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Abstract

Barnette’s conjecture is the statement that every 3-connected cubic planar bipartite
graph is Hamiltonian. Goodey showed that the conjecture holds when all faces of the
graph have either 4 or 6 sides. We generalize Goodey’s result by showing that when
the faces of such a graph are 3-colored, with adjacent faces having different colors,
if two of the three color classes contain only faces with either 4 or 6 sides, then the
conjecture holds. More generally, we consider 3-connected cubic planar graphs that are
not necessarily bipartite, and show that if the faces of such a graph are 2-colored, with
every vertex incident to one blue face and two red faces, and all red faces have either 4
or 6 sides, while the blue faces are arbitrary, provided that blue faces with either 3 or 5
sides are adjacent to a red face with 4 sides (but without any assumption on blue faces
with 4,6,7,8,9,... sides), then the graph is Hamiltonian. The approach is to consider
the reduced graph obtained by contracting each blue face to a single vertex, so that
the reduced graph has faces corresponding to the original red faces and with either
2 or 3 sides, and to show that such a reduced graph always contains a proper quasi
spanning tree of faces. In general, for a reduced graph with arbitrary faces, we give
a polynomial time algorithm based on spanning tree parity to decide if the reduced
graph has a spanning tree of faces having 2 or 3 sides, while to decide if the reduced
graph has a spanning tree of faces with 4 sides or of arbitrary faces is NP-complete
for reduced graphs of even degree. As a corollary, we show that whether a reduced
graph has a noncrossing Euler tour has a polynomial time algorithm if all vertices have
degree 4 or 6, but is NP-complete if all vertices have degree 8. Finally, we show that if
Barnette’s conjecture is false, then the question of whether a graph in the class of the
conjecture is Hamiltonian is NP-complete.

1 Introduction

Let P be the class of 3-connected cubic planar bipartite graphs. Barnette [2] conjectured
that every graph in P is Hamiltonian. This conjecture was verified for graphs with up to
64 vertices by Holton, Manvel and McKay [9]. Aldred, Brinkmann and McKay [1] have
announced that the conjecture still holds for graphs with up to 84 vertices. The conjecture
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also holds for the infinite family of graphs where all faces have either 4 or 6 sides, as shown by
Goodey [6]. Without the assumption of 3-connectivity, it is NP-complete to decide whether
a graph in P is Hamiltonian, as shown by Takanori, Takao and Nobuji [12]. The same
conjecture without the assumption of bipartiteness was originally formulated by Tait [11]
and disproved by Tutte [13].

We begin our study of the class P with the well known fact that the faces of any graph
in P can be colored with three colors. In particular, we get a set of independent faces C
such that any edge of the graph either joins two faces of C' or belongs to a face in C'. The
independent faces in C' for a graph in P can be collapsed to single vertices, thus giving a
reduced graph which is planar and has vertices of even degree at least four, and may have
parallel edges.

We observe that an Eulerian tour of the reduced graph without crossings will give a
Hamiltonian circuit of the original graph. Such an Eulerian tour corresponds, for a different
choice of the independent faces C' to be collapsed, to a spanning tree of faces. In fact any
spanning tree of faces in the reduced graph will give a Hamiltonian circuit for the original
graph, and the same holds when a quasi spanning tree of faces is found in the reduced graph.

We may extend the class P to include 3-connected cubic planar graphs that are not
necessarily bipartite, but which contain a set of independent faces C' such that any edge of
the graph either joins two faces of C' or belongs to a face in C, or equivalently, every vertex
of the graph is incident to one face in C' and two faces not in C. For this extended class P,
we may again collapse the faces in C' to single vertices to obtain a corresponding reduced
graph, and look for spanning trees or quasi spanning trees of faces to give a Hamiltonian
circuit for the original graph.

We refer to the faces in C as blue faces and to the faces not in C' as red faces. We show
that if a graph in the extended class P has red faces with either 4 or 6 sides, and arbitrary
blue faces, provided that a blue face with either 3 or 5 sides is ajacent to at least one red face
with 4 sides (but without any assumption for blue faces with 4,6,7,8,9,... sides), then the
graph is Hamiltonian. The proof shows that the corresponding reduced graph, with faces
corresponding to the original red faces, and thus having either 2 or 3 sides, has a proper
quasi spanning tree of faces. As a special case, if the faces of a graph in the original class
P of bipartite graphs are 3-colored, so that each vertex is incident to one face of each color,
and two of the three color classes contain only faces with 4 or 6 sides, then the graph is
Hamiltonian, as we may let C be the third color class, containing faces with 4,6, 8, 10, ...
sides.

