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Abstract. We present three new quantum hardcore functions for any
quantum one-way function. We also give a “quantum” solution to
Damg̊ard’s question (CRYPTO’88) on his pseudorandom generator by
proving the quantum hardcore property of his generator, which has been
unknown to have the classical hardcore property. Our technical tool is
quantum list-decoding of “classical” error-correcting codes (rather than
“quantum” error-correcting codes), which is defined on the platform of
computational complexity theory and cryptography (rather than infor-
mation theory). In particular, we give a simple but powerful criterion
that makes a polynomial-time computable code (seen as a function) a
quantum hardcore for any quantum one-way function. On their own in-
terest, we also give quantum list-decoding algorithms for codes whose
associated quantum states (called codeword states) are “almost” orthog-
onal using the technique of pretty good measurement.

1 Introduction: From Hardcore to List-Decoding

Background: Modern cryptography heavily relies on computational hardness
and pseudorandomness. One of its key notions is a hardcore bit of a one-way
function—a bit that can be completely determined by the information available
to the adversary but still looks random to any feasible adversary. A hardcore
function transforms the onewayness into pseudorandomness by generating such
hardcore bits of a given one-way function. Such a hardcore function is a crucial
element of constructing a pseudorandom generator as well as a bit commit-
ment protocol from any one-way permutation. A typical example is the inner
product mod 2 function GLx(r) of Goldreich and Levin [12], computing the bit-
wise inner product modulo two 〈x, r〉, which constitutes a hardcore bit for any
(strong) one-way function.3 Since GLx(r) equals the rth bit of the codeword

3 Literally speaking, this statement is slightly misleading. To be more accurate, such a
hard-core function concerns only the one-way function of the form f ′(x, r) = (f(x), r)
induced from an arbitrary strong one-way function f . See, e.g., [11] for a detailed
discussion.
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x = (〈x, 0n〉, 〈x, 0n−11〉, · · · , 〈x, 1n〉) of message x of the binary Hadamard

code, Goldreich and Levin essentially gave a polynomial-time list-decoding al-
gorithm for the Hadamard code. In the recent literature, list-decoding has kept
playing a key role in a general construction of hardcores [2, 17].

Thirteen years later, the “quantum” hardcore property (i.e., a hardcore
property against feasible quantum adversary) of GLx(·) was shown by Adcock
and Cleve [1], who implicitly gave a simple and efficient quantum algorithm that
list-decodes x for the binary Hadamard code by exploiting the robust nature of
a quantum algorithm of Bernstein and Vazirani [6]. The simplicity of the proof
of Adcock and Cleve can be best compared to the original proof of Goldreich
and Levin, who employed a rather complicated algorithm with powerful tech-
niques: self-correction property of the Hadamard code and pairwise independent
sampling. This highlights a significant role of robust quantum computation in
list-decoding (and thus hardcores); however, it has been vastly unexplored until
our work except for a quantum decoder of Barg and Zhou [5] for the simplex
code. No other quantum hardcore has been proven so far. Note that the effi-
ciency of robust quantum algorithms with access to biased oracles has been also
discussed in a different context [3, 7, 18].

Our Major Contributions: As our main result, we present three new quantum
hardcore functions, H(q), SLSp , and PEQ (see Section 5 for their definition), for
any (strongly) quantum one-way function, the latter two of which are not yet
known to be hardcores in a classical setting (see [13]). In particular, we prove
the quantum hardcore property of Damg̊ard’s pseudorandom generator [8]. This
gives a “quantum” solution to his question of whether his generator has the clas-
sical hardcore property (this is also listed as an open problem in [13]). Our proof
technique exploits quantum list-decodability of classical error-correcting codes
(rather than quantum error-correcting codes). For our purpose, we formulate
the notion of complexity-theoretical quantum list-decoding to conduct message-
recovery from quantum-computational error rather than information-theoretical
error which is usually associated with transmission error. This notion naturally
expands the classical framework of list-decoding. Our goal is to give fast quantum
list-decoding algorithms for the aforementioned codes.

Proving the quantum hardcore property of a given code C (seen as a func-
tion) corresponds to solving the quantum list-decoding problem (QLDP) for C
via direct access to a quantum-computationally (or quantumly) corrupted word,
which is given as a black-box oracle. The task of a quantum list-decoder is simply
to list all message candidates whose codewords match the quantumly-corrupted
word within a certain error rate bound.

The key notion of this paper is a specific quantum state, called a (k-shuffled)
codeword state, which embodies the full information on a given codeword. Note
that similar states have appeared in several quantum algorithms in the literature
[6, 9, 20]. In our key lemmas, we show (i) how to generate such a codeword state
from any (even adversarial) quantumly corrupted word and (ii) how to convert
a codeword decoder (i.e., a quantum algorithm that recovers a message x from a
codeword state given as an input) to a quantum list-decoding algorithm working
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with a quantumly corrupted word. The robust construction made in the course
of our proofs also provides a useful means, known as “hardness” reduction, which
is often crucial in the security proof of a quantum cryptosystem. Moreover, using
pretty good measurement [10, 16], we present a quantum list-decoding algorithm
for any code whose codeword states are “almost” orthogonal.

