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Abstract: A family F of min-wise independent permutations is known to be a useful tool of index-
ing replicated documents on the Web. For any integer n > 0, let S,, be the family of all permutations
on[l,n] ={1,2,...,n}. For any integer k£ € [1,n] and any real ¢ > 0, we say that a family F C S,, of
permutations is e-approximate k-restricted min-wise independent if for any (nonempty) X C [1, n| such
that || X|| < kand any x € X, | Prfmin{n(X)} = m(x)]-1/||X||| < ¢/||X||, when 7 is chosen from F
uniformly at random (where ||A|| is the cardinality of a finite set A). For the size of families F C S,
of e-approximate k-restricted min-wise independent permutations, the following results are known:
For any integer k € [1,n] and any real ¢ > 0, (constructive upper bound) ||F|| = 2*+0(k) g2leglog(n/e).
(nonconstructive upper bound) ||F|| = O(’;—; log(n/k)); (lower bound) ||F|| = Q(k?(1—+/8¢)). In this
paper, we first derive an upper bound for the Ramsey number of the edge coloring with m > 2 colors
of a complete graph K, of ¢ vertices, and by the linear algebra method, we then derive a slightly im-
proved lower bound, i.e., we show that for any family F C S, of e-approximate k-restricted min-wise

independent permutations, || F|| = Q (k:,/%log(n/k)).
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1 Introduction

1.1 Background

The notion of “a family of min-wise independent permutations” was introduced by Broder, et al. [3].
It is a basic tool to estimate resemblance between documents [2] and has applications of detecting al-
most identical documents on the Web [2] and of reducing the amount of randomness used by proba-
bilistic algorithms [9]. Among the several variants of min-wise independence, we focus on the notion
of e-approximate k-restricted min-wise independence.

For any pair of integers a < b, let [a,b] = {a,a+1,...,b}, and for any integer n > 1, we use S, to
denote the family of all permutations on [1, n]. For a finite set A, let || A|| be the cardinality of the set
A. Informally, we say that a family F C S,, of permutations is e-approximate k-restricted min-wise
independent if for any X C [1, n] such that || X|| < k and any z € X, w(x) is the minimum among the
images 7(X) almost equally likely, when 7 is chosen from F uniformly at random. More formally,

Definition 1.1 [3]: For any pair of integers n, k such thatn > k > 1 and any real ¢ > 0, we say that
a family F C S,, of permutations is e-approximate k-restricted min-wise independent if for any (non-
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empty) X C [1,n] such that | X|| < k and any = € X,

Prfmin{r(X)} = ()] - ﬁ < ﬁ (1)

when 7 is chosen from F uniformly at random.

Let D be a distribution (not necessarily uniform) on F. We say that a family F C S, of permutations
is e-approximate k-restricted min-wise independent w.r.t. the distribution D on F if Equation (1) of
Definition 1.1 holds, when 7 is chosen from F C S,, according to the distribution D on F. For sim-
plicity, we say that a family F C S, of permutations is e-approximate min-wise independent (resp.
k-restricted min-wise independent) if £ = n (resp. if ¢ = 0).

By experiments, a notion of resemblance [2] is known to play an essential role for detection of al-
most identical documents on the Web. To estimate r(A, B), resemblance between documents A and
B, one computes the estimate 7(A, B) of the resemblance r(A, B) as follows:

- Estimation for the Resemblance r(A, B) ~
(1) Map the document A to the set D4 C [1,n] by shingling [2];
(2) Choose 71,73, ..., € S, independently and uniformly at random;
(3) Define the sketch of Dy to be Sy = (min{mi(D4)}, min{my(Da4)}, ..., min{m(D4)});
(4) For sketches Sy = (s, s%,...,5%) of A and Sp = (s},5%,...,5%) of B, let

a5y = I 0012 = )
N J

It is easy to see that 74(A, B) converges to (A, B) quickly when £ goes to infinity. Thus 7(A, B) isa
good estimation of r(A, B) for finite £ and can be used to detect almost identical documents. On the
other hand, Broder, et al. [3] showed that any family F C S,, of (k-restricted) min-wise independent
permutations can be used to compute r(A, B) instead of S,,. Thus in the practical point of view, any
family F C S, of e-approximate k-restricted min-wise independent permutations is an indispensable
tool for the detection of almost identical documents.

