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Abstract

We initiate the study of the compressibility of NP problems. We consider NP problems that have
long instances but relatively short witnesses. The question is, can one efficiently compress an instance
and store a shorter representation that maintains the information of whether the original input is in the
language or not. We want the length of the compressed instance to be polynomial in the length of the
witness rather than the length of original input. Such compression enables to succinctly store instances
until a future setting will allow solving them, either via a technological or algorithmic breakthrough or
simply until enough time has elapsed.

We give a new classification of NP with respect to compression. This classification forms a strati-
fication of NP that we call the VC hierarchy. The hierarchy is based on a new type of reduction called
W-reduction and there are compression-complete problems for each class.

Our motivation for studying this issue stem from the vast cryptographic implications compressibility
has. For example, suppose that SAT is compressible, that is there exist a polynomial p(·, ·) so that given
a formula consisting of m clauses over n variables it is possible to come up with an equivalent (w.r.t
satisfiability) formula of size at most p(n, logm). Then if the reduction is what we call witness retriev-
able we provide a construction of an Oblivious Transfer Protocol from any one-way function. Using
the terminology of Impagliazzo [Imp95], this implies that Minicrypt=Cryptomania. Other impli-
cations of SAT compressibility (without the witness retrievability) are: (i) the construction of collision
resistant hash function from any one-way function and (ii) a cryptanalytic result concerning the limi-
tation of everlasting security in the bounded storage model when mixed with (time) complexity based
cryptography.
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1 Introduction

In order to deal with difficult computational problems several well established options were developed,
including: approximation algorithms, subexponential algorithms, parametric complexity and limited non-
determinism. In this paper we explore our favorite approach for dealing with problems: postpone them
(hopefully, without cluttering our desk). We initiate the study of the compressibility of NP problems for
their resolution in some future setting. Rather than solving a given instance, we ask whether a shorter in-
stance with the same solution can be found efficiently. Specifically, we consider NP problems that have
long instances but relatively short witnesses. An NP language L is defined by an efficiently computable
relation RL such that an input (or instance) x is in L if and only if there exists a witness w such that
RL(x, w) = 1. Throughout the paper, an NP instance is characterized by two parameters m and n: The
length of the instance x is denoted by m and the length of the witness w is denoted by n. The problems of
interest are those having short witnesses, i.e. n << m. Traditionally, the study of NP languages evolves
around the ability or inability to efficiently decide if an instance is in the language or not, or to find a witness
w for an instance x within polynomial time. We introduce the question of compressibility of such instances.

Compressing SAT Instances: To illustrate the relevant setting, we use the well known example of SAT.
An instance Φ for SAT consists of a CNF formula over n variables and we define that Φ ∈ SAT if there
exists an assignment to the n variables that satisfies all the clauses of Φ. The question of compressibility of
SAT is the following:

Example 1.1 (Compression of SAT instances)
Does there exist an efficient algorithm and a polynomial p(·, ·) with the following input and output:
Input: A CNF formula Φ with m clauses over n variables (we are interested in m >> n).
Output: A formula Ψ of size p(n, log m) such that Ψ is satisfiable if and only if Φ is satisfiable.

The idea is that the length of Ψ should be essentially unrelated to the original length m, but rather to the
number of variables (or in other words, to the size of the witness). Typically, we think of the parameters m
and n as related by some function, and it is instructive (but not essential) to think of m as larger than any
polynomial in n. So potentially, the length of Ψ can be significantly shorter than that of Φ.1

In general, one cannot expect to compress all the formulas, or else we would have an efficient algorithm
for all NP problems.2 However, once we introduce the setting of a shorter witness, then compression
becomes plausible. Note that if P = NP and we actually know the algorithm for SAT then clearly
compression is trivial, simply by solving the satisfiability of Φ and outputting 1 if Φ ∈ SAT and 0 otherwise.

Motivation for Compression: Compressing for the future is an appealing notion for various settings.
There are numerous plausible scenarios that will give us more power to solve problems in the future. We
could potentially find out that P = NP and solve all our NP problems then. We may have faster computers
or better means of computing such as quantum computers or any other physical method for solving problems
(see Aaronson [Aar05] for a list of suggestions). Above all, the future entails lots and lots of time, a resource
that the present is usually short of. Saving the problems of today as they are presented is wasteful, and
compression of problems will allow us to store a far greater number of problems for better days.

1Note, that since our requirement for compression is only relevant for problems where m >> n, then an NP-complete problem
such as 3-SAT (where all clauses have exactly 3 literals) is irrelevant for compression as in such formulas m is already at most
O(n3).

2Suppose that every formula can be compressed by a single bit, then sequentially reapplying compression to the input will result
in a very short formula that may be solved by brute enumeration.
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Our interest in studying the issue of compression stems from the vast cryptographic implications of
compressibility. We demonstrate three questions in cryptography that compression algorithms would resolve
(see Section 1.3). We are confident that the compression of problems implies further applications both
within and outside of cryptography. For example, Dubrov and Ishai [DI06], in subsequent work, show the
relevance of the notion of compression to derandomization (see related work, Section 1.4). The concept of
compression of problems is also interesting beyond the confines of NP problems, and makes sense in any
setting where the compression requires much less resources than the actual solution of the problem.

1.1 Compression of NP instances

We define the notion of compression with respect to an NP language. For simplicity, we assume that an
input to an NP language L includes an encoding of the parameter n that upper bounds the length of a
potential witness.3 We also associate with L a specific NP relation RL that defines it (as mentioned above).
We note that once the parameters m and n are explicit, it is in most cases immaterial what specific relation
defines the language and the properties we discuss (such as compressibility) are properties of the language
at hand (unless stated otherwise).

In essence, a compression algorithm is a specialized Karp-reduction that also reduces the length of the
instance. In the following definition we also introduce an additional property that is of interest for some of
the applications. This is called witness retrieval and essentially means that knowledge of a witness to the
input instance implies knowledge of a witness to the compressed instance.4

Definition 1.2 (Compression Algorithm for NP Instances) Let L be an NP language. A compression
algorithm for L is a probabilistic polynomial time machine Z along with a language L′ in NP (or more
accurately in NP(poly(m)))5 and a polynomial p(·, ·) such that for all large enough m:

1. For all x ∈ {0, 1}m with parameter n the length of Z(x) is at most p(n, log m).

2. Z(x) ∈ L′ if and only if x ∈ L

A compression algorithm is witness retrievable with respect to RL if there exists a probabilistic poly-
nomial time machine W such that if wx is a witness for x ∈ L then wy = W (wx, Z(x)) is a witness for
Z(x) ∈ L′.

We allow a negligible error in the success of Z and W (where probability is over the internal randomness
of Z and W ).

The paper consists of two parts: Part I is a study of the concept of compression of NP instances from a
complexity point of view. Part II introduces the cryptographic applications of compression algorithms.

How much to compress: Definition 1.2 (of compression algorithms) requires a very strong compression,
asking that the length of the compression is polynomial in n and log m. For the purposes of part I of the paper
(the complexity study), it is essential that the compression is at least sub-polynomial in m in order to ensure
that the reductions defined with respect to compressibility (See Section 2.2) do compose.6 Furthermore,

3Typically, the parameter n is indeed part of the description of the problem (e.g. for Clique, SAT, Sparse Subset Sum and others).
4The reverse direction, where one wants to extract a witness to the input instance from the compressed instance is considered in

the Section 2.7 on the compression of search problems.
5By NP(poly(m)) we mean in nondeterministic-time poly(m) (that is, verifiable in time poly(m) when given a non-

deterministic hint).
6For clarity we choose a polynomial in log m, although this may be replaced by any sub-polynomial function m′(.) (a function

such that for large enough m for any polynomial q(·) we have m′(m) < q(m)).
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for part II (the applications) this definition may be strongly relaxed, where even a compression to m1−ε for
some constant ε suffices for some applications.

The Complexity of L′: Another requirement of Definition 1.2 is that the language L′ be in NP(poly(m)).
In general, this requirement may also be relaxed and the result still be meaningful for some applications.
In particular, we do not need to put a bound on the complexity of L′, but only require that there is enough
information in Z(x) to determine whether x ∈ L or not. One case where we use a definition with un-
bounded extraction is the compression of search problems in Section 2.7. It should be noted however that
the requirement for L′ to be in NP(poly(m)) is necessary in order for the witness retrievability property to
be meaningful. Moreover, in some cases it is natural to further restrict L′ to actually be in NP (that is in
NP(poly(n, log m)). For instance, this is the case in the definition of compression of SAT (Example 1.1).
Finally, note that if the compression has zero error probability, then L′ must be in NP(poly(m)) simply by
the definition of compression.7

1.2 Part I: Classifying NP Problems with Respect to Compression.

We are interested in figuring out which NP languages are compressible and, in particular, whether impor-
tant languages such as SAT and Clique are compressible. For starters, we demonstrate some non-trivial
languages that do admit compression: we show compression for the well known NP-complete problem of
vertex-cover and for another NP-complete language known as minimum-fill-in. We also show compression
of a language consisting of strings that are the output of a cryptographic pseudorandom generator as well
as compression for the promise problem GapSAT.8 However, these examples are limited and do not seem to
give us compression for all NP . Moreover, it becomes clear that the traditional notions of reductions and
completeness in NP do not apply for the case of compression (i.e., the compression of an NP-complete
language does not immediately imply compression for all of NP). Neither are different notions of reduction
with respect to other aspects of computation, such as reductions with respect to approximation algorithms
or subexponential algorithms (see for example [Pap94]) and for parameterized complexity (see [DF99] and
further discussion in Section 1.4 on related work).

We introduce W-reductions that arise from the study of compression. These are reductions that address
the length of the witness in addition to membership in an NP language. Following the definition of W-
reductions we define also the matching notion of compression-complete languages for a class. We then
introduce a classification of NP problems with respect to compression. The classification presents a struc-
tured hierarchy of NP problems, that is surprisingly different from the traditional view and closer in nature
to the W hierarchy of parameterized complexity (see [DF99]). We call our hierarchy VC, short for “ver-
ification classes”, since the classification is closely related to the verification algorithm of NP languages
when allowed a preprocessing stage. We discuss some of the more interesting classes in the VC hierarchy,
mention some compression-complete problems and classify some central NP problems.

In addition, we study the compression of NP search problems. That is, compressing an instance in a
way that maintains all the information about a witness for the problem. We show that the compression of a
class of decision problems also implies compression for the corresponding search problems.

7Suppose that there exists a compression algorithm Z for L then define L′ to be the language of all Z(x) such that x ∈ L. Then,
for every y ∈ L′ a verification algorithm takes as a nondeterministic witness a value x, a witness to x ∈ L along with randomness
for the compression algorithm and verifies that indeed y = Z(x). Thus if Z never introduces an error then L′ is in NP(poly(m)).

