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Abstract

We formulate a formal syntax of approximate formulas for the logic with count-
ing quantifiers, SOLP, studied by us in [1], where we showed the following facts:
(7) In the presence of a built in (linear) order, SOLP can describe NP complete
problems and fragments of it capture classes like P and NL; (7i) weakening the or-
dering relation to an almost order (in the sense of [7]) we can separate meaningful
fragments, using a combinatorial tool suited for these languages.

The purpose of the approximate formulas is to provide a syntactic approx-
imation to logics contained in SOLP with built-in order, that should be com-
plementary of the semantic approximation based on almost orders, by producing
approximating logics where problems are described within a small counting error.
We introduce a concept of strong expressibility based on approximate formulas,
and show that for many fragments of SOLP with built-in order, including ones
that capture P and NL, expressibility and strong expressibility are equivalent. We
state and prove a Bridge Theorem that links expressibility in fragments of SOLP
over almost-ordered structures to strong expressibility with respect to approximate
formulas for the corresponding fragments over ordered structures. A consequence
of these results is that proving inexpressibility results over fragments of SOLP
with built-in order can be done by proving inexpressibility over the corresponding
fragments with built-in almost order, where separation proofs are easier.

Subject Classification: Logic in computer science; Descriptive Complexity.
Keywords: Proportional quantifiers, approximate formulas, almost order, ex-
pressiveness, computational complexity, P, NL.

1 Introduction

In Descriptive Complexity the difficulty of a problem is measured in terms of the syn-
tactic resources, such as number of quantifiers, number of variables and other symbols,
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needed to describe the problem in some logical formalism. These syntactic measures
are intimately related to the complexity of resources needed to solve a problem by
various models of computation. Problems are considered as sets of finite structures,
and of the few techniques from classical model theory for showing inexpressibility in
logics that survive the passing from the infinite to the finite structures is the method
of Ehrenfeucht-Fraissé games (cf. [2]).

However this combinatorial technique of games, has been unsuccessful in showing
meaningful separation, the most sought after being among logics capturing the classes
P and NP. One of the reason for this failure is that, as of today, all known logics that
capture P need a relation of linear order built in into the semantics, and in the presence
of a built—in linear order, an Ehrenfeucht-Fraissé game has little power for telling
structures apart (e.g. see [5, § 6.6]). To overcome this difficulty, a natural idea is to
study approzimations to logics with built—in order, where techniques like Ehrenfeucht-
Fraissé games become effective in showing separability results, and hopefully these
separations in the approximate setting will give a clue on how to go about separating
the associated logics with order.

There are two main approaches to define approximate logics in model theory. One
is to play with the semantics, where constructs as built—in order is weakened to an
“almost—order”, and, frequently, some counting operator is added to compensate for
the loss of expressive power (e.g. [3], [7] among others). This approach has some
limitations. To mention one, the paper by Libkin and Wong [7] shows that a very
powerful extension of first order logic (FO) with additional counting quantifiers, de-
noted L%, (C), which subsumes all known “pure” counting extensions of FO (meaning
that fixpoint operators are not considered), in the presence of almost—orders, has the
bounded number of degrees property (or BNDP) and thus cannot express the transitive
closure of a binary relation.

The other approach is syntactic and is found in classical model theory as in, for
example, Keisler’s logic of probability quantifiers (see [6]), who conceived it as a logic
appropriate for his investigations on probability hyperfinite spaces, or infinite structures
suitable for approximating large finite phenomena of applied mathematics. Under
this approach, for each formula ¢ of a logic and every rational € one construct an
approximate formula . with the property that in every model A, if ¢ < 0 < €3 then
Ve, — © — ey, and as e tends to 0, the interpretation of ¢, should be closer to .
This approach has been developed with success for the theory of classical metric spaces
but not, to our knowledge, in Computational Complexity theory.

In this paper we develop a syntactic approach to the task of approximating logics
with built—in order based on a notion of approximate formulas and show how it relates
to the semantic approach based on almost orders. This approach is potentially relevant
to the problem of separating logics with built-in order, since we obtain a bridge result
that implies that separation of logics with built-in almost-order can be translated into
separation of corresponding logics with built-in order.

The framework for our results is the second order logic of proportionality quan-
tifiers, SOLP, defined in [1]. The quantifiers for this logic are counting quantifiers
acting upon second order terms. When restricted to built-in almost orders, this logic
avoids the BNDP, has non trivial expressive power, and general separations results of
combinatorial nature can be obtained. More specifically, SOLP consists of quantifiers
of the form (P(X) > r) and (P(X) < r) for rational r € (0,1), and whose meaning



is that the cardinality of the set X, say of arity k& > 0, is greater than or equal to (or
less than or equal to) r times the cardinality of the set of k—tuples in the model. We
review the definition of SOLP and summarise facts found in [1] about its expressive
power in the presence of almost orders in section 2.

The proportional quantifiers (P(X) > r) and (P(X) < r) are suitable for allowing
approximations, which in the case of monadic second order variables, are defined in
the following way: For a formula ¢p € SOLP and every € > 0, the approximate formula
1, is obtained by replacing every quantifier (P(X) > r) by (P(X) > r —¢), and every
quantifier (P(X) <r) by (P(X) <r+e¢) (X is of arity 1). Our definition for any arity
of X is more elaborate, but it is the right one for establishing a correspondence between
satisfaction of formulas in SOLP in almost ordered structures and satisfaction of the
corresponding approximate formulas in ordered structures. This result we call Bridge
Theorem and it is shown in section 3.

In section 4 we introduce the notion of the e approximate logic L., for every frag-
ment £ of SOLP; a logic that should have an expressive power “almost” similar to
the expressive power of £. This notion in turn generates the notions of strong ex-
pressibility and e-relaxed fragments. An e-relaxed fragment is one for which L5 = £
(in terms of expressive power) for every & € (—¢,€). Surprisingly, fragments of SOLP
with built—in order that capture P and INL are e-relaxed. A nice property of e-relaxed
logics is that for them strong expressibility and expressibility are “almost” equivalent
(an idea that we will formalise). A consequence of this is Theorem 4.9 that shows that
to prove inexpressibility of problems in e-relaxed logics with built—in order it is enough
to prove inexpressibility of the same problem in the d-approximate logics (0 € (—e¢,€))
with respect to almost ordered structures. Since proving inexpressibility for logics over
almost orders is, in practice, easier than the usual checking of satisfaction in ordered
structures, this last result has potential applicability for studying separation of well
known logics with built-in order, such as the ones that capture NL and P.

