
Quantum Hardcore Functions by

Complexity-Theoretical Quantum List Decoding∗

Akinori Kawachi Tomoyuki Yamakami

Graduate School of Information Science and ERATO-SORST Quantum Computation and Information

Engineering, Tokyo Institute of Technology Project, Japan Science and Technology Agency

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan 5-28-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

Hardcore functions have been used as a technical tool to construct secure cryptographic systems;
however, little is known on their quantum counterpart, called quantum hardcore functions. With a
new insight into fundamental properties of quantum hardcores, we present three new quantum hardcore
functions for any (strong) quantum one-way function. We also give a “quantum” solution to Damg̊ard’s
question (CRYPTO’88) on a classical hardcore property of his pseudorandom generator, by proving
its quantum hardcore property. Our major technical tool is the new notion of quantum list-decoding of
“classical” error-correcting codes (rather than “quantum” error-correcting codes), which is defined on the
platform of computational complexity theory and computational cryptography (rather than information
theory). In particular, we give a simple but powerful criterion that makes a polynomial-time computable
classical block code (seen as a function) a quantum hardcore for all quantum one-way functions. On
their own interest, we construct elegant quantum list-decoding algorithms for classical block codes whose
associated quantum states (called codeword states) form a nearly phase orthogonal basis. In particular,
we prove that circulant codes that enjoy a multiplicative property are quantum list-decodable.

keywords: quantum hardcore, quantum one-way, quantum list-decoding, codeword state, phase orthog-
onal, presence, Johnson bound
AMS Subject Classifications: 14G50, 81P68, 94A60

1 From Hardcores to List Decoding

Modern cryptography heavily relies on computational hardness and pseudorandomness. One of its key
notions is a hardcore bit for a one-way function—a bit that could be determined from all the information
available to the mighty adversary but still looks random to any “feasible” adversary. A hardcore function
transforms the onewayness into pseudorandomness by generating such hardcore bits of a given one-way
function. Such a hardcore function is a crucial element of a construction of a pseudorandom generator as
well as a bit commitment protocol from a one-way permutation. A typical example is the inner product mod
two function GLx(r) of Goldreich and Levin [15], computing the bitwise inner product modulo two, 〈x, r〉,
which constitutes a hardcore bit for any (strong) one-way function.† Since GLx(r) equals the rth bit of the

codeword HAD(2)
x = (〈x, 0n〉, 〈x, 0n−11〉, · · · , 〈x, 1n〉) of message x of a binary Hadamard code, Goldreich

and Levin essentially gave a polynomial-time list-decoding algorithm for this Hadamard code. In the recent
literature, list-decoding has kept playing a key role in a general construction of hardcores [2, 21].

Thirteen years later, the “quantum” hardcore property (i.e., a hardcore property against any feasible
“quantum” adversary) of GLx(·) was shown by Adcock and Cleve [1], who implicitly gave a simple and
efficient quantum algorithm that recovers x from the binary Hadamard code by exploiting the robust nature
of a quantum algorithm of Bernstein and Vazirani [6]. The simplicity of the proof of Adcock and Cleve
can be best compared to the original proof of Goldreich and Levin, who employed a rather complicated
algorithm with powerful techniques: self-correction property of the aforementioned Hadamard code and

∗An extended abstract appeared in the Proceedings of the 33rd International Colloquium on Automata, Languages and
Programming (ICALP 2006), Lecture Notes in Computer Science, Vol.4052 (Part II), pp.216–227. Venice, Italy. July 10–14,
2006.

†Literally speaking, this statement is slightly misleading. To be more accurate, such a hard-core function concerns only the
one-way function of the form f ′(x, r) = (f(x), r) with |r| = poly(|x|) induced from an arbitrary strong one-way function f . See,
e.g., [14] for a detailed discussion.

1

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 20 (2006)

ISSN 1433-8092

pairwise independent sampling. This highlights a significant role of robust quantum computation in list-
decoding (and thus hardcores); however, it has been vastly unexplored until our work except for a quantum
decoder of Barg and Zhou [5] for simplex codes. No other quantum hardcore has been proven so far. The
efficiency of robust quantum algorithms with access to biased oracles has been also discussed in a different
context [3, 8, 23].

As our main result, we present three new quantum hardcore functions: Hadamard codes HAD(q), shifted
Legendre symbol codes SLSp, and pairwise equality codes PEQ (see Section 7 for their definitions), for any
(strongly) quantum one-way function. The latter two of them are not yet known to be classical hardcores
(see, e.g., [17]). The quantum hardcore proof of SLSp, in particular, uses a property of circulant matrices.

Our argument proceeds as follows. Suppose that a target function h is not any quantum hardcore for
a certain quantum one-way function f ′ of the form f ′(x, r) = (f(x), r). We reduce proving the quantum
hardcore property to solving the QLDP. We then reduce constructing a quantum list-decoder to constructing
a quantum codeword-state decoder. Using this decoder, we can construct a polynomial-time a quantum
algorithm that inverts f ′. This contradicts the one-wayness of f ′ and hence proves the quantum hardcore
property of h, as requested.

In particular, we prove the quantum hardcore property of Damg̊ard’s pseudorandom generator [10]. This
gives a “quantum” solution to his question of whether his generator has the classical hardcore property (this is
also listed as an open problem in [17]). Our proof technique exploits the quantum list-decodability of classical
error-correcting codes (rather than quantum error-correcting codes). For our purpose, we formulate the
notion of complexity-theoretical quantum list-decoding as a message recovery with quantum-computational
errors rather than information-theoretical errors which are usually associated with transmission errors. This
notion naturally expands the classical framework of list-decoding. Our goal is to present fast quantum
list-decoding algorithms for the aforementioned codes.

Proving the quantum hardcore property of a given code C (seen as a function) corresponds to solving the
quantum list-decoding problem (QLDP) for C via direct access to a quantum-computationally (or quantumly)
corrupted codeword, which is given as a black-box oracle. The task of a quantum list-decoder is simply to list
all message candidates whose codewords match the quantumly-corrupted codeword within a certain error
rate bound.

One of the key concepts is quantumly corrupted codewords, which express the behaviors of (possibly)
faulty quantum encoders. In classical list-decoding, a “classically” corrupted codeword is generated by a
faulty channel as a result of its transmission error. Our scenario arises naturally if we treat transmission error
as a faulty encoding process of messages to codewords. Particularly, it is useful to treat in this way when we
seek applications of list-decoding in computational complexity. Another key notion of this paper is a useful
quantum state, called a (k-shuffled) codeword state, which uses quantum “phase” to store the information
on a given codeword. Similar states have appeared to play a key role in several quantum algorithms in
the recent literature [6, 12, 18, 28]. In our key lemmas, we show (i) how to generate such a codeword
state from any (even adversarial) quantumly corrupted codeword and (ii) how to convert a codeword-state
decoder (i.e., a quantum algorithm that recovers a message x from a codeword state which is given as an
input) to a quantum list-decoding algorithm working with a quantumly corrupted codeword. The robust
construction made in the course of our proofs also provides a useful means, known as “hardness” reduction,
which is often crucial in the security proof of a quantum cryptosystem. Because our purpose is to prove
quantum hardcores, we need to discuss only codes whose codeword size is roughly an exponential in the
size of messages. For such codes, using pretty good measurement [13, 20], we can present a generic way of
proving their quantum list-decodability if the set of corresponding codeword states forms a “nearly” phase-
orthogonal basis. This construction method is general but non-constructive. In certain cases, we can give
explicitly a quantum list-decoding algorithm. An important example is nearly phase-orthogonal circulant
codes that enjoys a certain multiplicative property. The design of our quantum list-decoder for these codes
elaborates a quantum algorithm of van Dam, Hallgren, and Ip [28].

Classical list-decodable codes have provided numerous applications in classical computational complexity
theory, including proving hardcores for any one-way function, hardness amplification, and derandomization
(see, e.g., [27]). Because our formulation of quantum list-decoding naturally extends classical one, many
classical list-decoding algorithms work in our quantum setting as well. This will make our quantum list-
decoding a powerful tool in quantum complexity theory and quantum computational cryptography.

2

2 Quantum Hardcore Functions

We briefly give the formal definitions to the core concepts of this paper—quantum one-way functions and
quantum hardcore functions. We assume the reader’s basic knowledge on quantum computation. Our
underlying computation model is quantum Turing machines [6, 29] and quantum circuits [30]. Informally,
we use the term “quantum algorithm” to describe a description of a certain unitary operator, possibly
together with a specific projection measurement at the end of a computation. For convenience, the notation
A(x) for a quantum algorithm A and an input x denotes a random variable representing the outcome of the
execution of A on input x.

We begin with the notion of quantum one-way functions, which straightforwardly expands the classical
one-way functions introduced first by Diffie and Hellman [11] in 1976. Let N denote the set of all nonnegative
integers.

Definition 2.1 (quantum one-wayness) A function f from {0, 1}∗ to {0, 1}∗ is called (strongly) quan-
tum one-way if (i) there exists a polynomial-time deterministic algorithm G computing f and (ii) for any
polynomial-time quantum algorithm A, for any positive polynomial p, and for any sufficiently large numbers
n ∈ N,

Probx∈{0,1}n,A [f(A(f(x), 1n)) = f(x)] <
1

p(n)
,

where x is uniformly distributed over {0, 1}n and the subscript A is a random variable determined by
measuring the final state of A in the computational basis. We consider only length-regular one-way functions,
where a function f mapping N to N is called length regular if, for every x ∈ {0, 1}∗, |f(x)| = l(|x|) for a
certain length function l(n).

Because of the deterministic feature of f , all quantum one-way functions are classically one-way. For
any quantum one-way function f , the notation f ′ denotes the function induced from f by the following
scheme: f ′(x, r) = (f(x), r) for all x, r ∈ {0, 1}∗ with |r| = poly(|x|), where the notation (y, r) means the
concatenation of y and r following y. Notice that f ′ is also a quantum one-way function. Throughout
this paper, we deal only with quantum one-way functions of this form, which is in direct connection to the
following notion of quantum hardcore functions.

The notion of a classical hardcore was first discussed by Blum and Micali [7] in 1984. A hardcore measures
the hardness of predicting the value h(x) from f(x) without knowing x as an explicit input. A hardcore
function h mapping {0, 1}n to {0, 1}l(n) is usually defined by the notion of indistinguishability between
h(x) and a truly random variable z over {0, 1}`(n). However, a hardcore predicate (namely, a hardcore
function of output length `(n) = 1) is conventionally defined using the notion of nonapproximability instead
of indistinguishability.

Definition 2.2 (weak quantum hardcore) Let f be any length-regular function. A polynomial-time
computable function h with length function `(n) is called a weak quantum hardcore (function) of f if, for any
polynomial-time quantum algorithm A, for any polynomial p, and for any sufficiently large number n ∈ N,

∣

∣Probx∈{0,1}n,z∈{0,1}`(n),A[A(f(x), z, 1n) = 1] − Probx∈{0,1}n,A[A(f(x), h(x), 1n) = 1]
∣

∣ <
1

p(n)
,

where x is uniformly distributed over {0, 1}n and the subscript A is a random variable determined by
measuring the final state of A in the computational basis.

Definition 2.3 (strong quantum hardcore) Let f be any length-regular function. A polynomial-time
computable function h with length function `(n) is called a strong quantum hardcore (function) of f if, for
any polynomial-time quantum algorithm A, for any polynomial p, and for any sufficiently large number
n ∈ N,

∣

∣

∣
Probx∈{0,1}n,A[A(f(x), 1n) = h(x)] − 1/2`(n)

∣

∣

∣
<

1

p(n)
,

where x is uniformly distributed over {0, 1}n and the subscript A is a random variable determined by
measuring the final state of A in the computational basis.

The different between weak hardcores and strong hardcores is obvious. Although both notions coincide
for hardcore functions of output length O(log n), weak hardcore functions are not always strong hardcores
(see, e.g., Exercise 31 in [14]). Since any strong quantum hardcore function is also a weak quantum hardcore,

3

we discuss only strong hardcore functions for our purpose and drop the word “strong” in the rest of this
paper for readability.

Furthermore, we are interested only in the property that a function h becomes a quantum hardcore of
any quantum one-way function f ′ (of the form f ′(x, r) = (f(x), r)). Succinctly, we refer to this property
as the quantum hardcore property of h. Although any quantum hardcore of a “fixed” function f is also
a classical hardcore of f , there is no known connection between the quantum hardcore property and the
classical hardcore property.