Further Implications: Classical list-decodable codes have provided numerous ap-
plications in the theory of classical computational complexity, including proving
hardcores for any one-way function, hardness amplification, and derandomiza-
tion (see, e.g., [19]). Because our formulation of quantum list-decoding natu-
rally extends classical one, classical list-decoding algorithms (e.g., for the Reed-
Solomon code) work in our quantum setting as well. This will make our quantum
list-decoding a powerful tool in quantum complexity theory and quantum com-
putational cryptography.

2 Quantum Hardcore Functions

We begin with the notion of a quantum one-way function, which naturally ex-
pands the classical notion of one-way function. The notion has been studied in
the recent literature.

Definition 1 (quantum one-way function). A function f from {0, 1}∗ to
{0, 1}∗ is called (strongly) quantum one-way if (i) there exists a polynomial-
time deterministic algorithm G computing f and (ii) for any polynomial-time
quantum algorithm A, for any positive polynomial p, and for any sufficiently
large n, Prx∈{0,1}n,A [f(A(f(x), 1n)) = f(x)] < 1/p(n), where x is uniformly
distributed over {0, 1}n and the subscript A is a random variable determined
by measuring the final state of A on the computational basis. We consider only
length-regular (i.e., |f(x)| = l(|x|) for length function l(n)) one-way functions.

For any quantum one-way function f , the notation f ′ denotes the function
induced from f by the scheme: f ′(x, r) = (f(x), r) for all x, r ∈ {0, 1}∗. Note
that f ′ is also a quantum one-way function. Throughout this paper, we deal only
with quantum one-way function of this form in direct connection to quantum
hardcores.

The standard definition of a hardcore function h from {0, 1}n to {0, 1}l(n) is
given in terms of the indistinguishability between h(x) and a truly random vari-
able over {0, 1}l(n). Although a hardcore predicate (i.e., a hardcore function of
output length l(n) = 1) is usually defined using the notion of nonapproximabil-
ity instead of indistinguishability, it is well-known that both notions coincide for
hardcore functions of output length O(log n) (see Excise 31 in [11]). In this paper,
we conveniently define our quantum hardcores in terms of nonapproximability.

Definition 2 (quantum hardcore function). Let f be any length-regular
function. A polynomial-time computable function h with length function l(n) is
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called a quantum hardcore of f if, for any polynomial-time quantum algorithm
A, for any polynomial p, and for any sufficiently large n,

∣
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Pr
x∈{0,1}n,A

[A(f(x), 1n) = h(x)] − 1/2l(n)

∣

∣

∣

∣

< 1/p(n),

where x is uniformly distributed over {0, 1}n and the subscript A is a random
variable determined by measuring the final state of A on the computational basis.

3 How to Prove Quantum Hardcores

We outline our argument of proving quantum hardcore functions for any quan-
tum one-way function. To prove new quantum hardcores, we exploit the notion
of quantum list-decoding as a technical tool. Our approach toward list-decoding
is, however, complexity-theoretical in nature rather than information-theoretical.
Our main objects of quantum list-decoding are “classical” codes and codewords,
which are manipulated in a quantum fashion. Generally speaking, a code is a set
of strings of the same length over a finite alphabet Σ. Each string is indexed by
a message and is called a codeword. Each code is specified by a series (Γn, In, Σn)
of message set Γn, index set In, and code alphabet Σn for each length parameter
n. For simplicity, let Γ ∗ =

⋃

n∈N
Γn.

Usually, a code C consists of codewords Cx for each message x ∈ Γ ∗. As
standard in computational complexity theory, we view the code C as a function
that, for each message length n (which serves as a basis parameter in this pa-
per), maps Γn × In to Σn. Let N(n) = |Γn| and q(n) = |Σn|. For simplicity,
assume that n equals dlogq(n)N(n)e for all n ∈ N. By abbreviating C(x, y) as
Cx(y), we also treat Cx(·) as a function mapping In to Σn. Denote by M(n)
the block length |In| of codeword Cx. We freely identify Cx with the vector
(Cx(0), Cx(1), · · · , Cx(M(n) − 1)) in the ambient space (Σn)

M(n) of dimension
M(n). We often work on a finite field and it is convenient regard Σn as the fi-
nite field Fq(n) of numbers 0, 1, . . . , q(n)− 1. The (Hamming) distance d(Cx, Cy)
between two codewords Cx and Cy is the number of non-zero components in the
vector Cx−Cy . The minimal distance d(C) of a code C is the smallest distance
between any pair of distinct codewords in C. The above-described code is sim-
ply called a (M(n), n)q(n)-code4 (or (M(n), n, d(n))-code if d(n) is emphasized).
We often drop a length parameter n from subscript and argument place when-
ever we discuss a set of codewords with a “fixed” n (for instance, Γ = Γn and
M = M(n)).

Now, we wish to prove that a code C(x, r) (seen as a function) is indeed
a quantum hardcore for any quantum one-way function of the form f ′(x, r) =
(f(x), r). First, we assume to the contrary that there exists a feasible quantum
algorithm A that approximates Cx(r) from input (f(x), r) with probability ≥
1/q(n)+ε(n). To be more precise, the outcome of A on input (y, r), where r ∈ In

4 In some literature, the notation (M(n), Γn)q(n) is used instead.
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and y = f(x) for a certain x ∈ Γn, is of the form:

A(y, r) = αy,r,Cx(r)|r〉|Cx(r)〉|φy,r,Cx(r)〉 +
∑

s∈Σn−{Cx(r)}

αy,r,s|r〉|s〉|φy,r,s〉

for certain amplitudes αy,r,s and ancilla quantum states |φx,r,s〉, where the sec-
ond register corresponds to the output of the algorithm. For each fixed y, the
algorithm Ay(·) =def A(y, ·) gives rise to the (unitary) oracle ÕAy

defined by
the maps:

ÕAy
|r〉|u〉|t〉 =

∑

s∈Σ

αy,r,s|r〉|u⊕ s〉|t⊕ φy,r,s〉

for any strings (r, u, t), where ⊕ is the bitwise XOR and the notation |t⊕φy,r,s〉
denotes the quantum state

∑

v:|v|=|t|〈v|φy,r,s〉|t ⊕ v〉. This oracle ÕAy
describes

computational error (not transmission error) occurring during the computation
of Cx. This type of erroneous quantum computation is similar to the computa-
tional errors (e.g., [1, 3, 4, 18]) dealt with in quantum computational cryptogra-
phy and quantum algorithm designing. Remember that ÕAy

may choose ampli-
tudes {αy,r,s}r,s, adversely, not favorably.

Similar to the notion of a classically received word in coding theory, we in-
troduce our terminology concerning an oracle which represents a “quantum-
computationally” corrupted word.

Definition 3 (quantum-computationally corrupted word). Fix n ∈ N.
We say that an oracle Õ represents a quantum-computationally (or quantumly)
corrupted word if Õ satisfies Õ|r〉|u〉|t〉 =

∑

s∈Σ αr,s|r〉|u ⊕ s〉|t⊕ φr,s〉 for cer-
tain unit vectors |φr,s〉 depending only on (r, s). For convenience, we identify a
quantumly corrupted word with its representing oracle.

To lead to the desired contradiction, we wish to invert f by “decoding” x from
the quantumly corrupted word Õ. Notice that the entity (1/M(n))

∑

r∈In
|αr,Cx(r)|2

yields the probability of A’s computing Cx(·) correctly on average. This en-
tity also indicates “closeness” between a codeword Cx and its quantumly cor-
rupted word Õ. In classical list-decoding, for any given oracle Õ that represents
a received word and for any error bound e, we need to output a list that in-
clude all messages x such that the relative Hamming distance between codeword
Cx and its received word Õ is at most 1 − e (i.e., Prr∈In

[Õ(r) = Cx(r)] ≥
1 − e). By setting pr,s = 1 if Õ(r) = s and 0 otherwise, the behavior of Õ

can be viewed in a unitary style as Õ|r〉|0〉 =
∑

r∈In
pr,s|r〉|s〉. The aforemen-

tioned entity (1/M(n))
∑

r∈In
|αr,Cx(r)|2 equals the relative Hamming distance,

Prr∈In
[Õ(r) = Cx(r)], in a classical setting. For our convenience, we name this

entity the presence of Cx in Õ and denote it by PreÕ(Cx). The requirement for
the error rate of classical list-decoding is rephrased as PreÕ(Cx) ≥ 1 − e.

Here, we formulate a quantum version of a classical list-decoding problem us-
ing our notions of quantumly corrupted words and presence. Let C = {Cx}x∈Γ∗

be any (M(n), n, d(n))q(n)-code.

Quantum List Decoding Problem (QLDP) for Code C
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Input: a message length n, an error bias ε, and a confidence parameter δ.
Implicit Input: an oracle Õ representing a quantumly corrupted word.
Output: with success probability at least 1 − δ, a list of messages that
include all messages x ∈ Γn such that PreÕ(Cx) ≥ 1/q(n) + ε; that is,

codewords Cx have “slightly” higher presence in Õ than the average.

For any given quantumly corrupted word Õ, how many messages x satisfy
the required inequality PreÕ(Cx) ≥ 1/q(n)+ ε? An upper bound on the number
of such messages directly follows from a nice argument of Guruswami and Sudan
[15], who gave a q-ary extension of Johnson bound using a geometric method.

Lemma 1. Let n be any message length. Let ε(n), q(n), d(n), and M(n) satisfy

that ε(n) > `(n) =def (1 − 1/q(n))
√

1 − d(n)/M(n) (1 + 1/(q(n) − 1)). For any

(M(n), n, d(n))q(n)-code C and for any quantumly corrupted word Õ, there are
at most J(n) =def

min



M(n)(q(n) − 1),
d(n) (1 − 1/q(n))

d(n) (1 − 1/q(n)) + M(n)ε(n)2 − M(n) (1 − 1/q(n))2

ff

messages x ∈ Γn such that PreÕ(Cx) ≥ 1/q(n) + ε(n). If ε(n) = `(n), then the
above bound is replaced by 2M(n)(q(n) − 1) − 1.

The proof of Lemma 1 is obtained by an adequate modification of the proof in

[15]. As a simple example, consider the q-ary Hadamard code H(q) = {H(q)
x }x∈Γn

,
which is a (qn, n, qn−qn−1)q-code. Lemma 1 guarantees that, for any quantumly

corrupted word Õ, there are only at most (1 − 1/q)
2
(1/ε(n)) messages x that

satisfy the inequality PreÕ(H
(q)
x ) ≥ 1/q + ε(n).

Definition 4 (quantum list-decoding algorithm). Let C be any code. Any
quantum algorithm A that solves QLDP for C is called a quantum list-decoding
algorithm for C. If A further runs in time polynomial in (n, 1/ε, 1/δ), it is called
a polynomial-time quantum list-decoding algorithm for C.