We consider more generally the problem of finding a spanning tree or a quasi spanning
tree of faces for any reduced graph either in the original or in the extended class P, as an
approach to finding a Hamiltonian cycle for the original graph. We show that the problem
of deciding whether a reduced graph has a spanning tree of faces that have either 2 or 3
sides can be solved in polynomial time via a reduction to the spanning tree parity problem,
which is polynomial as shown by Lovasz [10] (see also Gabow and Stellman [4]). This implies
that one can decide in polynomial time whether a reduced graph with vertices of degrees
4 and 6 has a noncrossing Eulerian tour. By contrast, we show that deciding whether a
reduced graph has a spanning tree of faces with 4 sides, or a spanning tree of arbitrary
faces, is NP-complete, for reduced graphs of even degree (corresponding to graphs in the
original class P of bipartite graphs). This implies that it is NP-complete to decide whether
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a reduced graph with vertices of degree 8 as a noncrossing Euler tour. Finally, we show that
if Barnette’s conjecture is false, so that a graph in the original class P of bipartite graphs
is not Hamiltonian, then deciding whether a graph in the original class P is Hamiltonian is
NP-complete.

An open problem is whether one may remove the assumption that every blue face with
3 or 5 is adjacent to at least one red face with 4 sides, so that all red faces having 4 or 6
sides would be enough to obtain a Hamiltonian circuit for graphs in the extended class P.
A related conjecture of Barnette states that if a 3-connected cubic planar graph only has
faces with 3,4,5, or 6 sides, then it is Hamiltonian. As mentioned before, this was verified by
Goodey [6] for the case of faces with 4 or 6 sides; it was also verified by Goodey [7] for the
case of faces with 3 or 6 sides; and in general by Brinkmann, McKay, and von Nathusius [3]
for graphs with up to 250 vertices.

2 Hamiltonian Cycle from Quasi Spanning Tree of
Faces

Let G be a graph in the class of 3-connected cubic planar graphs that has a set C of faces
such that every vertex in G is incident to one face in C' and to two faces not in C. We
refer to the faces in C as blue faces and to the faces not in C as red faces. Let H be the
corresponding reduced graph obtained by contracting the faces in C to single vertices. A
spanning tree of faces in H is a set D of faces of H such that no two faces in D share an
edge, and such that if we let T be the graph with vertices corresponding to vertices in H
and faces in D, and edges joining the vertices corresponding to faces d in D to the vertices
in H incident to d, then T is a tree. A quasi spanning tree of facesin H is a set D of faces
of H and a set V of vertices in H such that no two faces in D share an edge, every vertex of
H not in V' has even degree, say 2r, and is surrounded by r faces in D, and such that if we
let T be the graph with vertices corresponding to vertices in V' and faces in D, and edges
joining the vertices corresponding to faces d in D to the vertices in V' incident to d, then T
is a tree. The vertices of H not in V are called quasi vertices, and a proper quasi vertex is
a quasi vertex of degree 4 such that none of the 4 faces surrounding it is a digon (i.e., has
only two sides). A proper quasi spanning tree of faces is a quasi spanning tree of faces all of
whose quasi vertices are proper quasi vertices.

Given a spanning tree of faces in H, we may assume the external face is not in D, and
traverse the perimeter of the spanning tree of faces, to obtain a Hamiltonian cycle in G' that
has all faces of the collapsed set C inside. Given a quasi spanning tree of faces in H, we may
assume the external face is not in D, and traverse the perimeter of the quasi spanning tree
of faces, to obtain a Hamiltonian cycle in GG such that the faces of the collaped C' are inside
the cycle for vertices in V' and outside the cycle for vertices not in V' (quasi vertices). This
gives the following.

Proposition 1 The reduced graph H has a spanning tree of faces with the external face not
i D if and only if G has a Hamiltonian cycle with the external red face outside, with all
blue faces inside and such that no two red faces sharing an edge are both inside. The reduced
graph H has a quasi spanning tree of faces with the external face not in D if and only if G
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has a Hamiltonian cycle with the external red face outside, with all blue faces corresponding
to vertices in 'V inside, with all blue faces corresponding to vertices not in'V' (quasi vertices)
outside, and such that no two red faces sharing an edge are both inside.

We now prove the main result of this section.

Theorem 1 Suppose all red faces have either 4 or 6 sides, while the blue faces are arbitrary,
and assume also that blue faces with 3 or 5 sides are adjacent to at least one red face with
4 sides (no assumption is made for blue faces with 4,6,7,8,9,... sides). Then the reduced
graph H obtained by collapsing blue faces has a proper quasi spanning tree of faces, giving a
Hamiltonian cycle for G.

This result follows from the following main observation.

Lemma 1 Let G be as in Theorem 1. Suppose the reduced graph H has a triangle T that
contains at least one verter inside, such that no triangle inside of T is not a face (i.e.,
contains at least one vertez inside), and no digon inside of T is not a face (i.e., contains at
least one vertez inside). Then finding a proper quasi spanning tree of faces for H reduces to
finding a proper quasi spanning tree of faces for H' obtained from H by removing all vertices
instde of T and their incident edges, and adding a parallel edge inside of T to each edge of
T.

