y from u to v′. Finally, there exists a path u
w
⇒ u where

w =p x− (y + z). To see the “if” part of (b), note that again a non-zero parity simple cycle u
x
⇒ u

for some x ∈ {1, 2, . . . , p − 1} implies u
x
⇒ u for every x ∈ {0, 1, 2, . . . , p − 1} and thus provides

u′ x
⇒ v′ for any u′, v′ ∈ VC and x ∈ {0, 1, 2, . . . , p − 1}. ❑

It is easy to state a straightforward dynamic programming approach to determine, given a
strongly connected component C, if C contains a simple cycle of non-zero parity using ideas sim-
ilar to that in the Floyd-Warshall transitive closure algorithm [4]. Let VC = {1, 2, . . . , n}. Let
N(i, j, k, x) be 1 if there is a simple path of parity x from vertex i to vertex j using intermediate
vertices numbered no higher than k and P (i, j, k, x) denote the corresponding path if it exists.
Then,

• for each x ∈ {0, 1, 2, . . . , p − 1} and for each i, j ∈ {1, 2, . . . , n}:

– if i
x
→ j ∈ EC then N(i, j, 0, x) = 1 and P (i, j, k, x) = i

x
→ j

else N(i, j, 0, x) = 0 and P (i, j, k, x) = ∅.

• for k > 0, each i, j ∈ {1, 2, . . . , n} and each x ∈ {0, 1, 2, . . . , p − 1}:

– if N(i, j, k − 1, x) = 1 then N(i, j, k, x) = 1 and P (i, j, k, x) = P (i, j, k − 1, x);

7

– else if N(i, k, k − 1, y) = N(k, j, k − 1, z) = 1 and y + z =p x, then N(i, j, k, x) = 1 and
P (i, j, k, x) is the concatenation of the paths P (i, k, k − 1, y) and P (k, j, k − 1, z).

– else N(i, j, k, x) = 0 and P (i, j, k, x) = ∅.

The running time is O(p · |VC |
3). The final answer is obtained by checking N(i, i, n, 1) for each

i, j ∈ {1, 2, . . . , n}. Moreover, such a simple non-zero parity cycle, if it exists, can be found from the
corresponding P (i, j, n, 1)’s and by observing that if the cycle is not simple, then either it contains
a simple cycle of non-zero parity or it contains only simple cycles of zero parities whose removals
will make it a simple cycle of non-zero parity. As a by-product of the above discussions and due to
the results in [9], we also obtain the following corollary.

Corollary 4 Consider the TRp problem, when p is 1 or a prime number, on a strongly connected

graph G = (V, E). Then, |V | ≤ OPT (G) ≤ 3|V |.

7.2 Solving TRp for a Strongly Connected Component

The main result of this subsection is as follows.

Theorem 5 Let the given graph G be strongly connected. Then, we can design a 2-approximation

algorithm for TRp when p > 1 is a prime and a 1.78-approximation algorithm for the TR1.

In the rest of this subsection, we provide a proof of the above theorem. First, we will need to
review some existing algorithms for special cases of BTR. For the remainder of this subsection, we
assume that our input graph G = (V, E) is strongly connected; in this case obviously OPT (G) ≥
|V |.

The following notations and terminologies will be used:

• By “the TR1 problem on a graph G” we mean the TR1 problem on G with all edge labels of
G being set to zero.

• By “the TR1 problem on a graph G with no critical edges” we mean the TR1 problem on G

with every edge marked as not critical, i.e., Ecritical being temporarily set to ∅.

• Eopt(G) is an optimal solution of TRp on G.

• E1
opt(G) is an optimal solution of TR1 on G. For notational convenience, let:

– α = |Ecritical|;

– β = |E1
opt \ Ecritical|.

• Emaxopt
(G) is an optimal solution of TR1 on G with no critical edge.

Note that:

• |E1
opt(G)| = α + β;

• |Eopt(G)| ≥ |E1
opt(G)| = α + β;

• |Emaxopt
(G)| ≤ |E1

opt(G)| = α + β.

8

7.2.1 The Cycle Contraction Algorithm of Khuller, Raghavachari and Young [13, 14]

This algorithm for TR1 with no critical edges, which we refer to as Algorithm A1, works as follows.
Contraction of an edge u → v is to merge u and v into a single vertex and delete any resulting self-
loops or multi-edges. The algorithm selects a constant k ≥ 3, and then, for i = k, k−1, k−2, . . . , 3,
as long as the graph contains a cycle C of at least i edges contracts the edges of C and selects
these edges in the solution. Finally, when the graph contains cycles of length at most 3, an exact
algorithm for MED [14] is used. Let E1 be the set of edges selected by this algorithm. The results
of Khuller et al. translate to the following facts:

• E1 is a correct solution if G is of single parity and Ecritical = ∅.

• |E1| ≤
(

π2

6 − 1
36 + 1

k(k−1)

)

Emaxopt
(G) <

(

1.617 + 1
k(k−1)

)

Emaxopt
(G).