To complete our argument (which we started at the beginning of this section),
assume that there exists a polynomial-time quantum list-decoding algorithm
that solves QLDP for Cx(·). Such a list-decoder may output with high proba-
bility all possible candidates x′ of required presence. Since we can check that
x′ ∈ f−1(x) in polynomial time, the list-decoder gives rise to a polynomial-time
quantum algorithm that inverts f with high probability. Clearly, this contradicts
the quantum one-wayness of f . Therefore, we obtain the following key theorem
that bridges between quantum hardcores and quantum list-decoding.

Theorem 1. Let C = {Cx}x∈Γ∗ be any (M(n), n, d(n))q(n)-code, which is also

polynomial-time computable, where dlogq(n) M(n)e ∈ nO(1) and q(n) ∈ nO(1).
If there exists a polynomial-time quantum list-decoding algorithm for C for any
sufficiently large number n, then C(x, r) is a quantum hardcore function for any
quantum one-way function of the form f ′(x, r) = (f(x), r) with |x| = dlog2 |Γn|e
and |r| = dlogq(n)M(n)e.
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4 How to Construct Quantum List-Decoding Algorithms

Due to Theorem 1, it suffices to solve QLDP for any given candidate of quantum
hardcore functions. Our goal is now to find how to construct a polynomial-time
quantum list-decoder for a wide range of codes. Classically, however, it seems
hard to design such list-decoding algorithms in general. Nevertheless, the robust
nature of quantum computation enables us to prove that, if we have a decoding
algorithm A from a unique quantum state (called a codeword state), then we
can construct a list-decoding algorithm by calling A as a black-box oracle. The
notion of such codeword states plays our central role as a technical tool in proving
new quantum hardcores.

Hereafter, we assume the arithmetic (multiplication, addition, subtraction,
etc.) on the finite field Fq (of numbers 0, 1, . . . , q−1), where q is a prime. Denote
by ωq the complex number e2πi/q .

Definition 5 (k-shuffled codeword state). Let C = {Cx}x∈Γn
be any

(M(n), n)q(n)-code and let k be any number in Fq(n). A k-shuffled codeword
state for codeword Cx that encodes a message x ∈ Γn is the quantum state

|C(k)
x 〉 =

1
p

M(n)

X

r∈In

ω
k·Cx(r)
q(n) |r〉.

In particular when k = 1, we write |Cx〉 instead of |C(1)
x 〉.

Remark: Codeword states for binary codes have appeared implicitly in several
important quantum algorithms. For instance, the Grover search algorithm pro-
duces such a codeword state after the first oracle call. In the quantum algorithms
of Bernstein and Vazirani [6], of Deutch and Jozsa [9], and of van Dam, Hallgren,
and Ip [20], such codeword states were generated to obtain their desired results.

We consider how to generate the k-shuffled codeword state |C (k)
x 〉 for each

q-ary codeword Cx with help of any quantumly corrupted word Õ. Note that
it is easy to generate |Cx〉 from the oracle OCx

that represents Cx without any
corruption (as the “standard” oracle). Here, we claim that there is a generic
quantum algorithm that generates codeword states for any q-ary code C. For
convenience, write F

+
q = Fq − {0} throughout this paper.

Lemma 2. There exists a quantum algorithm A that, for any quantumly cor-
rupted word Õ, for any message x ∈ Γn, and for any k ∈ F

+
q , generates the

quantum state
|ψk〉 = κ(k)

x |k〉|C(k)
x 〉|τ〉 + |Λ(k)

x 〉

from the initial state |ψ(0)
k 〉 = |k〉|0dlogq(n) M(n)e〉|0〉|0l(n)〉 with only two queries to

Õ and Õ−1, where |τ〉 is a fixed basis vector, and κ
(k)
x is a complex number, and

|Λ(k)
x 〉 is a vector satisfying (〈k|〈C(k)

x |〈τ |)|Λ(k)
x 〉 = 0 with the following condition:

for every x ∈ Γn, there exists a number k ∈ F
+
q with the inequality |κ(k)

x | ≥
(q/(q − 1)) (PreÕ(Cx) − 1/q).
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Isolating all individual messages x in Lemma 2 simultaneously requires a
certain type of “orthogonality,” which we call phase-orthogonality.

Definition 6 (phase-orthogonal code). A code C = {Cx}x∈Γn
is called k-

shuffled phase-orthogonal if, for any distinct messages x, y ∈ Γn, 〈C(k)
x |C(k)

y 〉 =

0. If 〈C(k)
x |C(k)

y 〉 = 0 holds for every number k ∈ F
+
q , the code C is simply called

phase-orthogonal.

Note that phase-orthogonality for a binary code, in particular, is naturally
induced from the standard inner product of two codewords when we translate
their binary symbols {0, 1} into {+1,−1}.

It is not difficult to prove that, for any pair (Cx, Cy) of codewords in a
given (M(n), n, d(n))q(n)-code C, we have |〈Cx|Cy〉| ≥ 1 − 2 · d(Cx, Cy)/M(n).
In particular, a binary code C satisfies that 〈Cx|Cy〉 = 1 − 2 · d(Cx, Cy)/M(n).

Assume that {Cx}x∈Γn
is a k-shuffled phase-orthogonal code. Such orthogo-

nality makes it possible to prove the following theorem using Lemma 2.