ProoOF: We shall successively simplify the inside of the triangle 7", while preserving the
property that there is no digon inside of 7" that is not a face, but allowing the presence of
triangles inside of 7" that are not faces, but with the following requirement. Treat all sets
of parallel edges as a single edge. Suppose T} and 75 are distinct triangles inside of T', with
T containing Ty and possibly 77 equal to T', where T is not a face, and such that there is
no triangle T3 distinct from 77 and 75 such that 7 contains 75 and 73 contains 75. In that
case, we say that 75 is a child of T;. We shall require that no triangle 7; has three distinct
children T3, Tj, and T3, at all steps in the simplification of the inside of the triangle 7.

The simplification consists of repeatedly selecting a triangle 7} that is a face inside of 7',
selecting T} for the proper quasi spanning tree of faces, and collapsing 77 to a single vertex,
thus reducing the number of vertices inside of 7" by 2. In the end, we end up with either a
single vertex inside of 7" or no vertex inside of 7. In the case of a single vertex v inside of
T, selecting one of the three triangles involving v corresponds to selecting one of the three
digons added for the sides of T" in H' for a quasi spanning tree of faces, and in the case of
no vertex v inside of T, we may either select or not select the triangle 7" in H' for a quasi
spanning tree of faces. The case of a single vertex v inside of 7" is reached when 7" initially
contains an odd number of vertices inside of 7', and the case of no vertex v inside of 1" is
reached when 7 initially contains an even number of vertices inside of 7’. We must also be
able to reach the case of no vertex v inside of 7" when T initially contains an odd number of
vertices inside of 7', and the case of a single vertex v inside of 7' when T initially contains an
even number of vertices inside of T. To achieve this, the first simplification step changes the
parity of the number of vertices inside of T, in one of two possible ways. The first possible
way occurs if initially there is a digon inside of 7" with at least one endpoint not in 7. In that
case, we select the digon for the proper quasi spanning tree of faces and collapse the digon to
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a single vertex, thus changing the parity of the number of vertices inside of 7. If there is no
such digon, then we shall show that there is inside of T" a vertex v of degree 4, belonging to
4 triangles at most one of which shares a side with 7. We then make v a proper quasi vertex
and select two triangles involving v that do not share an edge with each other or with T, say
vv1v9 and vvsvy, to be included in the proper quasi spanning tree of faces. Collapsing both
triangles corresponds to removing v, identifying v; with vy, and identifying vz with v4, thus
replacing 5 vertices with just 2 vertices and changing the parity of the number of vertices
inside of T". This will thus complete the proof of the Lemma.

We show that each of the claimed simplifications can be performed while preserving the
claimed properties. Suppose triangle 7} inside of 7" contains at least two vertices inside, and
there is no triangle inside of 7 that is not a face. Writing 77 = v v9v3, we claim that v; has
at least two distinct neighbors v, and vs inside of T;. Otherwise, if v; has no such neighbors,
then v; belongs to a triangle inside of 77 that has an edge vyvs parallel to the side of T,
contrary to the assumption that there is no digon inside of 7" that is not a face; and if v
has only one such neighbor v, inside of 7}, then vyvsvy is a triangle inside of 77 that is not a
face, contrary to assumption. We may then choose v, and v5 so that vy, v4, v5 are consecutive
neighbors of vy, and collapse the triangle vyv4vs. This will produce no digons that are not
faces, since such a digon would come before the collapsing from a triangle that is not a face
inside of 77, contrary to assumption. There may however appear triangles that are not faces
inside of 77. Such triangles come from quadrilaterals viv4v6v7, V1V5VsV9, and v4vsv10v11. The
quadrilaterals vivsvgvg are of two kinds, either containing v4 or not containing vy, but may
not have diagonal edges vvg or vsvg, otherwise either there was a triangle that is not a face
inside of the quadrilateral, or collapsing the side vyv5 does not give for the quadrilateral a
triangle that is not a face. This implies that all such quadrilaterals containing v, are pairwise
contained in each other, and all such quadrilaterals not containing v, are pairwise contained
in each other. The analogous properties hold for the quadrilaterals v, v,v5v7, but these are of
only one kind, namely containing vs, otherwise vg = v and we have the diagonal edge vovy.
The analogous properties also hold for the quadrilaterals v,v5v19v11, but these are again of
only one kind, namely not containing vy, since they are contained in the triangle T = vyv5v3.
Furthermore, a quadrilateral v,v4v6v7 containing vs must contain any quadrilateral v,vsvgvg
not containing v, and must also contain any quadrilateral v vsvipv1; not containing vy,
and a quadrilateral v;vsvgvg containing v, must also contain any quadrilateral v4vsv19v11 nOt
containing v;. This guarantees that these quadrilaterals will not lead, after collapsing viv4vs,
to three triangles that are not faces that do not contain each other inside 77, thus preserving
the property that no triangle has three children.