We end the paper arguing why strong inexpressibility should imply inexpressibility
in e-relaxed logics, and in the presence of order. For if it is not the case then the
behaviour of the approximating formulas is very strange: their complexity (based on
number of variables and arity of second order variables) tend to infinity as their e-error
approaches 0, that is, as the approximate formulas tend to the exact formula.

2 The second order logic of proportional quantifiers

Definition 2.1 The Second Order Logic of Proportional quantifiers, denoted SOLP,
18 the set of formulas of the form

Ql"'Que(xl)"'7$87Xl7'"7XT‘) (1>
where O(x1, ..., x5, X1,...,X;) is a first order formula over some vocabulary T with first
order variables x1,. ..,z and second order variables, X1, ..., Xy; each Q; (j < u)

is either (P(X;) > t;) or (P(X;) < t;), where t; is a rational in (0,1), for some
i < r. Whenever we want to make the underlying vocabulary T explicit we will write
SOLP(T).

We also define SOLP(T)[r1,...,7k], for a given vocabulary T and sequence 11, T2,
..., g of distinct natural numbers, as the sublogic of SOLP(1) where the proportional



quantifiers can only be of the form (P(X) < q/r;) or (P(X) > q/ri), fori=1,...,k
and q a natural number such that 0 < g < r;.

Another fragment of SOLP which will be of interest for us is the Second Order
Monadic Logic of Proportional quantifiers, denoted SOMLP, which is SOLP with
the arity of the second order variables in (1) being all equal to 1.

The interpretation for the proportional quantifiers is very natural: Let X be a
second order variable of arity k, Y a vector of second order variables, T = @1, ..., Zm
first order variables and ¢(7, Y, X) a formula in SOLP(7) over some (finite) vocabulary
7 (which does not contains X or any of the variables in Y as a relation symbol). Let
r be a rational in (0,1). Then

(P(X) > r)¢(@ Y, X) and (P(X) <1)(z,Y,X)

have the following semantics. For an appropriate finite 7 structure A, elements a =
(ai,...,a,) in A and an appropriate vector of relations B over A, we have

A = (P(X) > r)¢(a, B, X) <= there exists S C A such that A |=
4(a,B,5) and 8] > 1 - |A]

Similarly for (P(X) < r)¢(z,Y, X), substituting in the above definition > for <.

Example 2.2 Let 7 = {R, s,t} where R is a ternary relation symbol, and s and t are
constant symbols. Let r be a rational with 0 < r < 1. We define

NOT-IN-CLOS<, := {A=(A,R,s,t): A has a set containing s but not t,
closed under R, and of size at most a fraction r of |A| }.

Let Bpeos(X) be the following formula
Brcios(X) = VaVuVo [X(s) A =X(t)
A (X (u) A X (v) A R(u,v,2) — X(2))]
Then
A € NOT-IN-CLOS<, <= AE (P(X) <7)Bnelos(X)

In [1] it is shown that, for r = 1/n, this problem is complete for P under first order
reductions. [J

Example 2.3 Let 7 = {E, s} where E is a binary relation symbol and s is a constant
symbol. We think of T-structures as graphs with a specify vertex s (the source). Let r
be a rational with 0 < r < 1. We define

NCONs>, := {A=(A,E,s): (A E) is a digraph and at least a fraction r
of the vertices are not connected to s}

Let apeon(Y') be the following formula
ancon(Y) = _'Y(S) A Va:Vy(E(:Jc, y) A Y(.T) - Y(y))

Then A € NCON>, <= A= (P(Y) > r)ancon(Y).
The problem NCON /5 is complete for NL under first order reductions (see [1]).
(]



2.1 Summary of facts about a semantic approximation to SOLP

In [1] we study the expressive power of SOLP in the presence of built in order and
when this external predicate is weakened to an almost order (see [5] for the notion and
use of built—in numerical predicates in Descriptive Complexity). We summarise below
the facts from [1] that we need about what we view as “semantic approximations” to
definability in SOLP and some of its fragments. Besides those fragments mentioned
in Definition 2.1 we are interested in the logics SOLP Horn and SOLP Krom, which
were defined in [1] after Gréadel’s definitions of the Horn and Krom subsets of Second
Order logic in [4].

A first order formula « over a vocabulary 7 plus second order variables X1, ..., X,
of arities k1, ..., k,, respectively, plus possibly a binary relation symbol = (equality)
and the constant L (standing for false), is a universal Horn formula, if « is a universally
quantified conjunction of formulas over 7 U {Xj,..., X, } of the form ()1 Ao A ... A
1s) — ¢, where ¢ is either X;(u;) (where u; denotes a k;-tuple of first order terms,
i=1,...,r)or L, and 91, ..., 15 are atomic or negation of atomic (TU{X1,..., X, })-
formulas except that any occurrence of the variables X; must be positive (there are no
restrictions on the predicates in 7 or =). The logic SOLP Horn is the set of formulas
of the form

(P(X1) <t1)---(P(Xy) <tp)a

where each ¢; is a rational in (0,1), and « is a universal Horn formula over some
vocabulary 7 and second order variables X1, ..., X,. For example, the problem NOT-
IN-CLOS<, presented in Example 2.2 is definable in SOLPHorn|r|.

A first order formula « over TU{ X1, ..., X, }U{=, L} is a universal Krom formula, if
« is a universally quantified conjunction of clauses, where each clause is a disjunction of
literals with at most two occurrences (positive or not) of the predicates Xi,..., X, i.e.
« is a 2-CNF formula with respect to the variables X1, ..., X,. The logic SOLPKrom
is the set of formulas of the form

(P(X1) > 1)+ (P(X,) 2 t,)a

where each t; is a rational in (0, 1), and « is a universal Krom formula over some vo-
cabulary 7 and second order variables Xy, ..., X,. For example, the problem NCON>,
presented in Example 2.3 is definable in SOLP Krom|r].

