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Abstract

We initiate the study of compression that preserves thesolutionto an instance of problem rather than
preserving the instance itself. Our focus is on the compressibility of NP problems. We considerNP
problems that have long instances but relatively short witnesses. The question is, can one efficiently
compress an instance and store a shorter representation that maintains the information of whether the
original input is in the language or not. We want the length ofthe compressed instance to be polyno-
mial in the length of thewitnessrather than the length of original input. Such compression enables to
succinctly store instances until a future setting will allow solving them, either via a technological or
algorithmic breakthrough or simply until enough time has elapsed.

We give a new classification ofNP with respect to compression. This classification forms a strati-
fication ofNP that we call theVC hierarchy. The hierarchy is based on a new type of reduction called
W-reduction and there are compression-complete problems for each class.

Our motivation for studying this issue stems from the vast cryptographic implications compressibility
has. For example, we say that SAT is compressible if there exists a polynomialp(·, ·) so that given a
formula consisting ofm clauses overn variables it is possible to come up with an equivalent (w.r.t
satisfiability) formula of size at mostp(n, logm). Then given a compression algorithm for SAT we
provide a construction of collision resistant hash functions fromany one-way function. This task was
shown to be impossible via black-box reductions [50], and indeed the construction presented is inherently
non-black-box. Another application of SAT compressibility is a cryptanalytic result concerning the
limitation of everlasting security in the bounded storage model when mixed with (time) complexity
based cryptography. In addition, we study an approach to constructing an Oblivious Transfer Protocol
from anyone-way function. This approach is based on compression forSAT that also has a property that
we callwitness retrievability. However, we mange to prove severe limitations on the ability to achieve
witness retrievable compression of SAT.

1 Introduction

In order to deal with difficult computational problems several well established options were developed,
including: approximation algorithms, subexponential algorithms, parametric complexity and average-case
complexity. In this paper we explore our favorite approach for dealing withproblems:postponethem (hope-
fully, without cluttering our desk or disk). We initiate the study of the compressibility of NP problems for
their resolution in some future setting. Rather than solving a given instance, we ask whether a shorter
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instance with the same solution can be found efficiently. We emphasize that we are not interested in main-
taining the information about the original instance (as is the case in typical notions of compression), but
rather maintain the solution only. The solution can possibly be much shorter thanthe input (as short as a
yes/no answer), thus the potential of such a compression is high.

Specifically, we considerNP problems that have long instances but relatively short witnesses. AnNP
languageL is defined by an efficiently computable relationRL such that an input (or instance)x is in L
if and only if there exists a witnessw such thatRL(x, w) = 1. Throughout the paper, anNP instance is
characterized by two parametersm andn: The length of the instancex is denoted bym and the length of
the witnessw is denoted byn. The problems of interest are those having short witnesses, i.e.n << m.
Traditionally, the study ofNP languages evolves around the ability or inability to efficiently decide if an
instance is in the language or not, or to find a witnessw for an instancex within polynomial time. We
introduce the question of compressibility of such instances.

Compressing SAT Instances: To illustrate the relevant setting, we use the well known example of SAT.
An instanceΦ for SAT consists of a CNF formula overn variables and we define thatΦ ∈ SAT if there
exists an assignment to then variables that satisfies all the clauses ofΦ. The question of compressibility of
SAT is the following:

Example 1.1 (Compression of SAT instances)
Does there exist an efficient algorithm and a polynomialp(·, ·) with the following input and output:
Input: A CNF formulaΦ with m clauses overn variables (we are interested inm >> n).
Output: A formulaΨ of sizep(n, log m) such thatΨ is satisfiable if and only ifΦ is satisfiable.

The idea is that the length ofΨ should be essentially unrelated to the original lengthm, but rather to the
number of variables (or in other words, to the size of the witness). Typically, we think of the parametersm
andn as related by some function, and it is instructive (but not essential) to think of m as larger than any
polynomial inn. So potentially, the length ofΨ can be significantly shorter than that ofΦ.1

In general, one cannot expect to compress all the formulas, or else we would have an efficient algorithm
for all NP problems.2 However, once we introduce the setting of a shorter witness, then compression
becomes plausible. Note that ifP = NP and we actually know the algorithm forSAT then clearly
compression is trivial, simply by solving the satisfiability ofΦ and outputting1 if Φ ∈ SAT and0 otherwise.