In the remaining case for collapsing a triangle, there is a triangle 7 that has either one
child 75 or two children 75 and T3, where both 75 and T3 have exactly one vertex inside.
Suppose T, shares no sides with either 77 or 73. Writing 75 = wv,vyv3, We must again
consider quadrilaterals v;v9v4v5, v1V3V6V7, and vov3vgv9. There may not simulataneously
exist quadrilaterals v,v9v,4v5 containing vs, v1v3vgv7 containing vy, v9v3VgvVg containing vy,
and vyveuyvg not containing vs. For if vg = vs, then vivsv7 is not a face and thus equals
T1, so vy is a vertex of 77 and the quadrilateral vov3vgvg cannot contain vq; if v; = v4 then
V1050, is again 77 and the same argument holds; and if vs = vy, then vg = v5 and vy = vy,
so the triangle vsv,v7 is 17, and the quadrilateral vivovjvl would be inside the triangle
v1v9v7 which is a face, and this is not possible. Therefore, by symmetry, we may assume
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that either there is no quadrilateral vivov4v5 containing vz or no quadrilateral vivov4v5 nOt
containing vz that will give rise to a new triangle that is not a face after identifying v,
and vy. Thus if v1v9v3 contains the single vertex vy, collapsing the triangle v,v9vy identifies
vy and vy and creates only triangles with pairwise containment involving the new vertex
v1 = U9, besides the triangle 73, thus preserving the property that no triangle has three
children. If 75 = vivyv3 shares one side with 77, say the side vovs, then one of the other two
sides is not shared with 73, say the side v,v9, and the quadrilaterals v, v9v4v5 cannot contain
v3, S0 again we may collapse the triangle vivovy with vy inside 75, creating only triangles
with pairwise containment involving the new vertex v; = v, besides the triangle 73, thus
preserving the property that no triangle has three children. And if 7, shares a side v;v3 with
T, then every quadrilateral v,v9v4v5 containing v also contains 73, so collapsing v;v9vy with
vy inside T, gives two familes of triangles with pairwise containments involving v; = vy, one
family containing vs and the other family not containing v3, again preserving the property
that no triangle has three children.

We have therefore shown that it is always possible to select a triangle face inside 7" to
collapse while preserving the property that there are no digons that are not faces and no
triangle T} either equal to 7" or inside of 7" has three children, until there is either a single
vertex or no vertex inside of 7'. It remains to show the two cases that are used to change the
parity inside of T'. If there is initially a digon viv, with at least one endpoint inside of T,
then we may select and collapse v;v9, creating triangles that are not faces from quadrilaterals
V1020405, and there are again two families of such quadrilaterals, given by the two triangle
faces v1v9v3 and vy v9vy, namely quadrilaterals containing v and quadrilaterals containing v}.
Each of the two families of quadrilaterals creates triangles with pairwise containment, thus
giving the property that no triangle 7T} either equal to T or inside of T has three children.

If initially there are no such digons inside of 7', and we write T' = v;v9v3, then there must
be at least two vertices inside 7', otherwise the single vertex vy inside 7" would have degree
3 and would be incident to no digons, contrary to the assumption that every blue face with
3 sides is adjacent to at least one red face with 4 sides. This implies that v; must have at
least two distinct neighbors inside 7', otherwise a single neighbor vy would be the only vertex
inside of T' because there are no triangles that are not faces inside of 7. Thus v; has degree
at least 4, if we also count the edges vv2 and vovz, and similarly both vy and v3 have degree
at least 4. Furthermore, there is no vertex inside of 7" of degree either 3 or 5, since such a
vertex would be incident to a digon because all blue faces with 3 or 5 sides are adjacent to
at least one red face with 4 sides. Therefore, by Euler’s formula, the total number of vertices
of degree 4 either on T or inside of T is at least 6, and there are at least 3 vertices of degree
4 inside T'. Say v, inside of T" of degree 4 has consecutive neighbors v,v5v6v7. At most one
edge of this quadrilateral can be shared with the triangle T = v,vyv3, because if both vyvy
and vyv3 are shared then v; has a single neighbor v, inside 7" and would have only degree
3, not at least 4. Say only v4v7 can be shared with 7. In that case, we make vy a proper
quasi vertex and select the two triangles vyv4vs and vyvgv7, thus removing vy, identifying vy
and vs, and identifying vg and vz, reducing the number of vertices by 3. The quadrilaterals
V4U5VgVg containing the edge vgv; that yield new triangles must contain the quadrilaterals
vgU7V1ov11 that yield new triangles not containing the edge v4vs, and in the other direction
the quadrilaterals vgv;v],v]; containing the edge v4v; that yield new triangles must contain
the quadrilaterals vqvsvgvg that yield new triangles not containing the edge vgv7, so again
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we obtain just two families of new triangles by identification of v, and v5, and identification
of vg and v7, with each family giving pairwise containment among its triangles.

