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Abstract

Recently Bansal and Sviridenko [4] proved that for 2-dimensional Orthogonal Rect-

angle Bin Packing without rotations allowed there is no asymptotic PTAS, unless P = NP.
We show that similar approximation hardness results hold for several rectangle packing and
covering problems even if rotations by ninety degrees around the axes are allowed. Moreover,
for some of these problems we provide explicit lower bounds on asymptotic approximation
ratio of any polynomial time approximation algorithm.

1 Introduction

Packing and covering problems have many real-world applications in areas like job scheduling,
container loading, and cutting objects out of a strip of material in such a way that the amount of
material wasted is minimal. As these problems are usually NP-hard, an effort of many researchers
is focused on designing polynomial time approximation algorithms and schemes for them. On
the other hand, for some problems it is provably hard even to approximate the solution by an
algorithm with asymptotic approximation ratio close to 1. In this paper we present approximation
hardness results for orthogonal packing and covering problems of rectangles into bins in 2 and
3-dimensions, where ninety-degree rotations of rectangles around any of the axes are allowed.
Our hardness results apply also to the most studied case with unit square bins (resp. a strip in
3D with unit square base). Notice that when rotations are allowed then the bin shape and/or
its dependance on an input can play a role. Allowing rotations causes that these packing and
covering problems are no longer invariant under scaling an input instance by different factors in
different coordinate directions.

Notation and terminology

For convenience, we use the terminology related to bin packing problems also for covering prob-
lems. Throughout this paper we only consider offline versions of the problems. In all problems,
the input consists of a list L = {R1, R2, . . . , Rn} of d-dimensional rectangles in the Euclidean
space Rd and a d-dimensional rectangular bin B. Each rectangle Ri is given with an (initial)
orientation related to the coordinate axes and has its dimensions denoted as (ri1, r

i
2, . . . , r

i
d). The
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first and the last dimension of Ri are called width and height and denoted by w(Ri) := ri1 and
h(Ri) := rid, respectively. For the bin B, we use the notation [0, b1]×[0, b2]×· · ·×[0, bd] (or [0, b]

d, if
b1 = b2 = · · · = bd = b) instead of (b1, b2, . . . , bd). In the strip versions of the problems we suppose
that the last dimension of the bin B is unlimited and we call such bin B = (b1, b2, . . . , bd−1,∞) a
strip.

In the packing problems all rectangles of the list L need to be packed into bins without
overlap; in covering problems rectangles can overlap but have to cover bins completely. The most
interesting and well-studied version of these problems is the so called orthogonal version, where
the edges of packed rectangles and bins are always parallel to the coordinate axes. In problems
without rotations rectangles have to be placed into the bin with given orientation and a feasible
solution is called oriented packing and oriented covering, respectively. In problems with rotations
allowed rectangles to be placed may be rotated around any of the axes by 90◦ and a feasible
solution is referred to as r-packing and r-covering, respectively. In the 3-dimensional case, if only
rotations around the z-axis (the last one) are allowed, we call such packing (resp. covering) as
z-oriented.

Definition 1 Given a list L of d-dimensional rectangles and a d-dimensional bin B = (b1, b2, . . . , bd).
The goal of the problems d-dimensional Bin Packing ( d-BP) and d-dimensional Bin Pack-

ing with Rotations ( d-BPr) is to find an oriented packing and an r-packing of all rectangles
of L into the minimum number of bins B, respectively.
In the problems d-dimensional Bin Covering ( d-BC) and d-dimensional Bin Covering

with Rotations ( d-BCr) one has to find an oriented covering and an r-covering, respectively,
which covers completely the maximum number of bins B by rectangles from the list L.

Definition 2 In strip versions of the problems (defined for d ≥ 2) a list L of d-dimensional
rectangles and a d-dimensional strip B = (b1, b2, . . . , bd−1,∞) are given. In the problems d-
dimensional Strip Packing ( d-SP) and d-Dimensional Strip Packing with Rotations

( d-SPr) one has to find an oriented packing and an r-packing, respectively, that minimizes h such
that all rectangles of L are packed into the bin (b1, b2, . . . , bd−1, h). In case d = 3, if only 90◦

rotations around the z-axis (the unlimited direction of the strip B) are allowed, the problem is
called z-oriented 3-dimensional Strip Packing.
The goal of the d-dimensional Strip Covering problem ( d-SC) is to maximize h such

that the part (b1, b2, . . . , bd−1, h) of the strip B is completely covered. We also consider the z-
oriented 3-dimensional Strip Covering problem ( 3-SCz), where rectangles can be rotated
by 90◦ around the z-axis.

It is well known that already for 1-BP (and hence for d-BP, for any d ≥ 1) no polynomial time
approximation algorithm can have an approximation ratio less than 3

2 , unless P = NP. This follows
from the NP-hardness of the Partition problem defined as follows: for a given set of rational
numbers with sum 2 one has to decide if it can be partitioned into two subsets whose elements
add up to 1. For 2-BP even stronger inapproximability results are known. Given a collection of
rectangles (in fact, squares), it is NP-hard to decide whether these can be packed into a single
bin [0, 1]2 or they require more bins [18]. Hence no (2 − ε)-approximation algorithm for 2-BP

(resp. 2-BPr) can exist, unless P = NP. This kind of approximation hardness results achieved on
instances requiring only a very small number of bins are always present in bin packing and covering
problems. To describe better the real difficulty of these problems, the asymptotic approximation
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ratio ρ∞A has become the standard measure used to analyse the quality of an algorithm A. For a
minimization problem it is defined as

ρ∞A = lim
n→∞

sup
I

{
A(I)

OPT(I)
: OPT(I) ≥ n

}
,

where I ranges over the set of all problem instances, and A(I) (resp. OPT(I)) denote the value of
the solution returned by A (resp. the optimum value) for an input instance I. For a maximization

problem, A(I)
OPT(I) is replaced by OPT(I)

A(I) so that always ρ∞A ≥ 1. The notion of asymptotic ap-
proximation ratio allows us to ignore the anomalous behavior of the algorithm for instances with
small optimal value. We say, that a problem admits an asymptotic approximation scheme (shortly,
APTAS), if for any ε > 0 there is a polynomial time algorithm with an asymptotic approximation
ratio less than 1 + ε. For other optimization terminology we refer to Ausiello et al. [1].

Overview

For 1-BP, Fernandez de la Vega & Lueker [11] designed an APTAS. More precisely, for any positive
integer k they provided a polynomial time algorithm Ak that uses at most (1 + 1

k
)OPT + 1 bins.

Later, Karmarkar & Karp [16] gave a single algorithm with asymptotic approximation ratio 1 that
uses OPT + O(1 + log2 OPT) bins. For the 2-BP problem Caprara [5] presented an algorithm
with currently the best asymptotic approximation ratio 1.691. On the negative side, Bansal &
Sviridenko [4] proved that there is no APTAS for 2-BP, unless P = NP. Interestingly, they
provided an APTAS for a restricted version of d-BP in which the items and the bins are d-
cubes; this result was independently obtained by Correa & Kenyon [8]. For 3-BP, Li & Cheng
[19] and Csizik & van Vliet [10] designed algorithms with asymptotic ratio at most 4.84. Their
algorithms generalize to the problem d-BP with asymptotic approximation ratio at most 1.691d.
For the problem 2-SP, the breakthrough result was obtained by Kenyon & Rémila [17] who gave
an APTAS. For 3-SP, Miyazawa & Wakabayashi [20] presented an algorithm with asymptotic
approximation ratio at most 2.67. On the other hand, it is easy to see that approximation
hardness result for 2-BP implies that no APTAS for 3-SP can exist, unless P = NP (see Section 4
for more details).

When ninety-degree rotations are allowed, only weaker results are known. Some algorithms
for the versions without rotations provide upper bounds on asymptotic approximation ratio for
versions with rotations allowed as well. The results by Miyazawa & Wakabayashi [21] were the
first ones where rotations are exploited in non-trivial way. Currently the best upper bounds on
asymptotic approximation ratio for the problems 2-BPr, 3-BPr, 3-SPr, and 3-SPz, are 2 + ε,
4.89, 2.76, and 2.64, respectively, see [22] and [13]. Very recently, Jansen & Stee found an APTAS
for 2-SPr ([13]).

Bin covering problems are in a sense dual problems to bin packing problems and approximation
hardness results obtained for them are similar. Already for 1-BC (and hence for d-BC, for any
d ≥ 1) no polynomial time algorithm can achieve an approximation ratio less than 2, unless
P = NP. This follows from the NP-hardness of the Partition problem similarly as for the 1-BP

problem. Hence also for these problems an asymptotic polynomial time approximation scheme
is the best what one can hope for. But many techniques used for bin packing problems do not
seem to be adaptable for bin covering problems. Only a few results for bin covering problems
are known; an APTAS for 1-BC ([9]) and non-existence of an APTAS for the 2-dimensional

Vector Bin Covering problem [24] are among them.
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Rectangle Packing and Covering without and with Rotations. When dealing with packing
and covering problems without rotation, one can always assume that a bin B is a cube [0, 1]d (resp.,
a base of a strip B is a unit (d − 1)-cube), as the problems are invariant under heterogeneous
scaling, i.e., the one which scales by different factors in different coordinate directions. However,
the problems with rotations allowed are not invariant under such scalings. In this case we can
scale homogeneously and rotate a bin and rectangles from an input to obtain an instance with
the bin dimensions (b1, b2, . . . , bd) satisfying 0 < b1 ≤ b2 ≤ · · · ≤ bd−1 ≤ bd = 1. In general the bin
dimensions bi can depend on an instance of the problem. It is not clear if the restricted versions
of the problem, when the bin B is uniform over all instances, or if B is even a unit cube, are easier
to approximate than the general one. However, for such restricted versions of some problems
algorithms with better asymptotic approximation ratio are known. For example, when a base of
the strip in the problem 3-SPz is a unit square, an algorithm with asymptotic approximation ratio
at most 2.528 is known [21].