We have shown in [1] that:
(1) In the presence of order (at least a built—in successor), P C SOLP][2] (in the sense
that any class of structures decidable in P is definable by a sentence of SOLP[2]) and,
furthermore, it is captured by the fragment SOLP Horn[2], consisting of formulas of
the form (P(X;) <1/2)---(P(X,) <1/2)a, where « is a universal Horn formula.
(2) In the presence of order, NL is captured by SOLP Krom|2], a fragment consisting
of formulas of the form (P(X;) > 1/2)---(P(X,) > 1/2)a, where « is a universal
Krom formula. (This and the previous capturing of P by fragments of SOLP are
inspired on Grédel’s [4], but taking into account the limitations in the cardinalities of
second order variables imposed by our counting quantifiers.)
(3) With respect to almost ordered structures we have an infinite hierarchy within the
monadic fragment SOMLP, namely,

SOMLP[2] & SOMLP[2,3] C SOMLP[2,3,5] & ...



(4) With respect to almost ordered structures and unbounded arity we have that
SOLPHorn|2] g SOLP]2,3].

The separation results listed in (3) and (4) were obtained with appropriate Ehrenfeucht
Fraissé type of games.

The concept of almost order (taken from [7]) constitute the core of our “semantic
approximations”, around which we work our syntactic approximations, and thus we
pause to review this concept and further constructions from [1].

Definition 2.4 A function g : N — N s sublinear if, for alln € N, g(n) < n. For a
fized positive integer k, a k-preorder over a set A is a binary, reflexive and transitive
relation P in which every induced equivalence class of PN P~! has size at most k. An
almost linear order over A, determined by a sublinear function g : N — N, is a binary
relation <, over A with a partition of the universe A into two sets B,C, such that B
has cardinality n — g(n) and <4 restricted to B is a linear order, <, restricted to C' is
a 2-preorder, and for every x € C' and everyy € B, x <4 y.

Note that for any function g : N — N, the almost linear order <, over a set A induces
an equivalence relation ~,4 in A defined by a ~4 b iff a <, b and b <, a. For a € A, let
[a]y denote its ~g—equivalence class, and [A], := {[aly : a € A}.

Definition 2.5 Fiz a sublinear g : N — N and let R be an n-ary relation on a set A.
Let <4 be an almost order determined by g in A. We say that R is consistent with <,
if for every pair of vectors (a1,...,an) and (by,...,by) of elements in A with a; ~g b;
for every i < n, we have that

R(ay,...,an) holds if and only if R(by,...,by) holds.

Let A = (AR, .. .,R;:l,C'f‘, o, OAY be a T-structure. We say that A is consistent
with <4 if and only if for every i <k, RZA is consistent with <g.

For a T-structure 4, consistent with <, it makes sense to define the quotient structure
A/~,, as a T-structure consisting of [A], as its universe, and for a k-ary relation R € 7,

RA~s .= {(la1lg,-- -, [ar]y) : (a1,...,ax) € R4}

Furthermore, for a subset B C A we define its <,-contraction as [B], := {[bly : b € B}.
All these terms will play their role in a theorem below that bridges from satisfaction in
almost ordered structures to satisfaction in quotient structures, where the order turns
linear.

By SOLP + <4, for an almost order <4, we understand the logic SOLP with the
almost order <, as additional built-in relation, and where we only consider models
A that are consistent with <,. Furthermore, for the formulas of the form (P(X) >
(@, Y,X) and (P(X) < 7)¢(7,Y,X), we require the following modification of
the semantics: For an appropriate finite model A consistent with <, for elements
@ = (ai,...,an,) in A and an appropriate vector of relations B, consistent with <g, We
should have

AkE (P(X)>r)¢(@ B,X) <= there exists S C A* consistent with <,
such that A = ¢(a, B,S) and |S| > r - |A|*

Similarly for (P(X) < r)¢(z,Y, X), substituting in the above condition > for <.



Remark 2.6 In general, given a logic L € SOLP, we use L+ <, to indicate that
all possible (finite) models of L have an almost order <,, determined by a sublinear
function g. Also L+ < indicates that the models have an additional linear order.

The property of being consistent for <, holds for all the formulas in SOLP(7)<,.

Lemma 2.7 Let A be a structure which is consistent with <,. Then, for every formula

Y(T) in SOLP + <, the set A :={ac A: Al 1(@)} is consistent with <.

Proof: The proof is an easy induction in formulas. [

3 A syntax of approximate formulas

We now introduce the notion of approximate formulas for SOLP. The purpose of
these formulas is to provide a link between satisfaction in almost ordered structures and
satisfaction in their corresponding quotient structures. This we will make precise in the
Bridge Theorem (Theorem 3.5 below). The general conclusion will be that whatever
we can say about a class of almost ordered structures we can “approximately” say
about a class of their quotient structures (which are fully linearly ordered structures),
and vice versa.

Definition 3.1 (épproximate Formulas) For every rational € € |0, l)imd for ev-
ery formula (T, X) € SOLP(7), we define the e-approximation of 0(T, X), denoted
0(z, X)e, as follows:

Atomic formulas If (%) := R(Z) then 0(Z), := R(T), for R relation symbol in .
If6(z, X) := X(T), with X a second order variable of arity k > 1, then (%, X), :=
X(%).

Negation of atomic formulas If 6(7) := —R(T) then 6(T). :== —~R(T), for R € T.
Likewise, (-X(T)) := - X(T).

Conjunction, Disjunction If 0(z, X) := ¢(T, X) x (T, X) then
(T, X)e := ¢e(T, X) % (T, X), with x € {A,V}.

First order quantifiers If0(%, X) := Qz¢(T, 2, X) then 0(%, X ). := Qz(o(T, 2, X)),
with Q € {3,V}.