This gives again the property that no triangle 77 either equal to 7" or inside of T" has three
children, thus completing the proof that one can change the parity of the number of vertices
inside of 1" before proceeding to reduce the number of vertices inside of 7' by increments
of 2 until either a single vertex or no vertex is inside of 7. As argued above, this reduces
the problem of finding a proper quasi spanning tree of faces for H to the problem with the
vertices inside of H removed and parallel edges added to the sides of T' to obtain H'. |

This Lemma yields Theorem 1 as follows. The outer face is a digon or a triangle that
contains vertices inside. There must therefore exist either a triangle that contains vertices
inside but contains no triangle or digon with vertices inside, or a digon that contains vertices
inside but contains no triangle or digon with vertices inside. A triangle 7" that contains
vertices inside but contains no triangle or digon with vertices inside can be simplified
according to Lemma 1 by removing the vertices inside and adding parallel edges to the
sides of 7. A digon viv, that contains vertices inside but contains no triangle or digon
with vertices inside must contain a single vertex vy inside, otherwise the digon v;ve would
contain a triangle with vertices inside. Either vgv; or vyv, must be a digon, say vov; is a
digon, otherwise vy would have just degree 2. We may thus either select the digon vyv; or
the triangle vgvivy, which corresponds after removing the vertex vy to either not selecting or
selecting the digon v;vs which has become a face. The graph H can thus be simplified until
the outer face contains no vertices inside, in which case selecting the face inside involving all
vertices completes the proper quasi spanning tree of faces for H and the proof of Theorem
1.

The following Corollary is a special case of Theorem 1 and generalizes Goodey’s result
for graphs G that only have faces with 4 or 6 sides.

Corollary 1 Suppose G is a 3-connnected cubic planar bipartite graph, and if the faces of G
are 3-colored, with each vertex of G incident to one face of each color, then two of the three
color classes contain only faces that have 4 or 6 sides. Then the reduced graph H obtained
by collapsing the third color class has a proper quasi spanning tree of faces, and so G has a
Hamultonian cycle.

3 Polynomial and NP-Complete Problems

The following result concerns the case where most faces in a spanning tree of faces are digons.

Theorem 2 Let G be a 3-connected cubic planar bipartite graph. Let H be the reduced
graph for G, and let H' be the subgraph of H obtained by removing all edges that do not have
consecutive parallel edges. If H' has one, two, or three connected components, then H has a
spanning tree of faces, and thus G has a Hamiltonian cycle. The case of a single component
for H' includes the case where all faces in one of the three color classes are squares.

ProOOF: If H' is a single connected component, then we can choose a spanning tree of
H', corresponding to a spanning tree of digons in H.
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If H' has two connected components, then we may choose a face f of H that has vertices
from both components. Starting with this face f, we also consider two spanning trees of
digons for the two components of H', and add these digons one at a time as long as they do
not form a cycle containing f. Eventually, the single face f and the added digons will span
H.

If H' has three connected components, then it may be that H has a face f touching
all three components, and we may proceed from f as for the case for two components, by
considering the three spanning trees of digons for the two components. Otherwise some
component, say the first, has faces touching it and the second component and also faces
touching it and the third component. Both sets of faces have at least four faces, since a cut
of H has at least four edges by 3-connectivity and the fact that any cut has an even number
of edges, so we may choose a face f touching the first and second component, and a face f’
touching the first and third component, so that these two faces do not share any vertices.
Starting with these two faces, we may then again add digons from the three spanning trees
for the three components so long as they do not form a cycle, until a spanning tree of faces
for H is obtained. |

The proof for three connected components extends to the case of four connected
components, but the result does not hold in the case of five connected components.

We show next that one can decide whether the reduced graph H has a spanning tree of
faces that are either digons or triangles in polynomial time. The result easily extends to the
case of a spanning tree of faces where all but a constant number of faces are either digons
or triangles.

Theorem 3 Let G be a 3-connected cubic planar graph that has a corresponding reduced
graph H obtained by collapsing a set of faces C'. Let D be a collection of faces in H such that
all faces in D are either digons or triangles. Then we can decide whether H has a spanning
tree of faces in D, giving a Hamiltonian cycle for G, in polynomial time, by a spanning tree
parity algorithm [10, 4].

PRrOOF: Construct a graph H' related to H as follows. The vertex set of H' is the same
as the vertex set for H. If xy is a digon in D, then put an edge zy in H'. If zyz is a triangle
in D, then put edges zy and yz in H'. A spanning tree of faces in D for H then corresponds
to a standard spanning tree in H' which must contain either both or none of edges xy and
yz corresponding to a triangle zyz in D. These conditions on pairs of edges in H' make the
equivalent problem in H' a spanning tree parity problem. |

If D contains faces with four or more sides, say a face zyzt, then we could include three
edges linking these four vertices, say xy, yz, and zt, and require that a spanning tree contain
either all three or none of these three edges. Such a spanning tree tri-arity problem, as we
shall later see, turns out to be NP-complete.

A noncrossing Euler tour of a reduced graph H is a tour that visits every edge once and
has the property that a vertex v entered by the Euler tour through some edge e exists the
vertex through one of the two edges €, ¢” incident to v on either side of e. A noncrossing Euler
tour of H gives a Hamiltonian circuit for G. The following is immediate from Proposition 1.