3 How can We Prove the Quantum Hardcore Property?

We outline our argument of proving the quantum hardcore property of a given function. To prove new
quantum hardcores, we exploit the notion of quantum list-decoding as a technical tool. Our approach toward
list-decoding is, however, complexity-theoretical in nature rather than information-theoretical. Our main
objects of quantum list-decoding are “classical” block codes and their codewords, which can be manipulated
in a quantum fashion. Generally speaking, a block (error-correcting) code is a set of strings of the same
length over a finite alphabet. Each string in a code is indexed by a message and is called a codeword. For
our purpose, we are focused on a family of codes, which is specified by a series {(Σn, In,Γn)}n∈N of message
space Σn, index set In, and code alphabet Γn associated with a length parameter n. For convenience, we
write Σ∗ for the set

⋃

n∈N
Σn.

As standard now in computational complexity theory, we view the code C as a function that, for each
message length n (which serves as a basis parameter in this paper), maps Σn × In to Γn. We sometimes
write C(n) to denote the code C restricted to messages of length n. Notationally, we set N(n) = |Σn| and
q(n) = |Γn|. It is convenient to assume that Σn = (Σ′

n)n so that n actually represents the length of a message
over a message alphabet Σ′

n. In most cases, we simply use Γn as the message alphabet Σ′
n. By abbreviating

C(x, y) as Cx(y), we also treat Cx(·) as a function mapping In to Γn. Denote by M(n) the block length
|In| of each codeword. We simply set In = {0, 1, . . . ,M(n) − 1}, each element of which can be expressed in
dlog2M(n)e bits. We freely identify Cx with the vector (Cx(0), Cx(1), · · · , Cx(M(n) − 1)) in the ambient
space (Γn)

M(n) of dimension M(n). We often work on a finite field and it is convenient to regard Γn as the
finite field Fq(n) (= GF(q(n))) of order q(n), provided that q(n) is a prime power. The (Hamming) distance
d(Cx, Cy) between two codewords Cx and Cy is the number of non-zero components in the vector Cx −Cy .
The minimal distance d(C) of a code C is the smallest distance between any pair of distinct codewords in C.
In contrast, ∆(Cx, Cy) denotes the relative (Hamming) distance d(Cx, Cy)/M(n). The above-described code
is simply called a (M(n), n)q(n)-code‡ (or (M(n), n, d(n))q(n)-code if d(n) is emphasized). We may drop a
length parameter n whenever we discuss a set of codewords for a “fixed” length n; for instance, write Γ and
M respectively for Γn and M(n).

Now, let C(x, r) be a function mapping Σn× In to Γn with M(n) = p(n) for a certain polynomial p. We
wish to prove that this function C(x, r) is indeed a quantum hardcore for any quantum one-way function
f ′ of the form f ′(x, r) = (f(x), r) with |r| = p(|x|). For simplicity, we assume that all the elements in
In, Σn, and Γn are expressed in binary using an appropriate, simple, easy encoding scheme. To lead to
a contradiction, we first assume to the contrary that there exists a polynomial-time quantum algorithm A
that approximates Cx(r) from input (f(x), r) with probability at least 1/q(n)+ ε(n) (where ε(n) is a certain
noticeable function§). To be more precise, the final configuration of the quantum algorithm A on input (y, r),
where r ∈ In and y = f(x) for a certain x ∈ Σn, can be assumed to be of the form:

αy,r,Cx(r)|r〉|Cx(r)〉|φy,r,Cx(r)〉 +
∑

s∈Γn−{Cx(r)}

αy,r,s|r〉|s〉|φy,r,s〉

for certain amplitudes αy,r,s and ancilla quantum states |φx,r,s〉 of `(n) qubits, where the second register
corresponds to the output of the algorithm, where `(n) is a polynomially-bounded function. For each fixed
y, the (restricted) algorithm Ay(·) =def A(y, ·) gives rise to the oracle ÕAy

(seen as a unitary operator)
defined by the following transformation:

ÕAy
|r〉|u〉|t〉 =

∑

s∈Γn

αy,r,s|r〉|u ⊕ s〉|t⊕ φy,r,s〉

‡In some literature, the notation (M(n), N(n))q(n) is used instead.
§A function µ from N to R is said to be noticeable if there exists a positive polynomial p such that µ(n) ≥ 1/p(n) for any

sufficiently large n ∈ N.

4

for every triplet (r, u, t) of strings, where ⊕ is the bitwise XOR and the notation |t⊕φy,r,s〉 is shorthand of the

quantum state
∑

v:|v|=|t|〈v|φy,r,s〉|t ⊕ v〉. This oracle ÕAy
describes computational error (not transmission

error) occurring during the computation of Cx by the (possibly) faulty quantum algorithm A. This type
of erroneous quantum computation is similar to the computational errors (e.g., [1, 3, 4, 23]) dealt with in
quantum computational cryptography and quantum algorithm designing. Remember that all the amplitude
{αy,r,s}r,s, in ÕAy

could be chosen adversely, not favorably, to us. Since ÕAy
is a unitary operation, its

inverse Õ−1
Ay

can be uniquely defined. Given the oracle ÕAy
, we can freely access ÕAy

as well as Õ−1
Ay

by simply

invoking a query, using three registers containing (r, u, t). Upon an oracle call, the oracle is automatically
applied to the three registers and all the contents of these registers are modified at the cost of unit time.

Similar to the classical notion of a received word in coding theory, we introduce our terminology con-
cerning an oracle that represents a “quantum-computationally” corrupted codeword that produces garbage
information of `(n) size. For an immediate comparison to a quantum case, we use a more conceptual term
“classically corrupted codeword” instead of the conventional term “received word” in the rest of this paper.

Definition 3.1 (quantum-computationally corrupted codeword) We say that an oracle Õ repre-
sents a quantum-computationally (or quantumly) corrupted codeword if there exists a function ` mapping N

to N such that, for any length parameter n ∈ N, any index r ∈ In, any symbol u ∈ Γn, and any modifier
t ∈ {0, 1}`(n), the oracle Õ satisfies Õ|r〉|u〉|t〉 =

∑

s∈Γn
αr,s|r〉|u ⊕ s〉|t ⊕ φr,s〉 for certain complex numbers

αr,s and unit vectors |φr,s〉 in a 2`(n)-dimensional Hilbert space, depending only on (r, s). The parameter

`(n) indicates the size of garbage information. Clearly, Õ is a unitary operator acting on a Hilbert space
spanned by the elements of

⋃

n∈N
(In × Γu × {0, 1}`). For convenience, we identify a quantumly corrupted

codeword with its representing oracle and we simply call Õ a quantumly corrupted codeword.

To lead to our desired contradiction, we need to invert the function f(x) by extracting x from the
aforementioned quantumly corrupted codeword ÕA in time polynomial in |x|. Fix n ∈ N and x ∈ Σn.
Consider the entity (1/M(n))

∑

r∈In
|αr,Cx(r)|2 that yields the probability of A’s computing Cx(·) correctly

on average. This entity also indicates “closeness” between the codeword Cx and the quantumly corrupted
codeword ÕA. In classical list-decoding, for any given oracle Õ that represents a classically corrupted
codeword and for any error bound ε, we need to output a list that include all messages x for which the
probability over r ∈ In that Õ(r) equals Cx(r) is at most 1 − ε (namely, Probr∈In

[Õ(r) = Cx(r)] ≥ 1 − ε).
By setting pr,s = 1 if Õ(r) = s and 0 otherwise, the behavior of Õ can be viewed in a style of unitary

operation as Õ|r〉|0〉 =
∑

r∈In
pr,s|r〉|s〉. The aforementioned entity (1/M(n))

∑

r∈In
|αr,Cx(r)|2 equals the

probability Probr∈In
[Õ(r) = Cx(r)] in a classical setting. For our convenience, we name this entity the

presence of Cx in Õ and denote it by PreÕ(Cx). The requirement for the error rate of classical list-decoding
is therefore rephrased as PreÕ(Cx) ≥ 1 − ε.

From a slightly different view point, we argue that presence is indeed an extension of relative (Hamming)
distance. This will be used in the proof of Lemma 3.2. Let v denote a classically corrupted codeword. We
can view v as a binary vector in the q(n)M(n)-dimensional space, in which the rth block v[r] of v is of
the form 0i−110q(n)−i−2 for a certain index i ∈ [q(n)], where r ∈ M(n). Using this new representation,
the relative (Hamming) distance between two classically corrupted codewords v and w equals the `1-norm
‖v − w‖1 =

∑

r∈[M(n)] ‖v[r] − w[r]‖. Similarly, for a quantumly corrupted codeword vÕ that an oracle

Õ represents, vÕ can be viewed as the real vector in the q(n)M(n)-dimensional space, in which vÕ[r] is
(|αr,1|2, |αr,2|2, . . . , |αr,q(n)|2). The presence PreÕ(Cx) now indicates the `1-norm between vÕ and a codeword
Cx, extending the classical notion of distance.

With the above notions, we formulate a quantum version of a classical list-decoding problem. Recall that
our function C(x, r) can be treated as an (M(n), n, d(n))q(n)-code family C = {Cx}x∈Σ∗ . Let ε(n) be any
error bias parameter.

ε-Quantum List Decoding Problem (ε-QLDP) for Code C

Input: a message length n, and a value 1/ε(n) that is expressed in binary.

Implicit Input: an oracle Õ representing a quantumly corrupted codeword of arbitrary garbage size.

Output: a list of messages including all messages x ∈ Σn such that PreÕ(Cx) ≥ 1/q(n) + ε(n); in

other words, codewords Cx have “slightly” higher presence in Õ than the average. For convenience,
we call such a list a valid list for the ε-QLDP.

Our formulation of the problem ε-QLDP deals with any quantumly corrupted codewords of arbitrary
garbage size `. This formalism solely stems from our target of quantum hardcores. Therefore, for other

5

applications, we may possibly bound the garbage size of quantumly corrupted codewords by, e.g., certain
“fixed” functions.

Because no polynomial-time quantum list-decoder D can output a valid list of super-polynomial size for
any given quantumly corrupted codeword Õ, there is an important question to answer: how many messages
x satisfy the required inequality PreÕ(Cx) ≥ 1/q(n)+ε(n)? We want to show an upper bound of the number
of codewords that have relatively high presence in a given quantumly corrupted word. For our proof, we
employ a proof method of Guruswami and Sudan [19], who gave a q-ary extension of Johnson bound using
a geometric method.

Lemma 3.2 Let n be any message length. Let ε(n), q(n), d(n), and M(n) satisfy that ε(n) > `(n) =def

(1 − 1/q(n))
√

1 − d(n)/M(n) (1 + 1/(q(n) − 1)). For any (M(n), n, d(n))q(n)-code C and for any quantumly

corrupted codeword Õ, there are at most

Jε,q,d,M (n) =def min

M(n)(q(n) − 1),
d(n) (1 − 1/q(n))

d(n) (1 − 1/q(n)) + M(n)ε2(n) − M(n) (1 − 1/q(n))2

ff

messages x ∈ Σn such that PreÕ(Cx) ≥ 1/q(n) + ε(n). If ε(n) = `(n), then the above bound can be replaced
by 2M(n)(q(n) − 1) − 1.

The proof of Lemma 3.2 is in essence an elaborated modification of the proof in [19]. For completeness,
we include the detailed proof of the lemma in Appendix. Here, as an example, we give the value Jε,q,d,M (n)
for a (qn, n, qn − qn−1)q Hadamard code.

Example: Hadamard Codes. Consider an (M(n), n, d(n))q(n) Hadamard code HAD(q) = {HAD(q)
x }x∈Σ∗

with M(n) = q(n)n and d(n) = (1 − 1/q(n))M(n). Assume that our bias parameter ε is non zero
(i.e., ε(n) > 0 for all n ∈ N). Lemma 3.2 guarantees that, for any quantumly corrupted codeword Õ,

the number of codeword candidates that satisfy the inequality PreÕ(HAD(q)
x) ≥ 1/q(n) + ε(n) is at most

d(n)
(

1 − 1
q(n)

)

d(n)
(

1 − 1
q(n)

)

+M(n)ε(n)2 −M(n)
(

1 − 1
q(n)

)2 =

(

1 − 1

q(n)

)2

· 1

ε(n)2
.

In particular, if there exists a positive polynomial p satisfying ε(n) ≥ 1/p(n) for all n ∈ N, there are only at

most (1 − 1/q(n))2 p(n) codeword candidates.

Let us return to our argument. We use the term “quantum list decoding algorithms” (or “quantum list
decoders”) to mean a procedure of solving the problem ε-QLDP with a specific confidence parameter δ(n).
Formally, we define this notion as follows.

Definition 3.3 (quantum list decoder) Let C be any code, let ε(n) be any error bias, and let δ(n) be
any confidence parameter. Any quantum algorithm (i.e., a unitary operator) D that solves the ε-QLDP for
C with success probability at least δ(n) is called a quantum list-decoding algorithm for C with respect to
(ε, δ) (or (ε, δ)-quantum list-decoder). If D further runs in time polynomial in (n, 1/ε(n), 1/(1 − δ(n))) (if
δ(n) = 1 then we treat 1/(1− δ(n)) as 1 for notational convenience), it is called a polynomial-time quantum
list-decoding algorithm for C with respect to (ε, δ). We also say that C is (ε, δ)-quantum list-decodable if C
has an (ε, δ)-quantum list-decoder.