8I.e. a promise problem were either the formula is satisfiable or every assignment does not satisfy a relatively large number of
clauses.
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1.3 Part II: Implications to Cryptography

We provide some implications of compressibility to cryptography. The implications described are of con-
trasting flavors. On the one hand we show constructions of cryptographic primitives using compression
algorithms, while on the other hand we show a cryptanalysis using compression algorithms (or alternatively,
this can be considered as an application of incompressibility of languages). For simplicity we provide the
implication with respect to the compression of SAT. We note however, that the same statements can actually
be made with compression of languages from the class VCOR (see Definition 2.17). This class is the lowest
class in our VC hierarchy, and potentially easier to compress than SAT.

On the existence of Minicrypt: Impagliazzo [Imp95] summarizes five possibilities for how the world
may look like based on different computational assumptions. The two top worlds are Minicrypt, where
one-way functions exist but oblivious transfer protocols do not exist (in this world some interesting cryp-
tographic applications are possible, and in particular shared key cryptography) and Cryptomania where
Oblivious Transfer protocols do exist (and hence also a wide range of cryptographic applications like secure
computation and public key cryptography). We show that if there exists a compression algorithm for SAT
that is also witness retrievable, then Minicrypt=Cryptomania:

Theorem 1.3 If there exists a witness retrievable compression algorithm for SAT, then there exists an Obliv-
ious Transfer protocol based on any one-way function.

This theorem is proved by first constructing a private information retrieval (PIR) protocol from any one-
way function and then applying the reduction of Di Crescenzo, Malkin and Ostrovsky [DMO00] from OT
to PIR. As immediate corollaries we also get constructions for general secure computation protocols (e.g.
[Yao82, GMW87, GV87, Kil88]) and secret key agreement from one-way functions. All of the above are not
known to be equivalent to the existence of one-way functions. Moreover, Impagliazzo and Rudich [IR89]
prove that key agreement protocols (and hence also OT) cannot be constructed from any one-way function
using black-box reductions. This does not imply that witness retrievable compression of SAT is impossible,
since the construction of OT in Theorem 3.1 is inherently non-black-box and uses the program of the one-
way function via Cook’s Theorem [Coo71]. Whether OT can be constructed from any one-way function
is a major open problem in cryptography and as such may be viewed as an indication to the difficulty of
resolving the question of finding witness retrievable compression algorithms for SAT.

On Collision Resistant Hash from any One-Way Function: Practically the same construction of PIR
from Theorem 3.1 but without the witness retrievability can be used, via a result of Ishai, Kushilevitz and
Ostrovsky [IKO05], to construct collision resistant hash functions (CRH). Thus we get the following:

Theorem 1.4 If there exists an errorless9 compression algorithm for SAT then there exists a construction of
collision resistant hash functions based on any one-way function.

This task as well was shown to be impossible by black-box reductions (see Simon [Sim98]). Another
interesting corollary of this result is a construction of statistically hiding bit commitment from any one-
way function, which is currently an open problem ([NOVY98, HHK+05] show such constructions based on
one-way functions with a specific structure).

9The construction of CRH requires that the error probability of compression algorithm will be zero. This can be slightly relaxed
to an error that is exponentially small in m (rather than n).
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On Everlasting Security and the Hybrid Bounded Storage Model: The bounded storage model (BSM)
of Maurer [Mau92] provides the setting for the appealing notion of everlasting security [ADR02, DR02].
Loosely speaking, two parties, Alice and Bob, that share a secret key in advance, may use the BSM to
encrypt messages in a way that the messages remain secure against a computationally unbounded adversary,
even if the shared secret key is eventually revealed.

However, if the parties do not meet in advance to agree on a secret key then everlasting security requires
high storage requirements from Alice and Bob [DM04a], rendering encryption in this model less appealing.
Hoping to overcome this, it was suggested to combine the BSM with computational assumptions (what
is called here the hybrid BSM). In particular, to run a computational key agreement protocol in order to
agree on a shared secret key, and then run one of the existing BSM schemes. Dziembowski and Maurer
[DM04a] showed that this idea does not necessarily work in all cases, by showing an attack on a protocol
consisting of the combination of a specific (artificial) computational key agreement protocol with a specific
BSM encryption scheme.

We show that compression of NP instances can be used to attack all hybrid BSM schemes. Or in other
words, if a compression of SAT exists, then the hybrid BSM is no more powerful than the standard BSM.

One interpretation of this result is that in order to prove everlasting security for a hybrid BSM scheme,
without further conditions, one must prove that there exists no compression algorithm for SAT. Alternatively,
as a relaxation, one should come up with a reasonable incompressibility assumption regarding the resulting
formulae. Note however that a straightforward assumption of the form “this distribution on SAT formulae is
incompressible” is not efficiently falsifiable, in the sense of Naor [Nao03], that is, it is not clear how to set
up a challenge that can be solved in case the assumption is false.
ON RANDOM ORACLES: We show (in [HN05]) that if all parties are given access to a random oracle,
then there actually exists everlasting security in the hybrid BSM without an initial key and with low storage
requirements from Alice and Bob10. Therefore, finding a compression algorithm for SAT would show an
example of a task that is simple with random oracles but altogether impossible without them. This is stronger
than previous results (such as [CGH04, GK03, MRH04]) that show a specific protocol that becomes insecure
if the random oracle is replaced by a function with a small representation. This would constitute an argument
against relying (blindly) on random oracles to determine whether a task is feasible at all.

1.4 Related Work

The relationship between compression and complexity in general is a topic that has been investigated since
the early days of Complexity Theory (i.e. Kolmogorov Complexity [LV97]). However, the feature that we
are introducing in this work is compressibility with respect to the solution (witness) rather than the instance.
The goal of maintaining the solution differs our work from a line of seemingly related works about notions
of compression ([DLN96, TVZ04, Wee04] to name a few), all of which aim at eventually retrieving the
input of the compression algorithm.

There are several examples of other relaxations to solving NP problems in polynomial time. Each of
these relaxations yields a corresponding classifications of NP . These classifications, like ours, are subtle
and usually turn out to be very different than that of the traditional NP classification. For example, Pa-
padimitriou and Yannakakis [PY88] introduce L-reductions and the classes MAX NP and MAX SNP, with
respect to approximation algorithms. Impagliazzo, Paturi and Zane [IPZ98] define reductions with respect
to solution in sub-exponential time.

Perhaps the most relevant classification to ours is that of parameterized complexity (see the monograph
on this subject by Downey and Fellows [DF99]). Parameterized complexity studies the tractability of prob-

10This does not contradict the compressibility of SAT, since the cryptanalytic result is not black-box and assumes access to the
full description of the programs of Alice and Bob. Thus this result is not preserved in the presence of a random oracle.
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lems when one of the parameters is considered to be fixed or very small. This is relevant to compression since
typically this parameter is related to the length of the witness. On the one hand, some (but not all) parame-
terized complexity algorithms yield natural compression algorithms (see examples and discussion in Section
2.1). In addition, some (but certainly not all) compression algorithms may imply a parameterized complex-
ity algorithm. Also the W -hierarchy of parameterized complexity is reminiscent of the VC-hierarchy (they
are both defined by reduction to circuits of bounded depth). However, our study of compression yields quite
a different classification. This is mainly because in parameterized complexity the witness length is taken to
be very small and as such, there is no restriction on running in time that is exponential (or higher) in this
parameter. In compression, on the other hand, the parameter (witness length) is usually of substantial size
(even if much smaller than the instance length).

A related notion to parameterized complexity that is reminiscent of our work is limited non-determinism,
which started with the work of Kintala and Fischer [KF80], see survey by Goldsmith, Levy and Mund-
heck [GLM96]. This was further studied by Papadimitriou and Yannakakis [PY96] who defined a few
syntactic classes within the class of polylog non-determinism (LOGNP and LOGSNP ). The interesting
point is that several natural problems are complete for these classes. The notion of reduction used is the
usual polynomial reduction and hence the classifications arising from this study are very different from our
VC hierarchy.

In subsequent work, Dubrov and Ishai [DI06] discussed the compression of problems and showed that
a certain incompressibility assumption has an application to derandomization. Specifically they construct a
generator that fools procedures that use more randomness than their output length. Their work was mostly
conducted independently of ours, following conversations regarding an early phase of our work. In addition,
inspired by our CRH construction, they prove that any one-way permutation can either be used for the above
mentioned derandomization, or else can be used to construct a weak version of CRH.11

Paper organization: Section 2 studies the compressibility of NP problems and introduces the VC clas-
sification with this respect. Part II of the paper (the cryptographic application) appears in Sections 3 and
4. Section 3 shows the applications to the construction of OT and CRH from any one-way functions, while
Section 4 presents the implication to the hybrid BSM.

2 Part I: On the Compression of NP Instances

Attempting to compress NP instances requires a different approach than solving NP problems. Intuitively,
a solution for compression might arise while trying to solve the problem. While a full solution of an NP
problem may take exponential time, it is plausible that the first polynomial number of steps leaves us without
an explicit solution but with a smaller instance. Indeed, some algorithms in the parameterized complexity
world work like this (see some examples in the next section). On the other hand, we allow the possibility
that the compressed version is actually harder to solve (computational time-wise) than the original one (and
may require a somewhat longer witness altogether).

2.1 Examples of Compression Algorithms for some Hard Problems

We start by showing three examples of compression algorithms for problems that are conjectured not to be
in P . Two of these example are NP-complete problems, while the third is taken from cryptography.

11This weak version of CRH (like the stronger common version) cannot be constructed from any one-way permutation by black-
box reductions. (in [Sim98]).
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Vertex Cover: The well studied NP-complete problem of Vertex-Cover receives as input a graph G =
(V, E) and asks whether there exists a subset of vertices S ⊆ V of size at most k such that for every edge
(u, v) ∈ E either u or v are in S. The parameters are the instance length m, which is at most O(|E| log |V |),
and the witness length n = k log |V |

Claim 2.1 There exists a witness retrievable compression algorithm for Vertex-Cover.

Proof: We are following the parameterized complexity algorithm for vertex-cover (presented in [DF99] and
attributed to Buss). If a vertex-cover S of size k exists, then any vertex of degree greater than k must be
inside the set S. The compression algorithm simply identifies all such vertices and lists them in the cover,
while removing all their outgoing edges (that do not need to be covered by other vertices). The graph left
after this process has maximal degree k, and furthermore all edges have at least one end in the cover. Thus,
if the original graph has a k vertex cover then the total number of edges left is at most k2 (at most k vertices
in the cover with at most k edges each). If there are more then k2 edges then the answer to the problem
is NO, otherwise, such a graph can be represented by the list of all edges, which takes k2 log k bits. The
compression can be made witness retrievable since if we use the original labels of vertices to store the new
graph, then the original cover is also a cover for the new compressed graph. 2

It is interesting to note that we do not know of a compression algorithm for the Clique problem or the
Dominating Set problem, which are strongly linked to the vertex-cover problem in the traditional study of
NP , and in fact, in Theorems 3.1, 3.3 and 4.4 we show strong implications of a compression algorithm for
these languages.