Proposition 2 Let G be a 3-connected cubic planar bipartite graph whose faces are 3-
colored. Then G has a Hamiltonian cycle with red faces in one side, blue faces in the other
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side, and green faces in either side, if and only if the reduced graph H obtained by collapsing
green faces has a noncrossing Euler tour, if and only if the reduced graph H' obtained by
collapsing red faces has a spanning tree of green faces, if and only if the reduced graph H"
obtained by collapsing blue faces has a spanning tree of green faces.

An application of Theorem 3 and Proposition 2 gives the following.

Corollary 2 Let G be a cubic planar bipartite graph, and let H be the corresponding reduced
graph. Suppose all vertices of H have degree 4 or 6, so that all green faces of G are either
squares or hexagons. Then one can decide in polynomial time whether H has a noncrossing
Euler tour giving a Hamiltonian cycle for G.

PrOOF: Let H' be the reduced graph for G' by collapsing the blue or red faces instead
of the green faces. Then the green faces give in H' digons or triangles. By Proposition 2, a
noncrossing Euler tour for H corresponds to a spanning tree of green faces in H'. Since all
green faces are either digons or triangles in H', one can decide whether such a spanning tree
of green faces in polynomial time by Theorem 3. |
We now obtain several NP-completeness results.

Theorem 4 Let G be a 3-connected cubic planar bipartite graph, and let H be the
corresponding reduced graph. Suppose that the red faces in H are quadrilaterals and the
blue faces in H are digons. Then the question of whether H has a spanning tree of red faces
1s NP-complete.

PROOF: The question of whether a 3-connected planar cubic graph R has a Hamiltonian
cycle is NP-complete, as shown by Garey et al. [5]. Let e = (u,v) be a particular edge in
R. Then the question of whether R has a Hamiltonian cycle going through e is also NP-
complete. Let R’ be the graph obtained from R by removing the edge e, so that R’ has two
vertices of degree 2, namely v and v, and all other vertices of R’ have degree 3. The question
of whether R’ has a Hamiltonian path from u to v is also NP-complete.

Given R', construct a reduced graph H of some 3-connected cubic planar bipartite graph
G as follows. The graph H has vertices V = V; U V5, where V] is the set of vertices w of
R’ and V5 is the set of faces f of R'. A vertex w in V; is joined to a vertex f in V5 by two
parallel edges in H if and only if the vertex w in R' is a vertex in the face f of R'. Thus
the blue faces are digons joining two vertices w and f, while the red faces are quadrilaterals
(w, f,w', f') corresponding to edges (w,w’) in R’ that separate two faces f and f' in R'.

We show that a set L of edges in R’ forms a Hamiltonian path from u to v in R’ if and
only if the set M of red quadrilaterals in H corresponding to the edges M’ in R' that are
not in L has the property that M is a spanning tree of red faces in H. Therefore H has a
spanning tree of red faces if and only if R’ has a Hamiltonian path from u to v, and so the
question of whether H has a spanning tree of red faces is NP-complete.

Suppose L is a Hamiltonian path from u to v in R’, let M’ be the edges in R' not in
L, and let M be the corresponding red quadrilaterals in H. Note that for any two edges g
and h in M’ there is a sequence of edges g = e1, €s,...,ex = h in M’ such that each pair of
edges e;, e;11 share a face. Therefore the red faces in M induce a connected subgraph of H.
Notice also that every vertex in H belongs to some face in M, since every vertex w in R’ is
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incident to an edge not in L, and every face f in R’ has at least one edge not in L. Finally,
the red faces in M do not contain a cycle. Otherwise, if we had a cycle uq, ug, ..., ug, u; of
red faces in M, then we can observe that every vertex w in V] belongs to exactly one red face
in M, so u; and u,;,; share a vertex f in V5 corresponding to a face in R'. Thus the edges
€1, €, ...,ex, €1 in M’ corresponding to the faces u; in the cycle of red faces in M, separate
the graph R’ into two components, so the Hamiltonian path L would have to contain at least
one of these edges e; in M', a contradiction. Therefore the red faces in M form a spanning
tree of red faces for H.

In the other direction, suppose the red faces in M form a spanning tree of red faces for
H. Let M’ be the corresponding edges in R', and let L be the set of edges in R' not in M'.
Each vertex w in V] belongs to exactly one red face (w, f,w', f') in M, since every other red
face in M containing w also contains either f or f’, and therefore the two red faces form
a cycle and cannot both be in the spanning tree of red faces M. Therefore every vertex in
R’ is incident to exactly one edge in M’, and so the two vertices u and v of degree 2 in R’
are incident to exactly one edge in L, while the remaining vertices w of degree 3 in R' are
incident to exactly two edges in L. That is, L consists of a path joining u and v in R', plus
a collection of cycles in R', such that the path and the cycles are disjoint and cover all the
vertices in R'. We show that L cannot contain a cycle in R, and so L is just a path joining u
to v containing all vertices of R', that is, L is a Hamiltonian path from u to v in R'. Suppose
L contains a cycle e, ea,...,ex,e; in R'. Let f and f’ be faces of R’ inside and outside the
cycle of e; respectively. Since f and f' are vertices in the spanning tree of red faces M, there
is a sequence of red faces uy, us, ..., u; in M such that u; contains f, u; contains f’ and each
pair wu;_1, u; share a vertex f; in V5. In particular, if we denote fy = f and f; = f’, then for
some pair f;, f;+1 we must have the face f; in R’ inside and the face f;,; outside the cycle of
e;. This implies that the red face u; in M corresponds to one of the edges e; in L and not in
M', a contradiction. This completes the proof. |

We obtain two Corollaries from this result.