Using heterogeneous scaling one can show that d-BP can be viewed as a particular case
of general d-BPr with highly excentric instances. Let a list L = (R1, R2, . . . , Rn) of rect-
angles with dimensions Ri = (ri1, r

i
2, . . . , r

i
d), i = 1, 2, . . . , n, and a bin B = (b1, b2, . . . , bd)

be an instance of d-BP. We can find positive scaling factors λ1, λ2, . . . , λd and use scaling
(x1, x2, . . . , xd) 7→ (λ1x1, λ2x2, . . . , λdxd) to map any Ri of L to R̃i = (r̃i1, r̃

i
2, . . . , r̃

i
d), and the bin

B to B̃ = (̃b1, b̃2, . . . , b̃d), so that for each p = 2, 3, . . . , d, the minimum min{r̃ij : 1 ≤ i ≤ n, 1 ≤ j <

p} > b̃p. It is easy to see that the only way how a (rescaled) rectangle R̃i can fit in the (rescaled)

bin B̃, even if ninety-degree rotations are allowed, is that R̃i is not rotated. Similarly, 3-SP can
be handled as a particular case of 3-SPr or 3-SPz. In such a way a heterogeneous scaling can be
used to reduce oriented packing problems to the ones with ninety-degree rotations allowed. Thus,
for problems 2-BPr, 3-SPr, and 3-SPz without any restriction on the bin B, non-existence of an
APTAS easily follows from results by Bansal & Sviridenko [4] for 2-BP (see Sections 3 and 4 for
more details). For example, using a suitable heterogeneous scaling one can derive for any fixed
a ∈ (0, 1

2), an NP-hard gap type result for 2-dimensional Bin Packing with Rotations on
instances with a rectangular bin B = (a, 1) and with all rectangles being a small perturbation
of (a4 ,

1
2). However, for the most interesting case of 2-BPr with a square bin B, one can hardly

obtain hardness results in such a way.
To the best knowledge of authors, no approximation hardness results were known prior this

work for rectangle packing problems with rotations allowed in the most studied case of a unit
square bin (resp., a unit square base of a strip), and for rectangle covering problems at all.

Main results

In this paper we prove approximation hardness results for bin and strip variants of rectangle
covering and packing problems, where ninety-degree rotations are allowed. Our results apply also
to the most studied restricted case with unit square bins (resp. a strip with unit square base).
More precisely, we prove non-existence of an APTAS (unless P = NP) for 2-dimensional Bin

Packing with Rotations into unit square bins (Section 3), 3-dimensional Strip Packing

with Rotations, and z-oriented 3-dimensional Strip Packing (Section 4) into a strip with
unit square base. The methods allow to provide, for each of problems studied, an explicit lower
bound on asymptotic approximation ratio of any polynomial time approximation algorithm (unless
P = NP). For example, we provide a lower bound 1 + 1

3792 for 2-Dimensional Bin Packing

with Rotations, and 1 + 1
2196 for the same problem without rotations.
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In Section 5 we develop methods suitable for covering counterparts of packing problems, and
prove similar approximation hardness results for both variants of them: without and with rotations
allowed.

We prove also non-existence of an APTAS for a related 3-dimensional problem where the
goal is to pack the maximum number of rectangles from a given collection into a single cube bin
(Section 6).

2 General technique

In this section we demonstrate the general technique used for the reduction from a bounded Max-

3DM to geometric bin packing and covering problems. First, recall the definition of the Maximum

3-Dimensional Matching problem.

Definition 3 Given three sets X, Y , Z, and a set T ⊆ X × Y × Z. Without loss of generality
we assume that X, Y , and Z are pairwise disjoint, and any element of X ∪ Y ∪ Z occurs in at
least one triple in T . A matching in T is a subset M ⊆ T such that no two ordered triples in M
agree in any coordinate. The goal of the Maximum 3-Dimensional Matching problem (shortly,
Max-3DM) is to find a matching in T of maximum cardinality. The k-bounded Max-3DM

problem is the problem restricted to instances of 3DM, in which each element of X ∪Y ∪Z occurs
at most k times in T .

Kann [15] showed that the 3-bounded Max-3DM problem is Max SNP-complete (hence also
APX-complete). Thus, using the PCP-theorem, the existence of a PTAS for it would imply that
P = NP. Petrank [23] proved a refined approximation hardness result that an NP-hard gap occurs
also on instances with perfect matching.

Theorem A. [23] There is an absolute constant ε > 0 such that for instances T ⊆ X × Y × Z
of 3-bounded Max-3DM with |X| = |Y | = |Z| (:= q) and with the optimum value OPT(T ) it is
NP-hard to decide of whether OPT(T ) = q or OPT(T ) < (1− ε)q.

Unfortunately, the estimates that are implicit in his proof provide only extremely small ε > 0.
To achieve explicit inapproximability results it is more convenient to use the following NP-hard
gap type result for 2-bounded instances of Max-3DM ([7]).

Theorem B. [7] There are instances T ⊆ X×Y ×Z of 2-bounded Max-3DM with |X| = |Y | =
|Z|(:= q) and every element of X∪Y ∪Z occurring in exactly 2 triples in T such that it is NP-hard
to distinguish between instances with OPT(T ) > 0.979338843q and OPT(T ) < 0.9690082645q.

These approximation hardness results for a bounded Max-3DM suit well as a starting point to
inapproximability results for various (multidimensional) packing, covering, and scheduling prob-
lems, see e.g., [24], [6], and [4]. All these results build on the ideas used for the first time in the
reduction from Max-3DM to the 4-Partition problem. We will recall ideas of such reduction
and sketch the proof of APX-completeness for the 2-dimensional Vector Bin Packing and
Covering problems (see [24] and [6] for more details) to provide first explicit inapproximability
results for both problems.

Definition 4 The goal of the 2-dimensional Vector Bin Packing (resp., Covering) problem
is to partition a given list of vectors in [0, 1]2 into the minimum (resp. the maximum) number of
subsets such that in every subset the sum of all vectors is at most (resp. at least) one in every
coordinate.
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The M reduction. ([24]) Given an instance T ⊆ X × Y × Z of Max-3DM, one can create
for each element from X ∪ Y ∪ Z ∪ T a vector in [0, 1]2 with both coordinates being rational and
from (1

5 ,
1
3) such that (i) the sum of any subset of 3 vectors is at most one in every coordinate; (ii)

the sum of any subset of 5 vectors is at least one in every coordinate; (iii) the sum of 4 vectors is
at most one in every coordinate if and only if this sum is at least one in every coordinate if and
only if the vectors correspond to x ∈ X, y ∈ Y , z ∈ Z, and t ∈ T for some triple t = (x, y, z) ∈ T .

The way how the NP-hard gap of Max-3DM is preserved provides a lower bound on an
asymptotic ratio for the problems Maximum 2-dimensional Vector Bin Packing and Mini-

mum 2-dimensional Vector Bin Covering.

Theorem 1 It is NP-hard to achieve an asymptotic approximation ratio 1.00256 (> 391
390) for

the Maximum 2-dimensional Vector Bin Packing problem and 1.0017307 (> 579
578) for the

Minimum 2-dimensional Vector Bin Covering problem.

Proof. Let T ⊆ X × Y × Z be an instance of Max-3DM with the optimal value OPT(T ) and
denote s := |X ∪ Y ∪Z|+ |T |. As follows from the M reduction above, the optimum OPT′(f(T ))
for an instance f(T ) of Maximum 2-dimensional Vector Bin Packing obtained from T can

be expressed as OPT′(f(T )) = d s−OPT(T )
3 e. Now using an explicit NP-hard gap result for Max-

3DM (Theorem B) we obtain that for produced instances of s = 5q vectors it is NP-hard to
decide of whether OPT′(f(T )) > 1.343663912q or OPT′(f(T )) < 1.340220386q. Consequently, it
is NP-hard to achieve an asymptotic approximation ratio 1.00256 (> 1 + 1

390) for the Maximum

2-dimensional Vector Bin Packing problem.
Similarly, if OPT′′(f(T )) is the optimum for Minimum 2-dimensional Vector Bin Cov-

ering, we obtain that OPT′′(f(T )) = b s+OPT(T )
5 c. Hence, it is NP-hard to decide of whether

OPT′′(f(T )) < 1.193801653q or OPT′′(f(T )) > 1.195867769q. Consequently, it is NP-hard to
achieve an asymptotic approximation ratio 1.0017307 (> 1+ 1

578) for the Minimum 2-dimensional

Vector Bin Covering problem. ¤

Remark. It is easy to see, that the M reduction is an L-reduction from a bounded version of
Max-3DM, which is known to be APX-complete, to the 2-dimensional Vector Bin Packing

(resp. Covering) problem. Consequently, Maximum 2-dimensional Vector Bin Packing

and Minimum 2-dimensional Vector Bin Covering are APX-complete (the fact, that they
belong to APX, is easy to prove).