7.2.2 The Spanning Arborescence Algorithm [9]

This algorithm for TR1, which we refer to as Algorithm A2, works as follows when adapted to BTR.
Given the graph G = (V, E), define the weight2 wt(e) = 0 of every edge in e ∈ Ecritical and the
weights of all other edges to be 1. In the first stage, find a minimum weight spanning arborescence3

T of minimum weight of G, say rooted at vertex v. Then, in the second stage, set wt(e) = 0 for
e ∈ Ecritical ∪T , set the weights of the rest of the edges to be 1, and find a minimum weight reverse

spanning aroborescence T ′ rooted to vertex v, i.e., a minimum weight spanning directed acyclic
subgraph such that v has no outgoing edges and every other vertex has exactly one outgoing edge.
Then, the union E2 of the edges in T and T ′ together with all critical edges not selected in T or T ′

is returned as the solution. The proofs in [9] imply that:

• E2 is a correct solution if G is of single parity.

• Algorithm A2 is a 2-approximation, i.e., the sum of weights of edges in E2 is at most twice the
sum of weights of edges in an optimal solution of TR1 on G. In other words, |E2| ≤ α + 2β.

We now review the algorithm for finding the minimum weight spanning arborescence [3, 7, 16] since
it will be necessary to modify it slightly later. First, we select for each node an incoming edge of
minimum weight. If these edges do not give a spanning arborescence, then there must be a directed
cycle C formed by some of these edges. Let δC ∈ {0, 1} be the minimum of the weights of the edges
in C. We contract C to a “supernode” and decrease the weight of every edge i → k from vertex
i 6∈ C to vertex k ∈ C by p − δ where p the weight of the unique edge in C that is incoming to k.
The process is then repeated on the reduced graph, and continued until a pseudonode is created
with zero in-degree. The supernodes are then expanded in reverse order. Each time a supernode is
expanded, exactly one of its edge is discarded which would produce two incoming edges to a node.
The same algorithm with minor modification can be used to find the reverse spanning arborescence
rooted to v also. Algorithm A2 can be implemented to run in O(min{|E| log |V |, |V |2}) time;
see [23] for details.

2These weights should not be confused with the edge labeling function w used in the definition of BTR.
3A spanning arborescence is a directed acyclic spanning subgraph such that every node except one node (the root)

has exactly one incoming edge; its weight is just the sum of the weight of its edges.

9

7.3 Augmenting and Combining the Two Algorithms

7.3.1 Augmenting Algorithms A1

Lemma 6 Algorithm A1 can be modified such that it solves the TRp problem on G and uses at

most 2.236α + 1.618β edges.

Proof. We will show how to augment Algorithm A1 to handle

• a non-empty Ecritical and

• a multiple parity component.

By Lemma 3(b), if G = (V, E) is of multiple parity, we can find a simple cycle C of non-zero parity
whose addition to the solution of Algorithm A1 would provide paths of all parities between every
pair of vertices. Let k be the constant used in the description of Algorithm A1. If |V | < k2, we can
solve the problem in O(1) time. Otherwise, obviously |Eopt(G)| ≥ |E1

opt(G)| = α+β ≥ |V | = k2. If
C contains k or more edges, we can let C be the first cycle contracted by Algorithm A1. Otherwise,
we just add the edges in C, if necessary, to the solution returned by Algorithm A1. With this

modification, |E1| ≤
(

1.617 + 1
k(k−1) + 1

k

)

(α + β), or |E1| ≤ 1.618(α + β) by appropriate choice of

k.

Now, we show how to handle the edges in Ecritical. We replace an edge u
x
→ v ∈ Ecritical by

introducing a new vertex Xu,v and two new edges u
0
→ Xu,v and Xu,v

x
→ v. Let G′ = (V ′, E′) be

the new graph. It is clear that all the new edges must be selected by Algorithm A1 since otherwise
either reachability from some Xu,v or reachability to some Xu,v will be violated. Moreover, there are
exactly 2α new edges. Consider a solution returned by Algorithm A1 on G′. Then, we can contract
the new edges to the original edges in G to get a solution E1 for G. Note that an optimal solution
for TR1 on G′ with no critical edges uses at most 2α + β edges since, in particular, one solution
of TR1 on G′ with no critical edges involve taking 2α new edges and β edges from E1

opt \ Ecritical.
The contraction removes α edges from this solution. Thus, the total number of edges selected with
this modification is atmost |E1| ≤ 1.618(2α + β) − α = 2.236α + 1.618β. ❑

7.3.2 Augmenting Algorithms A2

Lemma 7 Algorithm A2 can be modified such that it solves the TRp problem on G and uses at

most 2α + 2β + 1 edges.