Proportional quantifiers If 0(z, X) := (P(Y) > r)o(z, X,Y), where Y is of arity
k> 1, then 0(%, X). is

(P(Y)>(1— e)k_l[r — k;e])(go(f,Y,Y)e) if r—ke>0
(P(Y) > 0)(¢(T, X,Y)) otherwise
If(z,X) := (P(Y) <7)p(z,X,Y) then 0(z, X). is
(P(Y) < (14 ) r+ k)o@ X,Y)e) if (1+e)f 1(r+ke) <1

(P(Y) <1)(p(T, X,Y),) otherwise



Remark 3.2 We can (and will) always assume that € is small enough so that the
e—approzimation for formulas with proportional %antiﬁers s the first option in their
definition, e.g., (P(Y) < (14 €)* " r + ke])p(z, X, Y)..

The previous definition describes syntactic approximations “from the right” or
“positive”. We can also have approximations from the left or negative (our intuition of
right or left approximation will be formalised by lemma 3.4 below). What we want for
¢—c to have is the property that (¢_¢). := ¢. With this in mind we have the following
definition.

Definition 3.3 (Approximate Formulas for Negative Values) For every ratio-
nal e € [0,1) and for every formula 0(z, X) € SOLP(7), we define the —e-approvimation
of 0(z, X) by induction in the complexity of the formulas as follows:

First order formulas If §(z,X) is a first order formula with free second order vari-
ables among the X and free first order variables among the T, then 0(T, X)_. :=

0(z,X).

Proportional quantifiers If 0(z, X) := (P(Y) > r)¢(T, X,Y), where Y is of arity
k>1, then 0(z,X)_c is

(P(Y) > bl + he(l = (0@ X, Y) o) if s + e < 1

(1-¢)
(P(Y) > 1)(p(T, X, Y) ) otherwise
If (7, X) := (P(Y) <7)p(x,X,Y) then 0(T, X) . is
(P(Y) < el — ke(1 = F (0@ K. Y)0) if qrtyems — he >0
(P(Y) <0)(p(T. X,Y)—) otherwise
The basic link between positive and negative approximate formulas, and the formula

that they approximate is given by the following lemma.

Lemma 3.4 For every formula 0(Z, X) € SOLP(7), for every finite T—structure A,
for every collection of sets A in A, for every tuple of elements a in A and for € and §
such that 0 < § < e < 1, we have that:

AE0(@,A)_. — 0@, A) s — 0(a,A) — 0@, A)s — 0(a, A)..
Furthermore, for every formula 0(%, X) € SOLP(1), for every € with 0 < e < 1

(‘9(57 y)*&)e = 9(5, Y) = (H(EaX)e)fe-

Proof: 1f 0 := (P(X) > r)y(X), with X of arity k£ > 1, then the chain of implications
hold because, for 0 < § < € < 1,

P(X) > ﬁ—l—ek > W—i—&k > > (1-6)F L (r—6k) > (1—e) (r—ck)



and, if 0 := (P(X) < r)y(X),

T T _ _

The second part follows by easy substitution. [l

We will now show that it is possible to jump from satisfaction in almost order
(respectively, linearly ordered) structures to satisfaction of approximate formulas in
linearly ordered (respectively, almost ordered) structures.

Theorem 3.5 (Bridge Theorem) Fiz a sublinear function g and an almost order
<4. For every formula 6(x1,...,z,, X) € SOLP(1), for every T-structure A of size m
and consistent with <4, for every @ = (a1, ...,ax) € Ak for every predicate S of arity
t > 1, the following holds:

(i) Ak 0(a,sS) implies A/, = 0([alg, [S]g)(m), where y(m) = MQETZ)(m)

(i) Al b= 0((aly.[S],) implies A b= 0@, $)5(my, where B(m) = 4™
(i) A = 0. S)_ gy implics A/, = 0((a.[S],)

(V) Ay = 0[a)gs 1S]y)_g(m) implies A &= 0(a, S)
Proof: By induction in the syntactic complexity of the formula.

Atomic formulas and negation of atomic formulas The result clearly follows be-
cause for atomic formulas and their negation 6. (—1 < € < 1) is the same as 6.

Conjunction, disjunction Direct.

First order quantification The key tool is Lemma 2.7 which guarantees that it is
indistinct which representative of a ~g4-class we take as witnesses for the existen-
tially or universally quantified variables, together with the fact that, for any e,
the e—approximation coincides with the original formula.

Proportional quantifiers (i): Suppose that A satisfies the formula (P(Y) > r)H(f
S,Y)for0<r < 1andY of arity k > 1. Then, for some B C A*, |B| > rm* and
A = 0(a,S,B). By inductive hypothesis A/~, = 0([aly, [S]g. [B}g).y(m), where
v(m) = g(m)/(2m — g(m)). In the worst case, B contains elements from every
<g2-preorder, and when passing to its <g-contraction, all possible equivalent
k tuples determined by elements in the same class are removed. There are at

most k(g(1m)/2)m*=1 of these and thus, |[B],| > rm"* — k:g(;n)mkl provided

rm > k(g(m)/2); otherwise, we can only say |[B]g| > 0. The proportion of this
set of ~,—classes with respect to the totality of k—tuples in [A], is

2m ol 2m g(m)
P = (o) | Gam) gt
= (L+v(m) r(1+y(m)) — ky(m)]
= (1+ym) = (k= r)y(m)]
> (1—y(m) " r = ky(m)]



Thus,
Ay = (PY) 2 (1= ~(m))* r = ky(m)])6([@lg, [S]gs Y )y (m)

which is the desired result.

Now, suppose that A satisfies the formula (P(Y) < r)f(a@, S,Y), with r and Y
as above. We argue similarly as before, but now the witness set B is such that,
in the worst case,

[Blg| < rm*

which is the following proportion of |[A]4|¥ = (m — g(m)/2):

P(Bl) < (M)k (o )]

(14 y(m))* (1 + v (m))
(147 (m))* " r + ky(m)]

IN

Thus,

Al ey = (PO < (1) + Ry(m)]) ([l [Slgr Y )yomy

(é4): Suppose that A/., satisfies the formula (P(Y") > r)0([aly, [S]4,Y) for 0 <
r < 1 and Y of arity & > 1. Then, for some set C' of k-tuples of [4]y, |C| >
r(m — g(m)/2)F and A/, |= 0([aly, [S]y,C). By inductive hypothesis A =
0(a@, S, (C)9)g(m), where (m) = g(m)/2m, and in the worst case we add nothing
new to the expansion of C, that is, |(C')9| = |C|. The proportion of this set with
respect to the set of k tuples over A is

PUCY) > <2m g(m )“ <2m g(m >>

= (1—B(m)*'r(1 - p(m))
> (l—ﬁ(m))’“ 1[ —kﬁ(m)}

Thus,
Al (PO) 2 (1= Bm) ! r = kB(m))) 0(@,5. Y ) s(m)

which is the desired result.