Remark. For 2-dimensional Bin Packing (without rotations) Bansal & Sviridenko [4] (see
also [3]) recently showed that there is no APTAS for it, unless P = NP. They also claim to
prove Max SNP-hardness (and APX-hardness) of the problem. However, such result does not
follow from their proof. The presented reduction from 3-bounded Max-3DM to 2-BP is not an
L-reduction (or an approximation preserving reduction), but it is a gap preserving reduction. It
only preserves the NP-hard gap guaranteed for 3-bounded Max-3DM on instances with perfect
matching by the Petrank’s result. Instances T of 3-bounded Max-3DM with perfect matching
are transformed to instances that can be packed into |T | unit square bins. On the other hand,
any instance T with the optimum of size < (1− ε)q is transformed to the one that requires more
than (1 + ε

33)|T | unit square bins. Consequently, to achieve an asymptotic approximation ratio
less than 1 + ε

33 for the 2-BP problem is NP-hard.
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3 2-dimensional Bin Packing with Rotations

In this section we build on ideas from [4] and introduce a general parametrised version of the gap
preserving reduction from bounded Max-3DM to 2-Dimensional Bin Packing. We show that
with properly chosen parameters this reduction can be used to obtain approximation hardness
results for the problem 2-dimensional Bin Packing with Rotations and with unit square
bin B.

The Bin Packing reduction. Let T be an infinite set of instances (ordered triples) T of Max-

3DM with the optimum value OPT(T ), such that for some efficiently computable function α(T ) <
β(T ) it is NP-hard to decide of whether OPT(T ) ≥ β(T ), or OPT(T ) < α(T ). For a fixed instance
T ∈ T let X := Π1(T ), Y := Π2(T ), and Z := Π3(T ), where Πi(T ) = {pi : (p1, p2, p3) ∈ T} for
i = 1, 2, 3, and X, Y , Z are pairwise disjoint sets. The objects in X, Y , Z, and T will be denoted
as {xi : 1 ≤ i ≤ |X|}, {yj : 1 ≤ j ≤ |Y |}, {zk : 1 ≤ k ≤ |Z|}, and {tl : 1 ≤ l ≤ |T |}, respectively.
Of course, any tl ∈ T is of the form tl = (xi, yj , zk) ∈ X × Y × Z. Let n = |X| + |Y | + |Z|,
q = max{|X|, |Y |, |Z|}, and r = 32q. The reduction has several parameters: a gap location β,
δ ∈

(
0, 1

500

]
, and p ∈

[
1
4 + 9δ, 1

2 − 20δ
]
.

We first define an integer for each object in X, Y , Z, and T as follows:

x′i = ir3 + i2r + 1, for 1 ≤ i ≤ |X|,

y′j = jr6 + j2r4 + 2, for 1 ≤ j ≤ |Y |,

z′k = kr9 + k2r7 + 4, for 1 ≤ k ≤ |Z|.

For each triple tl = (xi, yj , zk) ∈ T we define an integer t′l = r10 − x′i − y′j − z′k + 15. Put

c = r10+15
δ

and observe that 0 < x′i, y
′
j , z

′
k < δc

10 for all i, j, k, and t′l + x′i + y′j + z′k = cδ whenever
tl = (xi, yj , zk) ∈ T .

For each xi ∈ X (resp., yj ∈ Y and zk ∈ Z) we define a pair of rectangles AX,i, A
′
X,i (resp.,

AY,j , A
′
Y,j and AZ,k, A

′
Z,k) with width about 1

4 and with heights about 1
2 + p and 1

2 − p as follows:

AX,i =
(1
4
− 4δ +

x′i
c
,
1

2
+ p+ 4δ −

x′i
c

)
and A′

X,i =
(1
4
+ 4δ −

x′i
c
,
1

2
− p− 4δ +

x′i
c

)
,

AY,j =
(1
4
− 3δ +

y′j
c
,
1

2
+ p+ 3δ −

y′j
c

)
and A′

Y,j =
(1
4
+ 3δ −

y′j
c
,
1

2
− p− 3δ +

y′j
c

)
,

AZ,k =
(1
4
− 2δ +

z′k
c
,
1

2
+ p+ 2δ −

z′k
c

)
and A′

Z,k =
(1
4
+ 2δ −

z′k
c
,
1

2
− p− 2δ +

z′k
c

)
.

For each tl ∈ T we define two rectangles Bl and B′
l such that

Bl =
(1
4
+ 8δ +

t′l
c
,
1

2
+ p+ δ −

t′l
c

)
and B′

l =
(1
4
− 8δ −

t′l
c
,
1

2
− p− δ +

t′l
c

)
.

Let AX = {AX,1, AX,2, . . . , AX,|X|}, A
′
X = {A′

X,1, A
′
X,2, . . . , A

′
X,|X|} and define sets of rectangles

AY , A
′
Y , AZ , and A

′
Z analogously. Put A = AX ∪AY ∪AZ and A

′ = A
′
X ∪A

′
Y ∪A

′
Z . Similarly,

let B = {B1, B2, . . . , B|T |} and B
′ = {B′

1, B
′
2, . . . , B

′
|T |}. We define also D to be a collection of

|T |+ n− 4β(T ) dummy rectangles of the same size
(

3
4 − 10δ, 1

)
.

The collection of rectangles A ∪ A
′ ∪ B ∪ B

′ ∪ D, together with a square bin B = [0, 1]2 is
now viewed as an instance of the 2-BPr problem and denoted by f(T ). Our aim is to relate
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the optimum value OPT′(f(T )) of 2-BPr for an instance f(T ) to OPT(T ). The dimensions of
rectangles and dummy rectangles are chosen such that if OPT(T ) ≥ β(T ), the rectangles can be
packed into bins such that their number is within a factor (1+O(δ)) of the total area of rectangles.

On the other hand, if OPT(T ) < α(T )
γ

for a constant γ > 1, then the number of bins needed to

pack all rectangles of f(T ) is larger than the total area of rectangles by a constant factor γ ′ > 1
independent of δ for δ > 0 small enough.

Remark. The reduction given by Bansal & Sviridenko ([4]) can be viewed as a particular case of
the Bin Packing reduction with δ = 1

500 , p = 0, a set T of instances T ⊆ X × Y ×Z of 3-bounded
Max-3DM with |X| = |Y | = |Z| = q, and a gap location β(T ) = q.

Now we prove that for a proper choice of the parameter p, p ∈
[

1
4 + 9δ, 1

2 − 20δ
]
, using rotations

doesn’t help to produce better packings than are those without rotations. This fact allows us to
use the Bin Packing reduction also as a gap preserving reduction to the problem Bin Packing

with Rotations into a unit square bin.

Definition 5 We say that a set of rectangles packed in a bin is iso-oriented if all rectangles of
the set are placed with the same orientation, i.e., either all are in their initial orientations or all
are rotated by ninety degrees.

Lemma 1 (i) For every r-packing of f(T ) the rectangles from A ∪B contained in the same bin
are iso-oriented.
(ii) For every r-packing of f(T ) if a bin contains exactly 4 rectangles from A ∪ B, then all

rectangles from A ∪B ∪ A
′ ∪B

′ packed in this bin are iso-oriented.

Proof. (i) It easily follows from the fact that any rectangle from A ∪B has width > 1
4 − 4δ and

height > 1
2 + p ≥ 3

4 + 9δ.
(ii) By part (i), all 4 rectangles from A ∪ B contained in the same bin are iso-oriented. We

can assume that they are in the initial position. As height of each of them is > 1
2 + p, any line

in y-direction (i.e., parallel to y-axis) intersects the interior of at most one rectangle from A ∪B.
Moreover, the sum of widths of those 4 rectangles is > 1−16δ. Consequently, if another rectangle
A (rotated, or not) is packed in this bin, then some line in y-direction intersects interiors of both,
A and one of those rectangles from A∪B. It easily follows that A is in its initial position as well,
as rotated A would be too hight to fit. Consequently, all rectangles in the bin are iso-oriented. ¤

For oriented packings, some results from the reduction of Bansal & Sviridenko ([4]) are pre-
served to the general situation with the parameter p introduced. We use some important properties
of their reduction with the obvious modification to the general case. The proofs of Lemmas 3 and
4 given in [4] work in this case as well, as widths of rectangles are the same in both situations.

Definition 6 ([4]) We say that two rectangles A and A′ from A ∪ A
′ ∪ B ∪ B

′ are buddies if
{A,A′} correspond to a pair of rectangles for a single element from X, Y , Z or T , e.g., {A,A′} =
{AX,i, A

′
X,i} for some xi ∈ X and similarly for other sets Y , Z, and T .

Observation 1 For any rectangle, A ∈ A implies w(A) + h(A) = 3
4 + p, A′ ∈ A

′ implies
w(A′) + h(A′) = 3

4 − p, B ∈ B implies w(B) + h(B) = 3
4 + p + 9δ, and B′ ∈ B

′ implies
w(B′) + h(B′) = 3

4 − p− 9δ.
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Observation 2 For any two rectangles A, A′ in A ∪ A
′ ∪B ∪B

′, h(A) + h(A′) = 1 if and only
if A and A′ are buddies.

Lemma 2 Consider a bin containing exactly 4 rectangles from A ∪B for an oriented packing of
f(T ). Then the bin contains at most 8 rectangles and if it contains exactly 8 rectangles, then for
any h ∈

[
4δ, 1

2 − p − 4δ
]
, each rectangle intersects exactly one of lines L1 = {(x, y) : y = h} and

L2 = {(x, y) : y = 1− h}.