Proof. We show how to augment Algorithm A2 to handle a multiple-parity graph. Again, by
Lemma 3(b), we can find a simple cycle C of non-zero parity whose addition to the solution of
Algorithm A2 would provide paths of all parities between every pair of vertices. Assume that at
least one edge of C does not belong to Ecritical since otherwise we do not incur any additional cost
in adding C to our solution. Remember that the first stage of Algorithm A2 starts by selecting one
incoming edge of minimum weight for every vertex. We will modify wt(e) for some edges e ∈ C

such that Algorithm A2 starts by selecting all the edges in C and show that the additional cost
incurred is not too much. We classify each edge u → v ∈ C in the following way:

(i) wt(u → v) = 0. We can then surely select this edge.

10

(ii) wt(u → v) = 1 and every edge u′ → v has wt(u′ → v) = 1. Then also we can select this edge.

(iii) wt(u → v) = 1 and some edge u′ → v has wt(u′ → v) = 0. Then, we change wt(u → v)
to zero which would allow us to select this edge. Let S be the set of all these edges. Since
wt(u′ → v) = 0 implies u′ → v ∈ Ecritical, |S| ≤ α and thus the total number of additional
edges that appear in the solution of Algorithm A2 due to these changes is at most α

(iv) When the supernode for C is expanded, all except one edge of C, say the edge u → v, are
selected. Thus, this edge which was not selected adds 1 to the count of additional edges.

Since we changed some edge weights from one to zero, the sum of edge weights in the solution of
Algorithm A2 does not increase. Thus, with this modification, we get |E2| ≤ 2(α + β) + 1. ❑

7.3.3 Combining Algorithms A1 and A2

1.78-approximation for TR1 for a Strongly Connected Component

For TR1 a strongly connected graph cannot be of multiple parity. In this case, our solution is
the better of the solutions provided by modified Algorithm A1 and Algorithm A2 without the mod-

ification. The approximation ratio is ρ = min
{

2.236α+1.618β
α+β , α+2β

α+β

}

≤ min
{

2.236α+1.618β
α+β , α+2β

α+β

}

=

min0≤β<∞ {f(β), g(β)} where f(β) = 2.236α+1.618β
α+β and g(β) = α+2β

α+β . Note that f(β) is a decreas-
ing function of β, g(β) is an increasing function of β, f(0) > g(0) and limβ→∞ f(β) < limβ→∞ g(β).
Thus, ρ ≤ f(β0) where β0 is that value of β that satisfies f(β0) = g(β0). Calculations show that

β0 = 1.136
0.38 α and thus f(β0) =

2.236+ 1.618×1.136

0.382

1+ 1.136
0.382

< 1.78.

2 + o(1)-approximation for TRp for a Strongly Connected Component

In this case, our solution is simply the output of modified Algorithm A2. Since |E2| < 2(α+β)+1
and |V | ≤ |Emaxopt

| = α + β, we have a 2 + o(1)-approximation.

7.4 Approximating TRp for General Graphs: Combining DAG and Strongly
Connected Component Solutions

Now that we have an approximation algorithm for each strongly connected component and an exact
algorithm for DAGs, can we use these to design an approximation algorithm for a general graph?
First, we outline a general strategy for this purpose. Then we show how to apply the strategy for
single and multiple parity components. The details of the strategy are somewhat different from
that in [1, 13] because the strongly connected components can be of two types of parity.

Let G = (V, E) be the given graph with C1, C2, . . . , Cm being the m strongly connected compo-
nents where the ith component Ci contains ni vertices vi,1, vi,2, . . . , vi,ni

. By a gadget for component
Ci we mean a DAG of O(p2) size on a new set of vertices. No two gadgets share a vertex.

Suppose that we have gadgets Γ1, Γ2, . . . , Γm for the components C1, C2, . . . , Cm, respectively.
Let Egadget be the set of all edges in all the gadgets. Let G′ be a new graph obtained from G by a
polynomial-time procedure Tcycle−to−gadget of the following nature:

• Every Ci was replaced by the corresponding gadget Γi.

11

• Every incoming edge u
x
→ v to some vertex v in Ci is replaced by either one edge (the “first

type”) u
x
→ v′ or by at most a group of 1 < j ≤ p edges (one group of “second type”)

u
σ1→ v′, . . . , u

σj
→ v′ to vertices in Γi, and similarly every outgoing edge u

x
→ v from some

vertex u in Ci is replaced by either one edge (the “first type”) u′ x
→ v or by at most a group

of 1 < r ≤ p edges (one group of “second type”) u′ σ1→ v, . . . , u′ σr→ v from vertices u′ in Γi.
Let Ein/out,1 Ein/out,2 be the set of all such edges of the first and second types, respectively.

Furthermore, suppose the above procedure Tcycle−to−gadget guarantees the following invariants:

(P1) any valid solution of TRp for G′ must contain all the edges in Egadget, and

(P2) if an edge u
x
→ v in Ci was replaced by a set of second type edges in G′, then there is an

optimal solution of TRp on G′ that selects all of them.

Due to Invariant (P2), for the purpose of calculating the correspondence of an optimal solution
of G′ with that of G, we can consider one group of second type edges as just one edge. Abusing
notations slightly, let Ein/out,2 be the set of edges obtained by such replacements. Let Ein/out =
Ein/out,1 ∪ Ein/out,2.