For simplicity, we assume that, for each oracle access, our quantum list-decoder D uses its last three
registers |r〉|u〉|t〉, in which the last register holds an arbitrarily large quantum state.

For convenience, we assume that, after an oracle call, the oracle Õ (or its inverse Õ−1) is automatically
applied to the last three registers of D with a unit cost of time although the last register for garbage
information that can be produced by Õ may be extremely long. For convenience, the last register is assumed
to hold only 0s at the beginning of the computation.

Now, we wish to complete our argument (which we started at the beginning of this section). Let us
assume that there exists a polynomial-time quantum list-decoding algorithm D that solves the ε-QLDP
for Cx(·) with certain noticeable probability, say δ(n). Meanwhile, we assume that the aforementioned
quantumly corrupted codeword ÕAy

of garbage size `(n) can be realized by appropriately executing A.

With oracle access to this oracle ÕAy
(as well as its inverse Õ−1

Ay
), this quantum list-decoder D can produce

with probability at least δ(n) all possible candidates x′ ∈ f−1(y) that have the required presence PreÕAy
(Cx′)

at least 1/q(n) + ε(n). Since we can check whether x′ belongs to the inverse image f−1(y) in polynomial

6

time, our quantum list-decoder D gives rise to a polynomial-time quantum algorithm that inverts f with
noticeable probability on average. This clearly contradicts the quantum one-wayness of f .

Can we realize ÕAy
using A? Unfortunately, it is not clear that there is a generic unitary procedure of

converting A to ÕAy
. For our proof, we instead use an alternative oracle Õ, which is a slight modification

of ÕAy
. Let us assume that the quantum list-decoder D runs in time p(n) for a certain polynomial p. From

this time bound, we understand that D cannot access more than the first p(n) qubits of the content of the
last register. Recall that |φy,r,s〉 is a quantum state of `(n)-qubits. Let m(n) = `(n) + dlog2 q(n)e for a

certain polynomial `. We want to define another quantumly corrupted codeword Õ of garbage size p(n)2.
The following algorithm describes the behavior of Õ. Let j ∈ [`, p(n)2]Z be an arbitrary integer and let
t ∈ Σj .

Given input |r〉|u〉|t, 0p(n)2−j〉, we swap the registers and compute |u〉|t〉|0p(n)2−j〉⊗Ay|r〉|0m(n)〉.
We then obtain |u〉|t〉|0p(n)2−j〉 ⊗ ∑s αy,r,s|r〉|s〉|φy,r,s〉. Assume that |φy,r,s〉 is of the form
∑

w∈{0,1}`(n) β
(y,r,s)
w |w〉. Transform |u〉|t〉|s〉|w, 0m(n)〉 to |u ⊕ s〉|t ⊕ w0j−`(n)〉|s, w〉. Rearrange

the registers and we output the quantum state

∑

s∈Γn

αy,r,s|r〉|u ⊕ s〉|(t0m(n)) ⊕ φ̂(j)
y,r,s〉|0p(n)2−j−m(n)〉,

where |φ̂(j)
y,r,s〉 =

∑

w∈{0,1}`(n) |w0j−`(n)〉|s, w〉.

The reader should check that this new oracle Õ in essence realizes ÕAy
. We first claim that, after the ith ora-

cle call (to either Õ or Õ−1), the last register ofD contains a quantum state of the form
∑

t∈{0,1}ip(n) γt|t〉|0p(n)2−ip(n)〉.
This can be shown as follows. We consider the case of an oracle call to Õ. At the time of the ith oracle
call, D makes a query of the form |r〉|u〉|t0p(n)2−ip(n)〉 with t ∈ {0, 1}ip(n). In response to the oracle call,

the oracle Õ produces a quantum state whose last register contains terms of the form |(t0p(n)2−ip(n)) ⊕
φ̂

(ip(n)
y,r,s 〉|0p(n)2−ip(n)−m(n)〉. Clearly, p(n)2 − ip(n) −m(n) ≤ p(n)2 − (i + 1)p(n). In the case of the inverse

Õ−1, the definition of Õ guarantees that the query |r〉|u〉|t0p(n)2−ip(n)〉 can be transformed into a quantum

state whose last register is of the form |ψ〉|0p(n)2−ip(n)〉.
BecauseD should work even with this new oracle Õ, producing all the possible candidates x′ in polynomial

time. Therefore, we obtain the following key theorem that bridges between quantum hardcores and quantum
list-decoding. This theorem serves as a driving force to develop a theory of quantum list decoding in the
subsequent sections.

Theorem 3.4 Let C = {Cx}x∈Σ∗ be any (M(n), n, d(n))q(n)-code with a message space Σ∗ =
⋃

n∈N
Σn,

which is polynomial-time computable, where log2M(n) ∈ nO(1) and log2 q(n) ∈ nO(1). If, for any noticeable
function ε(n), there exist a noticeable function δ(n) and a polynomial-time (ε, δ)-quantum list-decoder for
C, then C(x, r) is a quantum hardcore for any quantum one-way function f ′ of the form f ′(x, r) = (f(x), r)
with |x| = dlog2N(n)e and |r| = dlog2M(n)e, where N(n) = |Σn|.

The rest of this paper is devoted to the construction of quantum list-decoders for each given quantum
hardcore candidate. The first step is to establish a generic technique of constructing quantum list-decoders
for “well-behaved” classical block codes.

4 How can We Construct Quantum List-Decoding Algorithms?

Theorem 3.4 gives a sufficient condition to prove the quantum hardcore property of any given function h. It
is therefore enough for us to design a quantum algorithm that solves the QLDP for h with high probability
in polynomial time. Our task in this paper is to find a generic way to construct a polynomial-time quantum
list-decoder for a wide range of classical block codes. Classically, however, it seems hard to design such
list-decoding algorithms in general. Nevertheless, a robust nature of quantum computation enables us to
prove that, as long as we have a decoding algorithm A from a unique quantum state (called a codeword
state), we can construct a quantum list-decoder by calling A as a black-box oracle. Definition 4.1 formally
introduces such quantum states. In Section 7, the notion of such codeword states plays a central role as our
technical tool in proving new quantum hardcores.

Hereafter, we assume the basic arithmetic operations (multiplication, addition, subtraction, division,
etc.) on a finite field Fq of order q. When q is a prime number, Fq can be identified with the integer

7

ring Z/qZ whose elements are written as 0, 1, 2, . . . , q − 1. For convenience, let F
+
q stand for Fq − {0}.

The notation Zq denotes the (finite) permutation group whose elements are 0, 1, 2, . . . , q − 1. Moreover, we
write [m,n]Z = {m,m+ 1,m + 2, . . . , n} for any two integers m,n ∈ N with m ≤ n and, in particular, let
[q] = [1, q]Z for any integer q ≥ 1 in the rest of this paper. Finally, we denote by ωq the complex number
e2πι/q, where e is the base of natural logarithms and ι =

√
−1.

Definition 4.1 (shuffled codeword state) Let C = {Cx}x∈Σ∗ be any (M(n), n)q(n)-code family with a

message space Σ∗ =
⋃

n∈N
Σn and a series {In}n∈N of index sets. Let k be any element in F

+
q(n). A k-shuffled

codeword state for the codeword Cx that encodes a message x ∈ Σn is the quantum state

|C(k)
x 〉 =

1
√

M(n)

∑

r∈In

ω
k·Cx(r)
q(n) |r〉.

In particular, when k = 1, we use the simplified notation |Cx〉 for |C(1)
x 〉.

The reader may be aware that our notion of codeword states is not anew; the codeword states for certain
binary codes have already appeared implicitly in several important quantum algorithms. For instance,
Grover’s search algorithm [18] produces such a codeword state after the first oracle call. In the quantum
algorithms of Bernstein and Vazirani [6], of Deutch and Jozsa [12], and of van Dam, Hallgren, and Ip [28],
such codeword states are generated to obtain their results. All these quantum algorithms hinge at generating
codeword states.

Next, we discuss how to generate the k-shuffled codeword state |C(k)
x 〉 for each q-ary codeword Cx with

oracle accesses to a quantumly corrupted codeword Õ. It is rather straightforward to generate the quantum
state |Cx〉 from the oracle OCx

that represents Cx without any corruption (behaving as the “standard”
oracle). Here, we claim that there exists a generic quantum algorithm that generates codeword states for
any q-ary code C.

Theorem 4.2 Let C be any (M(n), n)q(n)-code family with a message space Σ∗ =
⋃

n∈N
Σn, where q(n) is

a prime number for every n ∈ N. Let m be any function from N to N. There exists a quantum algorithm A
that, for any message length n ∈ N, for any quantumly corrupted codeword Õ with garbage size `(n), for any
message x ∈ Σn, and for any k ∈ F

+
q(n), generates the quantum state

|ψk〉 = κ(k)
x |k〉|C(k)

x 〉|τ〉 + |Λ(k)
x 〉

from the initial state |ψ(0)
k 〉 = |k〉|0dlog2M(n)e〉|0〉|0`(n)〉 with only two queries to Õ and Õ−1, where |τ〉 is a

fixed basis vector, and κ
(k)
x is a complex number, and |Λ(k)

x 〉 is a vector satisfying (〈k|〈C(k)
x |〈τ |)|Λ(k)

x 〉 = 0

with the following condition: for every x ∈ Σn, there exists an element k ∈ F
+
q(n) with the inequality |κ(k)

x | ≥
(q(n)/(q(n) − 1)) |PreÕ(Cx) − 1/q(n)|. Moreover, A runs in time polynomial in (n, log2 q(n), log2M(n)).

When q = 2, the bound of |κ(1)
x | in Theorem 4.2 matches the bound of Adcock and Cleve [1]. In the the-

orem, if the code family C = {|Cx〉}x∈In
further satisfies “orthogonality,” which we call phase orthogonality

of C, we can isolate simultaneously all individual messages x, as in Corollary 4.5. Phase-orthogonality for a
binary code, in particular, is naturally induced from the standard inner product of two codewords when we
translate their binary symbols {0, 1} into {+1,−1}.

Definition 4.3 (phase orthogonality) A classic block code C = {Cx}x∈Σ∗ is called k-shuffled phase

orthogonal if 〈C(k)
x |C(k)

y 〉 = 0 for any n ∈ N and any two distinct messages x, y ∈ Σn. If C is k-shuffled
phase-orthogonal for every element k ∈ F

+
q , then C is simply called phase orthogonal.

Since k-shuffled codeword states are pure quantum states, the value |〈C(k)
x |C(k)

y 〉| coincides with the

fidelity F (|C(k)
x 〉, |C(k)

y 〉) of |C(k)
x 〉 and |C(k)

y 〉. The next lemma relates this fidelity F (|C(k)
x 〉, |C(k)

y 〉) to the
relative Hamming distance ∆(Cx, Cy). It is not difficult to prove the following lemma, which will be used in
Section 7.

Lemma 4.4 For any pair (Cx, Cy) of codewords in a given (M(n), n, d(n))q(n)-code C and for any k ∈ F
+
q ,

F (|C(k)
x 〉, |C(k)

y 〉) ≥ 1 − 2∆(Cx, Cy),

where the equality holds for any binary code C.

8

Proof. Fix n arbitrarily and drop the subscript “n” for simplicity. For each index ` ∈ [0, q−1]Z, we define

d
(k)
` (Cx, Cy) = |{r ∈ FM | k(Cx(r) − Cy(r)) = ` mod q}|. Since F (|C(k)

x 〉, |C(k)
y 〉) = |〈C(k)

x |C(k)
y 〉|, it follows

that

F (|C(k)
x 〉, |C(k)

y 〉) =

∣

∣

∣

∣

∣

1 − 1

M
· ω0

q · d
(k)
0 (Cx, Cy) +

1

M

q−1
∑

`=1

ω`q · d
(k)
` (Cx, Cy)

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

1 − d(Cx, Cy)

M

∣

∣

∣

∣

− 1

M

q−1
∑

`=1

∣

∣

∣ω`q · d
(k)
` (Cx, Cy)

∣

∣

∣

≥ (1 − ∆(Cx, Cy)) − ∆(Cx, Cy) = 1 − 2∆(Cx, Cy),

which gives the desired bound of the lemma. In particular, when q = 2, since d
(k)
1 (Cx, Cy) = d(Cx, Cy) and

ω2 = −1, we obtain the equality F (|C(k)
x 〉, |C(k)

y 〉) = 1 − 2∆(Cx, Cy). 2

One of the benefits of phase-orthogonality is explained in the following corollary. If a code C = {Cx}x∈Σ∗

is phase orthogonal, then the set {|C(k)
x 〉}x∈Σn

of k-shuffled codeword states, for each n ∈ N and each
k ∈ F

+
q(n), forms an orthnormal basis of an M(n)-dimensional Hilbert space. Hence, we obtain the following

corollary of Theorem 4.2.

