Electronic Colloquium on Computational Complexity, Report No. 16 (2006)

Partition into k-vertex subgraphs of k-partite
graphs

Tomas Feder
268 Waverley St., Palo Alto, CA 94301, USA
tomas@theory.stanford.edu
and
Carlos Subi
27-024 Okana Place, Kaneohe, HI 96744, USA
carlos_subi@hotmail.com

Abstract

The H-matching problem asks to partition the vertices of an input
graph G into sets of size k = |V (H)|, each of which induces a subgraph
of G isomorphic to H. The H-matching problem has been classified as
polynomial or NP-complete depending on whether & < 2 or not. We
consider a variant of the problem, in which a homomorphism from G
to H is given, so that G is k-partite, and each chosen set of size k must
contain exactly one vertex from each of the k parts. We classify the
problem as polynomial or NP-complete depending on whether H is a
forest or not.

The polynomial case with H a forest generalizes to the case where
each set of size k must contain a subgraph satisfying certain degree
constraints, provided that the skip between consecutive allowed degrees
is at most two; a skip of at least three gives NP-completeness. More
generally, one may specify which sets of incident edges for a vertex in
the subgraph are allowed, and the problem has complexity related to
delta-matroids. Several of the polynomial cases extend to a weighted
version.

An optimization variant of the problem asks to maximize the num-
ber of chosen sets of size k that induce a subgraph isomorphic to
H. This problem is shown polynomial if every component of H is
a path, and NP-complete otherwise. The polynomial cases extend to
a weighted version, while the NP-complete cases are hard to approxi-
mate within a constant even for bounded degree instances, allowing a
% + € approximation. We similarly classify the problem of asking that
each chosen set of size k contain at least r edges forming a connected

ISSN 1433-8092

subgraph, for all H and r, and nearly classify the case where the r
edges are not required to form a connected subgraph.

1 Introduction

Kirkpatrick and Hell [16] considered the problem of partitioning a graph
into isomorphic subgraphs. For a fixed graph H with |V(H)| = k, and an
input graph G with |V(G)| = kl, the problem asks to partition V(G) into
[disjoint sets S; with |S;| = k, such that the subgraph of G induced by
S; is isomorphic to H. They showed that the problem is NP-complete for
any H with k = |V(H)| > 3, where H is not necessarily connected. The
analogous problem in which the subgraph induced by S; need only have
k = |V(H)| vertices and contain a subgraph isomorphic to H is also NP-
complete for any H that contains a connected component of three or more
vertices. Both problems can be solved in polynomial time by matching for
any H not meeting the stated restrictions.

An optimization version of the problem asks to maximize the number of
sets S; that induce a subgraph isomorphic to H. While the polynomial cases
remain polynomial, the NP-complete cases are hard to approximate within
some constant ¢ > 1, even for instances degree bounded by some constant
d, as shown by Kann [15]; the degree bound for hardness of approximation
is d = 4 when H is a triangle, as shown by Berman and Fujito [4]. The best
known approximation bounds are % + € for all € > 0, as shown by Hurkens
and Schrijver [13], and the bounds for a weighted version of the problem
are k — 1 + ¢, as shown by Arkin and Hassin [1], and @, as shown by
Chandra and Halldérsson [5]. A weighted version with H a path with three
edges has a % approximation, see Hassin and Rubinstein [12]. By contrast,
the cases where H and G are required to be planar admit a polynomial time
approximation scheme, as shown by Baker [2], but not a fully polynomial
approximation scheme, as shown by Berman et al [3].

We shall study here a restricted version of this problem, in which we
are given in addition a homomorphism f from G to H, and the problem
asks to partition V(G) into [disjoint sets S; with |S;| = k such that the
homomorphism f restricted to each .S; is a one-to-one correspondence from
S; to H. We study again the basic problem where each S; must induce a
subgraph of G isomorphic to H; note that in that case an isomorphism will
be given by the restriction of f to S;, and that without the isomorphism
condition f is always isomorphism from each S; to a subgraph of H. We
show that this problem can be solved in polynomial time if H is a forest, and

is NP-complete otherwise. The case where H is a forest remains polynomial
when edges have weights and we wish to maximize the sum of the weights
in the copies S; of H over valid partitions.

The polynomial case with H a forest generalizes to the case where each
set of size k must contain a subgraph satisfying certain degree constraints,
provided that the skip between consecutive allowed degrees is at most two;
a skip of at least three gives NP-completeness. More generally, one may
specify which sets of incident edges for a vertex in the subgraph are allowed,
and the problem is polynomial or NP-complete for upward closed allowed
edge sets depending on whether the specified edge sets are delta-matroids
or not. The case of upward closed delta-matroids remains polynomial when
edges have weights and we wish to maximize the sum of the weights in the
subsets S; over valid partitions.

The optimization variant of the problem asks to maximize the number of
chosen sets of size k that induce a subgraph isomorphic to H.This problem
is shown polynomial if every component of H is a path, and NP-complete
otherwise. The polynomial cases extend to a weighted version where vertices
and edges have weights, while as before the NP-complete cases are hard to
approximate within some constant ¢ > 1 even for bounded degree instances,
allowing a % + € approximation in the unweighted case, and botha k —1+¢
and a @ approximation in the weighted case.

We finally classify the problem of asking that each chosen set of size
k contain at least r edges forming a connected subgraph, for all H and r,
and nearly classify the case where the r edges are not required to form a
connected subgraph. In both cases, for H connected and 1 < r < |E(H)|,
the problem is polynomial is H is a star and NP-complete otherwise. When
H is not connected, the possible polynomial cases for both problems involve
components that are paths or stars.

2 The Basic Problem

We first characterize the basic problem. Recall that we are given a homo-
morphism f from the input graph G to the fixed graph H with |V (H)| = k,
and wish to partition the vertices of G into [sets S; with |S;| = k such that
f is a one-to-one correspondence from S; to H.

Theorem 2.1 The basic problem where each S; must induce a subgraph of
G isomorphic to H can be solved in polynomial time by matching if H is a
forest, and is NP-complete otherwise. The polynomial case with H a forest

remains polynomial when edges have weights and the aim is to find a valid
partition that mazimizes the total weight of edges with endpoints in the same
Si.