Motivation for Compression: Compressing for the future is an appealing notion for various settings.
There are numerous plausible scenarios that will give us more power to solve problems in the future. We
could potentially find out thatP = NP and solve all ourNP problems then. We may have faster computers
or better means of computing such as quantum computers or any other physical method for solving problems
(see Aaronson [1] for a list of suggestions). Above all, the future entails lots and lots of time, a resource
that the present is usually short of. Saving the problems of today as they are presented is wasteful, and
compression of problems will allow us to store a far greater number of problems for better days.

Our interest in studying the issue of compression stems from the vast cryptographic implications of
compressibility. We demonstrate three questions in cryptography that compression algorithms would resolve
(see Section 1.3). We are confident that the compression of problems impliesfurther applications both within

1Note, that since our requirement for compression is only relevant forproblems wherem >> n, then anNP-complete problem
such as 3-SAT (where all clauses have exactly 3 literals) is irrelevant for compression as in such formulasm is already at most
O(n3).

2Suppose that every formula can be compressed by a single bit, then sequentially reapplying compression to the input will result
in a very short formula that may be solved by brute enumeration.
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and outside of cryptography. For example, in subsequent works, Dubrov and Ishai [15] show the relevance
of the notion of compression to derandomization and Dziembowski [17] shows that compression is related
to the study of forward-secure storage (see Section 1.4 on related work). The concept of compression of
problems is also interesting beyond the confines ofNP problems, and makes sense in any setting where the
compression requires much less resources than the actual solution of the problem.

1.1 Compression of NP instances

We define the notion of compression with respect to anNP language. For simplicity, we assume that an
input to anNP languageL includes an encoding of the parametern that upper bounds the length of a
potential witness.3 We also associate withL a specificNP relationRL that defines it (as mentioned above).
We note that once the parametersm andn are explicit, it is in most cases immaterial what specific relation
defines the language and the properties we discuss (such as compressibility) are properties of the language
at hand (unless stated otherwise). In essence, a compression algorithmis a specialized Karp-reduction that
also reduces the length of the instance.

Definition 1.2 (Compression Algorithm for NP Instances) Let L be anNP language wherem and n
denote the instance length and the witness length respectively. Acompression algorithmfor L is a proba-
bilistic polynomial time machineZ along with a languageL′ in NP (or more accurately inNP(poly(m)))4

and a polynomialp(·, ·) such that for all large enoughm:

1. For all x ∈ {0, 1}m with parametern the length ofZ(x) is at mostp(n, log m).

2. Z(x) ∈ L′ if and only ifx ∈ L

We allow a negligible error in the success ofZ (where probability is over the internal randomness ofZ). If
the error is zero then we call the compression errorless.

The paper consists of two parts:Part I is a study of the concept of compression ofNP instances from a
complexity point of view.Part II introduces the cryptographic applications of compression algorithms.

How much to compress: Definition 1.2 (of compression algorithms) requires a very strong compression,
asking that the length of the compression is polynomial inn andlog m. For the purposes of part I of the paper
(the complexity study), it is essential that the compression is at least sub-polynomial inm in order to ensure
that the reductions defined with respect to compressibility (See Section 2.2) do compose.5 Furthermore,
for part II (the applications) this definition may be strongly relaxed, whereeven a compression tom1−ε for
some constantε suffices for some applications.