Corollary 3 Let G be a 3-connected cubic planar bipartite graph, and let H be the
corresponding reduced graph. Suppose all vertices of H have degree 8. Then the question
of whether H has a noncrossing Euler tour is NP-complete.

PrRoOF: The reduced graphs H from Theorem 4 have all red faces as quadrilaterals,
corresponding to octagons in G. If we collapse these red faces, we obtain a reduced graph
H' with vertices of degree 8. By Proposition 2, H' has a noncrossing Euler tour if and only
if H has a spanning tree of red faces, and this problem is NP-complete by Theorem 4. W

Corollary 4 Let G be a 3-connected cubic planar bipartite graph, and let H be the
corresponding reduced graph. Suppose that the red faces in H are octagons and digons and
the blue faces in H are triangles. Then the question of whether H has a spanning tree of
arbitrary faces ts NP-complete.

PrRoOOF: Let H be the reduced graph of Theorem 4, with red quadrilaterals and blue
digons. If e and f are the two parallel edges of a blue digon, insert a vertex w in the middle
of e and a vertex z in the middle of f, with w and z joined by two parallel edges. The blue
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digon splits thus into two blue triangles and a red digon, while the red quadrilaterals become
red octagons, in the new reduced graph H'.

Suppose H has a spanning tree of red quadrilaterals M. Select the corresponding red
octagons in H'. For a blue digon consisting of two edges e and f in H, if one of the two red
quadrilaterals containing e or f is in M, then select the red digon joining the middle vertices
w and z; if neither of the two red quadrilaterals containing e or f is in M, then select one
of the two blue triangles containing w and x. The red and blue faces in H' thus selected,
involving red octagons, red digons, and blue triangles, for a spanning tree of faces in H'.

Conversely, suppose H' has a spanning tree of faces M'. Let M be the set of red
quadrilaterals in H such that the corresponding red octagon is in M’. Note that for each
digon in H, only one of the corresponding two blue triangles and red digon in H' can be in
M'. Thus M is a spanning tree of red faces.

Thus H' has a spanning tree of arbitrary faces if and only if H has a spanning tree of
red faces, and NP-completeness follows from Theorem 4. |

We finally show:

Theorem 5 Suppose there exists a 3-connected cubic planar bipartite graph Gy that is not
Hamiltonian. Then the question of whether a 3-connected cubic planar bipartite graph G has
a Hamiltonian cycle is NP-complete.

PrOOF: Takanori et al. [12]. showed that the question of whether a 2-connected cubic
planar bipartite graph GG has a Hamiltonian cycle is NP-complete. If such a G' has two edges
e and f that separate it into two components G’ and G”, then their endpoints in either side
are at odd distance (this can be inferred by examining the colors of the faces separated by
e and f in a 3-coloring of the faces, and the two alternating colors surrounding one of these
faces), so we may instead join the two endpoints of e and f in G’ and G" separately, and
ask whether G’ and G” both contain a Hamiltonian cycle containing the added edge joining
the endpoints of e and f. Repeating this decomposition process, we eventually reduce the
question of whether G has a Hamiltonian cycle to the question of whether various G; each
contain a Hamiltonian cycle going through certain prespecified edges, with each G; being
3-connected. Thus the question of whether a 3-connected cubic planar bipartite graph G
has a Hamiltonian cycle going through certain prespecified edges is NP-complete.

Suppose Gy is a minimal 3-connected cubic planar bipartite graph that is not
Hamiltonian. We shall construct from Gy a 3-connected cubic planar bipartite graph G that
has a Hamiltonian cycle, such that for some edge e = (u,v) in G1, every Hamiltonian cycle
in (G goes through e. Furthermore, If f and g are the two edges other than e incident to u in
(G1, then (7 has a Hamiltonian cycle going through f and e and a Hamiltonian cycle going
through g and e. Given a graph G with certain prespecified edges that a Hamiltonian cycle
must go through, consider each such prespecified edge €’ incident to a vertex u', and replace
u' with the complement of u in Gy, so that the three edges incident to u' in G are replaced
by the three edges incident to u in G, with €’ corresponding to e in G;. These replacements
then force a Hamiltonian cycle for the new graph to correspond to a Hamiltonian cycle going
through the prespecified edges ¢’ in G. Therefore whether the resulting 3-connected cubic
planar bipartite graph has a Hamiltonian cycle is NP-complete.