Now suppose that A/, satisfies the formula (P(Y) < r)6([al,.[S]y,Y). By
inductive hypothesis A = 0(a, S, (C)9)g(m), where (C')9 is the expansion of C' C
[A]%, with |C| < r(m—g(m)/2)¥, and in the worst case [ (C)9| < r(m—g(m)/2)*+
k(g(m)/2)m*=1. The proportion of this set with respect to m* is

() (gt e

= (1= Bm) " r(1 = B(m)) + kA(m)]
(14 B(m)) = [r + k(m)]

P(C))

IN

10



Thus,
Al (POY) < (1 B0m) ! + kB(m)] ) 0@, S, Y) o
which is the desired result.

(#i7) and (iv): Follow from parts (i) and (éi) and that (6_.) = 6. For example, if
A/, =0 then A/, = (0_(m))(m), and by part (i) we get A [~ 0_ . This
shows (i4i). O

The picture that we have relating satisfaction in the almost ordered world with

satisfaction in the ordered world is the following (the horizontal arrows are given by
Lemma 3.4 and the diagonal arrows by the Bridge Theorem):

A= 6_, -~ 0 ~ 03 (almost order)

<, 25

Alny 05— 00— 0, (order)

We will be needing the following additional property on approximate formulas.

Lemma 3.6 For cvery formula 6(z,X) € SOLP(7), for every rationals v and X\, with
—1 <y <A<, for every 0 € (v, \) NQ, there exists a rational p > 0 such that:

b (5*,&/5+M) g (77A)7 and

o for every T—structure A and for every collection of sets A in A and elements @
in A, we have that:

AEb(@ Ay — (0(a,A)s )y — 0(a,A)s — (0(a,A)s), — 0(a, A)x

Proof: The proof is by induction in formulas. The first order case is direct. We shall
then analyse formulas with proportional quantifiers.

Assume that the desired property holds for §(z, X,Y).

Case 1: Consider the formula ¥(z, X) := (P(Y) > r)0(z, X,Y). Let

flrow) =9 (1 —w)Fr—ko] if0<(1—w)kr—kw and w >0
0 if (1 —w)*1r—kw] <0and w>0

be a function from [0, 1] x (—1, 1) onto [0, 1]. Note that this function is continuous and
for every r € [0,1] and € € (—1,1),

((P(Y)>1)0(. X,Y) )e = (P(Y) > f(r,€) )(0(@, X,Y))e.

Furthermore, for every r € [0,1], f(r, ) is a decreasing function with the property
that f(r,0) = r. Fix then a nonempty interval (y,A) C (—1,1) and a 6 € (y,\). By
induction hypothesis there exists a p; with (6 — p1,0 + 1) C (7, A) and such that for

11



every model A and for every collection of sets A, B in A and elements @ in A, we have
that:

A6 A B),— (0@ A B)s )-p — 0(a,A B)s— (0a A B)s ), — 0a A B),.

Note that f(f(r,d),0) = f(r,0). Note also that f(r,A\) < f(r,7). Then, since f is
continuous, there exists a po such that, for all € € (6 — p2,d + p2),

fCS(r0),€) € [f(rA), £ y)]

Let g = min{u1, po}. From the previous remarks we know that (6 — p, 9 + ) C (7, A)
and that for every model A and for every collection of sets A in A and elements @ in
A, we have that:

but this is exactly the desired result that for every model A and for every collection of
sets A in A and elements @ in A, we have that:

AEV(@ A, — (Y@ As ), — V(@ Ad)s— (V@A) — V(@A)

Case 2: Consider now the formula ¥(z, X) := (P(Y) < 1)(z, X,Y). Let

W—I—kw ifw—l—kw>0andw<0
h(r,w) =9 (14w r+ko] if (14 w) 1 r+ ko] <1and w >0
1 if (1+w)*r+kw]>1and w>0

be a function from [0, 1] x (—1, 1) onto [0, 1]. Note that this function is continuous and
for every r € [0,1], e € (—1,1),

((PY) <)@, X,Y) )e == (P(Y) < h(r,e) )(0(7, X, Y))e.

Furthermore, for every r € [0,1], h(r, ) is an increasing function with the property
that h(r,0) =r.

Fix then a nonempty interval (y,A) C (=1,1) and a § € (v,A). By induction
hypothesis there exists a pq with (6 — p1,8 + p1) € (7, A) and such that for every
model A and for every collection of sets A, B in A and elements @ in A, we have that:

A= 0@ A, B)y — (0@ A, B)s )y, — 0@ A, B)s — (0@, A, B)s ), — 0(a A, B)x

Note that h( h(r,0) ,0) = h(r,d). Note also that h(r,y) < h(r,A). Then, since h is
continuous, there exists a po such that, for all € € (6 — pa2,d + p2),

h( h(r,0) ,€) € [h(r,7), h(r; A)]

12



Let o = min{u1, p2}. From the previous remarks we know that (6 — u,d + ) C (7, \)
and that for every model A and for every collection of sets A in A and elements @ in
A, we have that:

Al (P(Y)
— (P(Y) <

but this is exactly the desired result that for every model A and for every collection of
sets A in A and elements @ in A, we have that:

A= U(a, E)W — ((Y(a, Z),g )—IL — U(a, Z)g — ( \I/(E,Z )5)M - \I/(E,Z)k

This completes the proof of the theorem. [

4 Strong expressibility
We define the idea of strong equivalence for two formulas as follows.

Definition 4.1 Fiz two sentences ¢, € SOLP. We say that ¢ is strongly equiv-
alent to v (in symbols ¢ <g 1) iff there exists € € (0,1) such that in every model
A:

A |: (;be - ¢—6 and A ‘: ¢e - ¢—e-

The intuition is that two sentences that are strongly equivalent can be syntactically
approximate as much as we like. Formally what this means is that, if ¢ <g 9 then
there exists an € > 0 such that for every 3,7 € (—¢€,€), = ¢ < ¢g < 9, < 1. This
follows from ¢ < g 1 because, for every model A:

A|:¢,3_’(be_)w—e_’w"/_’weﬁgﬁ—eHQB-

Note that if ¢ is strongly equivalent to ¢ then for every model A, A |= ¢ < 1 (i.e.
¢ and v are equivalent). This holds because if ¢ < g 1, then in every model A, using
Lemma 3.4 we get

A):¢_>¢e_’w—e_’w_>¢5_)¢—e_>¢-

Conversely, if ¢ is not equivalent to ¢ then ¢ is not strongly equivalent to .
Note also that it is not clear at all that ¢ <g ¢. The next example proves that
this happens sometimes.

Example 4.2 The property of being 2-colorable can be expressed in SOMLP[2] as
follows. Let X and Y be two unary second order variables, and let (X,Y) be a
formula that says that

(X and Y are disjoint ) A
Vavy((X(z) VY (2) A E(z,y)) — ~(X(y) VY(y)) A
(X (z) VY (x)) ANE(z,y) — (X(y)VY(y)))

13



Then the SOMLP[2]({E}) sentence
¢ := (P(X) < (1/2))(P(Y) < (1/2))0(X,Y)

holds in a graph, if and only if the graph is 2-colorable. (The idea is that X and Y
constitute a partition of one of the possible two colors; in fact the color applied to the

fewest number of vertices.)
Now observe that for every e << 1/2, if A= ¢, then

AE (P(X) < (1/2+4€)(P(Y) < (1/2+ €)0(X,Y)
It follows that A is 2-colorable, and in consequence
AE ¢—c:=(P(X) < (1/2-¢))(P(Y) < (1/2 = €))0(X,Y)
We proceed to define the approximate logics.

Definition 4.3 Fiz a logic L C SOLP and an € € (—1,1) N Q. The e-approzimation
of L, denoted L, is the following fragment of SOLP:

{¢e RORS ﬁ}
By convention we define Lo = L. The approximation of L (or the approzimate logic
corresponding to L) is the set of formulas L4 = U L
ee(—1,1)NQ

We are interested in fragments of SOLP that behave “decently” for the notion
of strong equivalence, i.e. where at least we can ask that for every formula ¢ in the
fragment ¢ <g ¢.

Definition 4.4 We say that a fragment L of SOLP is e-relaxed if:
o For every § € (—e, e) NQ, Ls = L (i.e., their expressive power is the same).

Two important examples of e-relax logics are the languages SOLP Horn[2]4+ <
and SOLPKrom|[2]+ <, which were defined and studied in [1] (see also section 2.1
above), and which capture P and NL, respectively. A summary of the reasons why
these languages are € relax is as follows: For any €, the problem NOT-IN-CLOS< /2,
(example 2.2) is expressible in (SOLPHorn[2]+ <), and it is complete for P via
quantifier free first order reductions (same proof as in [1]). Therefore, any problem in
P has a definition in (SOLPHorn[2]+ <).. Conversely, the satisfaction of sentences
in (SOLPHorn[2]4+ <), can be decided in P by the algorithm described in [1] for
(SOLPHorn[2]+ <). Thus, (SOLPHorn[2]+ <) = P = (SOLPHorn[2]+ <). The
argument for (SOLPKrom[2]+ <) = NL = (SOLP Krom|2]+ <) is similar.

The main property of relaxed fragments is the following:

Lemma 4.5 Let L be a e-relaxed fragment of SOLP. Then for every sentence ¢ € L,
there exists a A € (—e, e) N Q and sentence § € Ly such that ¢ < 0 and 0 <g 6.
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Proof: Fix asentence ¢ € L. For every § € (—e¢, €) there exists then a sentence ¢[d] € L
such that (¢[d])s <> ¢. The cardinality of all the sentences in £ is countable. Hence
by the pigeonhole principle there exists a sentence § € £ and two rational numbers
v < 0 € (—¢€,¢€) such that 6, < ¢ < 5. By the properties of approximate formulas
(Lemma 3.6) we know that there exists rationals A, u such that A € (v,d) C (—e,€),
w >0, and

¢ — 07 — (QA)—M — 0\ — (0/\)” — 05 — ¢.

hence 0) <5 0\ «— ¢. O

The previous lemma motivates our notion of strong expressibility.

Definition 4.6 Let £L C L' C SOLP and fir ¢ € SOLP a sentence. We say that
the fragment L strongly expresses a sentence ¢ with respect to L' iff there exists a
formula ¢ € L and a formula 6 € L' such that 0 <g 1 and 6 < ¢.

Clearly, if a fragment £ strongly expresses a sentence ¢ (with respect to any exten-
sion), then £ expresses the sentence ¢ (because 6 < g v implies 6 < 1)). Conversely, if
a fragment £ does not expresses ¢ then the fragment £ does not strongly expresses ¢.

When we are working with relaxed fragments, we get the following strengthening
of the above observations.

Theorem 4.7 Let L, L' be e-relazed fragments of SOLP such that L C L' and let
¢ € SOLP a sentence. Then the following statements are equivalent:

e ¢ is expressible in L;

o There exists a j1 € (—e, €)NQ such that ¢ is strongly expressible in L,, with respect
to E:L, i.e. there exists sentences p € L',0 € L, such that ¢ < p, and p, < 0.

Proof: Suppose first that there exists a p € (—e,€) and sentences p € L',0 € L,
such that ¢ < p, and p, <g 6. We can conclude then that ¢ < 6. Since the
expressive power of £, is the same as the expressive power of £ we can conclude that
¢ is expressible in L.