Theorem 2. Let {Cx}x∈Γn
be any phase-orthogonal code. There exists a quan-

tum algorithm A that, starting with |φ(0)〉 = |0〉|0dlogq(n) M(n)e〉|0〉|0l(n)〉 with
any quantumly corrupted word Õ, A makes only two queries to Õ and Õ−1

and generates the state |ψ′〉 = (1/
√
q − 1)

∑

k∈F
+
q

∑

x∈Γn
κ

(k)
x |k〉|C(k)

x 〉|τ〉 + |Λ′〉,
such that, for every message x ∈ Γn, there exists a number k ∈ F

+
q satisfying

|κ(k)
x | ≥ (q/(q − 1)) (PreÕ(Cx) − 1/q), where (〈k|〈C(k)

x |〈τ |)|Λ′〉 = 0.

Now, we give the proof of our key lemma, Lemma 2. Notice that Lemma
2 is true for any q(n)-ary code. The binary case (q = 2) was implicit in [1];
however, our argument for the general q(n)-ary case is more involved with the
introduction of “k-shuffledness.”

Proof Sketch of Lemma 2. First, we describe our codeword-state generation
algorithm A in detail. Fix x ∈ Γn and k ∈ F

+
q and let m = dlogq(n)M(n)e.

(1) Start with the initial state: |ψ(0)
k 〉 = |k〉|0m〉|0〉|0l〉.

(2) Apply the Fourier transformation (Fq)
⊗m over Fq to the second register. We

then obtain the superposition |ψ(1)
k 〉 = (1/

√
M)

∑

r∈In
|k〉|r〉|0〉|0d〉.

(3) Invoke Õ using the last three registers. The resulting state is |ψ(2)
k 〉 =

(1/
√
M)

∑

r∈In

∑

z∈Fq
αr,z|k〉|r〉|z〉|φr,z〉.

(4) Encode the information on the first and the third resisters into “phase” so

that we obtain the state |ψ(3)
k 〉 = (1/

√
M)

∑

r∈In

∑

z∈Fq
ωk·zq αr,z|k〉|r〉|z〉|φr,z〉.

(5) Apply Õ−1 to the last three registers. Let |ψ(4)
k 〉 be the resulting state (I ⊗

Õ−1)|ψ(3)
k 〉.

(6) The state |ψ(4)
k 〉 can be expressed in the form κ

(k)
x |k〉|C(k)

x 〉|τ〉+ |Λ(k)
x 〉, where

|τ〉 = |0〉|0l〉 and (〈k|〈C(k)
x |〈τ |)|Λ(k)

x 〉 = 0. The amplitude κ
(k)
x equals PreÕ(Cx)+

(1/M)
∑

r∈In

∑

z:z 6=Cx(r) ω
k(z−Cx(r))
q |αr,z|2.
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The non-trivial part of the lemma is to prove the lower-bound of |κ(k)
x |. For

each j ∈ Fq, let βj = (1/M)
∑

r∈In
|αr,Cx(r)+j |2. By letting χ

(k)
x =

∑

j∈F
+
q
ωk·jq βj ,

κx can be expressed as κ
(k)
x = PreÕ(Cx)+Re(χ

(k)
x )+Im(χ

(k)
x ). To estimate |κ(k)

x |,
it thus suffices to prove that, for each x ∈ Γn, there exists a number k ∈ F

+
q

such that Re(χ
(k)
x ) ≥ −(1/(q − 1)) (1 − PreÕ(Cx)). Since |κ(k)

x |2 = (PreÕ(Cx) +

Re(χ
(k)
x ))2 + (Im(χ

(k)
x ))2, the lemma immediately follows.

To complete the proof, we employ an “adversary” argument. Now, assume

that our adversary has cleverly chosen Õ to make |κ(k)
x |2 the smallest for every

k ∈ F
+
q . We argue that the adversary’s best choice is to set βj = β̂/(q − 1) for

any j ∈ F
+
q , where β̂ =

∑

j∈F
+
q
βj . This follows directly from the claim below.

The proof of the claim is found in Appendix. Let χ̂x =
∑

k∈F
+
q
χ

(k)
x .

Claim 1 1. χ̂x = −β̂.
2. For his best strategy, the adversary can be assumed to have chosen {βj}j∈F

+
q

so that βj = βq−j for any j ∈ F
+
q and Im(χ

(k)
x ) = 0.

Since βj = β̂/(q − 1) for all j ∈ F
+
q and β̂ = 1 − β0, it easily follows that

Re(χ
(k)
x ) ≥ −(1/(q − 1)) (1 − PreÕ(Cx)), as required. 2

The following theorem shows how to convert a codeword-state decoder (i.e., a

quantum algorithm that decodes x from |C(k)
x 〉 for any k) into a quantum list-

decoder. This complements Theorem 2.