In this paper, we will investigate the size of families F C S,, of e-approximate k-restricted min-
wise independent permutations to precisely capture their inherent nature.

1.2 Known Results

For families 7 C S,, of e-approximate k-restricted min-wise independent permutations, Broder, et
al. [3] showed the following results: (constructive upper bound) || F|| = 2#+0(*)2loglog(n/2). (noncon-
structive upper bound) ||F|| = O(f—; log(n/k)); (lower bound) ||F|| = Q(k?(1 — v/8¢)). Tt is obvious
that there exists a large gap between upper and lower bounds for ||F||. In particular, the currently



known best lower bound for || F|| only depends on & and ¢ but does not depend on n, which seems un-
natural. Thus there must exist a tighter lower bound for ||F|| that depends on n, k, and ¢.

The following table summarizes known results on min-wise independent permutations, e-approxi-
mate min-wise independent permutations, k-restricted min-wise independent permutations, etc.

Table 1: Known Results on the Size of Permutation Families

Upper Bound Lower Bound
o un?form: 4 13 uniform: lem(n,n—1,...,1) [3]
min-wise uniform: lem(n,n—1,...,1) [5] biased: Q(y/m2") 3]
biased: n2n-1 (3] '
2
uniform: 0] (n_2> [3] | uniform: n?(1 — v/8e) 3]
i €

g-approximate _ n

min-wise uniform: nOUog1/¢) [4] biased: max (n—r) (r) 3]
r> 1 n
uniform: nOtVlog1/e) [11] * 8<T)

uniform: (2n)*lem(k — 2,...,2) [5] | uniform: lem(k,k—1,...,1)  [3]

uniform: O(nlg?n) (k=3) [12] | uniform: n—1 (k>3) [5]

re [ I Bl e
' =\ biased: {2 (k(L<k7i_1>1/2J)) [10, 6]

biased: 1+ jﬂ(j —-1) <7;> (8] biased: 14> (j—1) <7;> 8]

1.3 Main Results

In this paper, we will show an improved lower bound for the size of families 7 C §,, of e-approximate
k-restricted min-wise independent permutations. More precisely, we will show (in Theorem 4.1) that
for any constant 0 < € < 1/5 and any integer k£ > 3, if a family F C S, of permutations is e-approxi-

mate k-restricted min-wise independent for any sufficiently large n, then ||F|| = Q (k Llog(n/ k))

To bound the size of any family F C S, of e-approximate k-restricted min-wise independent per-
mutations, (i) define N x N matrices V1, V3, ..., V; from the underlying family F (see Equation (2)
in Section 2); (ii) observe that ||F|| > rank(V};) + rank(V3) + - - - + rank(V;) (see Proposition2.3) by



the linear algebra method [7]; (iii) regard V}, as a multi-color edge coloring of a complete graph Ky
of N vertices (see Lemma 3.1); (iv) derive lower bounds for rank(V}) (see Lemma 3.2).

2 Preliminaries

For any integer k > 3, let s = k/3 and L = n/s (we assume for simplicity that s and L are integers),
and partition [1, n] into L disjoint subsets Xy, X1,..., X} _; of size s, i.e., foreach i € [0, L—1], X; =
{si+1,si+2,...,(i+1)s}. For any constant ¢ > 0, let F = {my, 75, ..., 74} C S, be a family of e-
approximate k-restricted min-wise independent permutations. Let N = L—1 = n/s—1, and for each
h € [1, 5], we define an N x d matrix Uy = (uf};) as follows:

min {7;({h} U Xo U X;)} = m;(h);

1
ufj =< d
0 otherwise.