The Complexity ofL′: Another requirement of Definition 1.2 is that the languageL′ be inNP(poly(m)).
In general, this requirement may also be relaxed and the result still be meaningful for some applications.
In particular, we do not need to put a bound on the complexity ofL′, but only require that there is enough
information inZ(x) to determine whetherx ∈ L or not. One case where we use a definition with unbounded
extraction is the compression of search problems in Section 2.7. It should benoted however that in some
settings the requirement forL′ to be inNP(poly(m)) is essential, such as when defining the witness re-
trievability property (Definition 1.5). Moreover, in some cases it is natural tofurther restrictL′ to actually

3Typically, the parametern is indeed part of the description of the problem (e.g. for Clique, SAT, Long-path and others).
4By NP(poly(m)) we mean in nondeterministic-timepoly(m) (that is, verifiable in timepoly(m) when given a non-

deterministic hint).
5For clarity we choose a polynomial inlog m, although this may be replaced by any sub-polynomial functionm′(.) (a function

such that for large enoughm for any polynomialq(·) we havem′(m) < q(m)).
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be inNP (that is inNP(poly(n, log m)). For instance, this is the case in the definition of compression
of SAT (Example 1.1). Finally, note that if the compression iserrorless, thenL′ must be inNP(poly(m))
simply by the definition of compression.6

Paper organization: In the rest of the introduction we survey the results of this paper, includingpart I
(the complexity study) and part II (the cryptographic applications). In section 1.4 we discuss related and
subsequent works. The main complexity study of the compressibility ofNP problems appears in Section
2. The Cryptographic applications are in Sections 3,5 and 4. In Section 3 wedescribe the application
of compression to constructing CRH from any one-way function. Section 4presents the implication to the
hybrid bounded storage model, while Section 5 discusses witness retrievable compression and its application
to the construction of OT from any one-way function. We conclude with a discussion and some open
problems (Section 6).

1.2 Part I: Classifying NP Problems with Respect to Compression.

We are interested in figuring out whichNP languages are compressible and, in particular, whether impor-
tant languages such as SAT and Clique are compressible. For starters, we demonstrate some non-trivial lan-
guages that do admit compression (Section 2.1): we show compression forthe well knownNP-complete
problem of vertex-cover and for anotherNP-complete language known as minimum-fill-in. We show a
generic compression of sparse languages (languages containing relatively few words from all possible in-
stances). As specific examples we mention the language consisting of stringsthat are the output of a crypto-
graphic pseudorandom generator and the sparse subset sum problem. In addition we show compression for
the promise problem GapSAT.7 However, these examples are limited and do not shed light on the general
compression of otherNP problems. Moreover, it becomes clear that the traditional notions of reductions
and completeness inNP do not apply for the case of compression (i.e., the compression of anNP-complete
language does not immediately imply compression for all ofNP). This is not surprising since this is also
the case with other approaches for dealing withNP-hardness such as approximation algorithms or subex-
ponential algorithms (see for example [47]) and parameterized complexity (see [14] and further discussion
in Section 1.4 on related work). For each of these approaches, appropriate new reductions where developed,
none of which is directly relevant to our notion of compression.

We introduce W-reductions in order to study the possibility of compressing various problems inNP.
These are reductions that address the length of the witness in addition to membership in anNP language.
W-reductions have the desired property that ifL W-reduces toL′, then any compression algorithm forL′

yields a compression algorithm forL. Following the definition of W-reductions we define also the matching
notion of compression-complete and compression-hard languages for a class.

The VC classification: We introduce a classification ofNP problems with respect to compression. The
classification presents a structured hierarchy ofNP problems, that is surprisingly different from the tradi-
tional view and closer in nature to theW hierarchy of parameterized complexity (see [14]). We call our
hierarchyVC, short for “verification classes”, since the classification is closely related to the verification
algorithm ofNP languages when allowed a preprocessing stage. We give here a very loose description
of the classes, just in order to convey the flavor of the classification. Formal definitions appear in Section
2.3. In the following definition, when we use the term “verification” we actuallymean “verification with
preprocessing”:

6Suppose that there exists a compression algorithmZ for L then defineL′ to be the language of allZ(x) such thatx ∈ L. Then,
for everyy ∈ L′ a verification algorithm takes as a nondeterministic witness a valuex, a witness tox ∈ L along with randomness
for the compression algorithm and verifies that indeedy = Z(x). Thus ifZ never introduces an error thenL′ is inNP(poly(m)).