Theorem 3. Let C = {Cx}x∈Γn
be any phase-orthogonal (M(n), n, d(n))q(n)-

code. Let k ∈ F
+
q and M ′(n) ≥ 0. Let Un be any quantum algorithm that, for each

fixed x ∈ Γn, decodes x from a k-shuffled codeword state |C (k)
x 〉 ∈ HM(n) with

probability ≥ 1−ξ(n). Let Vn be any quantum algorithm that generates a quantum
state |C̃〉 consisting of a dlogM(n)e-qubit approximation of the codeword state
together with ancilla dlogM ′(n)e qubits generated from a quantumly corrupted

word Õ with success probability η(n). Assume that |(〈C (k)
x |〈0dlogM ′(n)e|)|C̃〉| ≥

ζ(n) for every x ∈ Γn satisfying PreÕ(Cx) ≥ 1/q(n) + ε(n). If ξ(n) < ζ2(n)/2,
then there exists a quantum list-decoding algorithm Wn for C of list size at most

d(η(n)(ζ2(n)/2 − ξ(n)))−1(log J(n) + log(1/δ))e,

where J(n) is from Lemma 1. Moreover, if Un and Vn are polynomial-time com-
putable and (ζ2(n)/2)− ξ(n) and η(n) are polynomially-bounded functions, then
Wn is a polynomial-time quantum list-decoding algorithm for C.

Proof Sketch. Given (n, ε, δ) and Õ as input, the following algorithm solves
QLDP for each fixed n ∈ N. Let m = dlogM(n)e and m′ = dlogM ′(n)e.
(1) Run algorithm Vn to obtain the state |C̃〉 with probability at least η.
(2) Apply algorithm Un to the first m qubits of |C̃〉 as well as an appropriate
number of ancilla qubits, say c. We then obtain the state Un|C̃〉|0c〉.
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(3) Measure the obtained state and add its measured result to the list of message
candidates.
(4) Repeat Steps (1)–(3) d(log J(n) + log(1/δ))/ee times and output the list,

where e = η(1 − ξ −
√

1 − ζ2) ≥ η(n)(ζ2(n)/2 − ξ(n)).

We next claim the following, whose proof is in Appendix. Let B
(k)
ε = {x ∈

Γn | PreÕ(C
(k)
x ) ≥ 1/q + ε}. Recall that |B(k)

ε | ≤ J(n).

Claim 2 1. The probability that x is observed when measuring the quantum
state obtained after Step (2) on the computational basis is at least e.

2. If we perform Steps (1)–(3) de−1(log |B(k)
ε |+log(1/δ))e times, then we obtain

a list that includes all messages in B
(k)
ε with probability at least 1 − δ.

Since log |B(k)
ε | ≤ dlog |Γn|e = n, we obtain the desired list at Step (4) with

probability at least 1 − δ by the above claim. 2

At the end of this section, we show a general theorem, in which “almost
phase-orthogonal” codes are quantumly list-decodable. Our argument uses the
notion of pretty-good measurement [10, 16].

Theorem 4. let k ∈ Fq and let C be any (M(n), n, d(n))q code such that there

exists a constant ξ ∈ [0, 1/2] satisfying |〈C(k)
x |C(k)

y 〉| ≤ ξ for any distinct pair

x, y ∈ Γn. Let S be the matrix of the form (|C(k)
0 〉, |C(k)

1 〉, . . . , |C(k)
N−1〉). If ξ < 2ε2

and rank(S) = N , then there exists a quantum list-decoding algorithm for C.

Proof Sketch. From Lemma 2 and Theorem 3, it suffices to construct a unitary
operator U whose success probability |〈z|U |Cz〉|2 of decoding z from |Cz〉 is at
least 1 − ξ whenever |〈Cx|Cy〉| ≤ ξ for any distinct x, y ∈ Γ and rank(S) = N .

We want to design U following an argument of pretty good measurement
(known also as square-root measurement or least-squared measurement) [10, 16].
Note that, since rank(S) = N , the matrices S†S and SS† share the same eigen-
values, say λ0, . . . , λN−1. Perform singular-value decomposition and we obtain
S = PTQ for M - and N -dimensional unitary operators P and Q, respectively,
and a diagonal matrix T = diag(

√
λ0,

√
λ1, . . . ,

√

λN−1, 0, . . . , 0). We therefore
have 〈z|MUS|z〉N = 〈z|MUPTQ|z〉N , where |z〉M and |z〉N are respectively an
M -dimensional and an N -dimensional vectors.

The desired matrix U is defined as U = RP †, where R =
(

Q†
0

0 I

)

. It imme-

diately follows that 〈z|MUS|z〉N = 〈z|MRTQ|z〉N = 〈z|NQ†T ′Q|z〉N with the
diagonal matrix T ′ = diag(

√
λ0,

√
λ1, . . . ,

√

λN−1). The success probability of

decoding z from |C(k)
z 〉 is therefore lower-bounded by |〈z|Q†T ′Q|z〉|2 ≥ |λmin|,

where λmin denotes min{|λ1|, |λ2|, . . . , |λN−1|}.
The remaining task is to prove the following claim.

Claim 3 |λmin| ≥ 1 − ξ.

We leave the proof of this claim in Appendix. This completes the proof. 2
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5 New Quantum Hardcore Functions

Finally, as our main result, we present three new quantum hardcore functions,
two of which are unknown to be classically hardcores. We explain them as codes
and give polynomial-time list-decoding algorithms for them. From Lemma 2 and
Theorem 3, we only need to build their codeword-state decoders.

Proposition 1. There exist polynomial-time quantum list-decoding algorithms
for the following codes: letting p(n), q(n) be any functions from N to the primes,

1. The q(n)-ary Hadamard code H(q) with q(n) ∈ O(log n), whose codeword is

defined as H
(q)
x (r) =

∑2n−1
r=0 xi · ri mod q(n).

2. The shifted Legendre symbol code SLSp, which is a (p(n), n)2-code with n =
dlog p(n)e, whose codeword is defined by the Legendre symbol5 as SLSp

x(r) = 1
if ( x+rp(n) ) = −1, and SLSp

x(r) = 0 otherwise.