For each h € [1, 5], we also define an N x N matrix V, = (v}}) by the product of Uy, and U/, i.e.,

o Ol Ol oty
2s 3s 3s 3s
oy Oh 05y O3
3s 25  3s 3s
Vi = (vi5) = =| 0 dn 0 Gy (2)
3s 3s 2s 3s
Oy by Oiw O

From the assumption that the family F C S,, of permutations is e-approximate k-restricted min-wise
independent, it follows that for any i,j € [1,N], 1 — & < 5% < 1+e¢. So we have the following:

Proposition 2.1: For the matrix V}, = (v};) given by Equation (2), the following holds: (i) For any
i € [1,N], =5 <ol < U= (i) For any i, j € [1, N] such that i # j, 15 < ol < L1 %

Proposition 2.2: If at x t matrix A = (a;;) satisfies that (C1) for any i,j € [1,t] such that i # j,
a;; = a > 0 and (C2) min{a1, ass, ..., au} > a, then it is nonsingular.

Proof: Let 1; be a column vector, all of which entries are 1. Expand the ¢ x ¢ matrix A as follows:

a1 a a a

a 929 a a

A = a a aszg a
a a a Qyt




(@ a a --- a] [ a1, —a 0 0 0 ]
a a a a 0 Qoo — Q 0 0
— a a a - a |+ 0 0 a3 — @ -+ 0
| a a a a | i 0 0 0 ay — a |
[ a1 —a 0 0 0 |
0 Qo9 — Q 0 0
= a1t1g1+ 0 0 azs — a 0 (3)
L 0 0 0 att—a_

It is immediate to see that the first term of Equation (3) is positive semidefinite, and from condition
(C2), it follows that the second term of Equation (3) is positive definite. So the matrix A is positive
definite and thus we have that the matrix A is nonsingular. |

From the definition of matrices Uy,’s, it follows that for any h, g € [1, s] such that h # g, UhUgT =
0. Let U be an Ns x d matrix, where U = [U], U], ..., UT]. Define an Ns x Ns matrix V by

[ U, Vi 0 0 --- 0

Us 0 Vpa 0 - 0

V=uU"=|Us||Ulufuf,. Ul =] 00 Vs e 0
| U, | 0 0 0 -+ V4|

Then it follows that rank(V') = rank(V;) + rank(V3) + - - - + rank(V;). Notice that
rank(V) = rank(UU") < min{rank(U), rank(U")} = rank(U) < min{d, Ns} < d.
Thus we have the following proposition that is essential in the subsequent discussions.

Proposition 2.3: ||F|| = d > rank(V) = rank(V;) + rank(V3) + - - - + rank(V5).

3 Analysis for rank(V})

3.1 Ramsey Number

Let K, = (V, F) be a complete graph of ¢ vertices, and C,, = {c1, o, ..., cn} be a set of m distinct
colors. For a complete graph K, we use x : E — C,, to denote an edge coloring of K, with the set C,,
of m distinct colors. For any integers ¢, to, ..., t, > 3, define R(t1,ts,...,t,) to be a minimum in-
teger ¢ such that for any edge coloring x : E — C,,, there exists a complete subgraph K;, of K, all of
which edges are colored by a single color ¢; € C,,. More formally, R(t1,t,...,ty) is defined to be the
minimum integer ¢ that satisfies the following condition: For any edge coloring x : £ — C,, of Ky,



there exists an integer ¢ € [1,m] and a subgraph K;, = (V;, E;) C K, of t; vertices such that for each
e € E;, x(e) =c¢;. When t; =ty =---=t,, =t, we simply use R,,(t) to denote R(t,t,...,t).

Notice that R(t1,1s,...,t,) is a generalization of the Ramsey number R(t;,t5) of the coloring by
two colors [1]. The following lemma is a natural extension of upper bounds for the Ramsey number
R(t1,t2) of the coloring with two colors [7, the proof of Theorem 27.3].