We construct G;. We shall first do so to enforce that every Hamiltonian cycle in G goes
through e, and later guarantee that such a cycle can go through either f or g. Let R be
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a square in Gy. Suppose that if we remove two opposing sides of R from G, and replace
the two paths of length 3 resulting from the remaining two sides of R by single edges, then
we obtain a 3-connected graph GG;. By minimality of G, the graph G; has a Hamiltonian
cycle. Furthermore, no Hamiltonian cycle for G; goes through either of the two edges of G
corresponding to the edges that were kept for the square R in Gy, since if either edge is in
a Hamiltonian cycle for (G1, then we can extend this cycle to a Hamiltonian cycle visiting
the four vertices of the square R in GGy, a contradiction. We have thus guaranteed that a
Hamiltonian cycle in (G; does not visit a particular edge ey, and thus must visit an edge e
adjacent to eg, as desired.

Suppose instead that the two graphs G; obtained in the preceding construction by either
of the two choices of two opposing edges of the square R to be removed are both only 2-
connected. Then each choice of two opposing edges of R belongs to a cut of four edges in Gy
that separate Gy. Removing the two sets of four edges from the two cuts of four edges thus
separates (G into four components C, Cs, C3, Cy, with the removed edges of GGy including
an edge from C) to Cs, an edge from C5 to C3, an edge from C3 to C4, and an edge from
C, to C4, plus four edges from the four C; going into the four vertices of the square R.
That is, each C; has three incoming edges that can be joined to a single vertex, since their
three endpoints in C; are at even distance (this can be inferred by examining the colors of
the three faces surrounding C; in a 3-coloring of the faces, and the two alternating colors
surrounding one of these faces). By minimality of G each such graph resulting from C;
with an additional vertex has a Hamiltonian cycle, yet it is not the case that each of the
three choices of two edges going into each C; yields a Hamiltonian cycle, since otherwise we
would obtain a Hamiltonian cycle for Gy. Thus one of the three edges joining some C; to the
additional vertex must belong to every Hamiltonian cycle, thus giving a 3-connected cubic
planar bipartite graph GG; with an edge e that belongs to every Hamiltonian cycle of G;.

It remains to ensure that a Hamiltonian cycle in Gy, which is forced to take e = (u,v),
can take either f or g out of u. Suppose instead that every Hamiltonian cycle is forced to
take f as well. Consider the 3-connected cubic planar bipartite graph K of a cube with
8 vertices. Replace as before a vertex of K with the complement of » in G;. This forces
two particular edges e and f of the cube incident to the replaced vertex to be visited by a
Hamiltonian cycle, yet the Hamiltonian cycle for the cube can still be chosen in two different
ways so that either of the two edges f’ and ¢’ sharing the endpoint of e that was not replaced
can be visited. This produces the required G} with edge e forced and the choice between f’
and ¢’ still available for a Hamiltonian cycle, completing the proof. |

References

[1] R. Aldred, G. Brinkmann, and B.D. McKay, personal communication.

[2] D. Barnette, “Conjecture 5,” Recent Progress in Combinatorics (Ed. W.T. Tutte),
Academic Press, New York (1969) 343.

[3] G. Brinkmann, B.D. McKay, and U. von Nathusius, “Backtrack search and look-
ahead for the construction of planar cubic graphs with restricted face sizes,”
http://cs.anu.edu.au/-bdm/papers/plantri_ad.pdf

12



[4] H.N. Gabow and M. Stellman, “Efficient algorithms for graphic intersection and parity,”
Proc. 12th Int. Conf. Automata, Languages, and Programming, Springer-Verlag LNCS
194, 1985, 210-220.

[6] M.R. Garey, D.S. Johnson, and R.E. Tarjan, “The planar Hamiltonian circuit problem
is NP-complete,” STAM J. Comput. 5 (1976), 704-714.

[6] P.R. Goodey, “Hamiltonian circuits in polytopes with even sides,” Israel Journal of
Mathematics 22 (1975), 52-56.

[7] P.R. Goodey, “A class of Hamiltonian polytopes,” J. Graph Theory 1 (1977), 181-185.

[8] D.A. Holton, B. Manvel, and B.D. McKay, “Hamiltonian cycles in cubic 3-connected
bipartite planar graphs,” Journal of Combinatorial Theory B 38 (1985) 279-297.

[9] L. Lovész, “Matroid matching and some applications,” J. Combinatorial Theory Ser. B
28 (1980), 208-236.

[10] P.G. Tait, “Listing’s topologie,” Phil. Mag. 17 (1884), 30-46.

[11] Akiyama Takanori, Nishizeki Takao, and Saito Nobuji, “NP-completenss of the
Hamiltonian cycle problem for bipartite graphs,” Journal of Information Processing
Abstract Vol. 03 No. 02-003.

[12] W.T. Tutte, “On Hamiltonian circuits,” J. London Math. Soc. 21 (1946), 98-101.

13

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’