Corollary 4.5 Let n ∈ N and let C = {Cx}x∈Σn
be any phase-orthogonal (M(n), n)q(n)-code. There exists

a quantum algorithm A that, for each message length n ∈ N, starting with |φ(0)〉 = |0〉|0dlog2M(n)e〉|0〉|0`(n)〉
with any quantumly corrupted codeword Õ with respect to a parameter m(n), A makes only two queries to
Õ and Õ−1 and generates the quantum state

|ψ′〉 =
1√
q − 1

∑

k∈F
+
q(n)

∑

x∈Σn

κ(k)
x |k〉|C(k)

x 〉|τ〉 + |Λ′〉

such that, for every message x ∈ Σn, there exists an element k ∈ F
+
q(n) satisfying that |κ(k)

x | ≥ (q(n)/(q(n)−
1)) |PreÕ(Cx) − 1/q(n)| and (〈k|〈C(k)

x |〈τ |)|Λ′〉 = 0.

Now, we give the proof of our key theorem, Theorem 4.2. Notice that the theorem is true for any q-ary
code. The binary case (q = 2) was discussed implicitly in [1]; however, our argument for the general q-ary case
is more involved because of our “k-shuffledness” condition. For our proof, we assume the following limited
form of quantum Fourier transform Fn, over a finite permutation group Zn, running in time polynomial in
n: for any s ∈ Zn,

Fn : |s〉 → 1√
n

∑

r∈Zn

ωs·rn |r〉.

For a more general form of quantum Fourier transform over a finite field Fn, see, e.g., [28].

Proof of Theorem 4.2. Since q(n) is a prime number, we use {0, 1, 2, . . . , q(n) − 1} as the elements of
Fq(n). We assume the premise of the theorem. Let C be any (M(n), n)q(n)-code family with message space

Σ∗ =
⋃

n∈N
Σn, index sets {In}n∈N, and code alphabets {Γn}n∈N. Note that M(n) = |In|. Let Õ be any

quantumly corrupted codeword of garbage size `(n) for C, where ` is an arbitrary function. First, we describe
our quantum codeword-state generation algorithm A in detail. Fix n ∈ N, x ∈ Σn, and k ∈ F

+
q(n) in the

following description. For simplicity, we drop the script “n” and also let m = dlog2Me.
Quantum Algorithm A:

(1) Start with the initial state |ψ(0)
k 〉 = |k〉|0〉|0〉|0`〉.

(2) Apply the quantum Fourier transform FM to the second register, and we obtain the superposition

|ψ(1)
k 〉 =

1√
M

∑

r∈In

|k〉|r〉|0〉|0`〉.

(3) Invoke a query to the oracle Õ using the last three registers. The resulting quantum state is

|ψ(2)
k 〉 =

1√
M

∑

r∈In

∑

z∈Fq

αr,z|k〉|r〉|z〉|φr,z〉.

9

(4) Encode the information on the first and the third resisters into the “phase” so that we obtain the
quantum state of the form

|ψ(3)
k 〉 =

1√
M

∑

r∈In

∑

z∈Fq

ωk·zq αr,z|k〉|r〉|z〉|φr,z〉.

For convenience, this step will be referred to as phase encoding.

(5) Apply the inverse oracle Õ−1 to the last three registers and denote the resulting state (I⊗ Õ−1)|ψ(3)
k 〉

by |ψ(4)
k 〉. See, e.g., [1] for how to implement Õ−1 from Õ. Although ` is extremely large, when the oracle

is called, the last three registers are automatically changed. There is no need of scanning all the qubits

stored in these registers before halting the computation. The final state |ψ(4)
k 〉 can be expressed in the form

κ
(k)
x |k〉|C(k)

x 〉|τ〉 + |Λ(k)
x 〉, where |τ〉 = |0〉|0`〉 and (〈k|〈C(k)

x |〈τ |)|Λ(k)
x 〉 = 0.

End of the Algorithm

The execution time of A is clearly upper-bounded by a certain polynomial in (n, log2 q, log2M). Now,

we want to calculate the amplitude κ
(k)
x . First, we note that the quantum state |ψ′〉 = (I ⊗ Õ)|k〉|C(k)

x 〉|τ〉
is of the form

|ψ′
k,x〉 =

1√
M

∑

r∈In

∑

z∈Fq

ωk·Cx(r)
q α(k)

r,z |r〉|z〉|φr,z〉.

Therefore, we have

κ(k)
x = (〈k|〈C(k)

x |〈τ |)((I ⊗ Õ−1)|ψ(3)
k 〉) = 〈ψ′

k,x|ψ
(3)
k 〉

=
1

M

∑

r∈In

∑

z∈Fq

ωk(z−Cx(r))
q |αr,z|2.

The non-trivial part of our proof is to show a lower-bound of |κ(k)
x |. Notice that a different proof appeared

in [25]. By summing κ
(k)
x over all k ∈ F

+
q , the term

∑

k∈F
+
q
|κ(k)
x | is lower-bounded by

∑

k∈F
+
q

∣

∣

∣
κ(k)
x

∣

∣

∣
≥

∣

∣

∣

∣

∣

∣

∑

k∈F
+
q

1

M

∑

r∈In

∑

z∈Fq

ωk(z−Cx(r))
q |αr,z|2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

k∈F
+
q

∑

j∈Fq

ωk·jq

(

1

M

∑

r∈In

∣

∣αr,Cx(r)+j

∣

∣

)

∣

∣

∣

∣

∣

∣

.

We introduce a notation. For each value j ∈ Fq, write βj for the term (1/M)
∑

r∈In
|αr,Cx(r)+j |2. Note that

β0 = PreÕ(Cx) and 1 − β0 =
∑

j∈F
+
q
βj . Using this βj-notation, we have

∣

∣

∣

∣

∣

∣

∑

k∈F
+
q

∑

j∈Fq

ωk·jq βj

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

k∈F
+
q

ω0
qβ0 +

∑

k∈F
+
q

ωkqβ1 + · · · +
∑

k∈F
+
q

ω(q−1)k
q βq−1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(q − 1)β0 −
∑

j∈F
+
q

βj

∣

∣

∣

∣

∣

∣

= |(q − 1)PreÕ(Cx) − (1 − PreÕ(Cx))|
= |q · PreÕ(Cx) − 1| .

Hence, we obtain (1/(q − 1))
∑

k∈F
+
q
|κ(k)
x | ≥ (1/(q − 1))|q · PreÕ(Cx) − 1|. This implies that there exists a

number k ∈ F
+
q for which

∣

∣

∣
κ(k)
x

∣

∣

∣
≥ 1

q − 1
|q · PreÕ(Cx) − 1| =

q

q − 1

∣

∣

∣

∣

PreÕ(Cx) −
1

q

∣

∣

∣

∣

.

This completes the proof. 2

Theorem 4.2 provides a generic way of generating a k-shuffled codeword state |C(k)
x 〉 from Õ. Our next

task is to recover x with reasonable probability from each k-shuffled codeword state |C(k)
x 〉. Any quantum

algorithm that completes this task is succinctly called a codeword-state decoder. We formally define the
quantum codeword-state decoders.

10

Definition 4.6 (quantum codeword-state decodability) Let η ∈ [0, 1]. A classical (M(n), n)q(n)-code
family is said to be η-quantum codeword-state decodable if there exists a quantum algorithm that, on input

n ∈ N and k ∈ F
+
q(n) as well as |C(k)

x 〉, recovers x with success probability at least η. Such an algorithm is

simply called an η-quantum codeword-state decoder.

The following theorem, which is general but slightly technical, shows how to convert a quantum codeword
state into a quantum list-decoder. This complements Theorem 4.2. Recall the definition of Jε,q,d,M (n) given
in Lemma 3.2. Note that Jε,q,d,M (n) ≤ 2M(n)q(n).

Theorem 4.7 Let C = {Cx}x∈Σ∗ be any (M(n), n, d(n))q(n)-code. Let A denote the quantum algorithm
given in Theorem 4.2. Let ε, δ be any two nonnegative functions ε(n) and δ(n) with 0 ≤ ε(n) ≤ 1 and
0 ≤ δ(n) < 1 for all n ∈ N. If there exists a (1 − ν(n))-quantum codeword-state decoder D for C with
1−ν(n) >

√

1 − ηε(n)2 for a certain function ν(n) from N to [0, 1], then there exists an (ε(n), δ(n))-quantum

list-decoder B for C with oracle access to Õ such that B produces a list of size at most
⌈

q(n)

1 − ν(n) −
√

1 − ηε(n)2

(

loge Jε,q,d,M (n) + loge
1

1 − δ(n)

)

⌉

,

where ηε(n) = (q(n)/(q(n) − 1))ε(n). Moreover, if D runs in time polynomial in (n, q(n), log2M(n))
and 1 − ν(n) − 1/g(n) >

√

1 − ηε(n)2 holds for a certain positive-valued function g(n) that is
polynomially-bounded in (n, q(n), log2M(n), 1/ε(n), log2(1/(1 − δ(n)))), then B runs in time polynomial in
(n, q(n), log2M(n), 1/ε(n), log2(1/(1 − δ(n)))).

By Theorem 4.7 together with Theorem 4.2, we obtain a quantum list-decoder for a given block code
family. Now, we give the proof of Theorem 4.7.

Proof of Theorem 4.7. Fix n ∈ N. Since D is a (1 − ν)-quantum codeword-state decoder for C, for

each x ∈ Σn and k ∈ F
+
q(n), D outputs x from the k-shuffled codeword state |C(k)

x 〉 with probability at least

1 − ν(n). Let Õ be any quantumly corrupted codeword for C. Given Õ as an implicit input, we consider
the following algorithm B that can solve the ε-QLDP for C with probability at least δ(n). For notational
readability, we omit the script “n.” Write σ for the value 1 − ν −

√

1 − η2
ε . Initially, set k = 1 in the

algorithm A.

Quantum Algorithm A:

(1) Starting with |0m〉, run the algorithm A to obtain the quantum state |ψk〉.
(2) Apply the algorithm D to the second register of |ψk〉 using an appropriate number of ancilla qubits,

say m. We then obtain the state D|ψk〉|0m〉.
(3) Measure the obtained state and add this measured result to the list of message candidates.
(4) Repeat Steps (1)–(3) d((1 − σ)/σ)(loge Jε,q,d,M (n) + loge(1/(1 − δ)))e times.
(5) Repeat Steps (1)–(4) by incrementing k by one at each repetition until k = q. Finally, output the list

that is produced.

End of the Algorithm

Now, we claim the following. Let B
(k)
ε = {x ∈ Σn | PreÕ(C

(k)
x) ≥ 1/q + ε}.

Claim 1 1. With probability at least σ, we can observe x for a certain index k in F
+
q when measuring

the quantum state obtained after Step (2) in the computational basis.

2. If we proceed Steps (1)–(3) d((1−σ)/σ)(loge |B
(k)
ε |+loge(1/δ))e times for each k ∈ F

+
q , then we obtain

a list that includes all messages in B
(k)
ε with probability at least δ.

Since |B(k)
ε | ≤ Jε,q,d,M (n), if we repeat Steps (1)-(4) d((1 − σ)/σ)(loge |B

(k)
ε | + loge(1/(1 − δ)))e times,

we obtain a valid list with probability at least δ by the above claim.
Let us prove the Claim 1. The trace distance ‖ρ− σ‖tr between two quantum states ρ and σ is defined

to be Tr
√

(ρ− σ)(ρ − σ)†. In particular, for two pure states |φ〉 and |ψ〉, the trace distance between them

can be calculated as ‖|φ〉〈φ| − |ψ〉〈ψ|‖tr = 2
√

1 − |〈φ|ψ〉|2. For two (probability) distributions D1 and D2

over Σn, the L1-norm (or the total variation distance) ‖D1 −D2‖1 is defined as
∑

x∈Σn
|D1(x) −D2(x)|.

Proof of Claim 1. (1) Choose k ∈ F
+
q and x satisfying that |κ(k)

x | ≥ ηε. Denote by pk(x) the probability

11

of observing x at Step (3) during round k. Our goal is to show that pk(x) ≥ σ. For simplicity, let

|φx,k〉 = |k〉|C(k)
x 〉|τ〉|0m〉 and |ψ̂k〉 = |ψk〉|0m〉. The trace distance between two pure states D|ψ̂k〉 and

D|φx,k〉 equals

‖D|φx,k〉〈φx,k|D† −D|ψ̂k〉〈ψ̂k|D†‖tr = ‖|φx,k〉〈φx,k| − |ψ̂k〉〈ψ̂k|‖tr = 2

√

1 − |〈φx,k|ψ̂k〉|2 = 2

√

1 − |κ(k)
x |2.