Proof. Assume that an oriented packing (i.e., without rotations) of a square bin [0, 1]2 contains
exactly 4 rectangles from A∪B, and some rectangles from A

′∪B
′. The projections of rectangles

from A ∪ B on the x-axis cannot overlap (rectangles are too high) and hence, less than 16δ of
the length of [0, 1] can be uncovered by them. As width of each rectangle is roughly 1

4 , these
projections are only small perturbations of intervals

[
0, 1

4

]
,
[

1
4 ,

1
2

]
,
[

1
2 ,

3
4

]
, and

[
3
4 , 1
]
.

Now consider a rectangle A′ from A
′∪B

′ packed in this unit square bin. Its projection on the
x-axis has to overlap with at least one rectangle A from A∪B. As height of A is larger than 1

2 +p,
A′ is either completely above the line {(x, y) : y = 1

2 + p}, or below the line {(x, y) : y = 1
2 − p}.

It is also easy to see that no line in y-direction can intersect 3 rectangles. Hence, if such line
intersects interiors of two distinct rectangles from A

′ ∪B
′, then one is located completely above

the line {(x, y) : y = 1
2 + p} and another one is below the line {(x, y) : y = 1

2 − p}. Moreover, the
total overlap of projections in y-direction of rectangles from A

′ ∪B
′ in the bin [0, 1]2 is less than

16δ. As width of each rectangle from A
′ ∪B

′ is roughly 1
4 , there are at most 4 rectangles from

them in the bin. If there are exactly 4 such rectangles, their projections on the x-axis are again
small perturbations of intervals

[
0, 1

4

]
,
[

1
4 ,

1
2

]
,
[

1
2 ,

3
4

]
, and

[
3
4 , 1
]
.

Assume now that there are exactly 4 rectangles from A
′ ∪B

′ in a bin [0, 1]2, let A be one of
four rectangles from A∪B in this bin. Clearly, A has its projection on the x-axis overlapping with
that of a rectangle from A

′∪B
′, say A′. As height of A is > 1

2 +p and height of A′ is > 1
2−p−4δ,

it easily follows that whenever h ∈
[
4δ, 1

2 − p− 4δ
]
, each of both rectangles intersects exactly one

of lines L1 = {(x, y) : y = h} and L2 = {(x, y) : y = 1 − h}. The rest follows from the fact that
the projection of each rectangle from A

′ ∪B
′ on the x-axis overlaps with the projection of some

rectangle from A ∪B. ¤

Lemma 3 For any rectangles A1, A2, A3 ∈ A and B ∈ B, w(A1) + w(A2) + w(A3) + w(B) = 1
if and only if {A1, A2, A3, B} = {AX,i, AY,j , AZ,k, Bl} for some integers i, j, k, and l such that
tl = (xi, yj , zk) ∈ T . A similar statement holds also for rectangles A′

1, A
′
2, A

′
3 ∈ A

′, B′ ∈ B
′.

Lemma 4 Let A1, A2, A3, A4 ∈ A ∪ A
′ be such that no two of them are buddies. Then∑4

i=1 w(Ai) 6= 1.

Definition 7 Given an r-packing of a bin by some rectangles from f(T ). The bin is called well-
packed, if it contains exactly 4 rectangles from A ∪B and 4 rectangles from A

′ ∪B
′.

Now the crucial fact is, that for any choice of the parameter p from the interval
[

1
4+9δ, 1

2−20δ
]
,

we can characterize the structure of well-packed bins for packing with rotations allowed similarly
as it has been done in [4] for oriented packings.

Lemma 5 A bin is well-packed if and only if it contains the rectangles AX,i, AY,j, AZ,k, Bl, A
′
X,i,

A′
Y,j, A

′
Z,k, B

′
l, for some tl = (xi, yj , zk) ∈ T .
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Proof. The previous lemmas and observations show that we can argue essentially in the same
way as Bansal & Sviridenko [4].

(I) The 8-tuple of rectangles corresponding to a triple as above can be packed in a square bin
B = [0, 1]2 even without rotations. Starting from the bottom left corner of the bin B and moving
to the right, each of rectangles AX,i, AY,j , AZ,k, and Bl is placed such that it touches the bottom
of the bin B. As w(AX,i) + w(AY,j) + w(AZ,k) + w(Bl) = 1 (Lemma 3), the rectangles can be
packed in this way. The rectangles A′

X,i, A
′
Y,j , A

′
Z,k, and B′

l can be placed in the remaining gaps
starting from the top left corner of the bin B and moving towards the right touching the top of
the bin. Clearly, it is possible as

w(A′
X,i) + w(A′

Y,j) + w(A′
Z,k) + w(B′

l) = 1,

h(AX,i) + h(A′
X,i) = h(AY,j) + h(A′

Y,j) = h(AZ,k) + h(A′
Z,k) = h(Bl) + h(B′

l) = 1,

h(AX,i) > h(AY,j) > h(AZ,k) > h(Bl),

w(AX,i) < w(A′
X,i), w(AY,j) < w(A′

Y,j), and w(AZ,k) < w(A′
Z,k).

(II) Now we show that any well-packed bin contains rectangles that correspond to a triple in T .
Due to Lemma 1(ii), the rectangles are iso-oriented. We can assume that they are all in the initial
position in a well-packed bin; the case when all are rotated by 90◦ could be discussed similarly.
Fix h ∈

[
4δ, 1

2 − p− 4δ
]
and consider the lines L1 = {(x, y) : y = h} and L2 = {(x, y) : y = 1−h}.

Due to Lemma 2, each rectangle must intersect exactly one of the lines L1 and L2. Moreover, as
any rectangle has width larger than 1

5 , each of lines L1 and L2 intersects exactly 4 rectangles. Let
{A1, A2, A3, A4} denote the rectangles that intersect L1 such that Ai is to the left of Aj for i < j.
Similarly, let {A5, A6, A7, A8} denote the rectangles that intersect L2 in the left to right order.
Thus, we have that

4∑

i=1

w(Ai) ≤ 1, (1)

4∑

i=1

w(Ai+4) ≤ 1. (2)

Observe that for each i = 1, 2, 3, 4 the rectangle Ai must overlap with Ai+4 in the x-coordinate.
Thus, we have that

h(Ai) + h(Ai+4) ≤ 1 for i = 1, 2, 3, 4. (3)

From (3) it follows that, for each i = 1, 2, 3, 4, at most one of Ai, Ai+4 belongs to A ∪ B.
Consequently, for each i = 1, 2, 3, 4 exactly one of Ai, Ai+4 is from A∪B and another one is from
A

′ ∪B
′. Using these facts, we can use the same arguments as in [4]:

(i) First observe that at most 1 from rectangles {A1, . . . , A8} belongs to B. Indeed, if k ≥ 2 of
them belong to B and 4 − k belong to A, then the sum of widths of these rectangles from
A ∪ B would be > 1, a contradiction with the fact that any line in y-direction intersects at
most 1 rectangle from A ∪B.

(ii) If no rectangle from {A1, . . . , A8} belongs to B, than the same is true for B
′. The height of

any rectangle in B
′ is larger then 1

2 − p − δ so such rectangle cannot form a pair {Ai, Ai+4}
with a rectangle from A. Thus, in this case four rectangles belong to A and four to A

′. Using
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Observation 1 we get
∑8

i=1(w(Ai) + h(Ai)) = 6, thus it must be the case that each of (1),
(2) and (3) must hold with equality. By Observation 2, Ai and Ai+4 are buddies for each
i = 1, 2, 3, 4. In particular, no two rectangles among A1, A2, A3, and A4 are buddies. Now
Lemma 4 contradicts with

∑4
i=1 w(Ai) = 1 that has been observed earlier. Thus this case is

impossible.
So, necessarily exactly one of rectangles {A1, A2, . . . , A8} belongs to B, say Bl.

(iii)As, due to (3), no pair {Ai, Ai+4} can contain a rectangle from B
′ and a rectangle from A,

there can be at most one rectangle from B
′. But if there are no rectangles from B

′, then the
sum of widths of all 8 rectangles would be > 2, a contradiction.

Consequently, there is exactly 1 rectangle from B
′, 1 from B, 3 from A, and 3 from A

′. Using
Observation 1 we get

∑8
i=1(w(Ai)+h(Ai)) = 6, thus each of (1), (2), and (3) holds with equality.

In particular, for each i = 1, 2, 3, 4, Ai and Ai+4 are buddies due to Observation 2. Let m ∈ {1, 2}
be such that Bl intersects the line Lm. Let Am1

, Am2
, Am3

denote the other three rectangles (from
A∪A

′) which are also intersected by Lm. Thus we have that w(Am1
)+w(Am2

)+w(Am3
)+w(Bl) =

1. None of Am1
, Am2

, Am3
can lie in A

′ because otherwise w(Am1
)+w(Am2

)+w(Am3
)+w(Bl) >

(1
4 + 8δ) + (1

4 + δ) + 2(1
4 − 4δ) = 1 + δ, a contradiction. Hence {Am1

, Am2
, Am3

} ⊆ A, and
using Lemma 3 we get that {Am1

, Am2
, Am3

} = {AX,i, AY,j , AZ,k} for integers i, j, k such that
tl = (xi, yj , zk), where tl is the corresponding triple for the rectangle Bl. This completes the proof.
¤

Now we can prove the main theorem of this section

Theorem 2 There is a constant ρ > 1 such that it is NP-hard to approximate 2-dimensional

Bin Packing with Rotations into unit square bins with an asymptotic approximation ratio less
than ρ.