3. The pairwise equality code PEQ for even n ∈ N, which is a (2n, n)2-code,

whose codeword is PEQx(r) = ⊕n/2i=0 EQ(xixi+1, riri+1), where EQ denotes
the equality predicate.

Combining Proposition 1 and Theorem 1, we obtain the quantum hardcore
property of all the aforementioned codes.

Theorem 5. The functions H(q), SLSp , and PEQ are all quantum hardcore
functions for any quantum one-way function of the form f ′(x, r) = (f(x), r),
where f is an arbitrary quantum one-way function.

Remark: Damg̊ard [8] introduced the so-called Legendre generator, which pro-
duces a bit sequence whose rth bit equals SLSp(r). He asked if his generator
possesses the classical hardcore property. (This is also listed as an open prob-
lem in [13].) Our result proves the “quantum” hardcore property of Damg̊ard’s
generator for any quantum one-way function.

Proof Sketch of Proposition 1. It suffices to provide a codeword decoder for
each given codeword. See Appendix for more details.

(1) To decode x from the codeword state |H(q)〉, we simply apply the Fourier
transformation Fq over Fq(n) and then extract x deterministically.

(2) Our codeword-state decoder is obtained by an appropriate modification
of a quantum algorithm of van Dam, Hallgren, and Ip [20].

(3) Consider the circulant Hadamard transformation HC :

HC =def

(

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

)

= F−1
4

(

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)

F4,

where F4 is the quantum Fourier transformation over F4. We can obtain x from

the codeword state |PEQx〉 by applying U = H
⊗n/2
C . 2

5 Note that (x

p
) = −1 iff x is a quadratic non-residue modulo p.
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Appendix: Proofs of Three Claims and a Proposition

We present the detailed proofs of the three claims and the proposition described
in the main text.

Proof of Claim 1. (1) This claim comes from the following simple calculation:

χ̂x =
∑

k∈F
+
q

∑

j∈F
+
q

ωkjq βj =
∑

j∈F
+
q





∑

k∈F
+
q

ωkjq



βj

=
∑

j∈F
+
q





∑

k∈F
+
q

ωkq



βj =
∑

j∈F
+
q

(−1)βj

= −
∑

j∈F
+
q

βj = −β̂.

since 1 +
∑

k∈F
+
q
ωkq = 0. This completes the proof of the claim.

(2) Let [m,n]Z = {m,m + 1,m + 2, . . . , n} for any pair (m,n) of integers

with m ≤ n. This claim relies on the following facts: Re(ωkjq ) = Re(ω
k(q−j)
q ) and

also Im(ωkjq ) = −Im(ω
k(q−j)
q ) for any j ∈ F

+
q . For any given {βj}j∈Fq

, define
β′

0 = β0 and β′
j = (βj + βq−j) /2 for each j ∈ F

+
q . Clearly, β′

j = β′
q−j holds. Let

χ̃
(k)
x =

∑

j∈F
+
q
ωkjq β

′
j . By its definition, we have

Re(χ(k)
x ) =

∑

j∈[1,bq/2c]Z

(

Re(ωkjq )βj + Re(ωk(q−j)q )βq−j

)

=
∑

j∈[1,bq/2c]Z

Re(ωkjq ) (βj + βq−j) =
∑

j∈[1,bq/2c]Z

Re(ωkjq )
(

β′
j + β′

q−j

)

=
∑

j∈F
+
q

Re(ωkjq )β′
j = Re(χ̃(k)

x ).

Moreover, since β′
j = β′

q−j , we obtain:

Im(χ̃(k)
x ) =

∑

j∈[1,bq/2c]Z

(

Im(ωkjq )β′
j + Im(ωk(q−j)q )β′

q−j

)

=
∑

j∈[1,bq/2c]Z

Im(ωkjq )
(

β′
j − β′

q−j

)

= 0.

Therefore, {β′
j}j∈Fq

makes the value |κ(k)
x | smaller than (or at least as small as)

{βj}j∈Fq
. For these β′

j ’s, χ̃
(k)
x is a real number.

By re-naming β′
j as βj , we have βj = βq−j for all j ∈ F

+
q and χ

(k)
x = Re(χ

(k)
x ).

Since χ̂x is constant, by the first claim, the adversary must choose {βj}j so that

χ
(k)
x = χ̂x/(q − 1) because, otherwise, we can always find an appropriate k such
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that χ
(k)
x > χ̂x/(q− 1). Clearly, such a choice is made by setting βj = β̂/(q− 1)

for every j ∈ F
+
q . 2

Proof of Claim 2. (1) Let ` be the probability of observing x at Step (2).
Assume that Step (1) of our algorithm succeeds. The trace distance between

U |C(k)
x 〉|0m′〉|0k〉 and U |C̃〉|0k〉 equals

√

1 − |〈Cx|〈0m′ |C̃〉|2 ≤
√

1 − ζ2. Let D

and D̃ be probability distributions of obtaining x ∈ Γn by measuring the state

U |C(k)
x 〉|0m′〉|0k〉 and U |C̃〉|0k〉, respectively, on the computational basis. Since

the total variation distance between D and D̃ is at most the trace distance
between |C(k)

x 〉|0m′〉 and |C̃〉), we obtain the inequality (1/2)
∑

y∈Γn
|D(y) −

D̃(y)| ≤
√

1 − ζ2, where D(·) and D̃(·) denote the density functions of D and

D̃, respectively. Moreover, we have

∑

y∈Γn

|D(y) − D̃(y)| = |D(x) − D̃(x)| +
∑

y 6=x

|D(y) − D̃(y)| = 2|1 − ξ − D̃(x)|.