Lemma 3.1: For any integer m > 2 and any integer t > 1, R,,(t) < m™~(m~1),

Proof: Let £ = m™~(™=1)_ For a complete graph K, = (V, E), let V = {1,2,...,¢}, and fix an edge
coloring x : £ — C,, arbitrarily. In the following, we show that there exists an integer i € [1, m] and
a subgraph K; = (V;, E;) C K of t vertices such that for each e € E}, x(e) = ¢;. Let S; =V and, for
each 7 > 1, we construct S; C V' and v; € S; by iterating the following procedure PARTITION.

e Procedure: PARTITION N

(1) For the set S;, choose a vertex v; € S; arbitrarily.

(2) Foreach h € [1,m],let S} = {v € Sj—{v;} : x((v,v;)) = cx}. Notice that S}, S3,..., S C
S; — {v;} is a partition of S; — {vj} into m subsets.

(3) Define S;;1 to be the largest set among S}, S%,...,S™.

3250 J
N J
For each j > 1, it is immediate that || Sj[|-+|S?||+- - -+[|S}"|| = ||Sj]|—1. Thus we have that ||.S;1]| >
(IIS;]|—1)/m. From the assumption that S; =V, i.e., [|Si]| = |[V|| = m™ (=1 it follows that a set
of vertices V = {vl, Vs -+ -y Umit—(m— 1)} is chosen When the procedure PARTITION termmates For each

he[1,m],let V, = {v; € V Sj+1 = SI'}, ie., msubsets Vi, Va, ..., Vin C Vis a partition of V. From
the definition of V;’s, we have that mt— (m— 1) = ||V| = ||V1||+||V2||+ -+ ||V;n||- Then there exists
an integer h, € [1,m] such that ||Vi.|| > t. Let Vi, = {vn,, Vnys -, vp, }, where 7 > ¢,

To complete the proof, it suffices to show that for any pair of Vertices Vf, Vg € Vi, X((vy,vy)) =
ch,. Without loss of generality, assume that f < g. From the definition of S’s, it is obvious that S; 2
So D+ D Spt—(m—1), and from the definitions of S;’s, Sh’s and Vh s, it follows that every vertex v €

S }’ = Sf41 is connected to the vertex vy with an edge colored by cp,. Then from the assumption that
[ < g and the definitions of v;’s, S;’s, and S]’?’s,~we immediately have that v, € S, C Sy = S}“. So
it follows that for any pair of vertices vy, v, € Vi, x((vf,vg)) = ch,- |

3.2 Lower Bound for rank(V})

To get a stronger lower bound for || F||, we need to derive a larger lower bound for rank(V}). In the
subsequent discussions, we show that for each N x N symmetric matrix V}, in Equation (2), there ex-
ists a ¢ x t submatrix W)}, of V}, that satisfies the conditions (C1) and (C2) of Proposition 2.2. This im-
plies have that for each h € [1, s], rank(V},) > ¢. In fact, we show the following lemma:

Lemma 3.2: For any constant 0 < £ < 1/5 and any integer k > 3, let F C S,, be a family of e-ap-
proximate k-restricted min-wise independent permutations, and for any integer m > 1, assume that
| F|l < £m. Then for each h € [1,s], rank(V,) = N if m = 1; rank(V;) > | loelBn/k) | i > 9.

mlogm



3.2.1 Intuition Behind the Proof of Lemma 3.2

To see the intuition behind the proof of Lemma 3.2, let us consider the following simple case: Assume
that for any integer m > 1, || F|| < £m. This implies that every offdiagonal entry of the N x N sym-
metric matrix V} given by Equation (2) can take at most m values. We regard these m values as the
edge coloring of a complete graph Ky = (V, E) of N vertices with m colors. So from Lemma 3.1, we
have that if N > R,,(¢), then there exists a subgraph K; = (V;, E;) of t vertices, all of which edges are
colored with a single color, which guarantees that there exists a ¢t xt submatrix W}, of V}, satisfying the
condition (C1) of Proposition 2.2. From the assumption that 0 < € < 1/5, we also have that the sub-
matrix W), of V}, satisfies the condition (C2) of Proposition 2.2. Then from Proposition 2.2, it follows
that the ¢ x t submatrix W), of V}, is nonsingular and thus rank(V},) > rank(W,) =t.