PRG-Output: The following compression algorithm works for any sparse language (that is, a language
that contains only a small fraction of all possible inputs). A specific and interesting example is defined next:

Example 2.2 (PRG-Output) Let G be a pseudorandom generator stretching an n bit seed to an m bit
output (with m >> n). Define the language PRG-output over inputs y ∈ {0, 1}m as

LG = {y| there exists an x s.t. G(x) = y}

The language PRG-output is hard to solve for random instances as long as the underlying PRG is secure.
Yet it has a simple compression algorithm. Note that simply saving, say, the first 2n bits of the instance y is
insufficient because if y only differs from G(x) in one bit, then this bit may be anywhere in the m bits.

Claim 2.3 There exists a witness retrievable compression algorithm for PRG-output.

Proof: Let H be a family of almost pairwise independent hash functions from m bits to 2n bits. The
compression algorithm simply chooses a random h ∈ H and outputs (h(z), h). The new language is L′

G =
{(z, h)| there exists an x s.t. h(G(x)) = z}.

Naturally, if y ∈ LG then also (h(y), h) ∈ L′
G with the same witness (and thus the witness retrievability).

On the other hand, if y /∈ LG then by the properties of H, for every seed x we have that Prh[h(G(x)) =
h(y)] < O(2−2n), and by a union bound over all x ∈ {0, 1}n, we get Prh[h(y) ∈ L′

G] < O(2−n). Finally,
since there are almost pairwise independent hash functions whose description is of length O(n)+log m (for
example see [NN93]), then the algorithm is indeed compressing. 2
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Minimum Fill-In: The minimum fill-in problem is an NP-hard problem that takes as input a graph G and
a parameter k, and asks whether there exist at most k edges that can be added to the graph that would turn it
into a chordal graph, i.e. one with no induced cycles of length more than 3. This problem has applications
in ordering a Gaussian elimination of a matrix.

Claim 2.4 The minimum fill-in problem with parameter k has witness retrievable compression.

Proof: Kaplan, Shamir and Tarjan [KST99] prove that this problem is fixed-parameter tractable (this notion
of tractability in parameterized complexity means that the problem is polynomial-time solvable when k is
sufficiently small, and in particular for all fixed k). Their algorithm partitions the graph into two sets of
nodes A and B where A is of size k3 and there are no chordless cycles (i.e. an induced cycle of length
greater than 3) in G that contain vertices in B. The complexity of this partition is O(k2|V ||E|). They then
prove that G has a k edge fill-in if and only if the graph induced by A has a k edge fill-in.

Thus the compression algorithm follows the same partitioning and stores only the graph induced by
the small set A. The new graph has at most k3 vertices and thus can be presented by only poly(k) log |k|
bits. The fill-in for the new instance is exactly that of the original instance and thus the compression can be
witness retrievable if the original labels of the vertices are used for the compressed graph as well. 2

This use of an algorithm from parameterized complexity is not a coincidence. The “problem kernel”
method (see [DF99], chapter 3) is to first reduce the problem to a small sub-instance that, like compression,
contains the answer to the original problem. Then the algorithm runs in exponential time algorithm on this
small instance. As was discussed in Section 1.4, if the running time of the first reduction happens to be only
polynomial in the parameter, then the first phase of the algorithm is a compression algorithm.

In this context, it is important to note that a compression algorithm for a language does not necessarily
give a parameterized complexity algorithm for the same language. At first glance it seems that one can
first run the compression algorithm, and then solve the compressed problem by brute force and thus get a
fixed parameter algorithm. However, such a strategy does not work since in the compression algorithm the
witness is allowed to grow by a factor of polylog(m), and thus solving the compressed problem by brute
force may require a super-polynomial time in m.

2.2 W-Reductions and Compression-Completeness

The few examples of compression that we have showed clearly indicate that the study of NP problems
with respect to compression gives a very different perspective than the traditional study of NP . The reason
is that the typical Karp-reduction between NP problems does not distinguish between the length of the
witness and the length of the instance. For example, when reducing SAT to the Clique problem, one builds
a large graph from a CNF formula and asks whether or not it has a Clique of size k. However, in this new
instance, the witness size12 is a polynomial in m (the length of the SAT formula) rather than n (the number
of variables in the formula). Thus, it is not clear how to use a compression algorithm for Clique to get a
compression algorithm for SAT.

W-reductions and compression-completeness: In order to show that a compression algorithm for L′

implies a compression algorithm for L, a more restricted type of reduction is needed. We call this a W-
reduction and it is similar to a Karp-reduction but asks an extra property on the length of the witness.

12The witness for Clique is a choice of k vertices from the graph
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Definition 2.5 (W-Reduction) For two NP languages L and L′ we say that L W-reduces to L′ if there
exist polynomials p1 and p2 and a polynomial time computable function f that takes an instance x for L
and outputs an instance f(x) for L′ such that:

1. f(x) ∈ L′ if an only if x ∈ L.

2. If x is of length m with witness length n, then f(x) is of length p1(n, m) with witness length only
p2(n, log m).

We first note that this reduction composes, that is:

Claim 2.6 If L W-reduces to L′ and L′ W-reduces to L′′ then L W-reduces to L′′.

We next claim that W-reduction indeed fulfils its goal with respect to compression:

Claim 2.7 Let L and L′ be NP languages such that L′ W-reduces to L. Then given a compression algo-
rithm for L, one can obtain a compression algorithm for L′.

Proof: Suppose that x is an instance for language L′ of length m with witness length n. The compression
algorithm for L′ runs as follows: First use the W-reduction to L and get an instance f(x) for L, and then
run the compression algorithm for L on f(x). By the properties of the reduction f(x) is of length m′ =
p1(n, m) with witness length n′ = p2(n, log m). The outcome of the compression is therefore of length
poly(n′, log m′) = poly(n, log m). Furthermore, this outcome is in some NP language L′′ if and only if
f(x) ∈ L which in turn happens if and only if x ∈ L′. Thus the combined process gives a compression
algorithm for instances of L′. 2

We remark that in the complexity discussion of compression we choose to ignore the issue of witness
retrievability. Nevertheless, in order for a W-reduction to relay this property as well, the reduction itself must
also have a witness retrievability property. That is, given a witness w for x ∈ L then one can efficiently
compute w′ for f(x) ∈ L′ (without the knowledge of x). We next define complete problems with respect to
compression. These are defined in standard fashion, only with respect to W-reductions.

Definition 2.8 (Compression-Complete) A problem L is compression-complete for class C if:

1. L ∈ C
2. For every L′ ∈ C the language L′ W-reduces to L.

A language is called compression-hard for class C if only requirement 2 holds.

The relevance of compression-complete problem is stated in the following simple claim.

Claim 2.9 Let L be compression-complete for class C, then given a compression algorithm for L, one can
obtain a compression algorithm for any L′ ∈ C.

The proof follows directly from the definition of completeness and Claim 2.7.
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2.3 The VC Classification

We turn to introduce a new classification that arises from the study of compression algorithms. In order to
introduce the classification we define a series of NP languages. First we introduce some notation: By a
circuit of depth k we mean a depth k alternating AND-OR circuit where the fan-in of the gates is bounded
only by the size of the circuit and negations are only on the input variables (no NOT gates).

Definition 2.10 (DepthkCircuitSAT)
For any k ≥ 2 consider the NP problem called DepthkCircuitSAT:
Input: a circuit C of size m and depth at most k over n variables.
Membership: C ∈ DepthkCircuitSAT if there exists a satisfying assignment to C.

The next language, LocalCircuitSAT, is a less natural one. It is designed to capture computations that
do not need to access the whole input, but can rather check only a sub-linear fraction of the input. Let x be
a string of length m, if I = (i1, . . . , in) is a list of n locations in x then we denote by x(I) the values of x
at these locations.

Definition 2.11 (LocalCircuitSAT)
Input: A string x of length m and a circuit C over n + n · log m variables and of size (n + n · log m).13

Membership: If there exists a list I of n locations in x such that C(x(I), I) = 1.

We can now introduce our classification of NP problems:

Definition 2.12 (The VC classification of NP problems) Consider NP problems where m denotes the
instance size and n denotes the witness size. We define the class VCk for every k ≥ 0. The definition is
divided into three cases:

• k = 0: The class VC0 is the class of all languages that admit compression algorithms.

• k = 1: The class VC1 is the class of all languages that W-reduce to LocalCircuitSAT.

• k ≥ 2: The class VCk is the class of all languages that W-reduce to DepthkCircuitSAT.

For any function k(m, n) (where k(m, n) ≤ m) also define VCk(m,n) as the class of all languages that
W-reduce to Depthk(m,n)CircuitSAT. Finally, define VC = VCm (the class for k(m, n) = m).

A first observation is that simply by definition, the languages LocalCircuitSAT and DepthkCircuitSAT are
compression-complete for their respective classes. The most notable example is for the class VC = NP
where the complete problem is CircuitSAT (satisfiability of a polynomial size circuit).

When discussing a W-reduction to a depth k circuit, we can actually assume without loss of generality
that the top gate of this circuit is an AND gate. Formally, let DepthkCircuitSATAND denote the language
DepthkCircuitSAT when restricted to circuits where the top gate is an AND gate.

Claim 2.13 For any k ≥ 2, we have that a language L ∈ VCk if and only if L W-reduces to DepthkCircuitSATAND.

13The choice of the circuit of size to be n′ (over n′ variables) is arbitrary and other polynomial functions suffice as well.
Furthermore, such a circuit of small size may be meaningful since not all the variables have to be used and some might be just
dummy variables.
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Proof: We show that any instance that contains a circuit where the top gate is an OR W-reduces to an
instance with top gate AND. We prove this first for k ≥ 3. Denote the input circuit by C =

∨
j

∧
t Cj,t

where each Cj,t is a top OR depth (k−2) circuit. If C is satisfiable then
∧

t Cj,t is satisfiable for at least one
choice of j. Add to the witness the index i of this satisfiable sub-circuit (i is given by the boolean variables
i1, ..., i` where ` is logarithmic in poly(m, n)). For each j, denote C ′

j,t = Cj,t ∨ ij̄11 ∨ ... ∨ ij̄`

` , where ij̄

denotes i ⊕ j. Notice that C ′
j,t is always satisfied for j 6= i, and for j = i is satisfied if and only if Ci,t is

satisfied. Thus the circuit can now be written as C′ =
∧

j,t C ′
j,t that is satisfiable if and only if the original

circuit was. The top OR gate of C is therefore removed in the new instance C ′ while adding only a small
number of variables, thus the input to the circuit witness remains of order poly(n, log m) as required.

In the case k ≥ 3, the depth of the new instance becomes k − 1. In the case that k = 2, the bottom level
that included only variables is transformed into an OR of variables, thus the new circuit is simply a CNF
formula (and the depth remains k = 2). 2

An immediate corollary is that SAT (that is, satisfiability of CNF formulas) is compression complete for
the class VC2.