Proof. Recall that the Bin Packing reduction f started from a set T of instances of Max-3DM

such that for T ∈ T it is NP-hard to decide of whether OPT(T ) ≥ β(T ), or OPT(T ) < α(T ).
(a) Assume first that T ∈ T is such that OPT(T ) ≥ β(T ). We will show that the corresponding

instance f(T ) of the 2-BPr problem has its optimum OPT′(f(T )) of size at most |T |+n−3β(T ).
Consider a matching M in T consisting of β(T ) triples. For each triple tl = (xi, yj , zk) ∈ M we
create a well-packed bin with rectangles {AX,i, AY,j , AZ,k, Bl, A

′
X,i, A

′
Y,j , A

′
Z,k, B

′
l} packed.

For each tl ∈ T \M we can put Bl and B′
l along with a dummy rectangle into a bin; in this

way we use |T | − β(T ) dummy rectangles.
For each of n− 3β(T ) elements in X ∪ Y ∪ Z that are not covered by M , we put in a bin the

corresponding buddies A and A′ along with one dummy rectangle. The rest of dummy rectangles
is used in this way and all rectangles from f(T ) are packed into |T |+ n− 3β(T ) bins.

(b) Assume now that T ∈ T satisfies OPT(T ) < α(T ). Our aim is to estimate OPT′(f(T ))
from below. Consider for an instance f(T ) any feasible solution of 2-BPr. There will be exactly
Nd = |T |+n−4β(T ) bins with dummy rectangles, each of them can contain at most one rectangle
from A ∪B. Let us consider now bins without dummy rectangles. If such bin is not well-packed
then it either contains at most 3 rectangles from A ∪ B or else it contains at most 3 rectangles
from A

′ ∪B
′. Let Ng denote the number of well-packed bins. Among the bins without dummy

rectangles which are not well-packed, let Nb2 denote the number of bins with at most 3 rectangles
from A ∪B, and let Nb1 denote the number of the rest rectangles (i.e., Nb1 is the number of bins
with 4 rectangles from A ∪B, but with at most 3 rectangles from A

′ ∪B
′).
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Since all |T |+ n rectangles from A ∪B have to be packed, we have the constraint that

4Ng + 4Nb1 + 3Nb2 +Nd ≥ |T |+ n,

or equivalently
4Ng + 4Nb1 + 3Nb2 ≥ 4β(T ). (4)

With the choice of parameter p = 1
4 +9δ and assuming δ ∈ (0, 1

500 ] as small as we need, rectangles
from A ∪ B are roughly ( 1

4 ,
3
4) each, and those from A

′ ∪ B
′ are roughly (1

4 ,
1
4) each. In what

follows we will count rectangles from A∪B with weight 3, and those from A
′ ∪B

′ with weight 1
each. Easy area’s estimate shows that the total weight of rectangles packed to a unit square bin
cannot exceed 16. Further, any bin containing a dummy rectangle can contain rectangles from
A∪B∪A

′∪B
′ of weight at most 4. Observe that each of Nb1 bins contains rectangles of weight at

most 15. Hence the second constraint derived from the fact that all rectangles have to be packed
reads as follows:

16Ng + 15Nb1 + 16Nb2 + 4Nd ≥ 4(|T |+ n).

Using Nd = |T |+ n− 4β(T ) and adding the constraint (4) to the last one we get

20Ng + 19Nb1 + 19Nb2 ≥ 20β(T ).

Since the set of well-packed bins corresponds to a feasible solution for a matching (by Lemma 5),
Ng < α(T ). Thus, assuming OPT(T ) < α(T ) we get

OPT′(f(T )) > Ng+Nb1 +Nb2 +Nd ≥
20

19
β(T )−

1

19
Ng+Nd > |T |+n−3β(T )+

1

19
(β(T )−α(T )).

It easily follows that our reduction f is a gap preserving reduction assuming that we started from
(α(T ), β(T ))-gap version of the bounded Max-3DM problem.

Now suppose that for a fixed constant ρ, 1 < ρ < 1+ 1
19

β(T )−α(T )
|T |+n−3β(T ) , there exists a polynomial

time algorithm Aρ and a constant C such that for instances f(T ) if OPT′(f(T )) > C, then
Aρ ≤ ρOPT′(f(T )). Thus, for any corresponding instance T of Max-3DM we could distinguish
whether OPT(T ) ≥ β(T ), or OPT(T ) < α(T ), which is an NP-hard problem. Hence, it is NP-hard
to achieve an asymptotic approximation ratio ≤ ρ for the problem 2-dimensional Bin Packing

with Rotations into unit square bins. ¤

Using the NP-hard gap result from Theorem B we can obtain an explicit lower bound 1 +
1

3792 on asymptotic approximation ratio of any polynomial time approximation algorithm for 2-

dimensional Bin Packing with Rotations into unit square bins. For the same problem
without rotations our method provides a lower bound 1 + 1

2196 .

4 3-dimensional Strip Packing problems

In this section we apply the approximation hardness results for 2-dimensional bin packing problems
to obtain similar hardness results for variants of 3-dimensional strip packing problems restricted
to instances in which the strip have a unit square base.

Definition 8 Let a list of 2-dimensional rectangles L = {(r1
1, r

1
2), (r

2
1, r

2
2), . . . , (r

n
1 , r

n
2 )} with a bin

B = (b1, b2) be an instance of the 2-dimensional Bin Packing problem (possibly with rotations).
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For a fixed parameter t > 0 we define an instance of the 3-dimensional Strip Packing problem
(possibly with rotations) as a list of 3-dimensional rectangles Lt = {(r

i
1, r

i
2, t) : 1 ≤ i ≤ n} with a

strip (b1, b2,∞).

The optimum for all three variants of 3-dimensional strip packing problems 3-SP, 3-SPr,
and 3-SPz, for the instance Lt can be expressed using the optimum for the instance L of the
2-dimensional bin packing problem (possibly with rotations) as follows.

Lemma 6 If OPT(L) denote the optimum of an instance L for 2-BP and OPT′(Lt) the optimum
of the corresponding 3-dimensional instance Lt for 3-SP, then OPT′(Lt) = t · OPT(L). The
same statement holds also for the optimum of an instance L for 2-BPr and the optimum of the
corresponding 3-dimensional instance Lt for 3-SPz, resp. 3-SPr(in case of 3-SPr we assume that
t > max{b1, b2}).

Proof. (i) Consider a packing of L into OPT(L) bins (b1, b2). It generates the strip packing of Lt

into a strip (b1, b2,∞) with height t ·OPT(L). Hence OPT′(Lt) ≤ t ·OPT(L). Now assume, that
Lt can be packed into the strip (b1, b2,∞) with height h < t·OPT(L). If s = min{t, t·OPT(L)−h},
then planes {z = t− s}, {z = 2t− s}, . . . , {z = t · (OPT(L)− 1)− s} intersect interiors or touch
bottom of all rectangles from the list L. These plane cuts determine packing of L into OPT(L)−1
bins (b1, b2), a contradiction that completes the proof.

The statement for 3-SPz can be proved in the same way. Moreover, if t > max{b1, b2}, then
any r-packing of Lt-rectangles into the strip (b1, b2,∞) has to be z-oriented. ¤

Using Lemma 6 it is easy to see that non-existence of an APTAS for 2-BP ([4]) implies non-
existence of APTAS for the 3-SP problem, unless P = NP. Moreover, using a heterogeneous
scaling one can obtain some inapproximability results also for 3-SPz and 3-SPr already from
hardness results for 2-BP. In this way one can obtain approximation hardness results, for example,
for instances of 3-SPz and 3-SPr with a strip (b, 1,∞) for any fixed b ∈ (0, 1

2). But for a strip
with a square base we can rely on the approximation hardness result shown in the previous section
for 2-BPr with square bin.

Theorem 3 There is no APTAS for any of 3-dimensional strip packing problems 3-SP, 3-SPz,
and 3-SPr on instances with the strip (1, 1,∞), unless P = NP.

Proof. The result for 3-SP follows directly from [4] by Lemma 6. Similarly, Theorem 2 together
with Lemma 6 imply that no APTAS can exist, unless P = NP, for 3-SPz and 3-SPr on instances
with the strip (1, 1,∞). ¤

Remark. In fact, all achieved approximation hardness results are of “NP-hard gap type”, and
they are obtained on instances with quite uniform structure. Namely,

• for 2-BP all rectangles are small perturbations of
(

1
4 ,

1
2

)
and

(
3
4 , 1
)
,

• for 2-BPr all rectangles are small perturbations of
(

1
4 ,

3
4

)
,
(

1
4 ,

1
4

)
, and

(
3
4 , 1
)
,

• for 3-SP all rectangles are small perturbations of
(

1
4 ,

1
2 , 1
)
and

(
3
4 , 1, 1

)
,

• for 3-SPz and 3-SPr all rectangles are small perturbations of
(

1
4 ,

3
4 , 2
)
,
(

1
4 ,

1
4 , 2
)
, and

(
3
4 , 1, 2

)
.
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5 Bin Covering Problems

In this section we prove that for many rectangle covering problems no APTAS exist, unless
P = NP, similarly as for their packing counterparts.

5.1 2-dimensional Bin Covering

In this section we provide approximation hardness results for both versions of the 2-dimensional

Bin Covering problems, without, resp. with ninety-degree rotations allowed. Our gap preserv-
ing reduction from the bounded Max-3DM problem is similar to the Bin Packing Reduction
presented for packing problems in Section 3; the only difference is in values of some parameters
and dimensions of rectangles. Even if our analysis has many similarities with that given for pack-
ings, the case of coverings appears to be technically more complicated to handle. One of reasons,
that makes the case of packings easier, is that we have à priori an upper bound on number of
rectangles used for a single bin. For covering problems no such upper bound is available and we
have to deal with a variety of possibilities how a bin can be covered.