Observe that G′ is a DAG. To see this, consider the graph G′′ obtained by removing the edges in
Egadget from G′. This graph specified the interconnections between strongly connected components
and is therefore a DAG. Now, since each Γi is a DAG, it is easy to put back the missing edges in a
topological sorting of G′′ such that the property of topological ordering is not violated. Thus, we
can solve the TRp problem for G′ exactly via the algorithm described in Lemma 1. Suppose that
the solution uses a subset E ′

in/out ⊆ Ein/out of the edges.

Now, suppose that we have an optimal solution Eopt(Ci) for TRp for the connected component
Ci. Given an optimal solution Eopt(G

′) of G′, we associate it with a subgraph Gapprox of G via a
procedure Tgadget−to−cycle in the following manner.

• Replace each Γi by the vertices and edges in the optimal solution Eopt(Ci) of Ci.

• Replace an incoming/outgoing edge to/from Γi by an incoming/outgoing edge to/from the
corresponding vertex in Ci.

Suppose that the set of edges E ′
in/out are mapped to subsets E ′ of edges of G by Tgadget−to−cycle.

Note that, due to Invariant (P2), |E|′ = |E′
in/out|. Suppose that our transformation satisfies the

following invariant:

(?) Gapprox is an optimal solution of TRp for G.

Then, OPT (G) = OPT (G′) − |Egadget| +
∑m

i=1 |Eopt(Ci)|. Suppose now that we have a ρ-
approximation of TRp on each Ci and in Gapprox we replace each Ci by this approximate solution.
Then, we have a ρ-approximation of TRp on G since we have a valid solution of TRp on G and the
number of edges we use is at most OPT (G′) − |Egadget| + ρ ·

∑m
i=1 |Eopt(Ci)| ≤ ρ · OPT (G).

But, how do we check Invariant (?) described above? Suppose that we could maintain the
following two invariants:

(P3) Gapprox = (Vapprox, Eapprox) is a valid solution of TRp on G.

12

(P4) A subgraph that is an optimal solution Eopt(G) of TRp on G, after application of the proce-
dure Tcycle−to−gadget, is transformed to a subgraph Gmin = (Vmin, Emin) that is a valid solution
of TRp on G′.

To show that the above invariants are sufficient, the following proposition becomes useful.

Proposition 1 Eopt(G)∩ECi
= Eopt(Ci) for every strongly connected component Ci = (VCi

, ECi
)

and Eopt(G
′) ∩ EΓi

= Eopt(Γi) for every gadget Γi = (VΓi
, EΓi

).

Proof. This was essentially observed in [1]. We only prove the claim Eopt(G) ∩ ECi
= Eopt(Ci);

the other one is similar. The claim follows since otherwise there will be a path from some vertex in
VCi

to another vertex in Ci in which at least one intermediate vertex in the path does not belong
to VCi

; thus, this intermediate vertex also belongs to VCi
contradicting the maximality of Ci. ❑

Now suppose that |Eopt(G)| < |Eapprox|. Obviously,

OPT (G′) = |Eapprox| −
m

∑

i=1

|Eopt(Ci)| + |Egadget|

But, using Proposition 1 and Invariant (P4)

|Emin| = |Eopt(G)| −
m

∑

i=1

|Eopt(Ci) + |Egadget|

Thus |Emin| < OPT (G′), contradicting the optimality of OPT (G′). Thus, |Eopt(G)| ≥ |Eapprox| and
since, by Invariant (P3), Gapprox is a valid solution of TRp on G we must have |Eopt(G)| = |Eapprox|.
Summarizing, we have proved the following lemma.

Lemma 8 Suppose that we can design the procedures Tcycle−to−gadget and Tgadget−to−cycle such that

invariants (P1)–(P4) are satisfied. Then a ρ-approximation of TRp for a strongly connected graph

implies a ρ-approximation of TRp for general graphs.

Finally, note that due to the Proposition 1, when checking for Invariants (P3) or (P4), we need
to check only for those paths u

x
⇒ v in G such that u and v do not belong to the same component

and those paths u
x
⇒ v in G′ such that u and v do not belong to the same gadgets in G′.

7.4.1 Handling Strongly Connected Components of Multiple Parity

First assume that the graph has no components of single parity. Note that by definition a multiple
parity component must have at least 2 vertices. Each Ci corresponds to a gadget Γi in the following
manner. We introduce one new vertex XCi

. An incoming edge in G to some vertex in Ci now
becomes p incoming edges of parities 0, 1, . . . , p− 1 to XCi

and an outgoing edge from some vertex
in Ci now becomes p outgoing edges from XCi

of parities 0, 1, . . . , p − 1. Figure 2 illustrates the
gadget for p = 2.

We need to verify the invariants (P1)–(P4). (P1) vacuously holds. By induction on the
number of components, it suffices to verify (P2)–(P4) when there is one component of multiple
parity, say C = (VC , EC).