For the other direction, assume that ¢ is expressible in £. Note first that from
lemma 4.5, since £’ is an e-relaxed fragment, we know that there exists a sentence
p € L'y for some X\ € (—¢,¢) such that ¢ < p and p &g p. More specifically there
exists 7 such that (A —~v,A+7v) C (—€,¢) and p, < p_,.

From hypothesis we know that there exists #[\] € Ly such that O[\] < ¢ < p.
Applying again lemma 4.5 to O[] and using the fact that £, is a y-relaxed fragment,
we know that there exists a sentence 6 € £, for some p in (A — v, A 4+ v) N Q such
that O[A] <> 0 and 0 <5 0. More specifically there exists w such that (@ —w, pu+w) C
A=9A+7) C(—€,¢) and 6, < 6_,.

We have then the following sequences of implications:

p,y—>p_,y—>p—>0[)\] —0—0,—0_,
and symmetrically,

Hw—>9_w—>9—>0[/\]—>p—>p7—>p_7
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These two sequences of implications imply that p, <g 0, with p, € E;L, 0cL,
and ¢ < p,. 0

The importance of this lemma is that it shows the equivalence of the notion of
expressibility and strong expressibility in the context of e-relaxed fragments. This sug-
gest that any tool that helps us prove strong inexpressibility may be transformed into
a tool that proves inexpressibility. The rest of the paper is devoted to the exploration
of this idea.

We begin by obtaining a tool, based in almost orders and e-relaxed fragments, that
proves strong inexpressibility, over ordered structures.

Theorem 4.8 Fiz fragments (L+ <) C (L'+ <) of SOLP+ < and a sentence
¢ € (L'+ <). Suppose that (L+ <) and (L'+ <) are e-relaxed. Assume finally that for
every formula 0 € (L+ <) and every 0 < w < € there exists a sublinear function g and
two models A, B in (L+ <,) with the following properties:

o If A0 then B=0;
b ‘A/Nq |:¢ a’ndB/Nq I#QS}
e if |A] =my and |B| = my then g(m;)/(2m; — g(my;)) < w, fori=1,2.

Then ¢ is not strongly expressible by L+ <.

Proof: Assume in order to get a contradiction that ¢ is strongly expressed in (£+ <).
Then there exists sentences p € (£'+ <), 0 € (L+ <) with p < ¢ and 0 <5 p.

We know then that there exists a rational w € (0, €) such that for every model C in
SOLP+ < the following property (x) holds:

e CEO,—pu,
e C=p,— 0.

Consider then the two models A, B and the sublinear function g associated with
¢, €,0,w by the hypothesis of the theorem. We consider two cases.

e If A = 6 then by hypothesis we have that B |= 6. Applying now the Bridge
Theorem we get that (B/.,) = 0.,. However, since (B/~,) = ¢ and ¢ « p, we
get that (B/~,) [~ p—w, but this contradicts property ().

o If A [~ 0 then by the Bridge Theorem we have that (A/.,) % 6_.. But by
hypothesis (A/~,) = ¢ and ¢ < p, hence we get that (A/~,) = pu, which is a
contradiction with property (). O

The conditions in the preceding theorem are analogous to those in the tool we
developed in [1] to separate logics with almost orders. This means we now have a tool
that, working with the almost orders, helps us prove that statements are not strongly
expressible in fragments of SOLP+ <. Actually, our previous work with almost orders
gives us a notion of games that implies the hypothesis of the previous theorem. We
have then a very general game theoretic tool that can prove strong inexpressibility in
formulas with built-in order based on games in formulas with almost order.
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The last question, naturally, is to see when strong inexpressibility is the same as
inexpressibility. What we will do now is to use the previous theorem and Theorem 4.7
to obtain a tool, based on separation of almost orders that will prove inexpressibility
in formulas with built-in order.

Theorem 4.9 Fiz fragments (L+ <) C (L'+ <) of (SOLP+ <) and a sentence
¢ € (L4 <). Suppose that (L+ <) and (L'+ <) are e-relazed. Assume finally that
for every € (—e,e) N Q, for every w > 0 such that (u — w,u + w) C (—¢,€), for
every formula 6 € (L,+ <) there exists a sublinear function g and two models A, B in
(L+ <4) with the following properties:

o I[fA=0 then B|=06;

i ‘A/Ng |: (rb CL’n‘dlg/’\/g l# qb;
o if |[Al =my and |B| = mg then g(m;)/(2m; — g(my)) < w, fori=1,2.
then ¢ is not expressed by (L+ <).

Proof: Assume in order to get a contradiction that ¢ is expressible in (£+ <). Since
(L+ <) C (L4 <) and (L+ <) and (L'+ <) are e-relaxed we can invoke Theorem
4.7 to obtain that there exists a u € (—e,€) N Q such that ¢ is strongly expressible in
(L,+ <) with respect to (£),+ <), i.e. there exists sentences p € (L'+ <),0 € (L, + <)
such that ¢ < p, and p, <5 0.

We know then that there exists a 0 < w < 1 such that for every model C of
(SOLP+ <):

o C |: 0, — (pu)—wa
* C = (pu)o = b-w

Note that we can select w such that (u — w, p +w) C (—e€,¢).
Consider then the two models A, B and the sublinear function g associated to
o, €, i, 0 by the hypothesis of the theorem. We consider two cases.

e If A = 0 then by hypothesis we have that B = 6. Applying now the bridge
theorem we get that (B/~,) = 0,. However, since (B/~,) = ¢ and ¢ < p,, we
get that (B/~,) = pu, but this contradicts the hypothesis that p, <5 0.

o If A [~ 0 then by the Bridge Theorem we have that (A/.,) [~ 0_,. But by
hypothesis (A/~,) = ¢ and ¢ < p,, hence we get that (A/~,) = (pu)w, which
is a contradiction with the hypothesis that ¢ <g 6. O

Note that the tool just developed works by checking properties of models in SOLP
+ <4, i.e. models with almost orders, where separation proofs are easier. Note also
that our prime examples of relaxed fragments where we could applied this tool are the
SOLPKrom[2]+ < and SOLPHorn[2]+ < that correspond to the classes NL and P.
Hence we have a tool, based on almost orders and approximate formulas that tells us
that, in order to separate SOLPKrom[2]4+ < from SOLPHorn[2]4+ < with built-in
order (which is hard), we only need to separate related logics in the context of almost
orders. As we have seen from our previous work in almost orders we already have nice
tools that do that (although in some limited context).
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5 Further remarks on the complexity of expressibiliy

In this section we consider the situation where we are able to strongly separate L
from £’ by a sentence ¢ but ¢ is still expressible in £. How is the behavior of the
approximations of ¢?