The Bin Covering reduction. Let T be an infinite set of instances (ordered triples) T of
Max-3DM with the optimum value OPT(T ), such that for some efficiently computable functions
α(T ) < β(T ) it is NP-hard to decide for T ∈ T of whether OPT(T ) ≥ β(T ), or OPT(T ) < α(T ).
For an instance T ∈ T we define in the same way as in the Bin Packing reduction the pairwise
disjoint sets X, Y , Z, and for each object in X, Y , Z, and T integers x′i for 1 ≤ i ≤ |X|, y′j for
1 ≤ j ≤ |Y |, z′k for 1 ≤ k ≤ |Z|, t′l for 1 ≤ l ≤ |T |. The reduction has several parameters: a gap
location β, constants δ ∈

(
0, 1

2000

]
, and p ∈

[
0, 7

16

]
. To simplify some considerations, instead of a

general parameter p we can think about an explicit value of p, namely
• p = 0 for 2-dimensional Bin Covering (without rotations), and
• p = 3

8 for 2-dimensional Bin Covering With Rotations.
As many considerations work well for both values of the parameter p, we will study them in

parallel.
Similarly as in the Bin Packing reduction let n = |X| + |Y | + |Z|, q = max{|X|, |Y |, |Z|},

r = 32q, c = r10+15
δ

and observe that 0 < x′i, y
′
j , z

′
k < δc

10 for all i, j, k, and t′l + x′1 + y′j + z′k = cδ
whenever tl = (xi, yj , zk) ∈ T .

For each xi ∈ X (resp., yj ∈ Y and zk ∈ Z) we define a pair of rectangles AX,i, A
′
X,i (resp.

AY,j , A
′
Y,j and AZ,k, A

′
Z,k) as follows:

AX,i =
(1
4
− 4δ +

x′i
c
,
1

2
− δ −

x′i
c
− p

)
and A′

X,i =
(1
4
+ 4δ −

x′i
c
,
1

2
+ δ +

x′i
c
+ p

)
,

AY,j =
(1
4
− 3δ +

y′j
c
,
1

2
− 2δ −

y′j
c
− p

)
and A′

Y,j =
(1
4
+ 3δ −

y′j
c
,
1

2
+ 2δ +

y′j
c
+ p

)
,

AZ,k =
(1
4
− 2δ +

z′k
c
,
1

2
− 3δ −

z′k
c
− p

)
and A′

Z,k =
(1
4
+ 2δ −

z′k
c
,
1

2
+ 3δ +

z′k
c

+ p
)
.

For each tl ∈ T we define a pair of rectangles Bl and B′
l such that

Bl =
(1
4
+ 8δ +

t′l
c
,
1

2
− p−

t′l
c

)
and B′

l =
(1
4
− 8δ −

t′l
c
,
1

2
+ p+

t′l
c

)
.

Let AX = {AX,1, AX,2, . . . , AX,|X|}, A
′
X = {A′

X,1, A
′
X,2, . . . , A

′
X,|X|} and let sets AY , A

′
Y , AZ ,

and A
′
Z be defined analogously. Put A = AX ∪AY ∪AZ and A

′ = A
′
X ∪A

′
Y ∪A

′
Z . Similarly, let
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B = {B1, B2, . . . , B|T |} and B
′ = {B′

1, B
′
2, . . . , B

′
|T |}. Define D to be a collection of |T |+n−4β(T )

dummy rectangles of the same size
(

3
4 + 9δ, 1

)
.

Now the collection of rectangles A ∪ A
′ ∪B ∪B

′ ∪ D together with a square bin B = [0, 1]2

is viewed as an instance of the problem 2-BC, resp. 2-BCr, and denoted by f(T ). Our aim is to
relate the optimum value OPT′(f(T )) of the problem 2-BC, resp. 2-BCr, for an instance f(T ),
to the optimum value OPT(T ).

Remark. It is easy to see that if a rectangle A from f(T ) partially cover a bin B, one can shift
A to a new position A′ such that A ∩ B ⊆ A′ ⊆ B. Hence we can confine ourselves to coverings,
in which any rectangle partially covering a bin, is completely contained in this bin.

Some results proved for the Bin Packing reduction can be easily modified for the Bin Covering
reduction and their consequences derived above apply without any change. In particular, the
corresponding rectangles have the same width in both reductions.

Observation 1’ For any rectangle, A ∈ A implies w(A) + h(A) = 3
4 − 5δ − p, A′ ∈ A

′ implies
w(A′) + h(A′) = 3

4 + 5δ + p, B ∈ B implies w(B) + h(B) = 3
4 + 8δ − p, and B′ ∈ B

′ implies
w(B′) + h(B′) = 3

4 − 8δ+p.

One can observe that Observation 2, Lemma 3, and Lemma 4 apply as well.

Definition 9 Given a covering of a bin by some rectangles of f(T ). The bin is called well-covered
if it is covered by exactly 8 rectangles from which 4 rectangles are from A∪B, 4 are from A

′∪B
′,

and the numbers of rectangles from B is the same as those from B
′.

Analysis. Consider an oriented covering of the unit square bin by exactly 8 rectangles from
A ∪ B ∪ A

′ ∪ B
′. Then no two of points [0, 0], [ 13 , 0], [

2
3 , 0], [1, 0], [0, 1], [

1
3 , 1], [

2
3 , 1], and [1, 1]

belong to the same rectangle. Let A1, A2, A3, . . . , A8 denote, respectively, the rectangles that
contain these points. Clearly, A1 ∪A2 ∪A3 ∪A4 covers {(x, 0) : x ∈ [0, 1]}, hence

4∑

i=1

w(Ai) ≥ 1. (1’)

Similarly, A5 ∪A6 ∪A7 ∪A8 covers {(x, 1) : x ∈ [0, 1]}, hence

4∑

i=1

w(Ai+4) ≥ 1. (2’)

For each i = 1, 2, 3, 4, (Ai∪Ai+4)∩[0, 1]
2 is a small (depending on δ) perturbation of [ i−1

4 , i4 ]×[0, 1]
. In particular, the segment {( i−1

3 , y) : y ∈ [0, 1]} is covered by Ai ∪Ai+4 only and hence

h(Ai) + h(Ai+4) ≥ 1 for i = 1, 2, 3, 4. (3’)

Consequently, for each i ∈ {1, 2, 3, 4} at least one of rectangles Ai, Ai+4 belongs to A
′ ∪B

′. As
height of any rectangle from A ∪B is less than 1

2 , the segment {(x, 1
2) : x ∈ [0, 1]} is covered by

rectangles from A
′ ∪B

′. Thus

8∑

i=1
Ai∈A ′∪B ′

w(Ai) ≥ 1. (5)
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From now on we additionally assume that from the 8 rectangles A1, A2, . . . , A8 covering the
bin B exactly 4 belong to A∪B and 4 belong to A

′ ∪B
′. From (3’) it easily follows that for each

i ∈ {1, 2, 3, 4} exactly one of rectangles Ai, Ai+4 belongs to A∪B, and one to A′ ∪B′. Inspecting
the range of heights of rectangles in AX , AY , AZ , B, A

′
X , A

′
Y , A

′
Z , B

′ leads to more restrictions
on possible combinations in pairs Ai, Ai+4. We will employ an observation that if one of Ai, Ai+4

belongs to B
′ then the another one belongs to B. In particular,

|B ∩ {Ai : 1 ≤ i ≤ 8}| ≥ |B ′ ∩ {Ai : 1 ≤ i ≤ 8}|. (6)

We can observe further that

|B ′ ∩ {Ai : 1 ≤ i ≤ 8}| ≤ 1. (7)

To show that, let j := |B ′ ∩ {Ai : 1 ≤ i ≤ 8}|. Thus j rectangles from A1, . . . , A8 belong to B
′

and (4 − j) belong to A
′, thus

8∑

i=1,Ai∈A ′∪B ′

w(Ai) < 1 + 16δ − 12jδ. Due to (5), only j = 0 or

j = 1 is possible for an integer j.

The next lemma allows to prove that for the choice p = 3
8 of the parameter in the Bin Packing

reduction the situation for r-coverings reduces to the one for oriented coverings. Namely, even if
rotations are allowed it is not advantageous to use them.

Lemma 7 For the parameter p = 3
8 , if an r-covering of a bin consists of 8 rectangles such that

4 of them are from A ∪B and 4 from A
′ ∪B

′, then all 8 rectangles are iso-oriented (i.e., either
all in the initial position or rotated by 90◦ in the same way). In particular, rectangles covering
well-covered bins are always iso-oriented.

Proof. It is easy to observe that the total area of 4 rectangles from A ∪B and 4 rectangles from
A

′ ∪B
′ is at most 1 + 25δ. Hence, if these rectangles cover a unit square bin, only small overlap

of rectangles is possible. Namely, the area in the bin with multiple covering is at most 25δ. So, it
is sufficient to show that if rectangles are not iso-oriented, the overlap is larger.

Observe first that rectangles from A
′ ∪ B

′ are iso-oriented. If two rectangles from A
′ ∪ B

′

contained in the unit square bin are not iso-oriented, then they overlap at least in a square with
size 1

8 − 8δ. Thus, the overlap area is larger than 1
64 − 2δ and hence, due to our choice of δ, larger

than 25δ. This is a contradiction, showing that all 4 rectangles from A
′ ∪B

′ are iso-oriented.
We can assume from now on that these 4 rectangles are in its original position, the case when

all are rotated could be discussed similarly. To prove that all 8 rectangles are iso-oriented, assume
on contrary that a rectangle A from them is rotated. As any segment {y} × [0, 1] (y ∈ [0, 1])
clearly intersects a rectangle from A

′∪B
′ , it is easy to see that A intersects the union of A

′∪B
′

at least in a square with size 1
8 − 4δ. Hence the overlap is again larger than 25δ, a contradiction

that completes the proof. ¤

In the following lemma we will characterize the structure of well-covered bins similarly as for
well-packed bins.