13

u u

vi,1 vi,2 vi,3 vi,4 vi,5

v vi,12 vi,6 u′ ⇒ v XCi
u′

vi,11 vi,10 vi,9 vi,8 vi,7

v′ v′

0

1

0
1

0

1

0
1

Figure 2: Gadget Γi for a multiple parity component Ci for the TR2 problem. Due to Invari-

ant (P2), we can replace the pairs of edges {u
0
→ XCi

, u
1
→ XCi

}, {v
0
→ XCi

, v
1
→ XCi

},

{XCi

0
→ u′, XCi

1
→ u′} and {XCi

0
→ v′, XCi

1
→ v′} by u

0,1
→ XCi

, v
0,1
→ XCi

, XCi

0,1
→ u′ and

XCi

0,1
→ v′, respectively.

First we verify (P2). For a vertex XC , let the set of violating neighbors N be the set of vertices
v such that for some ∅ ⊂ Rv ⊂ {0, 1, 2, . . . , p− 1} there is an optimal solution that selects XC

x
→ v

for every x ∈ Rv but not XC
z
→ v for every z ∈ {0, 1, 2, . . . , p − 1} \ Rv. We will show how to

decrease the number of violating neighbors by one without increasing the number of edges in the
solution; iterating the process will ensure that (P2) is satisfied. Consider such a violating neighbor
v. But, Eopt(G

′) must contain the paths XC
z
⇒ v for every z ∈ {0, 1, 2, . . . , p − 1} \ Rv. Fix any

specific z and let XC
y
→ v′ be the first edge on this path. Then, for every edge XC

x
→ v remove

this edge and add the edge XC
y′

→ v′ if it was not already selected where y′ =p x− z + y. The case
of edges incoming to XC is similar.

To verify (P3), one must consider the following cases.

(I) u
x
⇒ v is in G when u ∈ VC and v 6∈ VC . Suppose that u′ is the last vertex on this path that

belongs to C; thus the path is of the form u
x1⇒ u′ x2→ v′

x3⇒ v. Thus XC
x2 ⊕p x3
=⇒ v exists

in Eopt(G
′). Suppose that this path translates to the path u′′ x2 ⊕p x3

=⇒ v in Gapprox for some

u′′ ∈ C. Since u
z
⇒ u′′ exists in C for every z ∈ {0, 1, . . . , p − 1}, we have the path u

x
⇒ v in

Gapprox.

(II) u
x
⇒ v is in G when u 6∈ VC and v ∈ VC . Similar to (I).

(III) u
x
⇒ v is in G when u, v 6∈ VC but the path contains at least one vertex from VC . Let

u
x1⇒ u′ x2⇒ v′

x3⇒ v where u′ and v′ are the first and the last vertices that belong to C. But,
then u

x1⇒ u′ and v′
x3⇒ v exist in Gapprox by (I) and (II), respectively, and u′ x2⇒ v′ exist

in Gapprox since C is a multiple parity component and Tgadget−to−cycle replaced every XC by
Eopt(C).

To verify (P4), one must consider the following cases.

14

(I) XC ⇒ v is in G′. Since every outgoing edge from XC has parity z for every z ∈ {0, 1, 2, . . . , p−
1}, XC

z
⇒ v exist in G′ each z ∈ {0, 1, 2, . . . , p − 1}. Pick any vertex u ∈ C. Obviously,

u
0
⇒ v = u

x1⇒ u′ x2→ v′
x3⇒ v exists in Eopt(G) where u′ is the last vertex on the path that is in

C. Then, both XC
{0,1,2,...,p−1}

−→ v′ and v′
x3⇒ v are in Gmin.

(II) v ⇒ XC is in G′. Similar to (I).

(III) u ⇒ XC ⇒ v is in G′. Follows from (I) and (II) since both u ⇒ XC and XC ⇒ v are in
Gmin.

7.4.2 Handling Strongly Connected Components of Single Parity

Now all the multiple parity components have been replaced by Tcycle−to−gadget and G has compo-
nents of single parity. Let v be any vertex in a single parity component Cq = (VCq

, ECq
). Define

the following notation:

[j, Cq] = {x ∈ VCq
| v

j
⇒ x exists in Cq}

Note that for any u, v ∈ VCq
, u

x
⇒ v is in Cq if and only if v

p−x
=⇒ u is in Cq since otherwise u

y
⇒ u

is in Cq for some y ∈ {1, 2, . . . , p − 1} which is not allowed due to Lemma 3(b).

Lemma 9 For any u ∈ [i, Cq] and u′ ∈ [j, Cq], u
x
⇒ u′ if and only if x =p j − i.

Proof. Consider the path u
p−i
=⇒ v

j
⇒ u′ and note that there are paths of only one parity between

any two vertices in a single parity component. ❑

Via the above lemma, we can design the following gadget for the single parity component
Cq = (VCq

, ECq
):

• The new vertices and edges in Γq are as follows:

– the set of new vertices are

p−1
⋃

i=0

{

[i, Cq]
′, [i, Cq]

′′
}

;

– for each [i, Cq]
′ ∈ { [0, Cq]

′, [1, Cq]
′, . . . , [p−1, Cq]

′ } and [j, Cq]
′′ ∈ { [0, Cq]

′′, [1, Cq]
′′, . . . , [p−

1, Cq]
′′ }, there is an edge [i, Cq]

′ x
→ [j, Cq]

′′. where x =p j − i.