Proof. Suppose H is a forest. For every edge uu’ in H, there are | edges
v’ in G with f(v) = u, f(v) = «' that must be chosen, one for each S;.
Thus these edges vv’ must form a perfect matching of the bipartite subgraph
of G induced by the vertices w such that f(w) = u or f(w) = u'. One can
find these perfect matchings in G for each edge uu’ in H, if they exist, in
polynomial time. The subgraph of G corresponding to the union of these
perfect matchings has as connected components [copies of each connected
component K of H, where K is a tree, and where f is an isomorphism from
each of these [copies to K. We may then combine the [copies of each
connected component K to obtain [copies of H, where f is an isomorphism
from each of these [copies S; to H. The weighted version of the problem
can also be solved in polynomial time by a weighted matching algorithm
that finds perfect matchings of maximum edge weight.

Suppose H is not a forest. Let H' be the shortest cycle in H. We reduce
the problem for H' to the problem for H. Given an instance G’ for H' with
k'l vertices, add the remaining (k — k') vertices to G’ to obtain an instance
G for H, including also for every edge uu’ in H and not in R all the edges vv'’
in G for v, v’ such that f(v) = u, f(v") = «'. Any decomposition of G into [
copies S; of H such that f is an isomorphism from S; to H will give [copies
S; of the cycle H' such that f is an isomorphism from S} to H'. Conversely,
any decomposition of G’ into ! copies S, of the cycle H' such that f is an
isomorphism from S; to H' can be extended by arbitrarily assigning the !
vertices v such that f(v) = u with u not in the cycle H' to the [copies S, of
H' to obtain [copies S; of H such that f is an isomorphism from S; to H.

Given a cycle H' of length k', let H"” be a triangle. We reduce the
problem for H" to the problem for H'. Given an instance G" for H" with
3l vertices, select a vertex u in H”, and replace u with a path p of length
k" — 3 to obtain the cycle H' of length k'. Replace correspondingly each of
the [vertices v in G” such that f(v) = u with a path p, of length k¥’ — 3
that maps to p by an extension of f, to obtain a graph G’ with k'l vertices
that maps to the cycle H' by f. Any decomposition of G’ into [copies S
of H' such that f is an isomorphism from S, to H' will have the [paths p,
in the [copies S, so after contracting the ! paths p, we obtain [triangles
S that map to H” by an isomorphism. Conversely, any decomposition of
G" into [triangles S’ such that f is an isomorphism from S} to H” gives a
decomposition of G’ into [cycles S} with an isomorphism f from S, to H'

after replacing each vertex v with f(v) = u by the corresponding path p,.
It remains to show NP-completeness for the case where H is a triangle.
An instance of the 3-dimensional matching problem has three sets V1, Va, V3
of size [and a collection F of triples (v1,v9,v3) with v; in V;. The aim is to
partition V3 U Vo U V3 into [triples (v1,v2,v3) from E. The 3-dimensional
matching problem is NP-complete [11]. Replace each triple (vy,v9,v3) from
F with a graph R consisting of four triangles aiasas, bibabs, cicacs, aibacs,
plus the edges viag,vias,voby, vobs, v3cy,v3ce. In the resulting graph G,
each copy of R is connected to the rest of the graph only through v1, vo, vs.
Define a mapping f from G to the triangle H with vertices w1, us,us by
mapping all vertices in G indexed by ¢ to u;. All triangles in G are within
each of the copies of R, and to cover all the vertices a;, b;, c; in R we must
either select the three triangles ajacas, bi1bsbs, cicacs, or the four triangles
ai1bacs, viasas, bivabs, cicovs. Selecting the three triangles corresponds to
not selecting the triple (v1,v2,v3) in E since the vertices v; do not appear in
the three triangles, while selecting the four triangles corresponds to selecting
the triple (v1,v2,v3) in E since the three vertices v; do appear in the four
triangles, completing the reduction. O

3 Degree Constraints, Optimization, Matroids

We now weaken the condition that each S; must induce a subgraph of G
isomorphic to H, and consider a degree constrained problem. We assume
that each vertex v of an instance G is given a nonempty set of integers
D, € {0,1,...,7r,}, where r, is the degree of f(v) in H. We shall require
that the subgraph of G induced by each S; contain a subgraph T; with
V(T;) = S; such that the degree in T; of a vertex v belongs to D,,.

The skip of D, is the largest integer s > 0 such that D, contains two
integers ¢t and ¢ 4+ s but no integer z witht < x <t + s.

Theorem 3.1 If H is a forest, and the skip of each D, is at most 2, then
this degree constrained problem can be solved in polynomial time via a general
factor algorithm from [6].

Proof. An instance of the general factor problem is a graph G’ in which
each vertex v is assigned a set D, C {0,1,...,d,} with skip at most 2,
where d,, is the degree of v in G'. The aim is to select a set of edges
F' C E(G@') such that each vertex v in G’ is incident to f, edges in F” for

some f, € D). Cornuejols [6] gave a polynomial time algorithm for the
general factor problem.

Given an instance G of the degree constrained problem for a forest H,
define an instance G’ of the general factor problem by replacing each vertex
v in G such that f(v) = u with r, +1 vertices a,, b, for each neighbor u’ of
v in H, with r, edges a,b,,/, and an edge b, ,/, by ,, for each edge vv' in G
such that f(v) =u, f(v') = 4. Let Dy = D,, and let D;)v = {dyw — 1},
where d, . is the degree of b, ;. ,

Solve the general factor problem for G’. If G’ has the edges ayby,y,
Ay by 4y Dy ut, Dyt oy, With the first two edges in F' and the third edge not in
F’, then include the edge vv’ in F. This gives a set of edges F' C E(G) such
that the degree of v in F is the same as the degree of a, in F’, and this
degree is in D, = Dj . Furthermore, if f(v) = u and wu' is an edge of H,
then F' contains at most one edge vv’ with f(v') = «'.

Select now a vertex uw of H as the root, and place the [vertices v with
f(v) = u in the [copies S;. If v is thus placed in some S;, then place
any v’ that is in the same connected component of F' as v in the same S;.
Repeat this similarly for each child v’ of u in H, placing the vertices v' with
f(@') = ' in the copies S; into which no v" with f(v') = u' was previously
placed. Repeat again for each child u” of each child v/, and so on, until
every vertex u in H has been considered and every vertex v in G has been
placed in some S;. As a result, all the edges in F' join two vertices in the
same S;, and we may let T; be the subgraph with vertices S; and having the
edges from F joining two vertices in S;, thus giving a solution to the degree
constrained problem.