Let Dk(y) and D̃x,k(y) be the probabilities of obtaining y ∈ Σn by measuring the states D|ψ̂k〉 and

D|φx,k〉, respectively, in the computational basis. Note that pk(x) equals D̃x,k(x). If D̃k,x(x) ≥ 1 − ν, then

obviously D̃k,x(x) ≥ e. Next, we deal with the case where D̃k,x(x) < 1−ν. Since the total variation distance

between Dk and D̃x,k is at most the trace distance between |k〉|C(k)
x 〉|τ〉 and |ψk〉, it follows that

‖Dk − D̃x,k‖1 ≤ ‖D|φx,k〉〈φx,k|D† −D|ψ̂k〉〈ψ̂k|D†‖tr = 2

√

1 − |κ(k)
x |2.

Moreover, we claim that ‖Dk − D̃x,k‖1 ≥ 2(1 − ν − D̃x,k(x)). This is shown as follows. First, we note that

‖Dk − D̃k,x‖1 is lower-bounded by

‖Dk − D̃x,k‖1 = |Dk(x) − D̃x,k(x)| +
∑

y:y 6=x

|Dk(y) − D̃x,k(y)|

≥ |Dk(x) − D̃x,k(x)| +

∣

∣

∣

∣

∣

∣

∑

y:y 6=x

Dk(y) −
∑

y:y 6=x

D̃x,k(y)

∣

∣

∣

∣

∣

∣

= 2|Dk(x) − D̃x,k(x)|

since
∑

y∈Σn
|Dk(y)| =

∑

y∈Σn
|D̃x,k(y)| = 1. Recall that Dk(x) ≥ 1 − ν, which implies Dk(x) ≥ D̃k,x(x).

We then obtain
‖Dk − D̃x,k‖1 ≥ 2(Dk(x) − D̃k,x(x)) ≥ 2(1 − ν − D̃x,k(x)).

The above two bounds on ‖Dk − D̃k,x‖1 yields the following inequality:

1 − ν − D̃x,k(x) ≤
√

1 − |κ(k)
x |2,

which immediately implies

D̃x,k(x) ≥ 1 − ν −
√

1 − |κ(k)
x |2 ≥ 1 − ν −

√

1 − η2
ε = σ

since |κ(k)
x | ≥ ηε. Therefore, we conclude that pk(x) ≥ σ, as requested.

(2) Fix k ∈ F
+
q arbitrarily. Assuming that Steps (1)–(4) are repeated t times to create a valid list, we

wish to prove that t ≥ ((1 − σ)/σ)(loge |B
(k)
ε | + loge (1/(1 − δ))). Since we obtain x ∈ B

(k)
ε through these

steps with probability at least e, for each fixed x0 ∈ B
(k)
ε , the probability of obtaining no x0 within t samples

is upper-bounded by (1 − e)t. Therefore, with probability at most |B(k)
ε |(1 − e)t, there exists an x ∈ B

(k)
ε

for which t samples does not contain x.
Since the probability of obtaining the desired valid list is at least δ, we demand the condition that

|B(k)
ε |(1 − e)t ≤ 1 − δ; equivalently,

t loge
1

1 − σ
≥ loge |B(k)

ε | + loge
1

1 − δ
,

which yields the desired bound

t ≥ 1 − σ

σ

(

loge |B(k)
ε | + loge

1

1 − δ

)

because loge(1/(1 − σ)) is upper-bounded by

loge
1

1 − σ
= loge

(

1 +
σ

1 − σ

)

≤ σ

1 − σ
.

This completes the proof of the claim. 2

Claim 1 guarantees that, if we repeat Steps (1)-(3) d((1 − σ)/σ)(loge |B
(k)
ε | + loge (1/(1 − δ)))e times,

then we can obtain with probability at least δ a valid list of size at most q(n)d((1 − σ)/σ)(loge |B
(k)
ε | +

loge (1/(1 − δ)))e. 2

12

5 Nearly Phase-Orthogonal Codes

Theorem 4.7 gives a way to transform a quantum codeword-state decoder into a quantum list-decoder.
What types of codes satisfy the premise of the theorem and therefore have quantum list-decoders? Phase-
orthogonality of a code family C with message spaces {Σn}n∈N implies that, for each pair (n, k) ∈ N ×
F

+
q(n), the set {|C(k)

0 〉, |C(k)
1 〉, . . . , |C(k)

N(n)−1〉}, where N(n) = |Σn|, forms an orthonormal basis of an N(n)-

dimensional Hilbert space for each k ∈ F
+
q(n). From a practical point of view, however, this requirement

for the phase orthogonality is too restrictive to prove the quantum list decodability of a wide range of code
families. How can we relax the phase orthogonality of C? A simple solution is to allow C to satisfy the
following weaker requirement: |〈Cx|Cy〉| ≤ δ for any distinct pair (x, y).

Definition 5.1 (nearly phase orthogonality) Let ξ ∈ [0, 1]. We say that a classical block (M(n), n)q(n)-

code family C is said to be ξ-nearly phase-orthogonal if |〈C(k)
x |C(k)

y 〉| ≤ ξ for any number n ∈ N, any element
k ∈ F

+
q(n), and any message pair x, y ∈ Σn.

Notice that, although any code that is almost “phase orthogonal” is already classically list-decodable
(unless there is a decoding time-bound), as we will see later, our quantum list-decoder merits a significantly
smaller number of queries (roughly two queries per candidate) than any classical list-decoder.

Unlike the previous sections, we treat every quantum state |φ〉 as a column vector. We say that an
(M(n), n)q(n)-code family C has full phase-rank if, for every message length n ∈ N, the N(n) column vectors

|C(k)
0 〉, |C(k)

1 〉, . . . , |C(k)
N(n)−1〉 are linearly independent for each choice of k ∈ F

+
q(n). Such a code family C

satisfies that M(n) ≥ N(n) for all n ∈ N. We show that nearly phase-orthogonal codes that have full
phase-rank are indeed quantum list-decodable (ignoring the running time of their quantum list-decoders).

Note that a quantum hardcore C(x, r) requires the condition that |r| = poly(|x|). It thus suffices to
consider only (M(n), n)q(n)-codes C that satisfy the inequality M(n) ≥ N(n), where N(n) is the size of the
space of messages of length n.

Theorem 5.2 Let ε, η be any function from N to [0, 1]. Let C be any (M(n), n)q(n)-code family of full
phase-rank. Assume that there is a function g(n) that is bounded by a certain positive polynomial in
(n, q(n), log2M(n), 1/ε(n), log2(1/(1−δ(n)))) and satisfies 1−η(n)−1/g(n) >

√

1 − (q(n)/(q(n) − 1))2ε(n)2.
If C is η-nearly phase-orthogonal, then C is (ε, δ)-quantum list-decodable with list size polynomial in
(n, q(n), log2M(n), 1/ε(n), log2(1/(1 − δ(n)))).

Theorem 5.2 follows from the next lemma using Theorem 4.7. To prove the lemma, we use the notion of
pretty-good measurement (known also as square-root measurement or least-squares measurement) [13, 20].
Let En denote the n-by-n identity matrix.

Lemma 5.3 Let η be any function from N to [0, 1]. Let C be any (M(n), n)q(n)-code family of full phase-
rank such that M(n) ≥ N(n) for all n ∈ N. If C is η-nearly phase-orthogonal, then there exists a (1 − η)-
quantum codeword-state decoder for C.

Proof. Fix n ∈ N and k ∈ F
+
q(n). For simplicity, assume that IN = [0, N(n) − 1]Z. Since C has full

phase-rank, it follows that M(n) ≥ N(n). For readability, we omit the script “n” in the rest of this proof.

We wish to construct a unitary operator U whose success probability of obtaining z from |C(k)
z 〉 is at least

1 − η whenever |〈C(k)
x |C(k)

y 〉| ≤ η for any two distinct messages x, y ∈ Σn.
We want to design U by following an argument of pretty good measurement [13, 20]. Let S be the M -

by-N matrix (|C(k)
0 〉, |C(k)

1 〉, . . . , |C(k)
N−1〉), in which the ith column of S expresses the column vector |C(k)

i 〉.
Notice that S|z〉N = |C(k)

z 〉 for each z ∈ [0, N−1]Z, where |z〉N denotes the N -dimensional unit vector whose
zth entry is 1 and 0 elsewhere.

Note that SS† is an M -by-M matrix and S†S is an N -by-N matrix. The linear independence of

column vectors |C(k)
0 〉, |C(k)

1 〉, . . . , |C(k)
N−1〉 implies that rank(S) = N . Since S†S and S†S are Hermi-

tian and positive definite, they also share the same set of positive eigenvalues, say {λ0, . . . , λN−1}. Let
λmin = min{λ0, λ1, . . . , λN−1}. We claim that λmin is relatively large.

Claim 2 λmin ≥ 1 − η.

13

Proof of Claim 2. LetG = S†S, theN -by-N matrix (ηi,j)i,j , where ηi,j = 〈C(k)
i |C(k)

j 〉. By our assumption,

it follows that |ηij | ≤ η for any pairs (i, j). Since G is Hermitian and rank(G) = N , let G =
∑N−1

i=0 λi|ψi〉〈ψi|
be a spectral decomposition of G for a certain orthonormal basis {|ψi〉}i∈IN

. We then have

min
‖|ψ〉‖=1

|〈ψ|G|ψ〉| = min
‖|ψ〉‖=1

∣

∣

∣

∣

∣

N−1
∑

i=0

λi|〈ψi|ψ〉|2
∣

∣

∣

∣

∣

= λmin.

Note that, for any state |φ〉 of the form
∑

i∈IN
αi|i〉 with complex numbers αi’s, the value |〈ψ|G|ψ〉| equals

|〈ψ|G|ψ〉| =

∣

∣

∣

∣

∣

∣

1 +
∑

i6=j

ηi,jα
∗
iαj

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 − η +
∑

i

η|αi|2 +
∑

i6=j

ηi,jα
∗
iαj

∣

∣

∣

∣

∣

∣

.

Note that an imaginary part of
∑

i6=j ηi,jα
∗
iαj is zero since for any distinct pair (i, j) we have =(ηi,jα

∗
iαj +

ηj,iα
∗
jαi) = =(ηi,jα

∗
iαj + η∗i,jα

∗
jαi) = =(ηi,jα

∗
iαj + (ηi,jα

∗
iαj)

∗) = 0. It suffices to consider the case that
αi ∈ R and ηi,j ∈ R for all i, j ∈ IN . For simplicity, write A+ = {(i, j) ∈ IN × IN | i < j, ηij ≥ 0} and
A− = {(i, j) ∈ IN × IN | i < j, ηij < 0}. Hence, the term min

‖|ψ〉‖=1
|〈ψ|G|ψ〉| equals

min
‖|ψ〉‖=1

∣

∣

∣

∣

∣

∣

1 − η +
∑

(i,j)∈A+

(

ηα2
i + 2|ηi,j |αiαj + ηα2

j

)

+
∑

(i,j)∈A−

(

ηα2
i − 2|ηi,j |αiαj + ηα2

j

)

∣

∣

∣

∣

∣

∣

,

which is further calculated as

min
‖|ψ〉‖=1

∣

∣

∣

∣

∣

∣

1 − η +
∑

(i,j)∈A+

(

|ηi,j |(αi + αj)
2 + (η − |ηi,j |)(α2

i + α2
j)
)

+
∑

(i,j)∈A−

(

|ηi,j |(αi − αj)
2 + (η − |ηi,j |)(α2

i + α2
j)
)

∣

∣

∣

∣

∣

∣

.

Since η− |ηij | ≥ 0 for any pair (i, j), we conclude that the target term min
‖|ψ〉‖=1

|〈ψ|G|ψ〉| is at least 1− η. We

therefore obtain the inequality λmin ≥ 1 − η, as required. 2

Let S = PTQ† be a singular-value decomposition (see, e.g., [22]), where P is an M -by-M unitary matrix,
Q is an N -by-N unitary matrix, and T is an M -by-N matrix of the form

(

T ′

O

)

with the diagonal matrix

T ′ = diag(
√
λ0,

√
λ1, . . . ,

√

λN−1). We therefore have 〈z|MUS|z〉N = 〈z|MUPTQ†|z〉N for any z ∈ IN .
The desired M -by-M matrix U is defined as U = RP †, where the M -by-M matrix R is

R =

(

Q O
O EM−N

)

.

It immediately follows that, for any z ∈ IN ,

〈z|MUS|z〉N = 〈z|MRTQ†|z〉N = 〈z|M
(

Q O
O EM−N

)(

T ′

O

)

Q†|z〉N

= 〈z|M
(

QT ′Q†

O

)

|z〉N = 〈z|NQT ′Q†|z〉N .