• An incoming edge u′ x
→ u to Cq with u′ 6∈ VCq

and u ∈ VCq
is mapped by Tcycle−to−gadget to

the following set of edges:

Case Corresponding set of second-type edges Reference

u ∈ [j, Cq] u′ x⊕p `	p j
→ [`, Cq]

′ for each ` ∈ {0, 1, . . . , p − 1} (Cq,j,x,u′)′

• An outgoing edge u
x
→ u′ from Cq with u′ 6∈ Cq and u ∈ Cq is mapped by Tcycle−to−gadget as

shown below:

Case Corresponding set of second-type edges Reference

u ∈ [j, Cq] [`, Cq]
′′ x⊕p j 	p `

→ u′ for each ` ∈ {0, 1, . . . , p − 1} (Cq,j,x,u′)′′

15

• Finally, if any pair of constraints (Cq1,j1,x1,u1
)′, (Cq2,j2,x2,u2

)′ or (Cq1,j1,x1,u1
)′′, (Cq2,j2,x2,u2

)′′

generate the same set of edges, we remove one of the sets.

As a specific illustration, consider the graph on the top of Figure 3 for the TR2 problem; the
corresponding gadget is shown below.

u1 vq,1 = v vq,2 vq,3 v1

u2 vq,6 vq,5 vq,4 v2

⇓

u1 [0, Cq]
′ [0, Cq]

′′ v1

u2 [1, Cq]
′ [1, Cq]

′′ v2

1 1

1

10

1

1

0

0

1

0

1

1

0

1

0

0

1

0

1

0

1

Figure 3: Gadget Γq for a single parity component Cq for an instance of the TR2 problem. [0, Cq] =
{vq,1, vq,3, vq,5, vq,6}, [1, Cq] = {vq,2, vq,4}.

The following properties of gadget edges will be useful.

Lemma 10 The following statements are true:

(a) [j, Cq]
′′ y
→ u′ with u′ 6∈ VCq

is in G′ implies that, for every 0 ≤ ` < p, [`, Cq]
′′ y ⊕p j 	p `

−→ u′ is also

in G′. Moreover, the edge [`, Cq]
′′ y′

→ u′ is an edge among the set of edges in (Cq,j,y′ ⊕p `	p j,u′)
for exactly one 0 ≤ j < p.

(b) u′ y
→ [j, Cq]

′ with u′ 6∈ VCq
is in G′ implies that, for every 0 ≤ ` < p, u′ y ⊕p `	p j

−→ [`, Cq]
′ is also

in G′. Moreover, the edge u′ y′

→ [`, Cq]
′ is an edge among the set of edges in (Cq,j,y′ 	p `⊕p j,u′)

for exactly one 0 ≤ j < p.

Proof.
(a) Suppose that the edge [j, Cq]

′′ y
→ u′ was introduced by the the edge w

x
→ u′ of G with w ∈ [t, Cq]

under the constraint (Cq,t,x,u′)′′. Thus, y =p x + t − j. The same constraint also generated the

edge [`, Cq]
′′ y′

→ u′ where y′ =p x + t − ` =p y + j − `.

For the second part, note that two constraints (Cq,j1,y′ ⊕p `	p j1,u′) and (Cq,j2,y′ ⊕p `	p j2,u′)
generate the same set of edges and hence one of them will be removed.

16

(b) Suppose that the edge u′ y
→ [j, Cq]

′ was introduced by the the edge u′ x
→ w of G with w ∈ [t, Cq]

under the constraint (Cq,t,x,u′)′. Thus, y =p x+ j− t. The same constraint also generated the edge

u′ y′

→ [`, Cq]
′ where y′ =p x + ` − t =p y + ` − j.

For the second part, note that two constraints (Cq,j1,y′ 	p `⊕p j1,u′) and (Cq,j2,y′ 	p `⊕p j2,u′)
generate the same set of edges and hence one of them will be removed. ❑

We need to verify Invariants (P1)–(P4). (P1) obviously holds. To verify (P2), we need to
prove the following lemma.

Lemma 11 Consider any valid solution for TRp on G′ that violates Invariant (P2) for a set of

(Cq,j,x,u)′ or (Cq,j,x,u)′′. Then we can compute in polynomial time another solution for BTR on

G′ that does not violate (P2) for any (Cq,j,x,u)′ or (Cq,j,x,u)′′ and uses no more edges.