Note that any solution for the degree constrained problem for G consist-
ing of sets S; and subgraphs T; corresponds in the way just described to a
solution to the general factor problem for G’, by letting F' be the edges of
all the T;, and letting F' contain all edges a,b,, such that F has an edge
vv' with f(v') =/, and all edges by, 4/b, ,, such that vv' is not in F'. O

Theorem 3.2 If H is a fized forest containing a vertex u of degree at least
3, each vertex v with f(v) = u is assigned the same fized set D = D,, of skip
at least 3, and for all other vertices w the set Dy, is either {0} or {1}, then
the degree constrained problem is NP-complete.

Proof. An instance of the r-dimensional matching problem has r sets
Vi,...,V, of size | and a collection E of tuples (v1,...,v,) with v; in V.
The aim is to partition V3 U--- UV, into r tuples (v1,...,v,) from E. The
r-dimensional matching problem is NP-complete for r > 3 [11].

If D has skip r > 3, consider an instance of the r-dimensional matching.
Note that D contains two integers ¢ and ¢+ r but no integer r with ¢t < z <
t+7. Let ui,...,u, be r neighbors of u, and let the set of | E| vertices v; with
f(vi) = u; be the set V; augmented with some additional |E| — [vertices.
The vertices v; from V; have D,, = {1}, and the remaining |E| — [vertices
v; have D,, = {0}. Let the set of vertices v with f(v) = u correspond to the
|E| tuples in E, and if v corresponds to (v1,...,v,) then include the edges
vv; in G. Let ul,...,u; be ¢ neighbors of u other than the r neighbors u;,
and let the set of |E| vertices v} with f(v)) =] for each u} be joined by a
matching to the |E| vertices v with f(v) = u in G. These vertices v; have
D, = {1}. All other vertices w in G have no incident edges and D,, = {0},
for a total of |E| - |V (H)| vertices in G.

Note that each v with f(v) = u has ¢ + r incident edges and that the
t edges joining v to vertices v; must be chosen since D, = {1}. Thus the
only choice for each v is to select or not select all the r edges joining v to
vertices v;, which corresponds to choosing or not choosing the associated
tuple (vi,...,v;) in |E|. Furthermore, each element v; of V; must be in
exactly one chosen tuple from E since D,, = {1}. Thus solutions to the
degree constrained problem for H are in correspondence with solutions to
the r-dimensional matching problem. O

We now consider the optimization problem that asks to maximize the
number of §; that induce a subgraph isomorphic to H. The argument from
the preceding two theorems gives the following.

Theorem 3.3 The optimization problem can be solved in polynomial time
if H is a forest such that each connected component of H is a path, and is
NP-complete otherwise.

Proof. Suppose H is a path. Let u be the first vertex of H. Add to H
a vertex u' adjacent to u to obtain a path H’. Given an instance G of the
optimization problem for H with kl vertices and an integer r, we construct
an instance G’ of the degree constrained problem for H’, by adding [vertices
v' with f(v') = «/ and all the edges joining some r of these vertices v’ to
all vertices v with f(v) = u. These r vertices v' have D,y = {1}, and
the remaining | — r vertices v’ have D,y = {0}. If u” is the last vertex of
the path H, then all vertices v"” with f(v"”) = u” have D,» = {0,1}. All
other vertices v have D, = {0,2}. It follows that a solution to the degree
constrained problem will select r paths 7;, and the optimization problem
can be solved by choosing the largest r for which a solution to the degree
constrained problem exists.

If H is a forest and each connected component of H is a path, we can
solve the optimization problem for each connected component of H and
obtain the largest r for each such component, and then the solution for H
is the minimum of these r over the various components of H.

If H is not a forest then the optimization problem is NP-complete by
Theorem 2.1. If H is a forest that has a component that is not a path,
then H has a vertex u with at least three neighbors u1,uo,u3. Consider an
instance of the 3-dimensional matching problem as in Theorem 2.1. As in
the proof of Theorem 3.2, we may represent each of the | E| tuples (v1, v, v3)
by a vertex v with f(v) = u adjacent to the three vertices v;, which have
f(v;) = u;, with additional |E| — [vertices v; having f(v;) = u;. For each of
the edges w/u" in H such other than the edges uu;, include all edges v'v" with
f(¥') =u" and f(v") = u” in G. It is then possible to choose [copies S; of
H if and only if it is possible to choose [vertices v with f(v) = u such that
the corresponding tuples (v1,v2,v3) form a solution to the 3-dimensional
matching instance, so that for each selected tuple the vertices v,v1,v2,v3
are in a copy S;; all other vertices v’ for S; can be chosen arbitrarily. Thus
maximizing the number of copies S; such that f is an isomorphism from S;
to H is NP-complete. O

We strengthen this result.

Theorem 3.4 The optimization problem in the case where H is a forest for
which each component is a path remains polynomial in a weighted version
where vertices and edges have weights, and we ask to mazimize the sum of
the weights of vertices and edges over components forming copies of H. The
remaining NP-complete cases are hard to approximate within some constant
¢ > 1 even for bounded degree instances, allowing a % + € approzimation in
the unweighted case, and both a k—1+¢ and a @ approzimation in the
weighted case where each candidate set of size k is given a weight and we

wish to mazimize the sum of weights of chosen sets S; forming copies of H.

Proof. Suppose H is a path with k£ vertices, and we wish to obtain r
copies of H of maximum weight. We express the problem as a min-cost flow
problem having levels ¢ for 0 < ¢ < 2k 41, and edges of capacity 1 from level
1 to level 1 + 1. At level 0 is a single vertex with supply r joined by edges
to all vertices at level 1, and at level 2k + 1 is a single vertex with demand
r joined by edges from all vertices at level 2k. Choose a large quantity M.
The [vertices in G corresponding to a vertex in position 7 in the path H are
represented in the min-cost flow problem by a matching of size [joining level

21 — 1 to level 2¢, where a vertex of weight w corresponds to an edge in the
matching of cost M — w. The edges joining two vertices in G corresponding
to an edge joining position ¢ to position ¢ + 1 in H are represented in the
min-cost flow problem by edges joining two matched vertices at levels 2i
(matched to level 2 — 1) and 2i + 1 (matched to level 2i 4+ 2), where if the
edge in G had weight w, then the corresponding edge in the flow problem has
cost M — w. The min-cost flow problem has a polynomial time algorithm,
see Edmonds and Karp [7]. The optimal solution of minimum cost can here
be assumed to be integral. Thus a path of total weight W corresponds to a
unit of flow with total cost (2k — 1)M — W, and a solution consisting of r
such paths with total weight W consists to a solution to the min-cost flow
problem with total cost 7(2k —1)M — W. This completes the construction
when H is a path; when H is a forest with each component consisting of a
path, we choose r paths for each component of H by a separate min-cost
flow.