The probability of recovering z from |Cz〉 is therefore lower-bounded by |〈z|NQT ′Q†|z〉N |2, which is at least
λmin. The above claim yields the desired conclusion. 2

6 Circulant Codes and a Multiplicative Property

To design quantum codeword-state decoders, Theorem 5.2 gives a general but “non-constructive” method
for all nearly phase-orthogonal codes of full phase-rank. Under a certain condition, we can construct quan-
tum codeword-state decoders that run in polynomial time. This section presents such conditions using an
approximation scheme and also a codeword property.

14

The (discrete and quantum) Fourier transform is one of the most useful operations in use. A certain
type of matrices, known as circulant matrices, can be diagonalized by these Fourier transforms. we use these
matrices to define new codes, which can be efficiently codeword-state decodable. First, fix a positive integer
n and let Ln = [0, n− 1]Z. An n-by-n integer matrix Q = (qij)i,j∈[n] is called the cyclic permutation matrix
if qn,1 = 1, qi,i+1 = 1 for any i ∈ [n − 1], and the others are all zeros. Notice that Qn equals the identity
matrix. A circulant matrix M is of the form

∑

j∈Ln
ajQ

j for certain complex numbers {aj}j∈Ln
; in other

words, the (i, j)-entry of M is aj−i mod n for each pair i, j ∈ Ln. Consider the quantum Fourier transform
Fn over Zn. Any circulant matrix M =

∑

j∈Ln
ajQ

j can be diagonalized by Fn as follows:

F−1
n MFn = diag

∑

j∈Ln

ajω
i·j
n

i∈Ln

= diag

∑

j∈Ln

aj ,
∑

j∈Ln

ajω
j
n,
∑

j∈Ln

ajω
2j
n . . . ,

∑

j∈Ln

ajω
(n−1)j
n

 .

Definition 6.1 [circulant code] A classical block code family C = {Ci}i∈N with index sets {In}n∈N is said

to be circulant¶ if, for every message length n ∈ N, the matrix M
(n)
C = (Ci(j))i,j∈In

is circulant; namely,

M
(n)
C =

∑|In|−1
i=0 C0(i)Q

i, where Q denotes the M -by-M cyclic permutation matrix.

From the definition of M
(n)
C in Definition 6.1, the transposed matrix (M

(n)
C)t = (Cj(i))i,j∈In

can be

expressed as
∑|In|−1

j=0 C0(|In| − j mod |In|)Qj and therefore it is also a circulant matrix.
Now, let our attention be focused on shuffled codeword states of circulant codes. Let C be any (M(n), n)q(n)

circulant code with a series {In}n∈N of index sets. Consider k-shuffled codeword states |C(k)
i 〉. Con-

ventionally, we treat |C(k)
i 〉 as the column vector [((1/

√
M)ω

k·Ci(j)
M)j∈In

]t and 〈C(k)
i | as the row vector

((1/
√
M)ω

−k·Ci(j)
M)j∈In

. We use the notation Mk,C to denote the matrix (|C(k)
0 〉, . . . , |C(k)

M(n)−1〉), which

equals

Mk,C =
∑

j∈In

(

1
√

M(n)
ωk·C0(M(n)−j modM(n))
q

)

Qj

and the conjugate transpose of Mk,C can be expressed as

M †
k,C =

∑

j∈In

(

1
√

M(n)
ωk·C0(j)
q

)

Qj.

Clearly, these matrices are circulant since so are the matrices (Ci(j))i,j∈In
and (Cj(i))i,j∈In

.
In the following proposition, we prove that, if we can approximate the matrix FMMk,CF

−1
M efficiently, we

can construct efficiently a codeword-state decoder for C. In this proposition, we use the notion of operator
norm ‖A‖ of a complex square matrix A, defined as ‖A‖ = sup|φ〉,|ψ〉:‖|φ〉‖=‖|ψ〉‖=1 |〈φ|A|ψ〉|.

Proposition 6.2 Let C be an (M(n), n)q(n) circulant code. Let k ∈ F
+
q(n), δ ∈ [0, 1], and let Dk denote

FM(n)M
†
k,CF

−1
M(n). For each constant k ∈ F

+
q(n), let D̃k denote a linear operator such that ||D̃k −Dk|| ≤ δ,

where || · || denotes the operator norm. If D̃k is computable in time polynomial in (n, q(n), log2M(n)), then
C is (1 − δ)2-quantum codeword-state decodable in time polynomial in (n, q(n), log2M(n)).

Proof. Let k ∈ F
+
q(n). By omitting the script “n,” our desired codeword-state decoder Uk that outputs i

from |C(k)
i 〉 can be expressed in the form F−1

M D̃kFM . Obviously, Uk is a linear operator that can be realized
in time polynomial in (n, q, logM).

Now, we wish to evaluate the the success probability |〈i|Uk|C(k)
i 〉|2 of obtaining i by applying Uk to

|C(k)
i 〉. For convenience, let ∆k = D̃k −Dk. This ∆k satisfies the following inequality:

|〈i|F−1
M ∆kFM |C(k)

i 〉| = |(〈i|F−1
M)∆k(FM |C(k)

i 〉)| ≤ ‖∆k‖ = ‖D̃k −Dk‖ ≤ δ.

We then have

|〈i|Uk|C(k)
i 〉| =

∣

∣

∣〈i|F−1
M D̃kFM |C(k)

i 〉|
∣

∣

∣ =
∣

∣

∣〈i|F−1
M (Dk + ∆k)FM |C(k)

i 〉
∣

∣

∣

≥
∣

∣

∣〈i|F−1
M DkFM |C(k)

i 〉
∣

∣

∣−
∣

∣

∣〈i|F−1
M ∆kFM |C(k)

i 〉
∣

∣

∣ ,

¶This notion is different from the codes that have circulant constructions (see, e.g., [24]).

15

which is further bounded by

|〈i|Uk|C(k)
i 〉| ≥

∣

∣

∣
〈i|M †

k,C |C
(k)
i 〉

∣

∣

∣
− ||∆k|| ≥

∣

∣

∣
〈i|M †

k,C |C
(k)
i 〉
∣

∣

∣
− δ

=
∣

∣

∣〈C(k)
i |C(k)

i 〉
∣

∣

∣− δ = 1 − δ.

Thus, we can obtain i from |C(k)
i 〉 with probability at least (1 − δ)2. Since D̃k can be computed in time

polynomial in (n, q, logM), our codeword-state decode also runs in time polynomial in (n, q, logM). 2

Next, we wish to prove that nearly phase-orthogonal circulant codes are quantum codeword-state decod-
able under a certain ideal condition. We begin with a useful lemma on a family of nearly phase-orthogonal
circulant codes.

Lemma 6.3 Let η ∈ [0, 1]. Let C be any (M(n), n)q(n) circulant code with a message space Σ∗ =
⋃

n∈N
Σn

and index sets {In}n∈N. If C is η-nearly phase-orthogonal, then it follows that, for each element k ∈ F
+
q(n)

and each index r ∈ In,
∣

∣

∣

∣

∣

∑

r∈In

ω−i·r
M(n)ω

k·C0(r)
q(n)

∣

∣

∣

∣

∣

2

≥ (1 − η)M(n).

Proof. Let C be any (M(n), n)q(n) circulant code. Fix n ∈ N and we often omit the script “n” for
readability. For simplicity, we assume that In = [0,M(n)−1]Z. Assume that C is η-nearly phase-orthogonal;

that is, for any x, y ∈ In, |〈C(k)
y |C(k)

x 〉| ≤ η if y 6= x.
As noted before, Mk,C can be diagonalized by the quantum Fourier transform FM as follows:

F−1
M Mk,CFM = diag

1√
M

∑

j∈In

ω−ij
M ωk·C0(j)

q

i∈In

.

Similarly, we obtain the following diagonalization:

F−1
M M †

k,CFM = diag

1√
M

∑

j∈In

ωijMω
−k·C0(j)
q

i∈In

.

From these results, the matrix Mk,CM
†
k,C can be also diagonalized by the quantum Fourier transform as

F−1
M (Mk,CM

†
k,C)FM = diag

∣

∣

∣

∣

∣

∣

1√
M

∑

j∈In

ω−ij
M ωk·C0(j)

q

∣

∣

∣

∣

∣

∣

2

i∈In

.

Following an argument similar to the proof of Claim 2, each entry value |(1/
√
M)

∑

j∈In
ω−ij
M ω

k·C0(j)
q |2 in

F−1
M (Mk,CM

†
k,C)FM for i ∈ In is at least 1 − η. This yields the lemma. 2

Circulant codes are desirable candidates for quantum hardcore functions; however, we do not know if all
circulant codes have polynomial-time quantum codeword-state decoder. We need to demand an additional
property, called the multiplicative property, for circulant codes.

Definition 6.4 (multiplicative property) We say that a classical (M(n), n))q(n)-code C enjoys the mul-
tiplicative property if, for any message length n ∈ N and for any two positive indices i, j ∈ In, it holds that
C0(i) + C0(j) = C0(i · j) mod q(n). In particular, we have C0(1) = 0.

For the next proposition, we use the following weak form of “increasing” functions. A function M(n)
from N to N is said to be increasing if, for any number m, there exists another number n > m such that
M(n) > M(m).

Proposition 6.5 Let M(n) be an increasing function. Let η be any function from N to [0, 1]. Let C be
any (M(n), n)q(n) circulant code that is η-nearly phase-orthogonal. If C is polynomial-time computable and
enjoys the multiplicative property, then C is (1 − η′)-quantum codeword-state decodable in time polynomial
in (n, q(n), log2M(n)), where η′(n) = 1 − (1 − 1/M(n))2(1 − η(n)) + 6/

√

M(n).

16

In comparison, recall that Lemma 5.3 gives a (1 − η)-quantum codeword-state decoder using a non-
constructive argument. Proposition 6.5, however, gives a roughly (1 − 1/M(n)) times smaller quantum
codeword-state decoder that works in polynomial time. When M(n) is sufficiently large, the proposition
gives almost optical quantum codeword-state decoder.

By combining Proposition 6.5 with Theorem 4.2, we obtain the following theorem.

Theorem 6.6 Let M(n) be an increasing function. Let C be any polynomial-time computable (M(n), n)q(n)

circulant code family that enjoys the multiplicative property. Assume that a function g(n) is upper-bounded
by a certain positive polynomial in (n, q(n), 1/ε(n), log2(1/(1 − δ(n)))) and satisfies the inequality (1 −
1/M(n))2(1−η(n))−6/

√

M(n)−1/g(n) >
√

1 − (q(n)/(q(n) − 1))2ε(n)2. If C is η-nearly phase-orthogonal,
then C has an (ε, δ)-quantum list-decoder running in time polynomial in (n, q(n), log2M(n), 1/ε(n), log2(1/1−
δ(n))).

We show the pending proof of Proposition 6.5.

Proof of Proposition 6.5. We use a quantum algorithm of van Dam, Hallgren, and Ip [28] to obtain
the desired bound. Let C be any (M(n), n)q(n)-code that is circulant and also η-nearly phase-orthogonal.
Assume that C holds the multiplicative property. Let {In}n∈N be the index sets of C and write I+

n for the
set In − {0}. We drop “n” in the rest of this proof. Consider the following quantum algorithm A.

Quantum Algorithm A:

(1) On input |C(k)
x 〉, apply the inverse quantum Fourier transform F−1

M . We then obtain

|φ1〉 =
1

M

∑

r,`∈In

ω−r`
M ω

C(k)
x (`)

q |r〉 =
1

M

∑

r∈In

ω−rx
M

(

∑

`∈In

ω−r`
M ω

C
(k)
0 (`)

q

)

|r〉.

(2) Transform |j〉 to ω
C

(k)
0 (j)

q |j〉 for each j ∈ I+
n and do nothing for j = 0. This is done in polynomial time

(by running an appropriate deterministic (reversible) computation for C0(j), applying phase encoding, and
uncomputing the first deterministic computation) since C is polynomial-time computable. Since C0(r) +
C0(`) = C0(r`) mod M , we have

|φ2〉 =
1

M

∑

`∈In

ωkC0(`)
q |0〉 +

1

M

∑

r∈I+n

ω−rx
M

ω
C

(k)
0 (0)+C

(k)
0 (r)

q +
∑

`∈I+n

ω−r`
M ω

C
(k)
0 (r`)

q

 |r〉

=
1

M

∑

r∈In

ω−rx
M

∑

`∈I+n

ω−`
M ω

C
(k)
0 (`)

q

 |r〉 +
1

M
ω
C

(k)
0 (0)

q

∑

r∈I+n

ω−rx
M ω

C
(k)
0 (r)

q

 |r〉

+
1

M

[

ω
C

(k)
0 (0)

q +
∑

`∈In

ω
C

(k)
0 (`)

q

(

1 − ω−`
M

)

]

|0〉.