What we will present is a condition that says, basically, that if a sentence is not
strongly expressible in a fragment but is expressible, is because something very ugly
occurs. In the rest of the section we are going to formalize this idea.

Definition 5.1 A sentence in SOLP is equivalent to one of the form

q t;
¢ = Q1 X1Q2Xs...Q, X, A1x1Asxs . .. Af.’]j‘f \/ /\ Oi,j(Y, f)
i=1j=1

where the QsXs are proportionality quantifiers over the second order variable Xs and
the Asxs are either dxs or Yxs with x5 a first order variable, and HZ-J(Y, T) is an
atomic formula or negation of atomic formula with its first order free variable being
members of T = (x1,...,x¢), and its second order free variable (if any) being member
of X = (X1,...,X;). Let mg be the mazimum arity of the second order variables
X1,...,X,. Then, the complexity of the sentence ¢ is defined as the sum r+ f+mg.

Let us return again to the scenario where we consider two e-relaxed fragments £ C £’
and a sentence ¢ € £’ that is expressible in £. Let ¢ the sentence in £ equivalent
to ¢. We want to see which condition will ensure that ¢ is strongly expressible in
L with respect to £/, i.e. there exists § € L',p € L such that for every model A,
AE ¢ < 0and A = 0 <5 p. We know that for every 0 € (—¢,€) there exists
sentences 0[6] € L, p[d] € L' such that 6[d]5 < ¢ < 1 < p[d]s. Suppose that we select
the 6[d], p[d] to have minimal complexity, and furthermore, suppose that we have the
following property (**):

There exists a natural number M such that:

e V9, with 0 < 9 < ¢, there exists a, f with0 < a<dand - < -3 <0
such that the complexity of the sentences 0[] and 6[—/f] is bounded
by M.

e Vo, with 0 < § < ¢, there exists o/, with 0 < o/ < § and —§ <
—(' < 0 such that the complexity of the sentences p[a’] and p[—/'] is
bounded by M.

Then, the pigeonhole principle implies that there exists sentences § € L/, p € L
such that:

e for every d and ¢, 0 < § < ¢, there exists a, f with 0 < a<dand -6 < —3<0
with 8 = 0]—f] and 0 = 6[a].

e for every § and €, 0 < § < ¢, there exists o/, 8’ with0 < o/ < dand -6 < -8’ <0
with p = p[—] and p = p[e/].
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It follows then that there exists a1, 51 < € such that in every model A:
A)Zeal <—>¢<—>¢Hp7{31
Similarly we get that there exists as, 2 < € such that in every model A:

A)ZPQQH¢H¢H9—ﬁ2

Let 6 = min(ay, a2, 41, F2). We have then that in every model A:

A IZ Ps = Pay — 0—ﬁ2 — 0_s,

and similarly we have that in every model A:
A IZ 05 - ‘9041 — P-pB1 77 P=6

The two statements above imply that ¢ <> 6 and ¢ < p and p <g 6. In other words,
we have the following lemma.

Lemma 5.2 Consider two e-relazed fragments £ C L' and a sentence ¢ € L' that is

expressible in L. Let 1) be the sentence in L equivalent to ¢. We know that for every

d € (—e€,€) there exists sentences 0[8] € L, p[d] € L such that 0[d]s — ¢ — 1 < p|[d]s.
Suppose that there exists a natural number M such that:

e V(0 <0 <€) there exists a, 3 with 0 < aw < 0 and —0 < —f < 0 such that the
minimal complexity of the sentences 0[a] and 0|—f] is bounded by M.

e V(0 <0 <€) there exists o/, 3" with 0 < o/ < § and —6 < —f' < 0 such that
the minimal complezity of the sentences p[a’] and p[—/f'] is bounded by M.

Then ¢ is strongly expressible in £ with respect to L. [

The counterpositive of the above lemma is actually the result we are interested in.

Corollary 5.3 Consider two e-relaxed fragments £ C L' and a sentence ¢ € L' that
18 expressible in L. Let 1) be the sentence in L equivalent to ¢. We know that for every
d € (—¢,€) there exists sentences 0[0) € L, p[d] € L' such that 005 < ¢ «— 1 < p[d]s.
Suppose that ¢ is not strongly expressible in L with respect to L'. Then,

o there exists § € (0,€) such that for all a € (0,8) the minimal complexity of the
formulas 0[a] is bigger than M; or

e there exists 6 € (0,¢€) such that for all o € (—6,0) the minimal complexity of the
formulas 0[—a] is bigger than M ; or

o there exists § € (0,¢€) such that for all o/ € (0,0) the minimal complexity of the
formulas plc’] is bigger than M ; or

e there exists 6 € (0,€) such that for all o/ € (—6,0) the minimal complezity of the
formulas p[—a/] is bigger than M.
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Here is a direct consequence of the above corollary. We know that (SOLP Krom[2]+

<) C (SOLPHorn[2]+ <) are e-relaxed fragments of SOLP that capture NL and P
respectively. Suppose that you can prove that a problem @ in P is not strongly ex-
pressible in (SOLP Krom[2]+ <) with respect to (SOLP Horn[2]+ <) by using any of
the tools at our disposal. Then if still Q) was expressible in (SOLPKrom[2]+ <) the
previous corollary implies that there exists a § € (—¢,€) — {0} such that the minimal
complexity of the sentences 6, € (SOLPKrom|[2]+ <), (for w € (0,9) or (4,0)) that
capture ) tends to infinity, or there exists a § € (—¢,€) — 0 such that the minimal
complexity of the sentences p, € (SOLPHorn[2]+ <), (for w € (0,0) or (4,0)) that
capture @ tends to infinity. That is a very strange phenomenal
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