To show hardness of approximation, we note that when H is not a forest,
then the proof from Theorem 2.1 selects a component that is not a tree,
finds the shortest cycle in this component, and reduces the problem for
H a cycle to the problem for H a triangle. The problem of selecting the
maximum number of disjoint triangles in a 3-partite graph is shown hard
to approximate within some constant ¢ > 1 by Kann [14], even if the input
graph G has degrees at most 6. The same result with degrees at most 6
thus applies to a cycle of any length k > 3 as in Theorem 2.1. If H contains
a cycle of length k, then we may include [copies of each component of H
minus the cycle, each connected to a corresponding vertex v mapping to a
vertex u in the cycle, and also to other vertices v’ mapping to other vertices
u' in the cycle, while taking into consideration that only at most 6 vertices
v may be in the same cycle as v. This bounds the degree in the instance
showing hardness of approximation.

If H is a forest containing a component that is not a path, then as
in the proof from Theorem 3.3 we are left with the case of a star with
three edges, which reduces from 3-dimensional matching. The 3-dimensional
matching problem is shown hard to approximate within some constant ¢ > 1
by Kann [14] in the case where every element belongs to at most 3 sets, so
the hardness for H a star with 3 edges holds with maximum degree 3. As
before, we may attach [copies of the subtrees involving edges not in the star
with 3 edges to obtain the result when H is a forest with a component that
is not a path.

Given a set S and a collection C of subsets of S of size k, the problem
of selecting the maximum number of disjoint subsets from C can be approx-

imated within & + ¢ by an algorithm of Hurkens and Schrijver [13]. If the
sets in C' have nonnegative weights and we wish to maximize the sum of
weights of disjoint subsets selected from C, then Arkin and Hassin [1] give
a k — 1+ € approximation and Chandra and Halldérsson [5] give a Q(k;r L
approximation. All three results apply to the allowed choices of subsets of

size k forming a subgraph isomorphic to H in our problem. O

We now consider a set constrained problem where each vertex v of an
instance G with f(v) = u is given a subset R, of the set P(N,) of subsets
of the set N, of neighbors of w in H. The set R, is upward closed when
if T € Ryand T CU C N,, then U € R,. We shall require that each S;
contain a subgraph 7T; with V(T;) = S; such that if v is a vertex in some T;
and M, is the set of neighbors of v in T; then the set of f(w) for w in M, is
in R,. Note that if R, is upward closed, then we may always take T; to be
the subgraph induced by S;.

Let M be a set of n-bit vectors. The set M can be viewed also as a
set of subsets of the set N of n bit positions, with |[N| = n, under the
correspondence between an n-bit vector x and the set of bit positions equal
to 1 in z. Given two n-bit vectors z,y, the distance d(z,y) is the number
of bit positions where z and y differ. The set M of n-bit vectors is a delta-
matroid if for all n-bit vectors z,y in M, if z is an n-bit vector such that
d(z,z) =1 and d(z,y) = d(z,y) — 1, then either z is in M, or there exists
an n-bit vector ¢ in M such that d(z,t) = 1 and d(t,y) = d(z,y) — 1. A
delta-matroid M is a matroid if all n-bit vectors in M have the same number
of 1s, that is, all associated sets are of the same size.

A delta-matroid M reduces to M’ if M is obtained from M by repeatedly
performing any one of the following operations: (1) removing from M all
n-bit vectors that have a 0 in a given position #; (2) removing from M all
n-bit vectors that have a 1 in a given position 7; (3) replacing M with a set
of (n — 1)-bit vectors by removing from each n-bit vector z in M the bit in
a given position 7. If M reduces to M’, then M’ is also a delta-matroid.

Theorem 3.5 If H is a forest, and each R, is an upward closed delta-
matroid, then this set constrained problem can be solved in polynomial time
via a matroid intersection algorithm. The problem remains polynomial when
edges have weights and the aim is to find a valid partition that mazimizes the
total weight of edges with endpoints in the same S;, via a weighted matroid
intersection algorithm.

Proof. As in the proof of Theorem 3.1, associate with an instance G
that maps to H a new graph G’ by replacing each vertex v in G such that

10

f(v) = u with 7, + 1 vertices ay, by, for each neighbor u' of v in H, with
Ty edges ayby,ys, and an edge by, by o, for each edge vv' in G such that
fw)=u, fv') =

The problem is again equivalent to selecting a subset F' of edges of G’
such that the set of edges a,b,, in F' incident to a given a, is such that
the set of corresponding vertices v’ is in R,; and each b, , is incident to
dy — 1 edges of F', where d, , is the degree of b, ,s in G'.

Note that the constraint imposed on the edges incident to b, , in F'
forms a matroid, namely all subsets of size d,, — 1 of a set of size d, .
The constraint imposed on the edges incident to a, in F’ forms a delta-
matroid. The graph G’ is bipartite, and all the edges in G’ are constrained
by the vertices of G’ = (U,V,E) in each side of G’ to belong to a given
delta-matroid. Therefore the problem asks to find a set of edges in the
intersection of two given delta-matroids, one specified by the vertices in U
and one specified by the vertices in V.

If both delta-matroids are matroids, then the problem can be solved in
polynomial time by matroid intersection. Feder [8] showed that if M is a set
of n-bit vectors forming a delta-matroid, and M does not reduce to either
of two 2-bit vector delta-matroids given by {00,11} or by {00,01,11}, then
under the correspondence between each n-bit vector z in M and all the 2n-
bit vectors y such that the first n bits of y are the same as the n bits of x,
and the total number of 1s in y is n, the resulting set of 2n-bit vectors y in
M’ obtained from n-bit vectors z in M forms a matroid.