Proof. Let us first verify the result when the constraint is violated for a set of (Cr,a,z,v)′′ for various
a, v, z and r. Select a specific (Cq,j,x,u)′′ from this set. We will show how to add and delete edges
such that (Cq,j,x,u)′′ will cease to violate the constraint but the number of remaining (Cr,a,z,v)′′

that violate the constraint will not increase; iterating the process will ensure that all violations of

this type have been removed. Let P = {[`, Cq]
′′ x⊕p j 	p `

−→ u} | ` ∈ {0, 1, . . . , p − 1} be the set of
edges specified by this constraint (Cq,j,x,u)′′. Since this constraint is violated, there exists a pair of

indices i and r such that [i, Cq]
′′ x⊕p j 	p i

−→ u is in the solution but [r, Cq]
′′ x⊕p j 	p r

−→ u is not. But the

solution must contain the path [r, Cq]
′′ x⊕p j 	p r

=⇒ u. Let the path be [r, Cq]
′′ y
→ w

x⊕p j 	p r	p y
=⇒ u. By

Lemma 10(a) the existence of the edge [r, Cq]
′′ y
→ w implies the existence of the edge [i, Cq]

′′ r	p i⊕p y
−→

w. Consider adding the edge [i, Cq]
′′ r	p i⊕p y

−→ w to the solution if it is not already there. Then, the

path [i, Cq]
′′ r	p i⊕p y

−→ w
x⊕p j 	p r	p y

=⇒ u is of parity r − i + y + x + j − r − y =p x + j − i and thus

the edge [i, Cq]
′′ x⊕p j 	p i

−→ u can be deleted. To see why the number of remaining (Cr,a,z,v)′′ that

violate the constraint did not increase, suppose that we indeed added the edge [i, Cq]
′′ r	p i⊕p y

−→ w

to the solution. By Lemma 10(a), the edge [i, Cq]
′′ r	p i⊕p y

−→ w is an edge among the set of edges
in (Cq,j,y′′) for exactly one 0 ≤ j < p where y′′ =p y + r − i + i − j =p y + r − j. But the

constraint (Cq,j,y′′) also contains the edge [r, Cq]
′′ y
→ w which was selected but contains the edge

[i, Cq]
′′ r	p i⊕p y

−→ w which was not selected and thus the constraint (Cq,j,y′′) was already violated.

The case when the constraint is violated for a set of (Cr,a,z,v)′ for various r, a, z and v is similar.
❑

It now remains to verify the invariants (P3) and (P4) By induction on the number of com-
ponents, it suffices to verify (P3) and (P4) when there is one component of single parity, say
C.

To verify (P3), one must consider the following cases.

(I) u
x
⇒ w is in G when u ∈ C and w 6∈ C. Suppose that u′ is the last vertex on this path that

belongs to C. Thus the path is of the form u
x1⇒ u′ x2→ w′ x3⇒ w with x =p x1 + x2 + x3.

Suppose that u ∈ [r, C] and thus u′ ∈ [s, C] where s =p r + x1. Eopt(G
′) contains the path

[s, C]′′
x2⇒ w′ x3⇒ w. Suppose that Tgadget−to−cycle translated this path to a path u′′ x2 ⊕p s	p t

=⇒

w′ x3⇒ w for some u′′ ∈ [t, C]. Then the path u
x1⇒ u′ t	p s

=⇒ u′′ x2 ⊕p s	p t
=⇒ w′ x3⇒ w is of parity x.

17

(II) w
x
⇒ u is in G when u ∈ C and w 6∈ C. Similar to (I).

(III) u
x
⇒ w is in G when u, w 6∈ C but the path contains at least one vertex in C. Let u

x1⇒ u′ x2⇒

v′
x3⇒ v where u′ and v′ are the first and the last vertices that belong to C. But, then u

x1⇒ u′

and v′
x3⇒ v exist in Gapprox by (I) and (II), respectively, and u′ x2⇒ v′ exist in Gapprox because

of the gadget edges.

We first do the following polynomial-time local transformations before verifying (P4). Using
Lemma 11 we first change Gmin to ensure that Invariant (P2) is not violated for any (Cq,j,x,u)′ or
(Cq,j,x,u)′′ without increasing the number of edges. Then, we map this new Gmin using Tgadget−to−cycle

to a solution of G that uses no more edges than before. Since all the gadget edges are selected in
any valid solution for G′, to verify (P4) one needs to consider the following cases.

(I) [i, C]′′
x
→ w is in G′ for w 6∈

p−1
⋃

i=0

{

[i, Cq]
′, [i, Cq]

′′
}

. By Lemma 10(a) this implies that Eopt(G)

contains u
x⊕p i	p j

=⇒ w for some u ∈ [j, C]. Suppose that this path is of the form u
y1
⇒ w′ y2

⇒

w′′ x⊕p i	p j 	p y1 	p y2
=⇒ w where w′ is the last vertex on the path that belongs to C. By Lemma 9

w′ ∈ [j ⊕p y1, C]. Thus, the path w′ y2
=⇒ w′′ x⊕p i	p j 	p y1 	p y2

=⇒ w in Eopt(G) translates to the

path [j ⊕p y1, C]′′
y2

=⇒ w′′ x⊕p i	p j 	p y1 	p y2
=⇒ w. By Lemma 10(a) the edge [j ⊕p y1, C]′′

y2
=⇒ w′′

implies that the edge [i, C]′′
j ⊕p y1 	p i⊕p y2

=⇒ w′′ also exists and, by Invariant (P2), selected in

Gmin. Then the path [i, C]′′
j ⊕p y1 	p i⊕p y2

=⇒ w′′ x⊕p i	p j 	p y1 	p y2
=⇒ w is of parity x.