The VC Hierarchy: The VC classification indeed defines a hierarchical structure. That is:

VC0 ⊆ VC1 ⊆ VC2 ⊆ VC3 · · · ⊆ VC.

And in general, for every two polynomially bounded functions k(n, m), `(n, m) such that for all n, m we
have k(n, m) ≤ `(n, m) then VCk(m, n) ⊆ VC`(m, n). Furthermore, VC = NP by the definition of
NP . These observations follow trivially by the definitions, the only non-trivial part being the fact that
VC1 ⊆ VC2, that is proved next.

Lemma 2.14 VC1 ⊆ VC2

Proof: We need to show a W-reduction from LocalCircuitSAT to SAT. The input is therefore a long string
x and small circuit C on n + n log m variables. Let i1, ...in denote the potential locations in the string
that the circuit C receives as inputs. Also define the variables y1, ..., yn to indicate the values of x in the
corresponding locations (that is yt = xit for t ∈ [n]). Thus the circuit C runs on the variables y1, ..., yn and
the bits of i1, ...in.

We first note that C is of size p(n, log m) = (n + n log m) and may be reduced (via Cook’s Theorem
[Coo71]) to a CNF formula ΦC over O(p(n, log m)) variables and of size O(p(n, log m)) that is satisfiable
if and only if C is satisfiable.

Thus we have a CNF formula over the variables y1, ..., yn, i1, ...in and some extra variables. This for-
mula’s satisfiability will be equivalent to the membership of the LocalCircuitSAT instance if we manage to
force the variables of y to take the values yt = xit . This is done by adding additional clauses to the CNF
in the following manner: For simplicity we describe this only for y1, where the same is repeated for every
other yt for t ∈ [n]. Define for each j ∈ [m] a formula Φj = (y1 = xj) ∨ (i1 6= j). Notice that Φi1 = 1 if
and only if y1 = xi1 . Denote the bits of i1 by i1,1, ..., i1,d where d = dlog me. An alternative way to write
Φj is as the following CNF (recall that ij̄ denotes i ⊕ j):

Φj = (yi ∨ xj ∨ ij̄11,1 ∨ ... ∨ ij̄d

1,d) ∧ (yi ∨ xj ∨ ij̄11,1 ∨ ... ∨ ij̄d

1,d)

Finally, to force y1 = xi1 we simply take the new CNF to be ΦC ∧∧
j∈[m] Φj . The same is repeated to force

yt = xit for all t ∈ [n]. 2
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2.4 The VC Classification and Verification with Preprocessing

We now present the VC hierarchy from a different angle, that of the verification complexity of a language.
This approach, though slightly more cumbersome than the definition via W-reductions, gives more intuition
as to what it means to be in a class VCk. The new view defines the VC hierarchy with respect to the
verification algorithm for L, that is, the efficient procedure that takes a witness w for x ∈ L and verifies
that it is indeed a true witness. We point out that the nature of verification algorithms may be very different
when discussing different NP problems. For example, in the k-Clique problem the verification algorithm
needs to check only O(k2) edges in the graph, and thus can read only a sub-linear part of the instance. In
SAT, on the other hand, all the clauses in the formula must be checked when verifying a witness.

Simply looking at the verification algorithm of a language is not sufficient. For starters, classification
according to verification does not distinguish between problems in P that are trivially compressible and
NP-complete languages. Instead, we consider the notion of verification with preprocessing. This is the
process for verifying that x ∈ L when given a witness, that also allows a preprocessing stage to the instance.
Formally:

Definition 2.15 (Verification with Preprocessing) Let L be an NP language with instances of length m
and witness length n. A pair of polynomial time algorithms (P, V ) are called a verification with prepro-
cessing for L if the following two step verification holds:

1. Preprocessing: P gets an instance x and outputs a new instance P (x).

2. Verification: There exists a polynomial p(·, ·) such that x ∈ L if and only if there exists a witness w
of length at most p(n, log m) such that V (P (x), w) = 1.

Notice that when allowing for preprocessing, then all problems in P have a pair (P, V ) where P solves the
problem and stores the answer while V simply relays this answer. Thus when considering the complexity
of V in this definition, then easy problems indeed have very low complexity.

The VC Classification via Verification with Preprocessing: An alternative and equivalent way to view
the classes in the VC hierarchy is based on the verification algorithm V in a verification with preprocessing
pair (P, V ). The problems are divided into two families:

• The class VC1 is the set of the languages that have very efficient verification (i.e. poly(n, log m) rather
than poly(n, m)). We assume random access to the instance, thus such a verification algorithm only
accesses a sub-linear fraction of the instance.

• The languages whose verification is not very efficient (run in time poly(n, m)). This family is further
classified into sub categories. The class VCk is the class of languages where the verification algorithm
V has a representation as a depth k polynomial size circuit (polynomial in n and m).

This definition is equivalent to the definition via W-reductions since the W-reduction to the complete
problem can simply be viewed as the a preprocessing stage. In the other direction, every preprocessing
stage is actually a W-reduction to the language defined by V .

2.5 Within VC1 - The class VCOR

Arguably, the most interesting class in the hierarchy is the bottom class VC1. It contains many natural
problems such as Clique or sparse subset-sum that only test local properties of the input. Furthermore, it is
presumably the easiest to find compression algorithms for. We further refine our hierarchy within the class
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VC1 by introducing another class, the class VCOR. Consider the language OR(L) that take a large OR of
small instances of a language L. Formally:

Definition 2.16 (OR(L))
Let L be an NP language. Define the language OR(L) as follows:
Input: m instances x1, ..., xm to the language L, each of size n.
Membership: If there exists i ∈ [m] such that xi ∈ L.
Specifically the language OR(CircuitSAT) is defined as:
Input: m different circuits where each circuit is of size n.
Membership: If one of the m circuits is satisfiable.

This language is used to define the following class:

Definition 2.17 The class VCOR is the class of all languages that W-reduce to OR(CircuitSAT).

We first note that in each of the m small instances, the instance length and witness length are polynomi-
ally related. So unlike the general case where we focussed only on short witness languages, when talking
about OR(L), any language L ∈ NP\P is interesting. For example, the language OR(3-SAT) is not trivially
compressible. Moreover, it is compression-complete for VCOR.

Claim 2.18 Let L be any NP-complete language, then OR(L) is compression-complete for VCOR.

Proof: The W-reduction from OR(CircuitSAT) to OR(L) simply runs the standard Karp reduction from
CircuitSAT to L for each of the m circuits independently. The witness for each circuit was of at most n and
is now of size p(n) for some polynomial p. In addition the witness contains an index of the instance of L
that is satisfied, thus the total witness length is p(n) + log m. 2

For example, the problem OR(Clique) that gets m small graphs (over n vertices) and asks whether
at least one of the graphs has k sized clique (where k = O(n)) is also compression-complete for VCOR.
Moreover, we note the following claim that is relevant to our cryptographic applications (in Sections 3 and
4):

Claim 2.19 Clique is compression-hard for VCOR.

Proof: The language OR(Clique) W-reduces to Clique simply by taking one graph that is the union of all
the small graphs in the OR(Clique) instance. Clearly there is a clique in the union if and only if there is a
clique in at least one sub-graph. 2

A similar claim is true for all problems involving searching for a connected subgraph of size n in a
graph of size m as long as the problem of deciding whether a graph of size p(n) contains such a subgraph
is NP-Hard for some polynomial p(·). This is true, for instance, for the problem of whether there is a path
of length n.14 On the other hand we have that:

Claim 2.20 VCOR ⊆ VC1

14It is interesting to note that whereas the problem of finding a path of length n is fixed parameter tractable [AYZ95], Feige and
Kilian [FK97] give indications that the Clique problem is hard for small n (via subexponential simulations).
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Proof: This is best seen by W-reducing OR(Clique) to LocalCircuitSAT. Given graphs G1, ..., Gm for
OR(Clique), generate the instance x = G1, ..., Gm and a circuit C that receives the locations of a clique in
one of the graphs and checks whether they are indeed the edges in these locations form a clique (all belong
to the same graph and are the edges induced by k vertices etc...). The size of the circuit is p(n, log m) for
some polynomial p since it checks only locations in x that belong to one graph (of size n). Finally, add
p(n, log m) dummy variables to the circuit so that the circuit C has size becomes equal to the number of
input variables (as is required in LocalCircuitSAT). 2

Furthermore, VC0 ⊆ VCOR, since any compressible language can be W-reduced by the compression
algorithm to a language with instance size p(n, log m) and this instance can reduced to CircuitSAT and
viewed as an OR of a single small circuit and hence is in VCOR. Note that here too, one may need to add
dummy variables to keep the Circuit quadratic in its input. Altogether we have that:

VC0 ⊆ VCOR ⊆ VC1.

2.6 The VC Classification and some NP Problems

In general, most of the VC classification focuses on W-reductions to depth k circuits. The reasoning for this
is that there is a certain tradeoff between depth and the number of variables. More precisely, we can reduce
the depth of a verification circuit, but only at the price of adding additional variables (this is done using
methods from Cook’s Theorem [Coo71] and requires adding a variable for each gate in one intermediate
level of the circuit). Since the number of variables is the focal point when discussing compression (as it
coincides with the witness size), then depth turns out to be central in our classification.

Given our current state of knowledge, there are a few plausible views of the world. The two endpoint sce-
narios are that either there is compression for every language in NP (as would be implied by a compression
algorithm for CircuitSAT), or there is only compression for a few select problems, such as the examples in
section 2.1. A third option is that there is a compression algorithm for some compression-complete problem
in the hierarchy (say for VCk), which would imply the collapse of all the classes below VCk to VC0.

We will briefly go over a few key classes in the hierarchy and a few examples of natural NP problems
and their classification (as we know it) within the VC hierarchy:

The class VC0: Currently we know that this class contains all the languages in P , languages that are already
compressed by definition (such as 3-SAT), and the languages that we showed compression algorithms
to (Vertex-cover, PRG-output and Minimum-fill-in).

The class VCOR: This class contains all languages OR(L) for an NP language L. One natural example is
the OR(SAT) problem which is actually a depth 3 circuit where the fan-in at the two bottom levels is
bounded by n and only the top gate is allowed to be of greater fan-in. Some important languages in
this class are those that need to be compressed in the cryptographic applications in Sections 3 and 4.