The delta-matroids R, were chosen in such a way that every superset of
a set in R, is also in R,. This property carries over to delta matroids to
which R, reduces. In particular, if such a delta-matroid has the 2-bit vector
00, then it must also have 01 and 10. Therefore the two forbidden 2-bit
vector delta-matroids do not occur, and so the two delta-matroids specified
by U and by V can be described as matroids by introducing extra edges.
Although the extra edges are constrained only by a vertex in U or by a
vertex in V', we can include a copy of U in the side V and a copy of V in
the side U, with two identical instances, and the extra edges incident to a
single vertex in one side can be made incident to the same vertex in the
other side. The problem is thus matroid intersection, which can be solved in
polynomial time. The weighted version is a weighted matroid intersection
problem that can also be solved in polynomial time [10]. a

Theorem 3.6 If H is a fixed forest containing a verter u, each verter v
with f(v) = u is assigned the same fized set R = R, that is upward closed

11

but not a delta-matroid, and for all other vertices w the set Ry, is P(Ny)
then the set constrained problem is NP-complete.

Proof. We reduce the problem from 3-satisfiability, under the constraint
that each variable appears in at most 3 clauses. This restriction is NP-
complete, since multiple equal variables can be simulated with clauses z; V
T9,L2VT3,...,Tn 1V Ty, Tn VT, with two occurrences per variable, leaving
a third occurrence of each of the n copies to be used elsewhere.

Feder [8] showed that if a set M of n-bit vectors is not a delta-matroid,
then M reduces to a set M’ of 3-bit vectors containing in particular a vector
b1b2bs and its complement bybobs, and possibly other vectors, but no vector
of the form b;zox3 other than b1bybs.

Since R, was chosen so that each superset of a subset in R, is also in
R,, this property must also be true for the set of 3-bit vectors M’, giving
as the only possibility b1bebs = 011, with M’ = {011,100,101,110,111}, so
that changing a 0 to 1 in a vector in M’ stays in M.

The M’ that is not a delta-matroid is obtained from R, by requiring
that certain 4’ adjacent to u in H be such that no edge vv’ with f(v') =4/
be selected, so we may just never include such vv' edges; and requiring that
other u' adjacent to u in H either be such that an edge vv' with f(v') = o/
is always selected or allowed to be possibly selected, both choices being the
same since a non-selected case can be changed to a selected case becuase
supersets of subsets in R, are also in R,, so we may include all edges vv'
with f(v) = u and f(v') = v in this case to allow for the selection to take
place.

There only remain three neighbors w1, uo, u3 of u to consider, in the bit
positions corresponding to M'. For each clause zVyV z in the 3-satisfiability
instance, include three vertices vy, vy, v, with f(vy) = f(vy) = f(v;) = u,
and two vertices ¢,c’ with f(c) = f(¢') = u;. If a variable z appears in
three clauses, then we may assume that it appears sometimes positive and
sometimes negative, otherwise the clauses are easily satisfied. Say we have
a positive occurrence called x; and two negative occurrences called xo, 3.
Include then two vertices we,wh with f(we) = f(wh) = ug, two vertices
ws, wy with f(ws) = f(wh) = us, and edges from z1 to both wsy, wh, from
z2 to both we, w3, and from z3 to both wh, wj.

The condition given by M’ says that for v with f(v) = u, either an edge
to v' with f(v') = wuy is selected, or edges to v, v" with f(v") = ug and
f(v") = ug are selected. Since vy, vy, v, are in different S;, only two of these
S; may contain ¢ or ¢, so for the remaining S;, say the one containing v,
we must select edges to v" and to v". We view this as choosing the literal

12

corresponding to z to satisfy the clause z V y V z. Notice that we may not
choose z for one clause and T for another clause, because if we choose both
1 and z9, then wy would have to be in the same S; as both ;1 and x2, which
is not possible, and similarly if we choose both z; and z3, then wj would
have to be in the same S; as both z; and x3, which is not possible. It is
however possible to choose both z and 3, with ws, w3 in the same S; as 9
and w), wh in the same S; as z3. Thus a solution satisfying M’ corresponds
to a solution to the 3-satisfiability problem. We may add isolated vertices v
with f(v) = o' for «' # u until all families have the same number of vertices
as the number of vertices v with f(v) = u. O

Feder [8] showed that each boolean satisfiability problems with two ccur-
rences of each variable, is either among Schaefer’s polynomial cases [17]
without bound on the number of occurrences of each variable, consists only
of delta-matroid constraints of constant size, or is NP-complete. The com-
plexity of the case known as delta-matroid parity for delta-matroids that
are the direct sum of delta-matroids of constant size remains open, with the
exception of strictly bipartite cases [9] that are known to be polynomial.

Theorem 3.7 If H is a forest, and each R, is a delta-matroid, then this set
constrained problem reduces to delta-matroid parity for delta-matroids that
are the direct sum of delta-matroids of constant size.

Proof. Again, as in the proof of Theorem 3.5, we associate with an instance
G that maps to H the corresponding graph G’, and G’ gives a delta-matroid
intersection problem, or equivalently a delta-matroid parity problem. We
can now apply the result of Ford and obtain a polynomial time algorithm,
by showing that the delta-matroid is the direct sum of delta-matroids on
a constant number of elements. The delta-matroids in the direct sum are
given here by the constraints on selected edges out of each vertex v in G’,
so it suffices here to obtain vertices of constant degree. The degree of the
vertices a, is bounded by the constant k = |V (H)|. The vertices b, ,, have
unbounded degree d, ,/, but have an associated matroid that is very simple,
namely selecting any d, ,» —1 out of the d, ,+ edges coming out of b, ,s. This
can be simulated with vertices of degree 2 and 3, by replacing b, ,s with a
path zo,z1,...,%24, ,—2, with the d, s edges incident to by, now coming
out of the d, , vertices xg; for 0 <4 < d, 4, requiring that exactly one edge
be selected for zg, 24, ,—2, and each z3;1, and that exactly two edges be
selected for the remaiﬁing z9; for 1 < 4 < dyyr — 2. This completes the
bounding of degrees and gives the delta-matroids on a constant number of
elements in the direct sum. O

13

Theorem 3.8 If H is a fized forest containing a vertex u, each verter v with
f(v) = u is assigned the same fized set R = R, that is not a delta-matroid,
and for all other vertices w the set Ry, is either P(N,) or selects the sets
in P(Ny) containing a specific element, then the set constrained problem is
NP-complete.