Lemma 8 Let p = 3
8 and suppose that an 8-tuple of rectangles cover a bin. Then a bin is well-

covered if and only if the 8-tuple consists of rectangles AX,i, AY,j, AZ,k, Bl, A
′
X,i, A

′
Y,j, A

′
Z,k, and

B′
l, for some tl = (xi, yj , zk) ∈ T .
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Proof. (I) First we show that 8 rectangles that correspond to a triple tl = (xi, yj , zk) ∈ T as
described above can cover a unit square bin even without rotations.

Starting from the bottom left corner of the bin and moving towards the right, each of rectangles
A′
Z,k, A

′
Y,j , A

′
X,i, and B′

l, (in this order) is placed such that it touches the bottom of the bin B
and the previous rectangle. In this way these 4 rectangles cover more than the lower half of the
bin, as the sum of their widths is exactly 1 and height of each is greater than 1

2 . The remaining
rectangles AZ,k, AY,j , AX,i, and Bl will be placed in this order starting from the top left corner
of the bin and moving towards to the right, such that each rectangle touches the top of the bin
and the previous rectangle. Clearly, these 4 rectangles cover the gap left in the bin after the first
4 rectangles were placed, as

w(AZ,k) + w(AY,j) + w(AX,i) + w(Bl) = 1,

h(AZ,k) + h(A′
Z,k) = h(AY,j) + h(A′

Y,j) = h(AX,i) + h(A′
X,i) = h(Bl) + h(B′

l) = 1,

h(A′
Z,k) > h(A′

Y,j) > h(A′
X,i) > h(B′

l),

w(AZ,k) < w(A′
Z,k), w(AY,j) < w(A′

Y,j), and w(AX,i) < w(A′
X,i).

(II) Now we show that any well-covered bin is covered by 8-tuple of rectangles that correspond
to some triple from T as described above. Due to Lemma 7, the rectangles are iso-oriented. We
will assume that they are all in the initial position in the bin, the case when all are rotated by
90◦ can be discussed similarly. Let A1, A2, . . . , A8 denote rectangles of the covering that cover
the points [0, 0], [13 , 0], [

2
3 , 0], [1, 0], [0, 1], [

1
3 , 1], [

2
3 , 1], and [1, 1], respectively. Recall that from the

analysis above (1’), (2’), and (3’) hold.
As |B∩{Ai : 1 ≤ i ≤ 8}| = |B ′∩{Ai : 1 ≤ i ≤ 8}|, by Observation 1’

∑8
i=1(w(Ai)+h(Ai)) = 6,

and hence each of relations in (1’), (2’), and (3’) must hold with equality. By Observation 2, for
each i ∈ {1, 2, 3, 4}, Ai and Ai+4 are buddies. In particular, no two rectangles among A1, A2,
A3, A4 are buddies. Now we conclude from

∑4
i=1 w(Ai) = 1 and Lemma 4 that necessarily

|B ∩ {Ai : 1 ≤ i ≤ 8}| = |B ′ ∩ {Ai : 1 ≤ i ≤ 8}| > 0.
Thus (7) implies that |B ∩ {Ai : 1 ≤ i ≤ 8}| = |B ′ ∩ {Ai : 1 ≤ i ≤ 8}| = 1. Hence

{A1, A2, . . . , A8} consists of buddies Bl ∈ B, B′
l ∈ B

′ for some l ∈ {1, 2, . . . , |T |}, and from 6
rectangles (3 pairs of buddies) from A ∪ A

′. Let us assume that B′
l ∈ {A5, A6, A7, A8} (i.e.,

Bl ∈ {A1, A2, A3, A4}); the opposite case can be discussed, due to the symmetry, in a similar way.
Recall that w(B′

l) <
1
4 − 8δ,

∑8
i=5 w(Ai) = 1, and {A5, A6, A7, A8} \ {B

′
l} ⊆ A ∪ A

′. If some
of A5, A6, A7, A8 belongs to A, we easily get

8∑

i=5

w(Ai) < (
1

4
− 8δ) + (

1

4
− δ) + 2(

1

4
+ 4δ) = 1− δ,

a contradiction. Thus {A5, A6, A7, A8} \ {B
′
l} ⊆ A

′, consequently {A1, A2, A3, A4} \ {Bl} ⊆ A.
Recalling

∑4
i=1 w(Ai) = 1, Lemma 3 implies that {A1, A2, A3, A4} = {AX,i, AY,j , AZ,k, Bl}, for

some i, j, k, l such that (xi, yj , zk) = tl. This completes the proof. ¤

Building on the ideas above, we can prove the main theorem for covering problems

Theorem 4 Unless P = NP, there are no APTAS for the problems 2-dimensional Bin Cov-

ering and 2-dimensional Bin Covering with Rotations.
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Proof. The Bin Covering reduction f starts from a set T of instances of Max-3DM such that
for an instance T ∈ T it is NP-hard to decide of whether OPT(T ) ≥ β(T ), or OPT(T ) < α(T ).

a) Assume first that T ∈ T satisfies OPT(T ) ≥ β(T ). We will show that the corresponding
instance f(T ) of the problem 2-BC (resp., 2-BCr) has its optimum at least |T |+ n− 3β(T ). Let
a matching M in T consist of β(T ) triples. For each triple tl = (xi, yj , zk) ∈M , the corresponding
8 rectangles {AX,i, AY,j , AZ,k, Bl, A

′
X,i, A

′
Y,j , A

′
Z,k, B

′
l} will cover one (well-covered) bin. For each

tl ∈ T \M we take Bl, B
′
l, and a dummy rectangle to cover a bin. In this way we use |T | − β(T )

dummy rectangles.
For each of n − 3β(T ) elements in X ∪ Y ∪ Z that are not contained in triples of M and for

remaining n− 3β(T ) dummy rectangles we take the corresponding buddies A,A′ ∈ A ∪ A
′ along

with a dummy rectangle to cover a bin. Hence, we have covered β(T )+(|T |−β(T ))+(n−3β(T )) =
|T |+ n− 3β(T ) bins in total.

b) Assume now that T ∈ T satisfies OPT(T ) < α(T ). Our aim is to estimate OPT′(f(T ))
for the problem 2-BC (resp., 2-BCr) from above. We will do these computations to some details
for the case of the problem without rotations, hence we assume p = 0 in what follows. Consider
any optimal solution to the 2-BC problem for an instance f(T ), namely the solution that cov-
ers OPT′(f(T )) bins. To simplify some considerations we first normalize the solution without
decreasing the number of covered bins as follows:

(i) If rectangles A1, A2, . . . , Aj cover a bin, then no proper subset of them can cover the bin.

(ii) To ensure (i), some of rectangles (the rest) can be left unused, but it is impossible to cover a
bin using only the rest of rectangles. One can ensure that no dummy rectangle is in the rest.
The rest can contain at most 9 rectangles from A

′ ∪B
′, and at most 14 in total.

(iii)Each bin is covered using at most one dummy rectangle. It is easy to see that in the optimal
solution we have more than |T |+ n− 4β(T ) bins covered. Thus if two dummy rectangles are
used to cover the same bin, we can take another bin that is covered without dummy rectangle
and easily change the covering of these two bins such that each of them uses one of dummy
rectangles.
Now we fix one normalized solution. The Nd = |T |+n−4β(T ) bins that use a dummy rectangle

in their covering, are called D-bins; the remaining covered bins are termed non-D-bins. Each of
D-bins uses except a dummy rectangle 2 or 3 other rectangles. These 2 or 3 other rectangles
(except a dummy rectangle) used for covering of D-bins can be of different kinds. In our counting
arguments we will consider the following particular cases of D-bins according to what non-dummy
rectangles they use:

• Nd1
use only rectangles from A ∪B, necessarily 3 such rectangles,

• Nd4
use 1 rectangles from B

′ and 2 rectangles from A,

• N ′
d0

use 2 rectangles from A
′ ∪B

′, and from that Nd2
use 2 rectangles from B

′ and Nd3
use

1 rectangle from B
′ and 1 rectangle from A

′.
Let Nd0

be the number of D-bins which use 2 non-dummy rectangles in its covering, then the
remaining number Nd − Nd0

of D-bins use necessary 3 such rectangles. Clearly, Nd1
+ Nd4

≤
Nd −Nd0

and Nd2
+Nd3

≤ N ′
d0
.

Next we describe how non-D-bins are distinguished. Any such bin uses at least 8 rectangles
in its covering (as we deal with the case without rotations). Moreover, if a bin uses exactly 8
rectangles, at least 4 of them are from A

′ ∪B
′. Let Nb1 be the number of bins that use at least 9

rectangles, Nb2 be the number of bins that use 8 rectangles, but at least 5 of them is from A
′∪B

′,
and Ng be the number of well-covered bins. Denote by Nb the number of remaining non-D-bins,
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that means bins covered by 4 rectangles from A ∪ B and 4 rectangles from A
′ ∪ B

′ such that
among them there is strictly more rectangles from B than from B

′ (use (6) for this argument).
Now we are ready to derive some constraints on these numbers. The first one describes how

all 2(n+ |T |) non-dummy rectangles can be distributed among various kinds of bins, hence

8Ng + 8Nb + 9Nb1 + 8Nb2 + 3Nd −Nd0
≤ 2(n+ |T |).