(3) Apply the quantum Fourier transform FM . We then have

|φ3〉 =

1√
M

∑

`∈I+n

ω−`
M ωkC0(`)

q

 |x〉 +
1

M
ω
C

(k)
0 (0)

q

1√
M

∑

r∈I+n ,s∈In

ω
r(s−x)
M ωkC0(r)

q |s〉

+
1

M

ω
C

(k)
0 (0)

q +
∑

`∈I+n

(

1 − ω−`
q

)

ω
C

(k)
0 (0)

q

 .

(4) Measure the resulted state. We observe x with probability |〈x|φ3〉|2, where

〈x|φ3〉 =
1√
M

(

1 − 1

M

)

∑

`∈In

ω−`
M ω

C
(k)
0 (`)

q

+
1

M
√
M

(

1 + ωkC0(0)
q

)

∑

`∈I+n

ω
C

(k)
0 (`)

q − 1√
M

(

1 − 2

M

)

ω
C

(k)
0 (0)

q .

17

End of the Algorithm

Recall that M(n) is an increasing function. To complete the proof, we wish to show that |〈x|φ3〉| ≥
(1 − 1/M)2(1 − η) − 6/

√
M for any sufficiently large M(n). Note that Lemma 6.3 implies that

|(1/
√
M)

∑

`∈In
ω−`
M ω

C
(k)
0 (`)

q |2 ≥ 1 − η. For any sufficiently large M , it follows that

|〈x|φ3〉| ≥
(

1 − 1

M

)

∣

∣

∣

∣

∣

1√
M

∑

`∈In

ω−`
M ω

C
(k)
0 (`)

q

∣

∣

∣

∣

∣

− 2

M
√
M

∑

`∈I+n

∣

∣

∣

∣

ω
C

(k)
0 (`)

q

∣

∣

∣

∣

− 1√
M

(

1 − 2

M

)

≥
(

1 − 1

M

)

√

1 − η − 2√
M

(

1 − 1

M

)

− 1√
M

≥
(

1 − 1

M

)

√

1 − η − 3√
M
.

By squaring |〈x|φ3〉|, we obtain the desired bound:

|〈x|φ3〉|2 ≥
(

1 − 1

M

)2

(1 − η) +
9

M
− 6

√
1 − η√
M

(

1 − 1

M

)

≥
(

1 − 1

M

)2

(1 − η) − 6√
M
.

This completes the proof. 2

7 Finding New Quantum Hardcore Functions

As outlined in Section 3, our goal is to construct a polynomial-time quantum list-decoder for a target
quantum hardcore candidate. How can we prove the quantum hardcore property of such a candidate?
We quickly review our arguments of the previous sections. In Theorem 3.4, we show that quantum list-
decodability yields the quantum hardcore property. With the help of Theorem 4.2, Theorem 4.7 further
relates quantum codeword-state decodability to quantum list-decodability. The remaining task is to prove the
quantum codeword-state decodability of a quantum hardcore candidate. The following lemma summarizes
our argument.

Lemma 7.1 Let s be any negligible‖ function mapping N to the unit real interval [0, 1]. Let C be any
(M(n), n)q(n)-code family with log2M(n) ∈ nO(1) and q(n) ∈ nO(1). Assume that there exists a polynomial-
time (1−s(n))-quantum codeword-state decoder for C. For any noticeable function ε, there exist a noticeable
function δ and a polynomial-time (ε, δ)-quantum list-decoder C. Hence, C satisfies the quantum hardcore
property.

Proof. Let s be any negligible function and let D be a polynomial-time (1 − s(n))-quantum codeword-
state decoder for an (M(n), n)q(n)-code family C. Let ε be any noticeable function. By the definition of
noticeability, there is an appropriate positive polynomial p′ such that ε(n) ≥ 1/p′(n) for any sufficiently
large n ∈ N. Define δ(n) = 1 − 2−n for any n ∈ N

+. Note that log2(1/(1 − δ(n))) = log2 2n = n. To apply
Theorem 4.7, we need to show that Γ(n) = (1−s(n))−

√

1 − (q(n)/(q(n) − 1))2ε(n)2 is a noticeable function
(in n), because the functions log2M(n), q(n), 1/ε(n), and log2(1/(1 − δ(n))) are all polynomially bounded
in n. Fix a sufficiently large number n in N. Using the inequality

√
1 − x ≥ 1 − x/2, we obtain

Γ(n) ≥ 1 − s(n) −
√

1 − ε(n)2 ≥ 1 − s(n) −
(

1 − 1

2p′(n)2

)

=
1

2p′(n)2
− s(n).

Since s is a negligible function, clearly Γ is a noticeable function. 2

For circulant codes, we obtain the following general result, which is a direct consequence of Theorem 6.6.

Lemma 7.2 Let M(n) be an increasing function. Let C be any polynomial-time computable (M(n), n)q(n)

circulant code family C(x, r) that enjoys the multiplicative property. Assume that log2M(n) ∈ nO(1) and
q(n) ∈ nO(1). Let η be any negligible function. If C is η-nearly phase-orthogonal, then C satisfies the
quantum hardcore property.

‖A function µ mapping N to [0, 1] is said to be negligible if, for any positive polynomial p, there exists a number n0 ∈ N such
that µ(n) ≤ 1/p(n) for all n ≥ n0.

18

Proof. This proof is similar to that of Lemma 7.1. LetC be any polynomial-time computable (M(n), n)q(n)

circulant code family that satisfies the multiplicative property. Assume that C is η-nearly phase-orthogonal
for a certain negligible function η. To appeal to Theorem 3.4, we need to prove that, for arbitrary noticeable
function ε, there exists another noticeable function δ such that Γ(n) = (1−1/M(n))2(1−η(n))−6/

√

M(n)−
√

1 − (q(n)/(q(n) − 1))2ε(n)2 is also a noticeable function. Take a positive polynomial p̂ such that ε(n) ≥
1/p̂(n) for all n ∈ N. Note that

√
1 − x ≤ 1 − x/2 for any x ∈ [0, 1]. We estimate the value Γ as follows.

Γ(n) ≥
(

1 − 1

M(n)

)

(1 − η(n)) − 6
√

M(n)
−
√

1 − 1

p̂(n)2

≥ 1 − η(n) − 1

M(n)
+

η(n)

M(n)
− 6
√

M(n)
−
(

1 − 1

2p̂(n)2

)

≥ 1

2p̂(n)2
− η − 7

√

M(n)
.

Since M(n) is exponentially large and η(n) is negligible, we conclude that Γ(n) is lower-bounded by 1/p′(n)
for a certain positive polynomial p′ for any sufficiently large number n ∈ N. 2

Now, let us present three new quantum hardcore functions, two of which are unknown to be classically
hardcores. These new quantum hardcores are (i) q-ary Hadamard codes, (ii) shifted Legendre symbol codes,
and (iii) pairwise equality codes. Goldreich and Levin [15] showed that binary Hadamard codes are classical
hardcores and q-ary Hadamard codes are later shown to be classical hardcores by Goldreich, Rubinfeld,
and Sudan [16]. We explain these quantum hardcores as codes and give polynomial-time quantum list-
decoding algorithms for them. With help of Theorem 4.7, however, we need to build only their quantum
codeword-state decoders instead of quantum list-decoders.

Proposition 7.3 Let p(n) and q(n) be any two functions mapping N to the prime numbers. There exists
a polynomial-time quantum list-decoding algorithm for each of the following codes:

1. The q(n)-ary Hadamard code HAD(q) with q(n) ∈ nO(1), whose codeword HAD(q)
x is defined as

HAD(q)
x (r) =

∑2n−1
i=0 xi · ri mod q(n). The minimal distance d(HAD(q)) is (1 − 1/q(n))q(n).

2. The shifted Legendre symbol code SLSp, which is a (p(n), n)2-code with n = dlog p(n)e and odd prime

p(n), whose codeword SLSpx is defined by the Legendre symbol∗∗ as SLSpx(r) = 1 if
(

x+r
p(n)

)

= −1, and

SLSpx(r) = 0 otherwise.

3. The pairwise equality code PEQ for even numbers n ∈ N, which is a (2n, n)2-code, whose codeword is

PEQx(r) =
⊕n/2

i=0 EQ(x2ix2i+1, r2ir2i+1), where EQ denotes the equality predicate (i.e., EQ(x, y) = 1
if x = y and 0 otherwise) and ⊕ is the bitwise XOR.

By applying Theorem 3.4, we can prove the quantum hardcore property of all the codes given in Propo-
sition 7.3.

Theorem 7.4 The functions HAD(q), SLSp, and PEQ are all quantum hardcore functions for any quantum
one-way function f ′ of the form f ′(x, r) = (f(x), r) for any x and any r with |r| = s(|x|), where f is an
arbitrary quantum one-way function and s is a polynomial.

Earlier, Damg̊ard [10] introduced the so-called Legendre generator, which takes input (p(n), x) and pro-
duces a q(n)-bit sequence whose rth bit equals SLSpx(r) for every index r ∈ Fq(n), where q is a fixed
polynomial. He asked whether his generator possesses the classical hardcore property (which is also listed
as an open problem in [17].) Our result, Proposition 7.3(2), proves the “quantum” hardcore property of
Damg̊ard’s generator for any quantum one-way function.

Finally, we give the proof of Proposition 7.3.

Proof of Proposition 7.3. By Lemma 7.1, it suffices to provide a polynomial-time (1− 1/s(n))-quantum
codeword-state decoder for each of the given codewords in Proposition 7.3, where s is a certain negligible
function. Now, fix n ∈ N and omit “n” for readability.

∗∗For any odd prime p, let
“

x
p

”

= 0 if p|x,
“

x
p

”

= 1 if p6 |x and x is a quadratic residue modulo p, and
“

x
p

”

= −1 otherwise.

19

(1) The simple case q = 2 was implicitly proven by Adcock and Cleve [1] and also by Bernstein and

Vazirani [6]. Consider the general case q ≥ 2. We want to show that HAD(q) is 1-quantum codeword-

state decodable. By Lemma 7.1, this implies the quantum list-decodability of HAD(q). Let |HAD(q)〉 be a

codeword state. To recover x from the codeword state |HAD(q)〉, we note that

Fq|x〉 =
1√
q

∑

r∈Fq

ωx·rq |r〉 =
1√
q

∑

r∈Fq

ω
HAD(q)

x (r)
q |r〉 = |HAD(q)

x 〉.

Hence, apply the inverse of Fq to |HAD(q)
x 〉 and we immediately obtain |x〉 with probability 1.

(2) We consider a new code C defined as follows: let Ci(j) be SLSp−i(j) (using “−i” instead of “i”)

for each pair i, j ∈ In. Since C is a circulant code, we hereafter consider its associated matrix M †
2,C =

∑

j∈In

(

(1/
√
p)ω

C0(j)
2

)

Qj .

To obtain a quantum codeword-state decoder for Ci, we use Proposition 6.2. First, we define a useful
constant cp as follows: cp = 1 if p ≡ 1 mod 4, and cp = ι (i.e., the unit of imaginary numbers) if p ≡ 3 mod 4.
This constant cp satisfies the following equation (see e.g. [9]):

(∗) 1√
p

∑

j∈Fp

(

j

p

)

ωa·jp = cp

(

a

p

)

for any number a ∈ [0, p− 1]Z. Let D2 = F−1
p M †

2,CFp, which equals

D2 = diag

1√
p

∑

j∈In

ωijp ω
−C0(j)
2

i∈In

= diag

1√
p

+
1√
p

∑

j∈In

(

j

p

)

ωijp

i∈In

because ω
−C0(0)
2 = 1 and ω

−C0(i)
2 =

(

i
p

)

for any number i ∈ F
+
p . By (*), we have

D2 = diag

(

1√
p

+ cp

(

i

p

))

i∈In

= diag

(

1√
p
,

1√
p

+ cpω
−C0(1)
2 , . . . ,

1√
p

+ cpω
−C0(p−1)
2

)

.

We define our desired linear operator D̃2 as D̃2 = diag
(

0, cpω
−C0(1)
2 , . . . , cpω

−C0(p−1)
2

)

. This definition

makes the operator norm ‖D2 − D̃2‖ equal

‖D2 − D̃2‖ =

∥

∥

∥

∥

diag

(

1√
p
, . . . ,

1√
p

)∥

∥

∥

∥

=
1√
p
.

How can we realize this D̃2? The operator D̃2 can be realized by the following polynomial-time algorithm.

On input |i〉|0〉, where i ∈ Fq, compute cp|i〉|C0(i)〉 in a reversible fashion. Apply the phase-shift
transform that changes |i〉|a〉 to ω−a

2 |i〉|a〉. Uncompute |C0(i)〉 in the last register and we obtain

cpω
−C0(i)
2 |i〉|0〉. Finally, when i = 0, we reject the input.

Therefore, Proposition 6.2 gives a (1 − 1/
√
p)2-quantum codeword-state decoder for C that runs in time

polynomial in n. Since (1 − 1/
√
p)2 ≥ 1 − 2/

√
p, it suffices to define s(n) = 2/

√
p.