Proof. As in the proof of Theorem 3.6, the set R, reduces to a set M’
of 3-bit vectors containing in particular a vector b1b2b3 and its complement
b1b2bs, and possibly other vectors, but no vector of the form b;zozs other
than blbgbg.

Again as in Theorem 3.6, the problem reduces to the case where there
only remain three neighbors ui, us, uz of u to consider, in the positions
corresponding to M', where for the remaining position we have either in-
cluded no edges vv' if the position corresponding to u' = f(v') was set to 0,
and included all edges vv' with v’ = f(v') otherwise, where if the position
corresponding to u’ was set to 1 then this is enforced by requiring in v’ that
the position corresponding to u be set to 1.

There are four cases, depending on whether b;bob3 is 000, 111, 011, 100,
101, or 010. The case 011 goes through as in Theorem 3.5. In fact, we can
enforce ahead of time that there be exactly some r; edges corresponding
to u;u selected for 7 = 1,2,3, by requiring that each v; with f(v;) = u;
have an edge to a v with f(v) = u selected, and add [— r; vertices v with
f(v) = u joined to all such v;, and matched with I —r; new vertices v; with
f(vj) = u; for j # i. This makes the case 100 go through as well. For
the case, 101, exchange the first two bits to obtain 011, with setting b, = 1
forcing by = 0 and b3 = 1, so this case goes through; and similarly, for
the case 010, exchange the first two bits to obtain 100, with setting by = 0
forcing b1 = 1 and b3 = 0, so this case also goes through.

For the two remaining cases, 000 and 111, we can set r; = r fori = 1,2, 3,
so that since a 0 forces 000 in the first case, and a 1 forces 111 in the second
case, we are only allowing 000 and 111, and requiring that 111 be selected
r times, and this problem is NP-complete by the NP-completeness of the
optimization problem for the star with three edges from Theorem 3.3. O

4 r-Edge Subgraph and Connected Subgraph

We now consider the r-edge subgraph problem, where each S; is required
to induce a subgraph of G with at least r edges, and the r-edge connected

14

subgraph problem, where each S; is required to induce a subgraph of G
containing a connected component with at least r edges.

Theorem 4.1 Assume H is connected. Then the r-edge subgraph and con-
nected subgraph problems can be solved in polynomial time if r = 1, or if
1 <r<|E(H)| and H is a star, or if r = |E(H)| and H is a tree. Other-
wise both problems are NP-complete.

Proof. Recall |V(H)| =k and |V(G)| = kl. If r = 1, then each S; must
have at least one edge, so G must have a matching of size [. If G has a
matching of size [, then the [matched edges may be included in different S;.
Therefore the case r = 1 can be solved in polynomial time by matching. The
polynomial and NP-complete cases for r = |E(H)| are covered by Theorem
2.1.

So assume 1 < r < |E(H)|. The polynomial case when H is a star is
covered by Theorem 3.1 since this can be viewed as a degree r constraint
for the single vertex of the star incident to all the edges of H.

We thus assume H is not a star. If 2 < r < E(H) — 2, then we may
repeatedly remove edges of H until the remaining edges form a connected
subgraph H' that is still not a star but has 2 <r = E(H') — 1.

We thus assume H is not a star and 2 < r = E(H) — 1. We simplify
both problems to the special cases with |E(H)| = 3, namely a triangle or a
path of length 3. If H is not a tree, then H contains a cycle, which either
is a triangle or contains a path of length 3. For all edges wu' in H not in
the triangle or the path of length 3, we may include all edges vv’ such that
f(w) = u and f(v") = 4/, so that both problems are equivalent to the 2-
subgraph problem on the triangle or the path of length 3. If H is a tree but
not star, then H contains a path p of length at least 3 joining two leaves.
For the r-edge subgraph problem, it suffices to select a path ¢ of length 3
contained in p, and for all wu’ in H not on ¢ include all edges vv’ such that
f(v) = w and f(v') = u/, so that the problem is equivalent to the problem
on the path ¢ of length 3. For the r-edge connected subgraph problem, for
all uu’ in H not on p include all edges vv’ such that f(v) = u and f(v') =/,
so that the problem is equivalent to the problem on the path p of length
at least 3. If the path p has length ¢ > 4, then given the problem for a
path of length 3 we may select one of the two internal vertices u on the
path and replace it by a path s of length ¢ — 3 to obtain a path of length
t, and similarly replace vertices v with f(v) = w in an instance with paths
mapping to s. The connected problem for a path of length 3 thus reduces
to the problem for the path p of length ¢ > 3.

15

We are thus left with the two cases of a triangle and of a path of length
3, with r = 2. For the case of a path of length 3, given by uguiususg, we
consider instances with some number [y of vertices v with f(v) = ug, some
number [y of vertices v with f(v) = ug, and [y + Iy vertices v of each kind
with f(v) = u; and with f(v) = ug, and ask whether such a graph G can
be decomposed into [y paths mapping to uguius and lo paths mapping to
uiuoug under f.

If this problem can be shown NP-complete, then adding I, isolated ver-
tices v with f(v) = wo and [y isolated vertices v with f(v) = ug gives the
NP-completeness with r = 2 for the r-edge connected subgraph problem,
since one of the two chosen edges for each S; must here always be the mid-
dle edge corresponding to uius. Also the NP-completeness with r = 2 for
the r-edge subgraph problem is obtained, since if we use the two edges ugu
and usug for m > 0 sets S;, then we can only have [y — m sets S; using
uguiuo and lo —m sets S; using uiugug, thus accounting for only I1 +1s —m
sets S;, instead of [; + l9. So a solution must here coincide with a solution
for the r-edge connected subgraph problem.

Given an instance of the 3-dimensional matching problem as in Theorem
2.1 with triples (v1,v2,v3), replace each such triple with a graph R having
paths apaiag, b1babs, ci1cec3, and additional edges byag, ascs, ajve, v1ba, covs.
Each copy of R is connected to the rest of the graph only through v1,vo, vs,
and all paths zgz129, y1y2y3 are contained within the graphs R. We may
thus either select the three identified paths of a;, b;, ¢; respectively, covering
no v;, or cover all three v; by choosing four paths v1bsbs, agaive, c1covs,
biagocs. Thus a solution to the problem solves the 3-dimensional matching
problem.