3.2.2 Proof of Lemma 3.2

For any n > 3 and any k € [3,n], recall that s = £/3 and N = n/s—1. Then for each h € [1, s] and
any pair of 7,5 € [1, N| such that i # j, we define a subfamily g;;. C F of permutations by

G ={reF :min{r ({h}UX,UX;UX))}=nr(h)},

and let G5 = ||Gf||. Since the family F = {7y, 7, ...,mq} C Sy, of permutations is e-approximate k-

restricted min-wise independent, we have that %= < G /|| F|| < &£=. Then it follows that

1—¢
k

1+¢
k

|7l <Gy < I 71I- (4)
Since G}, is an positive integer, it is obvious that for any integer m > 1, if 22| F|| < m, then G} can
take at most m possible integers. This implies that for each h € [1, s], every offdiagonal entry of the
matrix V}, given by Equation (2) is restricted to m possible values. Since the matrix V}, is symmetric,
we regard V), as the adjacency matrix of a complete graph Ky and regard these m values of the offdi-
agonal entries of V}, as edge coloring of Ky with the set C,,, = {c1, ¢, .., cn} of m colors. Let us con-
sider the following cases: (Case 1) m = 1; (Case 2) m > 2.

(Case 1) Since m = 1, we have that for each h € [1, s], every offdiagonal entry of the N x N sym-
metric matrix V, = (v7;) given by Equation (2) is restricted to a single value v. Then the matrix Vj,
satisfies the condition (C1) of Proposition 2.2. From Proposition 2.1, it is immediate to see that for
each h € [1, s], min{vfy, v}y, ..., vy} > 55 and 22 < v < HE. Thus from the assumption that 0 <
e < 1/5, it follows that min{v?, v, ... v%} > v > 0, which implies that the matrix V}, satisfies the
condition (C2) of Proposition 2.2. So for each h € [1, s], V}, is nonsingular, i.e., rank(V},) = N.

(Case 2) Since m > 2, we have that for each h € [1, s], every offdiagonal entry of the N x N sym-
metric matrix V, = (v};) given by Equation (2) is restricted to m > 2 values. We regard V} as the ad-
jacency matrix of a complete graph Ky of N vertices and also regard these m values of the offdiago-
nal entries of V}, as edge coloring of Ky with the set C,,, = {¢1, ¢, ..., ¢n} of m > 2 colors. It follows
from Lemma 3.1 that for any coloring x : E — C,, of a complete graph K, = (V, E) of £ vertices such
that ||V]| = £ > m™ (™= there exists an integer i € [1,m] and a subgraph K, = (V;, E;) C K, of ¢
vertices such that for each e € Ey, x(e) = ¢;. So for any integer m > 2, if N =32 —1 > mmi-(m—1),

7



then for each h € [1, 5], there exists a ¢ x ¢ submatrix W}, = (w};) of V, that satisfies the condition
(C1) of Proposition 2.2. In a way similar to (Case 1), we can show that the submatrix W), satisfies
the condition (C2) of Proposition 2.2. Then for each h € [1, s|, W}, is nonsingular, i.e., rank(W},) > t.
To guarantee that 3% —1 > m™ (™1 we can take any integer ¢ > 1 such that 3% > m™, and let

t, = |68/ | he the maximum among those values of ¢ > 1. Thus we have that for each h € [1, 5],
mlogm

rank(V},,) > rank(Wy) > t, = {MJ _
mlogm

4 Main Result

In this section, we derive a main result of the paper, i.e., a lower bound for the size of families 7 C 5,
of e-approximate k-restricted min-wise independent permutations. In fact, we show the following:

Theorem 4.1: For any constant 0 < ¢ < 1/5 and any integer k > 3, if a family F C S,, of permuta-
tions is e-approximate k-restricted min-wise independent for any sufficiently large n, then

1/2—0(1)
171 = (- s ).

c1/2+0(1)