By combining the above two estimations, we obtain the bound |1− ξ − D̃(x)| ≤
√

1 − ζ2, which implies D̃(x) ≥ 1−ξ−
√

1 − ζ2. Since the state |C̃〉 is generated

at Step (1) with probability η, we finally conclude that ` ≥ η · D̃(x) = e.

(2) Assuming that Steps (1)–(3) are repeated t times, we wish to prove that

t ≥ de−1(log |B(k)
ε | + log (1/δ))e. Since we obtain x ∈ B

(k)
ε through these steps

with probability at least e, for each fixed x0 ∈ B
(k)
ε , the probability of obtaining

no x0 within t samples is upper-bounded by (1−e)t. Therefore, with probability

at most |B(k)
ε |(1 − e)t, there exists an x ∈ B

(k)
ε for which t samples contains no

such x.

Since the probability of obtaining the desired list is at least 1−δ, we demand

the inequality |B(k)
ε |(1 − e)t ≤ δ to hold. This yields the desired bound t ≥

e−1(log |B(k)
ε | + log (1/δ)). 2

Proof of Claim 3. We estimate the value |λmin| as follows. Let an N×N matrix
G = S†S = (ξi,j)i,j , where ξi,j = 〈Ci|Cj〉. Since G is Hermitian and rank(G) =

N , the spectral decomposition makes us express G as
∑N−1

i=0 λi|ψi〉〈ψi| with a
certain orthonormal basis {|ψi〉}i and its corresponding eigenvalues λi. We then

have min‖|ψ〉‖=1 |〈ψ|G|ψ〉| = min‖|ψ〉‖=1

∣

∣

∣

∑N−1
i=0 λi|〈ψi|ψ〉|2

∣

∣

∣ = |λmin|.

Note that, if |ψ〉 =
∑N−1
i=0 αi|i〉 for complex numbers αi’s, the value |〈ψ|G|ψ〉|

is

|〈ψ|G|ψ〉| =

∣

∣

∣

∣

∣

∣

1 +
∑

i6=j

ξi,jα
∗
iαj

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 − ξ +
∑

i

ξ|αi|2 +
∑

i6=j

ξi,jα
∗
iαj

∣

∣

∣

∣

∣

∣

.
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Since G is a real symmetric matrix, we may assume that αi ∈ R for any i ∈
{0, 1, . . . , N − 1}. Hence, we have

min
‖|ψ〉‖=1

|〈ψ|G|ψ〉| = min
‖|ψ〉‖=1

∣

∣

∣

∣

∣

∣

1 − ξ +
∑

i<j,ξi,j≥0

(

ξα2
i + 2|ξi,j |αiαj + ξα2

j

)

+
∑

i<j,ξi,j<0

(

ξα2
i − 2|ξi,j |αiαj + ξα2

j

)

∣

∣

∣

∣

∣

∣

= min
‖|ψ〉‖=1

∣

∣

∣

∣

∣

∣

1 − ξ +
∑

i<j,ξi,j≥0

(

|ξi,j |(αi + αj)
2 + (ξ − |ξi,j |)(α2

i + α2
j )

)

+
∑

i<j,ξi,j<0

(

|ξi,j |(αi − αj)
2 + (ξ − |ξi,j |)(α2

i + α2
j )

)

∣

∣

∣

∣

∣

∣

≥ 1 − ξ.

We therefore obtain |λmin| ≥ 1 − ξ, as required. 2

Proof of Proposition 1. We wish to give codeword-state decoders.
(1) The simple case q = 2 was implicitly proven by Bernstein and Vazirani

[6] and also by Adcock and Cleve [1]. The general case q(n) ≥ 2 follows from
Theorem 2 with an appropriate use of quantum Fourier transformation over Fq .

(2) Since |SLSp

x〉 and (1/
√

p(n))
∑

r(
x+r
p(n) )|r〉 are close enough, we can apply

a quantum algorithm of van Dam, Hallgren, and Ip [20] for the shifted Legendre
symbol to obtain −x with high probability, say at least 1−O(1/p(n)). We then
transform −x to x deterministically. Overall, we can extract x from |SLSp

x〉 with
probability 1−O(1/p(n)). Since 1/p(n) is exponentially small in n, the condition
of Theorem 3 is met for all sufficiently large n’s. Clearly, our algorithm runs in
time polynomial in log p(n).

(3) Note that it is easy to implement Hc using the quantum Fourier transfor-
mation as well as the phase-inversion operator. A key observation is the following
equation:

1√
2n

∑

r=0

(−1)PEQx(r)|r〉

=
1√
4

∑

r1,r2

(−1)EQ(x1x2,r1r2)|r1r2〉 ⊗ · · · ⊗ 1√
4

∑

rn−1,rn

(−1)EQ(xn−1xn,rn−1rn)|rn−1rn〉.

Since

Hc





1√
4

∑

ri,ri+1

(−1)EQ(xixi+1,riri+1)|riri+1〉



 = |xixi+1〉,

we can easily obtain x from |PEQx〉 using Hc. 2
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