The remaining problem has r = 2 for a triangle H with vertices u1, ug, us.
Again a reduction from the 3-dimensional matching problem with triples
(v1,v9,v3) replaces each such triple with a graph R having paths ajasas,
b1b2b3, C3C1C2, and additional edges blcg, Cca2a3, ’01b2, C1V2, A2V3. Each COpy
of R is connected to the rest of the graph only through v, v2,v3, and all
paths z1zox3, ysy1ye, 212322 are contained within the graphs R. We may
thus either select the three identified paths of a;, b;, ¢; respectively, covering
no v;, or cover all three v; by choosing four paths v1bsbs, c3cive, aiaovs,
bicoas. Thus a solution to the problem solves the 3-dimensional matching
problem. O

We give a complete characterization for the r-edge connected subgraph
problem. The case where H has only one connected component with at least
r edges is covered by the preceding theorem.

16

Theorem 4.2 Assume H has at least two connected components with at
least r edges. Then the r-edge connected subgraph problem can be solved in
polynomial time if r = 1, or if r = 2 and all connected components of H are
stars, or if r > 3 and all connected components of H with at least r edges
are paths with eractly r edges. Otherwise the problem is NP-complete.

Proof. We give first the NP-completeness proofs. We may first remove
edges from H to obtain a graph H' with exactly two connected components
Hji and H), each having exactly r edges, and show NP-completeness for H'.
In an instance G’ for H' with [vertices v such that f(v) = u for each u in
H, we may include [— ¢ disjoint copies of H}. The problem then becomes
finding ¢ copies of Hj in the pre-image of H] under f, and this optimization
problem for H] is NP-complete unless H] is a path by Theorem 3.3. If r > 3
and the component H; in H that H] comes from has at least one vertex of
degree 3, then we may choose H] not to be a path. Therefore the problem
is NP-complete unless H; is a path or a cycle, but if H;j is a cycle then the
problem for H; is NP-complete by Theorem 4.1, and similarly if H; is a
path of length strictly greater than r then the problem for H; is also NP-
complete by Theorem 4.1. We have thus shown NP-completeness for r > 3
unless each component of H with at least r edges is a path of length r. If
r = 2, then each component H; of H with at least r edges must be a star
by Theorem 4.1, else the problem is NP-complete.

We prove polynomiality in the remaining cases. If r > 3 and all com-
ponents of H with at least r edges are paths H; of length r, then we may
determine the maximum number of copies I; of each such H; that can be
obtained from the preimage under f of H; by Theorem 3.3. The instance
then has a solution if the sum of these [; is at least [.

If r = 2 and all components of H with at least r edges are stars H, then
we can determine whether we can obtain /; subgraphs with r = 2 edges from
the star H; by degree constraints from Theorem 3.1. If the star H; consists
of a root u adjacent to s leaves u;, assign degree constraint {0,2} to the
vertices v such that f(v) = u, assign degree constraint {1} to the vertices v;
such that f(v;) = u;, and add sl — 2l; vertices v with f(v) = u and adjacent
to all v; such that f(v;) = u;, with each such v having degree constraint
{1}. Add also sl — 2I; isolated vertices v; such that f(v;) = u; for each u,,
with degree constraint {0}. The neighbors of the added sl — 2I; vertices v
with f(v) = u will only match sl — 2[; out of the original sl vertices v; with
f(vi) = u;, so the remaining 2I; vertices v; must be matched with degree 2
by ; original vertices v such that f(v) = u. Thus the maximum /; for each
star H; can be determined, and the algorithm ends by determining if the

17

sum of these /; is at least [. O

We give a partial characterization for the r-edge subgraph problem. The
case r = 1 is the same as the r-edge connected subgraph, and the case
r = |E(H)| is the basic problem.

Theorem 4.3 Assume 1 < r < |E(H)|. Then the r-edge subgraph problem
is NP-complete if H has a connected component that is not a star.

Proof. Assume H has a component H; with s edges that is not a star.
Choose t = min(|E(H)| — s),r — 2) edges wu' in H and not in H;, and
include in an instance all edges vv’ such that f(v) = w and f(v') = ' for
such a uu', and none for an edge uu' in H and not in H; and not among
the ¢ chosen edges. The problem is thus the same as a given problem for
H; with corresponding r; = r —¢t. Note that 1 < r; < s = |E(H;)|, so by
Theorem 4.1 the problem is NP-complete if H; is not a star. O

The classification of the r-edge subgraph problem in the cases where
each connected component of H is a star remains open. We obtain partial
results.

Theorem 4.4 Suppose each connected component of H is a star, and 1 <
r < |E(H)|. (a) If 3 <r < |E(H)| —3 and H has at least two connected
components with at least 3 edges, then the r-edge subgraph problem is NP-
complete; (b) Forr =2, r = |E(H)| -2, and r = |E(H)| — 1, the r-edge
subgraph problem can be solved in polynomial time; (c) If every connected
component of H has at most 2 edges, then the r-edge subgraph problem can
be solved in polynomial time; (d) If only one connected component of H has
at least 3 edges, and at most one connected component of H has 2 edges, so
that all other connected components of H have only 1 edge, then the r-edge
subgraph problem can be solved in polynomial time.

Proof. We prove (a). We may remove edges from H to obtain a subgraph
H' consisting of just two stars H; and Hs such that each H; consists of a root
with three edges coming out of it. We may select 7 — 3 out of the |E(H) — 6|
remaining edges of H not in H', include in an instance all edges vv' such that
f() =u and f(v') =« with uu' among these selected r — 3 edges, and not
include in the instance any edge vv' such that f(v) = v and f(v') = u’ with
uu’ not among the selected 7 — 3 edges and not in H'. The problem then
reduces from the problem for H' with ' = 3. In an instance for H’, include
I — t disjoint copies of the star H). The problem then becomes finding ¢

18

copies of the star H{ in the preimage under f of Hj, and this optimization
problem is NP-complete by Theorem 3.3 since Hj is not a star.