4.1 Intuition Behind the Proof of Theorem 4.1

The proof of Theorem 4.1 is based on the following observation: For any integer m > 1, let us con-
sider the case that ||F|| < £m, which implies that the underlying family F C S,, of permutations is
small. Assume that m = 1. So from Lemma 3.2, we have that for each h € [1, s], rank(V},) = N, and
from Proposition 2.3, it follows that || F|| > rank(V) = sN = %(2—1) = 2%, which implies that the
underlying family F C S, of permutations is large. For sufficiently large n’s, this contradicts the as-
sumption that || F|| < £, and thus we have that || F|| > £. In a way similar to the observation above,
we can use Lemma 3.2 and Proposition 2.3 to show that if n is sufficiently large, then for any integer
m € [1,m,], || F|| > £m. Thus for any sufficiently large n, we will determine the value of m, > 1 as

large as possible to derive a larger lower bound for ||F]|.

4.2 Proof of Theorem 4.1

We show the theorem more formally. For any integer m > 1, assume that || F|| < £m. Then for any
constant 0 < & < 1/5 and any integer k£ > 3, it immediately follows from Lemma 3.2 that for each
h e [1,s], rank(V}) > |268"/E) | S from Proposition 2.3, we have that

m logm

|IF|| > rank(V)=rank(V;) + rank(V3) + - - - 4 rank(V%)

mlogm 3 mlogm



If there exists an integer m > 1 such that 2m < % LMJ, then 2m < || F||, which contradicts the

mlogm

assumption that | F|| < £m. It is easy to see that for any constant 0 < € < 1/5 and any integer k >
3, if n is sufficiently large then there always exist integers m’s such that am < 3 LMJ Thus for

mlogm

any sufficiently large n, we have that || F|| > £m for any integer m > 1 such that £m < % L%i—’g‘%lj.
To achieve a larger lower bound for || F||, 1t sufﬁces to take the maximum m, among those integers
m’s such that £m < % L%i—"ﬂlj Since the maximum m, satisfies that

? log(Sn/k) > m?logm, = m2+o(),

we have that for any constant 0 < & < 1/5 and any integer k > 3, m, = {2 log(3n/k)}"/?>=°1) (if n is
sufficiently large). Thus for any constant 0 < ¢ < 1/5 and any integer £ > 3, if a family F C S,, of
permutations is e-approximate k-restricted min-wise independent for any sufficiently large n, then

k log'/?=°M (n/k
||.7-'||22—5m*:Q<k- (n/k))

c1/2+0(1)

5 Concluding Remarks

In this paper, we have derived an improved lower bound for the size of families 7 C S,, of e-approxi-
mate k-restricted min-wise independent permutations, i.e., we have shown (in Theorem 4.1) that for
any constant 0 < € < 1/5 and any integer £ > 3, if a family F C S, of permutations is e-approximate
k-restricted min-wise independent for any sufficiently large n, then | F|| = Q (k Llog(n/ k))

The result of Theorem 4.1 is based on the matrix formulations of the underlying family F C S,, of
g-approximate k-restricted min-wise independent permutations and the multi-color edge coloring of
a complete graph K, of £ vertices. For the multi-color edge coloring of K, we have regarded it as the
Ramsey number [7] and have derived its upper bound for the size of K, (see Lemma 3.1). This is the
main observation to derive Theorem 4.1 and would be of independent interest.

As for the size of families F C S, of e-approximate k-restricted min-wise independent permuta-
tions, the currently known best upper bound is || F|| = O(f—j log(n/k)) due to Broder, et al. [3], and
our lower bound given by Theorem 4.1 still has a gap to the best upper bound. Then for any family
F C S, of e-approximate k-restricted min-wise independent permutations,

(1) derive tight upper and lower bounds for ||F||.

For any family F C S, of k-restricted min-wise independent permutations, we have already known
that ||F|| = Q (n L(’“*I)/QJ) for any distribution D on F [10, 6]. On the other hand, for any family F C
S,, of e-approximate k-restricted min-wise independent permutations, Theorem 4.1 holds only for the
uniform distribution & on F (and it would be hard to extend to the case of biased distribution D on
F). Thus for any family F C S, of e-approximate k-restricted min-wise independent permutations,

(2) derive a lower bound for ||F|| w.r.t. any distribution D on F.
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