The class VC1: Since we are only interested in problems where the witness size n is much smaller than
the instance size m, then many natural problems with this restriction are in VC1. For example, graph
problems that ask whether a small graph can be embedded in a large graph are all in VC1. The Clique
problem (with a clique of size n), or Long-Path (a path of length n that does not hit any vertex twice)
are such small graph embedding problems. Sparse Subset-Sum is another natural language in VC1.
This language receives a set of m values and a target sum and asks whether there is a small subset for
which the values add up exactly to the target sum.
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Dominating Set: The problem asks, given a graph, whether there is a set of k vertices such that all the
graph is in its neighbor set. Dominating set is in the class VC3 as implied by the following verification:
the witness is a set S and the algorithm tests that ∀ vertex v ∃ vertex u ∈ S such that (u, v) is in the
graph. The ∀ translates to and AND gate and the ∃ translates to an OR gate. Finally, testing that an
edge is in the graph requires an AND over the O(log m) bits representing this edge. In total, this is a
depth 3 circuit. Note that a straightforward verification of vertex cover will also yield a depth 3 circuit.
However, while vertex cover is compressible and in VC0, for dominating set we are unaware a better
method. In addition, dominating set is compression-hard for VC2. This is seen by a standard reduction
of SAT to dominating set in which a SAT formula with n variables and m clauses is transformed into
a graph with m + 3n vertices with the property that the graph has a dominating set of size n iff the
SAT formula is satisfiable.15

Weighted-SAT: Given a CNF formula of length m the problem asks if it has a satisfying assignment of
weight at most k (at most k variables are assigned the value 1). Unlike our previous discussions of
SAT, the number of variables here is only bounded by m and the short witness simply consists of the
list of all variables that receive the value 1 (that is, the witness is of length n = k log m). This problem
serves as the basic complete problem for the parameterized complexity class W [1], which is at the
bottom of the W-hierarchy (see [DF99]). However, with regards to compressibility, we only know
how to place it in the class VC4. This is shown by the following verification procedure (using the
same logic as with Dominating-Set): For every witness (list) L, the algorithm tests that ∀ clauses C
either ∃ a literal x ∈ C such that x ∈ L or ∃ a negated literal x̄ ∈ C such that x 6∈ L. The verification
of x ∈ L adds up to total depth 3 by testing that ∃y ∈ L such that x = y (where x = y is tested by
an AND over the bits of x and y). On the other hand, verifying that x 6∈ L requires total depth 4 as it
runs ∀y ∈ L we have x 6= y. The overall depth is thus dominated by the negated variables and is thus
4.

OR of (large) instances: Consider the Or of CNF formulas over few variables (unlike the language OR(SAT )
where the CNF formulas are considerably smaller than the fan-in of the OR gate). Such a language
thus contains depth three circuits, but is actually in VC2, as implied by Claim 2.13.

Integer Programming (IP): An instance of integer programming consists of a list of m linear constraints
on n integer variables with the goal of maximizing a linear target function over these n variables
(under the list of constraints). Unlike its counterpart of linear programming, where the variables may
take real values and is polynomial time solvable, integer programming is NP-hard even when the
variables are restricted to taking only the values 0 and 1 (one of Karp’s original problems [Kar72]).
Thus, the decision variant of integer programming, where the number of constraints is much larger
than the number of variables, is interesting with respect to compression. First, compressing it is
at least as hard as compressing SAT: given a SAT instance with n variables and m constraints it
is simple to come up with a corresponding IP instance with 2n varaible and m constraints, i.e. IP
is VC2-hard. On the other hand, a straightforward verification of a witness for this problem takes
the proposed assignment for the n variables and checks if it satisfies each of the constraints. The
verification of a linear constraint can be achieved in logarithmic depth (in n), placing IP in VCk(n)
for k(n) = Ω(log n). We are unaware of a (significantly) better classification (of lower depth) for
integer programming.

15In a nutshell, the reduction creates a triangle for each variable xi of the formula. One of the nodes of the triangle is identified
with the positive variable and another with its negation while the third is connected only to the other two. In addition, a vertex is
created for each clause in the formula. Now, each literal is connected with all of the clauses that it appears in. The generated graph
has a dominating set of size n iff the formula is satisfiable.
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2.7 On Compression of Search Problems

So far, the NP problems that we discussed were all decision problems, that is, they ask if x ∈ L, and are
answered by YES or NO. When considering a specific NP relation RL associated with L, 16 then the above
decision problem has a natural search problem associated with it, which is to actually find a witness to x ∈ L
with respect to the relation RL. A solution to such a problem is an n bit string rather than just a single bit.

Loosely speaking, a compression algorithm for the search instance should produce a shorter output that
contains enough information about some witness for the original problem.

Definition 2.21 (Compression for search problem) A compression algorithm for an NP search problem
L (with respect to RL) is a pair of algorithms (Z, E) with a polynomial p(·, ·), where Z is a polynomial
time compression algorithm and E is an unbounded extraction algorithm. Given an instance x with witness
parameter n we should have that:

1. Z(x) is of length at most p(n, log m).

2. If x ∈ L and there is a witness of length n, then E(Z(x)) = w where w is a witness to x ∈ L with
respect to RL.

We now show that a compression for decision problems also yields a compression for search problems,
without an increase in the hierarchy.

Theorem 2.22 If a class VCk has a compression algorithm, then there is a compression algorithm for the
search problem of a relation RL of L ∈ VCk.

The technique of the proof below also comes in handy in proving Theorem 4.4, regarding the application of
the ability to compress, say SAT, to cryptanalysis in hybrid bounded storage model. In the following proof,
a witness to x ∈ L refers to a witness according to the specific relation RL associate with L.

Proof: Given an instance x to a language L, for any i ∈ [n], consider the NP problem Li that asks whether
there exist an n bit witness w to x ∈ L such that wi = 1 (the ith bit of w is 1). The language Li is also in
VCk since its verification circuit is the same as the one for L with an additional AND to the variable wi (this
AND gate is incorporated into the top level AND of the circuit thus the depth remains k).

Our first attempt is to compress the instance x for every i ∈ [n] with respect to the language Li (denote
such a compression by ZLi

(x)). Thus we store ZLi
(x) for all i ∈ [n], which amounts to n · p(n, log m) bits,

for some polynomial p(n, log m), which is also in poly(n, log m). Now suppose that there is only a single
witness w to x; then one can extract w bit by bit, by solving the compressed instance of each bit. However,
this idea fails when w is not the only witness, and we may inconsistent answers for the different bits.

The second attempt is to use the reduction of Valiant and Vazirani [VV86] to a unique witness. The idea
is to choose a pairwise-independent hash function h that is appropriately shrinking, and add to the language
the requirement that h(w) = 0. We use the following lemma:

Lemma 2.23 ([VV86]) Let L be an NP language and for every x denote by Wx the set of all witnesses to
x ∈ L. Let ` be such that 2` ≤ |W | ≤ 2`+1. Let H`+2 be a family of pairwise independent hash functions
with h : {0, 1}n → {0, 1}`+2 for all h ∈ H`+2. Then

Prh∈H`+2
[|{w : w ∈ Wx and h(w) = 0}| = 1] ≥ 1

8
16Let L be an NP language with parameters m and n. A relation RL associated with is a polynomial time function RL :

{0, 1}m × {0, 1}n → {0, 1}, such that for every x ∈ {0, 1}m it holds that x ∈ L iff there exists a w ∈ {0, 1}n such that
RL(x, w) = 1.
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Consider the NP language Lh where x ∈ Lh if it has a witness w for x ∈ L and h(w) = 0. We note that
this language is also in VCk since the additional requirement can be computed efficiently over n variables
(the hash is efficient) and by Cook’s theorem this may be represented as a CNF formula over these variables
plus only poly(n) additional variables. Thus adding the requirement of the hash does not add to the depth
of the verification circuit for L.

Now, if we enumerate on all values of ` then with probability at least 1
8 , for the correct ` we will get that

Lh has a unique witness and storing ZLh
i

(x) for all i suffices to maintain the information about this witness.
This can be repeated sufficiently many times (say O(n) times) so that with overwhelming probability, one
of the attempts will indeed give a unique witness. However, this solution is also insufficient, since we have
stored a list of O(n2) compressed values (O(n) repetitions for each value of ` ∈ [n]) and we are guaranteed
that with overwhelming probability one of them is a witness for x but we do not known which one (recall
that we cannot store the original instance and thus cannot verify that a witness is correct).

Our final attempt succeeds in reducing the list of potential witnesses into a unique and true witness. This
compression is as follows: Denote by Lī the language that asks whether there exist an n bit witness w to
x ∈ L such that wi = 0 (similar to Li but with wi negated). The compression of an instance x to the search
problem L goes as follows:
For every ` ∈ [n] repeat the following n times:

• Choose h ∈R H`+2.
• For all i ∈ [n] store ZLh

i

(x) and ZLh

ī

(x).

The extraction procedure is as follows: For all ` and h ∈ H`+2, solve all the compressed instance pairs.
For every pair ZLh

i

(x) and ZLh

ī

, if they both are negative or both are positive then ignore all values that are

compressed with this h. Only if for all i we have exactly one of the instances being correct then output the
ith bit of w according to the result.

The above algorithm indeed compresses since it only adds a factor of n3 to the overall storage. With
probability at least 1 − 2−O(n) at least one of the chosen h’s is successful in leaving exactly one witness to
x ∈ Lh, and this witness will be extracted. Finally, if h did not leave exactly one witness, then this will be
identified: If there are no witnesses then ZLh

i

(x) and ZLh

ī

will both be negative for all i. If there is more

than one witness, then for at least one choice of i both ZLh
i

(x) and ZLh

ī

will be positive. 2

Maintaining other information: We have seen that compression may maintain much more than just
a yes/no answer. A natural question to ask what other types of information may be maintained through
compression algorithms. The following are some examples:

Number of witnesses: The compression described above actually maintains an approximation of the num-
ber of witnesses to x ∈ L (with respect to RL). Once the chosen k is too large, there will be a sharp
drop in the probability of having a witness and this can be observed when extracting the witnesses
and indicate what is the right k.

An almost random witness: The compression above also outputs a witness that is almost uniformly
distributed over Wx. Or more accurately, the probability of getting each witness is bounded by a
constant times 1/|Wx|.

On maintaining all witnesses: As opposed to maintaining a single witness or the number of witnesses,
a compressed instance cannot always maintain the information about all of the witnesses of an input
instance. This is shown by the following simple information theoretic argument: encode an m bit
string s with a DNF circuit C by constructing for each position j ∈ [m] a formula Cj on log m
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variables. If s[j] = 1 then take Cj to be circuit that is satisfied iff the variables encode the index
j. If s[j] = 0 then Cj is the non-satisfiable circuit Cj = 0. The circuit C is formed by taking an
OR of all these circuits (C =

∨
j∈[m] Cj). The satisfying assignments of C correspond exactly to

the 1’s in s. Consider C as an input to the language as CircuitSAT17. Suppose that there exists a
compression algorithm that maintains all of the witnesses of a circuit C. In particular, this means that
the m bit string s may also be extracted from the compressed instance. But this is clearly impossible
information theoretically, since m random bits may not be represented by poly(n, log m) < m bits.
So we conclude that if our goal is come up with a compression algorithm for SAT then we must come
up with a way of losing information about the witnesses.