We prove (b) for r = 2. Here it suffices to determine for each star
component H; of H all pairs of integers l1,lo such that we may have 1
edge from H; in [; sets S;, and 2 edges from H; in Iy other sets S;, with
l1 + 1o < 1. We may determine the maximum possible value z for Iy as in
Theorem 4.2, using degree constraints {0,2} for vertices v with f(v) = u,
where u is adjacent to all vertices in the star H;. Similarly, we may determine
the maximum possible value s for [; + l2 by using degree constraints {0,1}
for vertices v with f(v) = u, and the maximum value t for /; 4+ 2[; using
degree constraints {0,1,2}. Since every maximum matching has the same
number of edges, we may in particular obtain solutions with 1 + 2l = ¢
such that ls = z, or such that /1 + ls = s with some value y = l5. In
fact, by considering the alternating paths distinguishing these two maximum
matchings and switching them one at time, we obtain solutions with I; +
2l =t for all choices of Iy satisfying y <l < z.

Once this has been done, if H consists of = stars H;, we may choose for
each star a combination /1,/s in at most [* possible ways, and choose where
the [copies of 2 edges will come from in at most 1Y possible ways for y = z2
possible ways, completing an exhaustive search for a solution in the case
r=2.

The proof of (b) for r = |E(H)| — 2 is similar. Here each copy of H;
must select at least |[E(H;)| — 2 edges, and choose |E(H;)| — 1 edges for [;
copies, and all |E(H;)| edges for Iy copies. We may again determine the
maximum value z for [y using degree constraints {|E(H;)| — 2, |E(H;)|}, the
maximum value s for I1 + 5 using degree constraints {|E(H;)|— 1, |E(H;)|},
and similarly the maximum value ¢ for [y + 2[5 using degree constraints
{|E(H;)| - 2,|E(H;)| — 1,|E(H;)|}. We may then obtain all solutions with
Iy + 2l = t such that Iy = z, or such that l; + [= s with some value
y = lo. Again, by considering the alternating paths distinguishing these two
maximum matchings and switching them one at time, we obtain solutions
with [4+ 2ls = t for all choices of I satisfying y < lo < z. We can then
again consider the possible choices of how many edges will come from a copy
of which H;, say x possible choices, so that there are at most [* possible
combinations.

The case of (b) for r = |E(H)| — 1 is easier since only one of the |E(H;)]
edges may be missed, and can be handled by maximizing just the number
z of copies that get all |[E(H;)| edges, by matching, and ensuring that the
quantities [— z over different H;, counting edges missed, add up to at most
l.

19

The proof of (c) with stars H; having at most two edges involves the
same counting for each H; as with r = 2, determining the possible pairs
l1,1o for each H;, and then finding all possible combinations among different
H; as to where the r edges come from, say z possible combinations, for a
total of I* possible cases.

The proof of (d) finds a maximum matching in the preimage of H; under
f for each component H; with only one edge. If this maximum matching
has I; edges, it removes H; and its preimage, adds an edge uu' to the star
Hy with at least 3 edges and u incident to all its edges, and adds edges from
l; vertices in the preimage of v’ under f to all vertices in the preimage of u.
The two problems are equivalent, since matching [; vertices in the preimage
of u to vertices in the preimage of u’ adds count 1 for [sets S;, which could
have been obtained from the preimage of H;. We are thus left with the case
where H; has at least three edges, and there is just one other component
H, with exactly two edges.

The algorithm considers again the possible values [1,lo achievable with
the preimage of Hs. For Hy, we consider combinations with all copies having
at least r —2 edges, [1 copies having r — 1 edges and l5 copies having r edges,
successively using degree constraints {r — 2,7} then {r — 2,7 — 1}, and then
{r — 2,7 — 1,7} as before in the cases r = 2 and r = |E(H)| — 2 from (b).
The final step combines the possible solutions giving [1,lo for H; and for
H,. O

In the remaining open cases of the r-edge subgraph problem, each con-
nected component of H is a star, 3 < r < |E(H)| — 3, exactly one connected
component has at least 3 edges, and there are at least two connected compo-
nents with 2 edges, with the remaining connected components having only
1 edge.

References

[1] E.M. Arkin and R. Hassin, On local search for weighted packing
probems, Math. Oper. Res. 23 (1998) 640-648.

[2] B.S. Baker, Approximation algorithms for NP-complete problems on
planar graphs, J. ACM 41 (1994) 153-180.

[3] F. Berman, D. Johnson, T. Leighton, P.W. Shor, and L. Snyder, Gen-
eralized planar matching, J. Algorithms 11 (1990) 153-184.

20

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. Berman and T. Fujito, Approximating independent sets in degree
3 graphs, Proc. 4th Workshop on Algorithms and Data Structures,
Lecture Notes in Comput. Sci. 955, Springer-Verlag (1995) 449-460.

B. Chandra and M.M. Halldérsson, Greedy local improvement and
weighted set packing approximation, Proc. 10th Ann. ACM-STAM
Symp. on Discrete Algorithms (1995) 169-176.

G.P. Cornuejols, General factors of graphs, J. Combinatorial Theory,
Series B, 45 (1988) 185-198.

J. Edmonds and R.M. Karp, Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems, J. ACM 19 (1972).

T. Feder, Fanout limitations on constraint systems, Theoretical Com-
puter Science 255 (2001) 281-293.

T. Feder and D. Ford, Classification of bipartite boolean constraint
satisfaction through delta-matroid intersection, manuscript.

H. Gabow, A matroid approach to finding edge connectivity and pack-
ing arborescences, J. Comp. and Syst. Sci. 50 (1995) 259-273.

M.R. Garey and D.S. Johnson, Computers and intractability: a guide
to the theory of NP-completeness, Freeman, New York (1979).

R. Hassin and S. Rubinstein, An approximation algorithm for maxi-
mum packing of 3-edge paths, Inform. Process. Lett. 63 (1997) 63—67.

C.A.J. Hurkens and A. Schrijver, On the size of systems of sets every
t of which have an SDR, with an application to the worst-case ratio of
heuristics for packing problems, STAM J. Disc. Math. 2 (1989), 68-72.

V. Kann, Maximum bounded 3-dimensional matching is MAX SNP-
complete, Inform. Process. Lett. 37 (1991) 27-35.

V. Kann, Maximum bounded H-matching is MAX SNP-complete, In-
form. Process. Lett. 49 (1994) 309-318.

D.G. Kirkpatrick and P. Hell, On the complexity of a generalized
matching problem, Proc. 10th Ann. ACM Symp. on Theory of Com-
puting (1978) 240-245.

T.J. Schaefer, The complexity of satisfiability problems, Proc. 10th
Ann. ACM Symp. on Theory of Computing (1978) 216-226.

21

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