Equivalently, as Nd = |T |+ n− 4β(T ),

8Ng + 8Nb + 9Nb1 + 8Nb2 ≤ 8β(T ) +Nd0
−Nd. (8)

The second one describes how all (n+ |T |) rectangles from A
′ ∪B

′ can be distributed:

4Ng + 4Nb + 5Nb2 + (Nd −Nd1
) +N ′

d0
≤ n+ |T |.

Equivalently,

4Ng + 4Nb + 5Nb2 ≤ 4β(T ) +Nd1
−N ′

d0
. (9)

Multiplying (8) by 5 and adding (9) we get

44Ng + 44Nb + 45Nb1 + 45Nb2 ≤ 44β(T )− 5Nd + 5Nd0
+Nd1

−N ′
d0
.

We will rewrite the last relation in two different ways:

44(Ng +Nb +Nb1 +Nb2 +Nd)

≤44(|T |+ n− 3β(T ))− 5Nd + 5Nd0
+Nd1

−N ′
d0
−Nb1 −Nb2 , (10)

and

45(Ng +Nb +Nb1 +Nb2 +Nd)

≤45(|T |+ n− 3β(T ))− (β(T )−Ng) +Nb − 5Nd + 5Nd0
+Nd1

−N ′
d0
. (11)

To be able to handle the term Nb, we now derive one more constraint.
Consider from now on a fixed normalized solution. Let S denote either a set of rectangles that

cover a single bin in this solution, or the set of unused rectangles. Let S be the collection of all
such sets S. For each set S ∈ S we define ϕ(S) to be the number ϕ(S) = |S ∩ B| − |S ∩ B

′|.
As |B| = |B ′| and elements of S define a partition of all rectangles,

∑
S∈S ϕ(S) = 0 follows.

If S corresponds to a well-covered bin then ϕ(S) = 0, and at least for Nb non-D-bins we have
ϕ(S) ≥ 1. On the remaining sets S we will use an estimate of ϕ(S) from below.

Clearly, ϕ(S) ≥ −10 always holds, as S cannot contain more than 10 rectangles from B
′. One

can obtain slightly better estimate ϕ(S) ≥ −8 for Nb2 bins, ϕ(S) ≥ −9 if S is the set of unused
rectangles. As described above, ϕ(S) = −2 for Nd2

D-bins, ϕ(S) = −1 for (Nd3
+ Nd4

) D-bins,
and ϕ(S) ≥ 0 for remaining D-bins. Hence, we easily get

0 =
∑

S∈S

ϕ(S) ≥ Nb − 10Nb1 − 8Nb2 − 9− 2Nd2
−Nd3

−Nd4
,

which implies

Nb ≤ 10Nb1 + 8Nb2 + 9 + 2Nd2
+Nd3

+Nd4
. (12)
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Clearly, the number of covered bins in our normalized solution, OPT′(f(T )), is the sum Ng+Nb+
Nb1 + Nb2 + Nd. To obtain an upper estimate on OPT′(f(T )) we will distinguish the following

two cases, where v := 1
485

β(T )−α(T )−9
|T |+n−3β(T ) is a suitable constant.

(I) Suppose that 5(Nd−Nd0
)−Nd1

+N ′
d0
+Nb1 +Nb2 < 44v(|T |+n−3β(T )). As Nd1

+Nd4
≤

Nd −Nd0
and Nd2

+Nd3
≤ N ′

d0
, we get from (12) an easy estimate

Nb < 9 + 440v(|T |+ n− 3β(T )).

Using this in (11) and recalling that our assumption OPT(T ) < α(T ) implies, due to Lemma 8,
that Ng < α(T ), we get

OPT′(f(T )) < (|T |+ n− 3β(T ))

(
1 +

440

45
v

)
−

1

45
(β(T )− α(T )) +

1

5

≤ (1− v)(|T |+ n− 3β(T )). (13)

(II) If 5(Nd−Nd0
)−Nd1

+N ′
d0
+Nb1 +Nb2 ≥ 44v(|T |+n− 3β(T )), then we get directly from

(10)

OPT′(f(T )) ≤ (1− v)(|T |+ n− 3β(T )). (14)

From Theorem B it follows that the term v := v(q) = 1
485

β(T )−α(T )−9
|T |+n−3β(T ) , where n = 3q and

|T | = 2q, is bounded from below by a positive constant ε0 for all sufficiently large instances
T ∈ T . Hence it is NP-hard to distinguish of whether OPT′(f(T )) ≥ (|T | + n − 3β(T )) or
OPT′(f(T )) ≤ (1−ε0)(|T |+n−3β(T )). Consequently, there is no APTAS for the 2-dimensional

Bin Covering problem.
For the problem 2-BCr we can keep fixed p = 3

8 and continue similarly. The crucial fact is
Lemma 7 and its proof showing that for instances which we produce, using rotations doesn’t help
to cover significantly more bins than if rotations are not used. The only technical complication
in our counting arguments is that non-dummy rectangles are now of two distinct types. Each
of them is a small perturbation of either ( 1

4 ,
1
2 + p) rectangle, or ( 1

4 ,
1
2 − p) rectangle. Hence in

our derivation of constraints (like (8), (9), and (12)) on various kinds of covered bins it is more
natural to work, instead of the number of rectangles of certain type, with the number weighted
by the area of this type of rectangles. Similarly as for the packing problems, this approach leads
to the same kind of approximation hardness results for bin covering problems with rotations, as
was described above in details for bin covering problems without rotations. ¤

5.2 3-dimensional Strip Covering

In the same way as for packings, the 2-dimensional Covering problem can be seen as particular
case of the 3-dimensional Strip Covering problem. The transformation described in Section 4
for strip packings problems has similar properties for strip covering problems as well. In this
way, 2-BC can be regarded as a particular case of 3-SC, and 2-BCr with the bin (a, b) reduces
to a particular case of 3-SPz, with the strip (a, b,∞). For an integer t > 0 a transformation
transforming an instance L of 2-BC (resp., 2-BCr) to an instance Lt of 3-SC (resp., 3-SCz)
essentially preserves an optimum value, namely the ratio between the optimum values for 3-SC

(resp., 3-SCz) and 2-BC (resp., 2-BCr) is exactly t. The proof is very similar to the one given
above for packings. Thus approximation hardness results for 2-BC (resp., 2-BCr) with the bin
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(1, 1) derived in the previous section translates to the same approximation hardness results for
3-SC (resp., 3-SCz) with the strip (1, 1,∞).

We can summarize these results as follows

Theorem 5 There are no APTAS for strip covering problems 3-SC and 3-SCz on instances with
the strip (1, 1,∞), unless P = NP.

6 Maximum Rectangle Packing Problem

Another rectangle bin packing problem well studied in the literature (e.g., [14], [2]) is the following:

Definition 10 Given a collection of d-dimensional rectangles together with a d-dimensional rect-
angular bin B. The goal of the Maximum d-dimensional Rectangle Packing problem is to
pack the maximum number of rectangles from the collection into a single bin B.

Other variants of this problem are studied as well, e.g., each of rectangles can be associated
with weight, and the goal is to maximize the total weight of packed rectangles. In some variants
ninety-degree rotations of rectangles can be allowed. The problem is motivated by scheduling
parallel jobs with a common due date to maximize the profit of jobs completed by the due date,
where each job can require several processors which are allocated on a line. It has also applications
in the advertisement placement problem, see [12] for more details. But even in the most simple
case, 2-dimensional unweighted case without rotations, only a (2 + ε)-approximation algorithm
is known [14]. The question of whether there is an APTAS is open. However, already in 3-
dimensional case, the problem can be settled in the negative.

Theorem 6 Unless P = NP, there is no APTAS for the Maximum 3-dimensional Rectangle

Packing problem with unit cube bin. The same is true also for z-oriented packings. For r-packings
the same hardness result holds for a bin (1, 1, b), where b ∈

(
0, 1

4

)
.

Proof. For oriented packings (i.e., without rotations) we can use the hardness result for 3-SP with
the strip (1, 1,∞) from Theorem 3: there is a constant ρ > 1 and an infinite family F of instances
of the 3-SP problem with the strip (1, 1,∞), such that for some computable function α : F → N
it is NP-hard to distinguish for L ∈ F of whether OPT(L) ≤ α(L), or OPT(L) > ρ · α(L).
Moreover, each rectangle in L is a small perturbation of either

(
1
4 ,

1
2 , 1
)
or
(

3
4 , 1, 1

)
. For any

L ∈ F denote by L
′ rescaled copy of L by a factor 1/α(L) in the direction of the z-axis. Now it

is NP-hard for L
′ and for the 3-SP problem with the strip (1, 1,∞) to decide if OPT(L ′) ≤ 1,

or OPT(L ′) > ρ. In the former case all rectangles of L
′ can be packed into a unit cube bin. In

the latter one we easily obtain that less than |L ′| − b(ρ− 1)α(T )c can be packed into this bin.
For z-oriented packings we can use the same arguments starting from NP-hard gap of the

problem 2-BPr with the bin (1, 1) instead.
For r-packings we scale to obtain the strip (1, 1, b), b ∈

(
0, 1

4

)
. The special uniform structure

of instances in our hardness result for 2-BPr imply that all r-packings for such rescaled instances
are, in fact, z-oriented packings. Thus the results follow as above. ¤
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