In the examples of compression that we have seen in Section 2.1, the compression algorithms for
vertex cover, PRG-output and Minimum fill-in actually maintain all the witnesses. On the other hand,
the compression for GapSAT (which we will see in Section 2.8) does not necessarily maintain this
information, as it is based on sampling.

2.8 Speculation on Compression

We give two arguments that may be viewed as evidence to the existence and non-existence of compression
respectively.

An Optimistic View - Compression of a promise problem and the PCP Theorem: Consider the promise
problem GapSAT that takes as input a CNF formula Φ of size m over n variables and the guarantee that
either Φ is satisfiable or it is at most (1 − 1

2n
)-satisfiable (no assignment satisfies more than (1 − 1

2n
) of its

clauses). The task is to decide if Φ is satisfiable or far from satisfiable.
Such a problem has a simple and witness retrievable compression. The idea is to choose O(n2) random

clauses from Φ and take the AND of these clauses to be the compressed formula Ψ. This compression works
because if Φ is far from satisfiable then for every assignment the formula Ψ is satisfied with probability
at most 2−2n (Ψ does not contain one of the 1

2n
m unsatisfied clauses). Taking a union bound over all

assignments, we get that with probability (1 − 2−n) the formula Ψ has no satisfying assignment. On the
other hand, if Φ is satisfiable then the same assignment also satisfies Ψ (and hence the witness retrievability).
Note that our definition of GapSAT is robust in the sense that GapSAT is compressible whenever the gap is
(1 − 1

p(n)) for every choice of a polynomial p(·).
The above simple compression algorithm is especially interesting in light of the PCP Theorem. One way

to view the PCP Theorem is as an efficient reduction from an instance of SAT to an instance of GapSAT.
Thus one can hope to combine the PCP reduction with the above compression and get a compression for
general SAT. However, reducing general SAT to GapSAT via the PCP is not a W-reduction as the witness
size grows to the order of the instance size. For starters, the PCP Theorem is typically defined over 3-CNF
formulas, and the reduction of a general size m CNF to a 3-CNF adds O(m) variables. In order for this
approach to achieve compression for SAT, we require a new PCP Theorem that is actually a W-reduction.

GapSAT is just one example of a gap problem that admits compression. For instance, one can consider
the promise problem GapClique where a graph of size m either has a Clique of size m/n or contains no
Clique of size n. As in the case of GapSAT, GapClique is compressible by sampling a subset of its vertices.
Thus, coming up with a W-reduction from a general (n′, m′)-Clique problem (the graph of size m′ either
contains a clique of size n′ or not) to (n, m)-GapClique would enable the compression of Clique. We view
finding PCPs that are also W-reductions as as a major research direction, especially in light of the recent
new proof to the PCP Theorem of Dinur [Din05].

17The circuit C is actually an instance for the language OR(CircuitSAT ).
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A Pessimistic View - On Oblivious Compression: We have shown that it is impossible to maintain all of
the information in an instance when compressing it and some information is necessarily lost (for example
the list of all witnesses cannot be kept). On the other hand, we show that if compression exists then it is not
likely to lose too much information about the original instance. Such a result would entail the collapse of
the polynomial hierarchy to its second level. More formally:

Let Z be a compression algorithm for SAT. We consider it as a two input algorithm taking a formula
Φ and local randomness r ∈ {0, 1}`. Denote by Z(Φ, U`) the random variable taking the output of Z
with fixed input Φ and random r ∈R {0, 1}`. Let X be a distribution over formulas. The random variable
Z(X, U`) denotes the output of Z under a choice of random r and a random Φ from the distribution X.

The compression Z is said to be oblivious if there exists a samplable distribution X over satisfiable
formulas, such that for every satisfiable instance Φ the distribution Z(Φ, Ù ) and the distribution Z(X, U`)
are statistically close (within statistical distance ε).

Claim 2.24 If there exists an oblivious compression for SAT, then the polynomial hierarchy collapses to its
second level.

Proof: We show that if oblivious compression of SAT instances exists then Co-SAT ⊆ AM. Consider the
following interactive proof that an instance Φ 6∈ SAT . The verifier chooses a random satisfiable formula
Ψ ∈ X randomness r ∈ U` and flips a random coin c. If c = 0 then the verifier sends ξ = Z(Φ, r) to the
prover, if c = 1 he sends ξ = Z(Ψ, r). The prover then answers 1 if the compressed instance is satisfiable
and 0 otherwise. The verifier accepts if the provers answer equals his bit c and rejects otherwise.
Completeness: If indeed Φ 6∈ SAT , then the prover will be able to tell whether the verifier used a coin c = 0
or c = 1, simply by testing the satisfiability of ξ and replying correctly.
Soundness: Suppose that Φ ∈ SAT , then by the obliviousness property of Z the message ξ is from nearly
the same distribution whether c = 0 or c = 1 and the prover is bound to error with probability 1

2 + ε. 2

Thus, oblivious compression for SAT is not likely to exist. However, the languages we would like
to compress for the applications in Sections 3 and 4 are actually in NP ∩ Co−NP , and thus for these
applications even oblivious compression is actually a valid possibility.

3 Part II: Cryptographic Applications

3.1 On Public Key Cryptography Based on Any One-Way Function

As mentioned in the introduction, whether one-way functions are sufficient for public key cryptography is
a long standing open problem. In fact, many researchers view the black-box impossibility result of Im-
pagliazzo and Rudich [IR89] as an indication that general one-way functions are insufficient for public key
cryptography. We next show that a witness retrievable compression algorithm provides a way for bypassing
this black-box impossibility.

Theorem 3.1 If there exists a witness retrievable compression algorithm for SAT or for Clique, or for
OR(SAT ) (to name some examples of compression-hard for VCOR languages), then there exists an Obliv-
ious Transfer (OT) protocol based on any one-way function.

Proof: The construction actually builds a Private Information Retrieval (PIR) protocol, and then uses the
construction of Di Crescenzo, Malkin and Ostrovsky [DMO00] to build an OT protocol from the PIR pro-
tocol. Recall that a PIR protocol has a sender with a database of size m and a receiver that chooses to learn
one entry from the database. It is required that the receiver learns the bit of his choice, but a computationally
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bounded sender learns essentially nothing about this choice. In addition, the total communication should be
strictly smaller than m.

Suppose that (Z, W ) is a witness retrievable compression algorithm for SAT (see Definition 1.2), and
let f be a one-way function. Take (Commit, V erify) to be a statistically binding computationally hiding
bit commitment scheme based on the one-way function f . Recall that the protocol Commit takes from the
sender a string S and randomness r and after an interaction the receiver gets a commitment σ. The polyno-
mial time algorithm V erify takes the commitment σ and a possible opening to value S ′ with randomness
r′ and verifies that S′, r′ are consistent with σ. One could take for example the commitment scheme of Naor
[Nao91] based on the one-way function f .18 In our proof we work under the assumption that the parties are
semi-honest (that is, the parties follow the protocol as prescribed and are only allowed to try and infer extra
information from the transcript of the protocol). In such a model commitment may be achieved without in-
teraction at all. The semi-honest assumption is justified by the compiler of Goldreich, Micali and Wigderson
[GMW91] that showed how to transform a semi-honest protocol into one against malicious parties (again,
the only needed cryptographic assumption is the existence of a one-way function). Consider the following
protocol:

Protocol PIRf :
Alice’s input: database D of m bits. Let D[i] denote the ith bit in D.
Bob’s input: index i ∈ [m] denote the bits of i by i1, ..., i`

1. Bob commits to i: Bob commits to i with randomness rB , Alice receives σ =
Commit(i, rB).

2. Alice computes Φ: The CNF formula Φ is defined as follows:

• Denote by V erifyσ the algorithm V erify with the input σ fixed. That is, V erifyσ
takes as inputs x and r and accepts if and only if they form a legal opening of the
commitment σ (and in particular this means that x = i).

• Translate V erifyσ into a CNF formula Φσ over the variables x1, ..., x` of x and the
bits of r (using Cook’s reduction).

• For every j ∈ [m] define the clause Cj = (xj̄1
1 ∨ xj̄2

2 ∨ .... ∨ xj̄`

` ) if D[j] = 0 (where
x0 denotes x̄ and x1 denotes x) and Cj = 1 if D[j] = 1.

• Set
Φ = Φσ ∧

∧

j∈[m]

Cj

3. Alice Compresses Φ: Alice runs Ψ = Z(Φ) and sends Ψ to Bob.

4. Bob checks witness: Note that Bob knows the witness to V erifyσ and can compute a
witness w for Φσ. Bob checks if W (w, Ψ) is a satisfying assignment for Ψ. If it is Bob
outputs 1, otherwise he outputs 0.

It remains to show that the protocol PIRf is indeed a PIR protocol. Due to the fact that the commitment
is binding (up to a negligible error), then an assignment satisfying Φσ must have x = i (recall that i is the
index that Bob committed to). Thus the first part of Φ is only satisfied when x = i. But the second

18To be more exact, the commitment of [Nao91] can be based on the pseudorandom generator of Håstad et al. [HILL99] which
in turn can be based on the function f .
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part is only satisfied if D[x] = 1, thus Φ is satisfied if and only if D[i] = 1. By the property of the
compression algorithm, also Ψ is satisfiable iff D[i] = 1. Hence, using the witness retrievable properties of
the compression, Bob figures out whether or not Ψ is satisfiable, and learns the bit D[i] (up to a negligible
error).

The second property is that the sender Alice learns no computational information about Bob’s choice.
This follows directly from the guarantees of the commitment scheme (note that Bob does not send any
information outside of the commitment). The third and final requirement regards the length of the commu-
nication. But the length of the communication is a fixed polynomial in p(n) (depending on the commitment
protocol and the parameter of the compression algorithm). So choosing a large enough databases with
m > p(n) guarantees a non trivial PIR protocol and hence an OT protocol.

Note that the proof can also go through with compression of a language in VCOR. This can be seen
by taking for every j ∈ [m] such that D[j] = 1 a circuit that outputs 1 if and only if there exists r such
that V erifyσ(j, r). Such a circuit of size polynomial in n exists due to Cook’s Theorem and the OR of all
these circuits equals D[i]. Thus the compression of any language that is compression-hard for VCOR and
for which a new witness may be calculated solely based on V erifyσ (without involving the database) is
sufficient, and in particular, a witness retrievable compression of Clique also enables the construction of OT
from any one-way function (by Claim 2.19). 2

We stress, as mentioned in the introduction, that compression is a valid approach towards resolving the
Minicrypt=Cryptomania question because the protocol is inherently non-black-box, and thus does
not contradict with the impossibility result of [IR89].