(II) w
x
→ [i, C] is in G′ for w 6∈

p−1
⋃

i=0

{

[i, Cq]
′, [i, Cq]

′′
}

. Similar to (I).

(III) w1
x1→ [i, C]

j 	p i
→ [j, C]

x2→ w2 is in G′ for w1, w2 6∈

p−1
⋃

i=0

{

[i, Cq]
′, [i, Cq]

′′
}

. w1
x1⇒ [i, C] and

[j, C]
x2⇒ w4 exist in Gmin by (II) and (I), respectively, and [i, C]

j 	p i
→ [j, C] is provided by

one of the gadget edges for C.

Acknowledgements

The second author would like to thank Samir Khuller for pointing out to him that the results in
reference [9] provided a 2-approximation for TR1.

References

[1] A. Aho, M. R. Garey and J. D. Ullman. The transitive reduction of a directed graph, SIAM
Journal of Computing, 1 (2), pp. 131-137, 1972.

[2] B. Alberts. Molecular biology of the cell, New York: Garland Pub., 1994.

[3] Y. Chu and T. Liu. On the shortest arborescence of a directed graph, Scientia Sinica, 4, pp.
1396-1400, 1965.

18

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms, The
MIT Press, 2001.

[5] B. DasGupta, G. A. Enciso, E. D. Sontag and Y. Zhang. Algorithmic and Complexity

Results for Decompositions of Biological Networks into Monotone Subsystems, arXiv q-
bio.MN/0509040, available from http://arxiv.org/abs/q-bio/0509040

[6] R. Desikan, R. Griffiths, J. Hancock and S. Neill. A new role for an old enzyme: nitrate

reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure

in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA 99, 16314-16318, 2002.

[7] J. Edmonds. Optimum Branchings, Mathematics and the Decision Sciences, Part 1, G. B.
Dantzig and A. F. Veinott Jr. (eds.), Amer. Math. Soc. Lectures Appl. Math., 11, pp. 335-345,
1968.

[8] C. P. Fall, E. S. Marland, J. M. Wagner and J. J. Tyson. Computational Cell Biology, New
York: Springer, 2002.

[9] G. N. Frederickson and J. JàJà. Approximation algorithms for several graph augmentation

problems, SIAM Journal of Computing, 10 (2), pp. 270-283, 1981.

[10] L. Giot, J. S. Bader et al. A protein interaction map of Drosophila melanogaster, Science 302,
1727-1736, 2003.

[11] J. D. Han, N. Bertin et al. Evidence for dynamically organized modularity in the yeast protein-

protein interaction network, Nature 430, 88-93, 2004.

[12] R. Heinrich and S. Schuster. The regulation of cellular systems, New York: Chapman & Hall,
1996.

[13] S. Khuller, B. Raghavachari and N. Young. Approximating the minimum equivalent digraph,
SIAM Journal of Computing, 24(4), pp. 859-872, 1995.

[14] S. Khuller, B. Raghavachari and N. Young. On strongly connected digraphs with bounded cycle

length, UMIACS-TR-94-10/CS-TR-3212, January 1994.

[15] S. Khuller, B. Raghavachari and A. Zhu. A uniform framework for approximating weighted

connectivity problems, 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 937-
938, 1999.

[16] E. Lawler. Combinatorial Optimization: networks and matroids, Dover Publications, Inc.,
2000.

[17] T. I. Lee, N. J. Rinaldi et al. Transcriptional regulatory networks in Saccharomyces cerevisiae,
Science 298, 799-804, 2002.

[18] S. Li, C. M. Armstrong et al. A map of the interactome network of the metazoan C. elegans,
Science 303, 540-543, 2004.

[19] S. Li, S. M. Assmann and R. Albert. Predicting essential components of signal transduction

networks: a Boolean model of guard cell signaling, preprint, 2005.

19

[20] A. C. Mustilli, S. Merlot, A. Vavasseur, F. Fenzi and J. Giraudat. Arabidopsis OST1 pro-

tein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of

reactive oxygen species production, Plant Cell 14, 3089-3099, 2002.

[21] S. Pandey and S. M. Assmann. The Arabidopsis putative G protein-coupled receptor GCR1

interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling, Plant
Cell 16, 1616-1632, 2004.

[22] E.D. Sontag. Some new directions in control theory inspired by systems biology, Systems Biol-
ogy 1, 9-18, 2004.

[23] R. Tarjan. Finding optimum branchings, Networks, 7, pp. 25-35, 1977.

20
ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