To list-decode SLS, since SLSpi (j) = C−i(j), we first find −i from the codeword C−i(·) and then output
i. This procedure gives rise to a quantum list-decoder for SLS.

(3) We want to prove that PEQ has a polynomial-time 1-quantum codeword-state decoder. We first
observe the following key equation:

|PEQx(r)〉 =
1√
2n

∑

r=0

(−1)PEQx(r)|r〉

=
1√
4

∑

r1,r2

(−1)EQ(x1x2,r1r2)|r1r2〉 ⊗ · · · ⊗ 1√
4

∑

rn−1,rn

(−1)EQ(xn−1xn,rn−1rn)|rn−1rn〉.

Let us consider the following unitary transform HC , which we call the circulant Hadamard transform:

HC =def

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

= F−1

4

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

F4,

20

where F4 is the quantum Fourier transform over F4. Since HC satisfies the equality

HC

1√
4

∑

ri,ri+1

(−1)EQ(xixi+1,riri+1)|riri+1〉

 = |xixi+1〉,

we can obtain |x1x2〉 ⊗ · · · ⊗ |xn−1xn〉 from the codeword state |PEQx〉 by applying U = H
⊗n/2
C . From this

quantum state, we can easily obtain x with probability 1. 2

References

[1] M. Adcock and R. Cleve. A quantum Goldreich-Levin theorem with cryptographic applications. In Proc. of

the 19th International Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer
Science, Vol.2285, Springer, pp.323–334, 2002.

[2] A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core predicates using list decoding. Theoretical Computer

Science, 378(1), 46–53, 2007.

[3] A. Ambainis, K. Iwama, A. Kawachi, R. H. Putra, and S. Yamashita. Robust quantum algorithms for oracle
identification. Quantum Information Processing, 4(5), 355–386, 2005.

[4] A. Atici and R. Servedio. Improved bounds on quantum learning algorithms. To appear in Quantum Information

Processing. Available also at http://arxiv.org/abs/quant-ph/0411140.

[5] A. Barg and S. Zhou. A quantum decoding algorithm for the simplex code. In Proc. of Allerton Conference on

Communication, Control and Computing, 1998. Available at http://citeseer.ist.psu.edu/barg98quantum.html.

[6] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26(5): 1411–1473, 1997.

[7] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM J.

Comput., 13: 850–864, 1984.

[8] H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf. Robust quantum algorithms and polynomials. In Proc.

of the 20th International Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer
Science, Vol.3404, pp.593–604, 2003.

[9] R. Crandall and C. Pomerance. Prime Numbers: A Computational Perspective, Springer-Verlag, 2001.

[10] I. B. Damg̊ard. On the randomness of Legendre and Jacobi sequences. In Proc. of the 8th Annual International

Cryptology Conference, Lecture Notes in Computer Science, Vol.403, pp.163–172, 1988.

[11] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,
IT-22(6): 644–654, 1976.

[12] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. In Proc. Roy. Soc. London,
A, Vol.439, pp.553–558, 1992.

[13] Y. C. Eldar and G. D. Forney, Jr. On quantum detection and the square-root measurement. IEEE Trans.

Inform. Theory, 47(3):858–872, 2001.

[14] O. Goldreich. Foundations of Cryptography: Basic Tools, Cambridge University Press, 2001.

[15] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In Proc. of the 21st Annual

ACM Symposium on Theory of Computing, pp.25–32, 1989.

[16] O .Goldreich, Rubinfeld, and M. Sudan. Learning polynomials with queries: the highly noisy case. In Proc. of

the 36th Annual Symposium on Foundations of Computer Science, pp.294–303, 1995.

[17] M. I. González Vasco and M. Näslund. A survey of hard core functions. In Proc. of Workshop on Cryptography

and Computational Number Theory, Birkhauser, pp.227–256, 2001.

[18] L. K. Grover. Quantum Mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2):325–328,
1997.

[19] V. Guruswami and M. Sudan. Extensions to the Johnson bound. Manuscript, 2000. Available at
http://theory.csail.mit.edu/˜madhu/.

[20] P. Hausladen and W. K. Wootters. A ‘pretty good’ measurement for distinguishing quantum states.
J. Mod. Opt., 41:2385–2390, 1994.

[21] T. Holenstein, U. M. Maurer, and J. Sjödin. Complete classification of bilinear hard-core functions. In Proc. of

the 24th Annual International Cryptology Conference, Lecture Notes in Computer Science, Vol.3152, pp.73–91,
2004.

[22] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[23] P. Høyer, M. Mosca, and R. de Wolf. Quantum search on bounded-error inputs. In Proc. of the 33rd Interna-

tional Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, Vol.2719,
pp.291–299, 2003.

21

[24] W. C. Huffman and V. Pless. Fundamentals of Error-Correcting Codes. Cambridge University Press, 2003.

[25] A. Kawachi and T. Yamakami. Quantum hardcore functions by complexity-theoretical quantum list decoding.
In Proc. of the 33rd International Colloquium on Automata, Languages and Programming, Lecture Notes in
Computer Science, Vol.4052 (Part II), pp.216–227, 2006.

[26] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University
Press, 2000.

[27] M. Sudan. List decoding: Algorithms and applications. SIGACT News, 31(1): 16–27, 2000.

[28] W. van Dam, S. Hallgren, and L. Ip. Quantum algorithms for some hidden shift problems. SIAM J. Comput.

36(3), 763–778, 2006.

[29] T. Yamakami. A foundation of programming a multi-tape quantum Turing machine. In Proc. of the 24th Inter-

national Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science,
Springer-Verlag, Vol.1672, pp.430-441, 1999.

[30] A. C. Yao. Quantum circuit complexity. In Proc. of the 34th Annual Symposium on Foundations of Computer

Science, pp.352–361, 1997.

Appendix: Proof of Lemma 3.2

For the proof of Lemma 3.2, we need to elaborate the brief description given in Section 3 on an interpretation
of presence. For readability, we fix n and omit this n (for example, we write “q” instead of “q(n)”) in the
following proof. Let v be any quantumly corrupted word that Õ represents. We view this v as the real vector
in the qN dimensional real space defined as follows: let v[r], the rth block of v, be (|αr,1|2, |αr,2|2, . . . , |αr,q|2)
if Õ|r〉|s〉|t〉 =

∑

z∈[q] αr,z |r〉|s⊕ z〉|t⊕φr,z〉 for certain s, t. Let {C1, C2, . . . , Cm} be the set of all codewords
that lie “close” to the given quantumly corrupted word. For each Ci, we define ci to be the corresponding
vector defined as follows: let ci[r], the rth block of ci, consists of zeros and one 1 at the zth component
if Ci(r) outputs z. Let Ki = {x | ∑z xr,z = 0} for each i and set K =

⋂q
i=1 Ki. Note that dim(K) =

N(q − 1). Take any distinct pair (i, j) (i.e., i 6= j). We further introduce a new parameter β ∈ [0, 1]
and define w = β · v + 1−β

q · ~1, where ~1 is the vector of all 1s. Note that 〈~1|~1〉 = Nq. Note also that

the (Hamming) distance d(Ci, Cj) between codes Ci and Cj is lower-bounded by d. Moreover, we have
〈ci|v〉 =

∑

r |αr,Ci(r)|2 = N ·PreÕ(Ci), where 〈v|w〉 denotes the standard inner product of two vectors v and
w.

The first Upper Bound. We calculate the value 〈ci|w〉, 〈w|w〉, and 〈ci|cj〉 as follows:

〈ci|w〉 = β〈ci|v〉 +
1 − β

q
〈ci|~1〉 = βNPreÕ(Ci) +

1 − β

q
N ≥ βN

(

1

q
+ ε

)

+
N(1 − β)

q
.

〈w|w〉 = β2〈v|v〉 +
2β(1 − β)

q
〈v|~1〉 +

(1 − β)2

q2
〈~1|~1〉 = Nβ2 +

2Nβ(1 − β)

q
+
N(1 − β)2

q
.

〈ci|cj〉 = N − d(Ci, Cj) ≥ N − d.

Hence, we obtain:

〈ci − w|cj − w〉 = 〈ci|cj〉 + 〈w|w〉 − 〈ci|w〉 − 〈cj |w〉

≤ N − d+Nβ2 +
2Nβ(1 − β)

q
+
N(1 − β)2

q
− 2N

[(

1

q
+ ε

)

β +
1 − β

q

]

= N

(

1 − 1

q

)[

β2 − 2qε

q − 1
β + 1

]

− d.

We assume that d =
(

1 − 1
q

)

(1 − δ)N for a certain δ ∈ [0, 1]. It thus follows that:

〈ci − w|cj − w〉 ≤ N

(

1 − 1

q

)[

β2 − 2qε

q − 1
β + 1

]

−
(

1 − 1

q

)

(1 − δ)N

= N

(

1 − 1

q

)[

β2 − 2qε

q − 1
β + δ

]

.

22

To make 〈ci − w|cj − w〉 < 0, we need to satisfy that β2 − 2qε
q−1β + δ < 0, which is equivalent to ε >

1
2

(

1 − 1
q

)(

β + δ
β

)

. To minimize the value β + δ
β , it suffices to take β =

√
δ. By replacing β by

√
δ, we

obtain ε >
√
δ
(

1 − 1
q

)

. Since δ = 1 − d
N

(

1 + 1
q−1

)

, we obtain the bound ε >
(

1 − 1
q

)

√

1 − d
N

(

1 + 1
q−1

)

.

Now, let ĉi = ci− v for each i and let ŵ be the projection of w onto K. Since ci−w ∈ K and ε > 1− 1/q,
we have

〈ĉi|ŵ〉 = 〈ĉi|w〉 ≥
Nβ

q
[qε− β(q − 1)] .

Since β =
√
δ, we have

〈ĉi|ŵ〉 >
N
√
δ

q

[

q
√
δ

(

1 − 1

q

)

−
√
δ(q − 1)

]

= 0.

As shown in [1], this implies that m ≤ dim(K) = N(q − 1).

The Second Upper Bound. We show the second upper bound. Recall that 〈ci − w|cj − w〉 ≤
N
(

1 − 1
q

) [

β2 − 2qε
q−1β + δ

]

. We choose β = qε
q−1 so that β2 − 2qε

q−1 = −β2. If δ < β2 =
(

qε
q−1

)2

, then

clearly, we have 〈ci−w|cj−w〉 ≤ N
(

1 − 1
q

)

(

δ − β2
)

< 0. Note that the condition δ <
(

qε
q−1

)2

is equivalent

to ε >
√
δ
(

1 − 1
q

)

. Since δ = 1− qd
N(q−1) , we obtain that ε >

(

1 − 1
q

)

√

1 − d
N

(

1 + 1
q−1

)

as before. We also

have

‖ci − w‖2 = 〈ci − w|ci − w〉 ≤ N

(

1 − 1

q

)[

β2 − 2qε

q − 1
β + 1

]

= N

(

1 − 1

q

)

[

1 − β2
]

.

By normalizing ci − w, we write ui = ci−w
‖ci−w‖ . Hence, we have

〈ui|uj〉 =
〈ci − w|cj − w〉

‖ci − w‖ · ‖cj − w‖ ≤ δ − β2

1 − β2
= −β

2 − δ

1 − β2
.

As shown in [19], we obtain the bound:

m ≤ 1 +
1 − β2

β2 − δ
=

1 − δ

β2 − δ
=

qd
N(q−1)

qd
N(q−1) − 1 +

(

qε
q−1

)2 =
d
(

1 − 1
q

)

d
(

1 − 1
q

)

+Nε2 −N
(

1 − 1
q

)2 .

The Equality Case. Assume that ε(n) =
(

1 − 1
q(n)

)

√

1 − d(n)
N(n)

(

1 + 1
q(n)−1

)

, which is equivalent to

ε =
√
δ
(

1 − 1
q

)

. We want to show that m ≤ 2N(n)(q(n) − 1) − 1. Recall that 〈ci − w|cj − w〉 ≤

N
(

1 − 1
q

) [

β2 − 2qε
q−1β + δ

]

. Taking β = qε
q−1 (=

√
δ), we immediately obtain 〈ci−w|cj −w〉 ≤ 0. Note that

〈ci − w|w〉 = 〈ci|w〉 − 〈w|w〉

≥ βN

(

1

q
+ ε

)

+
N(1 − β)

q
−Nβ2 − 2Nβ(1 − β)

q
− N(1 − β)2

q

=
N

q

[

β(1 + qε) + (1 − β) − qβ2 − β(1 − β) − (1 − β)2
]

.

Replacing β and ε by the appropriate terms using δ, we have

〈ci − w|w〉 ≥ N

q

[(

1 + q ·
√
δ(q − 1)

q

)

√
δ − qδ

]

=
N

q

[√
δ − δ

]

≥ 0

because 0 ≤ δ ≤ 1. Hence, by [19], we obtain that m = 2N(q − 1) − 1.

23

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