Note that the OT protocol derived in Theorem 3.1 is a one-round protocol (that is, one message sent
from the receiver followed by one message from the sender). This follows from the construction of the PIR
protocol and the construction of [DMO00] that preserves the number of rounds. One implication of this
fact is that such an OT protocol may be used to construct a two round key agreement scheme, that in turn
maybe used to construct a public key encryption. In general, this is achieved by fixing the first message of
the protocol to be as the public key. Formally:

Corollary 3.2 If there exists a witness retrievable compression algorithm for SAT or for Clique, or for
OR(SAT ) (to name some examples of compression-hard for VCOR languages), then there based on any
one-way function one can construct a public key encryption scheme (PKE) that is semantically secure
against chosen plaintext attacks.

3.2 On Collision Resistant Hash from Any One-Way Function

Loosely speaking, a collection of collision resistant hash functions (CRH) is a family H of length reducing
functions, such that no efficient algorithm can find collisions induced by a random hash from the family.
That is, no PPTM can find for a randomly chosen h ∈R H, a pair of input strings x and x′ such that x 6= x′

but h(x) = h(x′). In addition we want an efficient algorithm for sampling from H using (possibly secret)
randomness (the secret coins approach is potentially more powerful then when only public coins are used
[HR04]). CRHs are important primitives with wide cryptographic applications, e.g. [Kil92, Mic94, Bar01]
(see discussion and formal definitions in, for example, [IKO05]). Currently there is no known construction
of CRH from general one-way functions or one-way permutations, and moreover, Simon [Sim98] shows that
basing CRH on one-way permutations cannot be achieved using black-box reductions. We show, by similar
techniques to the ones in the previous section, that an erroless compression of SAT (that is not necessarily
witness retrievable) is sufficient to construct CRH from any one-way function.
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Theorem 3.3 If there exists an errorless compression algorithm for SAT, or for any problem that is compression-
hard for VCOR, then there exists a family of Collision Resistant Hash functions (CRH) based on any one-way
function.

The proof follows by combining the PIR protocol shown in the proof of Theorem 3.1, with the construction
of CRH from any one-round PIR protocol due to Ishai et al. [IKO05] (note that the PIR protocol presented
there is indeed a one round protocol). We give a direct proof of this theorem, with some simplified construc-
tions and dealing with the possibility of an error with the compression.

Proof: As in the construction of the OT protocol in Section 3, the construction of the CRH is based on
some commitment scheme which in turn may be based on any OWF [Nao91, HILL99]. A function h in the
CRH collection is defined by a commitment σ to a value i ∈ [m], and randomness rZ for the compression
algorithm. The commitment uses security parameter n where n << m. The hash of a string x of length m
is defined as follows: For every j ∈ [m] let Cσ,j be the circuit that outputs one if and only if there exists
randomness r such that σ is consistent with (j, r) (that is σ is a possible commitment to the value j using
randomness r). Let Cσ,x be the circuit that takes the OR of all Cσ,j such that x(j) = 1 and let Z be a
compression algorithm for the language OR(CircuitSAT). We define hσ,rZ

(x) = Z(Cσ,x, rZ).
By the compressing properties of Z we get that hσ,rZ

indeed shrinks its input (note that shrinkage by a
single bit allows further shrinking by composition). We also have that sampling hσ,rZ

from H can be done
efficiently (with secret coins).

As for collisions, let x 6= x′ be two strings in {0, 1}m that form a collision, i.e., hσ,rZ
(x) = hσ,rZ

(x′).
This equality implies that Cσ,x is satisfiable iff Cσ,x′ is satisfiable. (Here we use the errorless property of
the compression). We know that Cσ,x is satisfiable if and only if x(i) = 1 and Cσ,x′ is satisfiable if and only
if x′(i) = 1. Therefore it must be the case that x(i) = x′(i), since otherwise one of them is 0 and the other
one is 1 and Cσ,x satisfiability is not that of Cσ,x′ . necessarily the strings x and x′ are such that x(i) = x′(i).
But for some j we have x(j) 6= x′(j) and for that j we know that σ is not a commitment to j.

Suppose now that we have an efficient method of finding a collision x and x′ for a given (σ, rZ). Pick
any j such that x(j) 6= x′(j). Then we know that σ is not a commitment to j. This procedure can be used to
break the hiding properties of the commitment scheme, since it yields an efficient method that distinguishes
the commitment value from random with advantage 1/m: given (the real) i and a random one i′ ∈ [m] in a
random order, run the above procedure to obtain j. If j equals one of the values in [m], then guess this one
as the random one and otherwise flip a coin. This contradicts our assumptions on building blocks. 2

Note that instead of an errorless compression we can do away with an error probability slightly smaller than
2−m. That is, for all x we want the probability that Z(Cσ,x, rZ) preserves the satisfiability of Cσ,x to be at
least 1 − 2−m+u where the probability is over σ and rZ and u ≈ log m. In this case we can argue (using a
union bound) that with probability at least 1 − 2−u no x exists violating the preservation of satisfiability.

Theorem 3.3 implies the following corollary:

Corollary 3.4 If there exists an errorless compression algorithm for SAT or for any problem that is compression-
hard for VCOR, then there exists statistically hiding, computationally binding commitment schemes based
on any one-way function.

The corollary follows since CRH imply statistically hiding bit commitment, see Naor and Yung [NY89]
(and Damgård, Pedereson and Pfitzman [DPP93] for commitment to many bits). As mentioned in the
introduction, the current minimal assumptions for constructing statistically hiding bit commitments are the
existence of one-way permutations [NOVY98] and the more general one-way functions with known pre-
image size [HHK+05].
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4 On Everlasting Security and the Hybrid Bounded Storage Model

The bounded storage model, introduced by Maurer [Mau92], bounds the space (memory size) of dishonest
players rather than their running time. The model is based on a long random string R of length m that is
publicly transmitted and accessible to all parties. Security relies on the assumption that an adversary cannot
possibly store all of the string R in his memory. The requirement is that the honest parties Alice and Bob
can interact using a small local storage (of size n where n << m) while security is guaranteed against an
eavesdropper Charlie with much larger, yet bounded storage space.

This model has enjoyed much success for the task of private key encryption. It has been shown that Alice
and Bob who share a short private key can exchange messages secretly using only very small storage19, while
an eavesdropper who can store up to a constant fraction of R (e.g. 1

2m bits) cannot learn anything about
the messages (this was shown initially by Aumann and Rabin [AR99] and improved in [ADR02, DR02,
DM04b, Lu04] and ultimately in Vadhan [Vad04]). These encryption schemes have the important property
called everlasting security (put forward in [ADR02, DR02]), where once the broadcast is over and R is
no longer accessible then the message remains secure even if the private key is exposed and Charlie gains
stronger storage capabilities.

In contrast, the situation is less desirable when Alice and Bob do not share any secret information in
advance. The solution of Cachin and Maurer [CM97] for this task requires Alice and Bob to use storage
of size at least n = Ω(

√
m), which is not so appealing in this setting. Dziembowski and Maurer [DM04a]

proved that this is also the best one can do.

The Hybrid Bounded Storage Model: The inability to achieve secure encryption in the bounded storage
model with memory requirements smaller than n =

√
m has lead to the following suggestion that we call the

hybrid BSM: Let Alice and Bob agree on their secret key using a computationally secure key agreement pro-
tocol (e.g. the Diffie-Hellman protocol [DH76]). The rationale being that while an unbounded eavesdropper
will eventually break the key, if this happens after the broadcast had already occurred, then the knowledge
of the shared key would be useless by then (this should be expected from the everlasting security property
where getting the shared key after the broadcast has ended is useless). This hybrid model is very appealing
as it attempts to achieve everlasting security by adding assumptions on the ability of an adversary that has a
strict time limit. Assumptions of this sort are generally very reasonable since all that we require is that the
computational protocol is not broken in the short time period between its execution and the transmission of
R. For instance, an assumption such as the Diffie Hellman key agreement [DH76] cannot be broken within
half an hour, can be made with far greater degree of trust than actually assuming the long term security of
this protocol.

Somewhat surprisingly, Dziembowski and Maurer [DM04a] showed that this rationale may fail. They
introduce a specific computationally secure key agreement protocol (containing a non-natural modification
based on private information retrieval (PIR) protocols). If this key agreement protocol is used in the hybrid
BSM setting with a specific private key scheme, then the eavesdropper can completely decrypt the encrypted
message. However, their result does not rule out the possibility that the hybrid idea will work with some
other key agreement protocol. For instance, using the plain Diffie Hellman key agreement may still work.

In this work we show that if compression of SAT exists then there exists an attack on the everlasting
security of any hybrid BSM scheme.

19Requires n = O(` + log m + log 1

ε
) bits of memory for an ` bit message and error ε.

23



4.1 Two Possible Models

We define the hybrid BSM as a setting where the running time of the eavesdropper Charlie is polynomially
bounded up until and during the broadcast of R, and unbounded after that. We discuss two variants of a
BSM scheme. We first discuss these in the standard BSM where the eavesdropper is unbounded over time,
and then compare them to the hybrid setting where computational restrictions are imposed:

• The Basic BSM Scheme: The basic scheme does not allow interaction after the broadcast (other
than sending the encrypted message). Thus the key is fully determined at the time of the broadcast.
Such a scheme is fully breakable in the BSM (without an initial secret key) since the unbounded
adversary can find some randomness consistent with Alice’s view, and simulates Alice’s actions and
thus recover the encryption key20. Basic schemes in the hybrid BSM are interesting as they include
any combination of a key agreement protocol with a private key scheme (such as the one described by
[DM04a]). We show that if sufficiently strong compression exists then there exist attacks on any such
scheme.

• The General BSM Scheme: Alice and Bob interact both before and after the broadcast. Dziem-
bowski and Maurer [DM04a] show that such a scheme is breakable unless n2 > Ω(m). For the
hybrid BSM, we show that if compression exists then there exists an attack on any such scheme as
long as n2 > Ω(m/p(n, log m)), for some polynomial p (related to the polynomial of the compression
algorithm and to the running time of the protocol that Alice and Bob use).

Thus we prove that if compression of SAT (or of any VCOR-hard language) is feasible then the hybrid BSM
is essentially no more powerful than the standard BSM.

4.2 The Basic Hybrid BSM

Definition 4.1 (Basic hybrid BSM scheme) A basic hybrid BSM scheme consist of the following: Alice
and Bob run a protocol Π that is polynomial in n (this could be a key agreement scheme with security
parameter n). Denote by T the transcript of this protocol. Alice and Bob use their respective views of the
protocol Π (i.e. the transcript T and their local randomness) to agree on n bits from the broadcast string
R that they should store. They store these bits and then use the stored bits to generate an encryption key K
(the scheme requires that they agree on the same key).

We show that sufficiently strong compression of SAT can be used to break any hybrid BSM scheme.
For the discussion here take K to be a one bit key. The general idea is that while the eavesdropper may not
figure out in time what locations to store, he can use this transcript to save a relatively short (compressed)
CNF formula whose satisfiability coincides with the value of the key K. Later, when he is given unbounded
computational power, he will be able to extract this bit from the compressed formula.

Theorem 4.2 If there exists a compression algorithm for SAT or for any compression-hard language for
VCOR, with polynomial p1, then any basic hybrid BSM scheme can be broken using memory p2(n, log m)
(where p2 is a polynomial related to p1 and the running time of the protocol Π).

Proof: Denote the locations of the bits that Alice and Bob store by i1, ..., in. Consider the algorithm V that
takes the transcript TΠ and the broadcast string R as inputs and Alice’s local randomness, and locations

20Since Alice must be able to decrypt the message then simulating Alice with any randomness that is consistent with the transcript
must output the same key.
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i1, ..., in as a witness. The algorithm should check if the witness and inputs are indeed consistent with one
another (for example, V should verify that a key agreement with the randomness of Alice, the transcript T
indeed chooses the indices i1, ..., in to store) and output 1 if and only if they are consistent and generate an
encryption key K = 1. The main observation is that the NP language defined by this relation V is in VC1.
Thus, if SAT has a compression algorithm then there is also a compression algorithm for all of VC1 (from
Lemma 2.14) including the language defined by V .

The attack of the eavesdropper Charlie is as follows: Charlie generates the verification program V
and feeds the instance (T,R) to the compression algorithm for the language V . By the properties of the
compression, the output is a CNF formula that is satisfiable if and only if K = 1. The length of the output
is of some polynomial length p2(n, log m). If the polynomial p2 is sufficiently small then the compressed
instance is shorter than Charlie’s space bound 1

2m, and he stores this output. Finally, at a later stage, Charlie
can use his unbounded powers to solve the compressed problem and retrieve the bit K.

We note that a slightly more involved argument works also with compression for VCOR. The idea is to
use independent compression for the bit R(ij) for every j ∈ [n]. Every such R(ij) may be presented as the
OR of m circuits of size p(n) each, for some polynomial p. 2

4.3 The General Hybrid BSM

The general scheme is like the basic one but the encryption key K is not necessarily fully defined by the end
of the broadcast. In addition, the parties are allowed to interact after the broadcast is over. We note that the
bounded storage key exchange scheme of Cachin and Maurer [CM97] requires such late interaction.

Definition 4.3 (General hybrid BSM scheme) The general hybrid BSM scheme consist of the following:
Alice and Bob run a protocol Π1 that is polynomial in n. Denote by T1 the transcript of this protocol. Alice
and Bob use their respective views of the protocol Π1 to determine some n bits that each should store from
the broadcast string R. After the broadcast they interact in a second protocol Π2 (with transcript T2) at the
end of which, both agree on encryption key K.

Theorem 4.4 If there exists compression algorithm for SAT or for any compression-hard language for
VCOR with compression p1(n, log m), then there exists an attack on any general hybrid BSM scheme where
n2 > m/p2(n, log m) (where p2 is a polynomial related to p1 and the running time of the protocol Π1).

Proof: Let K(T1,R, T2) denote the encryption key that is agreed on when the protocol is run with transcripts
T1, T2 and randomness R. Because agreement is guaranteed then this key must be well defined. Denote
by AT1

the set of all possible randomness rA of Alice that are consistent with the transcript T1. Let sA =
SA(T1,R, rA) denote the bits that Alice stores at the end of the broadcast when running with randomness
rA, transcript T1 and broadcast string R. Finally, denote by SA(T1,R) the random variable that takes the
value SA(T1,R, rA) for a uniform choice of rA ∈ AT1

. That is, SA(T1,R) is randomly chosen from all
possible sA that Alice might have stored when running with transcript T1 and broadcast string R.

We use the following important lemma of Dziembowski and Maurer [DM04a].

Lemma 4.5 ([DM04a]) Let SA(T1,R) and K(T1,R, T2) be defined as above. For any R and T1 let
SC(T1,R) denote the random variables that takes n independent samples of SA(T1,R). Then:

H(K(T1,R, T2)|SC(T1,R)) ≤ n2/m

.
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In other words, a strategy for an eavesdropper is to store n independent samples of the random variable
SA(T1,R). This strategy guarantees that the eavesdropper will have stored (with high probability) enough
information on the encryption key K. Thus an eavesdropper with O(m) storage capacity may break the
scheme as long as n2 < O(m).

Lemma 4.5 was used in [DM04a] in a setting where the eavesdropper is unbounded and can hence sam-
ple the random variable SA(T1,R). However, in our setting the eavesdropper is computationally bounded
and does not have the power to generate this distribution. Instead, we use compression to store infor-
mation about samples of SA(T1,R) to be extracted after the broadcast is over (when the eavesdropper is
unbounded).

The main idea is to use compression for search problems, as was demonstrated in Section 2.7. Define
the NP language LA as follows:

LA = {(T1,R)|∃ witness w = (rA, sA) such that rA ∈ AT1
and sA = SA(T1,R, rA)}

The first thing to notice is that LA is in VCOR. This is shown once more by the same argument as
in Theorems 4.4 or 3.1, and based on the fact that the protocol Π1 is polynomial time in n. Once this is
established, then given a compression algorithm for VCOR we invoke Theorem 2.22 to get a compression
algorithm to the search problem associated with LA. Running this compression once, allows us to extract
a witness to LA and in particular to get one sample sA of a consistent view of Alice. Running this n times
supposedly gives n samples of such a view, which supposedly suffices to break the scheme by Lemma 4.5.

However, in order to invoke Lemma 4.5, we need the samples to be taken according to the distribution
SA(T1,R), which is taken by a uniform distribution over rA ∈ AT1

. We will show that while sampling via
the compression of search problems does not give the desired distribution, it is still sufficient.

A closer inspection of our compression for search technique shows that we do not necessarily sample
uniformly on AT1

. However, we do sample close to uniformly, in the sense that no element in AT1
gets more

than double the probability of another element in AT1
. We then show that taking twice as many samples

as was originally needed guarantees that amongst the stored bits we have n random samples of the random
variable SA(T1,R), and thus we have stored enough bits from R to break the scheme.

Recall from Section 2.7 that the compression algorithm for search problems chooses a random pairwise-
independent hash function h and saves only a witness (rA, sA) that is uniquely hashed to the value 0 by h.
Since rA fully determines sA (when given T1 and R) then without loss of generality we view the witness
simply as rA, furthermore, assume w.l.o.g. that rA is of length n. Suppose that ` ∈ [n] is such that 2` <
|AT1

| ≤ 2`+1. Let H`+2 be a family of pairwise independent hash functions with h : {0, 1}n → {0, 1}`+2

for all h ∈ H`+2. Then for every rA ∈ AT1
the probability that a random h ∈ H`+2 uniquely maps rA to

zero is at most 2−(`+2) (since Prh∈H`+2
[h(rA) = 0] = 2−(`+2)). By the pairwise independence of H it holds

that for all other r′A ∈ AT1
with r′A 6= rA we have that Prh∈H`+2

[h(r′A) 6= 0|h(rA) = 0] = 1− 2−(`+2). By
a union bound over all r′A ∈ AT1

with r′A 6= rA, combined with the probability that h(rA) = 0, we get:

Prh∈H`+2
[h uniquely maps rA to 0] ≥ 2−(`+2) · 1

2
= 2−(`+3).

Altogether, for all rA ∈ AT1
it holds that

2−(`+2) ≥ Prh∈H`+2
[h uniquely maps rA to 0] ≥ 2−(`+3).

Thus whenever the hash used is indeed of length ` + 2, the probability of sampling rA ∈ AT1
is almost

uniform (up to a factor of 2 for each element). Since we repeat the compression for every choice of ` ∈ [n]
then in particular samples are stored for the correct `.
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By Lemma 2.23 we know that at least 1
8 of the repeated compressions indeed store information about a

valid witness (a sample of rA ∈ AT1
). Thus, choosing, say, 9n independent h ∈ H`+2 guarantees at least n

samples (by a Chernoff bound, as the choices are independent). But as mentioned above, these samples are
just close to uniform over AT1

rather than truly uniform. The solution is to simply run more compressions,
say, for 25n independent choices of h ∈ H`+2. This would guarantee that with overwhelming probability,
at least 3n samples actually are stored. We show that 3n samples via the unique hashing method contain n
truly uniform samples of witnesses.

This last argument follows by a hypothetical method for sampling uniformly from AT1
. At a first stage,

3n samples are taken using the unique hashing method. Now a diluting second stage is run: Suppose that the
least likely element to be sampled gets probability pmin. For any element rA that is sampled with probability
prA

, keep the sample with probability pmin

prA

and delete it otherwise. Thus every element is eventually chosen

with the same probability pmin, and since pmin

prA

≥ 1
2 then at least n samples are eventually chosen (with

overwhelming probability). Note that the diluting stage is not necessarily efficiently computable, but this is
taken just as a mental experiment in order to show that among the 3n samples, there exist n independent
samples of the random variable SA(T1,R). Thus by storing 3n samples via the unique hash method, we
have stored enough bits from R to break the key K. 2

5 Discussion and Open Problems

The issue of compressibility and the corresponding classification introduced in this work raise many open
problems and directions. The obvious one is to come up with a compression algorithm for problem like
SAT (or some VCOR complete or hard problem). Alternatively, show why such tasks are infeasible (see
discussion in Section 2.8). We have seen compressibility of some interesting NP languages and hence the
question is where exactly is boundary between compressibility and incompressibility. We tend to conjecture
that it is in the low levels of the VC hierarchy. We view PCP amplification methods such as the recent
result of Dinur [Din05] as potential leads towards achieving compression. This is since these results show a
natural amplification of properties on a graph, and could potentially be combined with a simple compression
of promise problems (such as the example for GapSAT in Section 2.8). The main issue is doing the PCP
amplification without introducing many new variables.

Short of showing a compression for general complexity classes, it would be interesting to come up
with further interesting compression algorithms as well as to obtain more hardness results. For instance, is
Clique or any other embedding problem complete for VC1? Is there a natural and simple complete problem
for VC1? Also, the VC hierarchy is by no means the ultimate classification with respect to compressibility.
One can hope to further refine this classification, especially within the confines of VC1.

Regarding cryptographic applications, one issue is how essential is the witness retrievability property
required from the compression algorithm in order to get the OT from one-way function result (Theorem
3.1). In particular, is it possible that every compression algorithm for SAT can be made witness retrievable?

Since we currently do not have a general compressibility result for a significant class of languages, it
is important to understand what are the implications of incompressibility. The application to the bounded
storage model can be viewed as such a statement. Another example is the previously mentioned work of
Dubrov and Ishai [DI06] regarding derandomization. In order to gain confidence in an incompressibility
assumption when used in a cryptographic setting it is important to come up with an efficiently falsifiable
assumption of this nature (see [Nao03]).

Finally we feel that we have just scratched the surface of an important topic and in the future there will
be other implications of compressibility or the impossibility of compression, whether in cryptography or in
other areas.
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