7I.e. a promise problem were either the formula is satisfiable or every assignment does not satisfy a relatively large number of
clauses.
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• For k ≥ 2, the classVCk is the class of languages that have verification which can be presented
as a depthk polynomial size circuit (polynomial inn andm). For example, the language SAT is
compression-complete for the classVC2. Other examples include Integer-Programming that resides
in VClog n and Dominating-Set that is inVC3. Both of which are shown to be compression-hard for
VC2.

• VC1 is the class of languages that havelocal verification. That is, languages which can be verified
by testing only a small part (of sizepoly(n, log m)) of the instance. This class contains many natural
examples such as the Clique language or Long-path.

• VCOR is the class of languages that have verification which can be presented asthe OR ofm small
instances of SAT (each of sizen). This class contains the languages that are relevant for the crypto-
graphic applications. The Clique language is compression-hard for this class (Claim 2.21).

• VC0 is the class of compressible languages. In particular it includes vertex cover, sparse languages
and GapSAT.

We show that the classes described form a hierarchy (see Lemma 2.16 andClaim 2.22). That is:

VC0 ⊆ VCOR ⊆ VC1 ⊆ VC2 ⊆ VC3 . . .

We discuss some of the more interesting classes in theVC hierarchy, classify some centralNP problems and
mention compression-complete problems for the classes. Note that the existence of a compression algorithm
for a complete problem for some class entails the collapse of the hierarchy upto that class intoVC0.

In addition, we study the compression ofNP searchproblems. That is, compressing an instance in a
way that maintains all the information about a witness for the problem. We show that the compression of a
class of decision problems also implies compression for the corresponding search problems. Formally:

Theorem 1.3 If a classVCk has a compression algorithm, then there is a compression algorithm for the
search problem of a relationRL of L ∈ VCk.

This theorem turns out to be useful for the cryptanalysis result regarding the bounded storage model we
present in Section 4.

1.3 Part II: Implications to Cryptography

As the main motivation for the study of compression, we provide some strong implications of compress-
ibility to cryptography. The implications described are of contrasting flavors. On the one hand we show
constructions of cryptographic primitives using compression algorithms, while on the other hand we show
a cryptanalysis using compression algorithms (or alternatively, this can be considered as an application of
incompressibility of languages). For simplicity we provide the implication with respect to the compression
of SAT. We note however, that the same statements can actually be made with compression of languages
from the classVCOR (see Definition 2.19). This class is the lowest class in ourVC hierarchy, and potentially
easier to compress than SAT. Moreover, the instances that we need to compress for our applications are
further limited in the sense that (i) the instances are inNP∩ Co-NP and (ii) the (positive and negative)
instances have a unique witness.
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On Collision Resistant Hash from any One-Way Function: Collision Resistant Hash functions (CRH)
are important cryptographic primitives with a wide range of applications, e.g.[35, 41, 5]. Loosely speaking,
a CRH is a familyH of length reducing functions, such that no efficient algorithm can find collisions
induced by a random hash from the family. Currently there is no known construction of CRH from general
one-way functions or one-way permutations, and moreover, Simon [50] showed that basing CRH on one-
way permutations cannot be achieved using black-box reductions. We show how a general compression
algorithm may be used to bridge this gap.

Theorem 1.4 If there exists an errorless8 compression algorithm for SAT then there exists a construction of
collision resistant hash functions based on any one-way function.

The construction of the CRH in Theorem 1.4 is inherently non-black-box and uses the program of the one-
way function via Cook’s Theorem [8]. This is essential to the validity of this approach, in light of the
black-box impossibility result [50].

An interesting corollary of this result is a construction of statistically hiding bit commitment from any
one-way function, which is currently an open problem ([45, 24] show such constructions based on one-way
functions with a specific structure).

On Everlasting Security and the Hybrid Bounded Storage Model: Thebounded storage model(BSM)
of Maurer [39] provides the setting for the appealing notion ofeverlasting security[3, 12]. Loosely speaking,
two parties, Alice and Bob, that share a secret key in advance, may use the BSM to encrypt messages in
a way that the messages remain secure against a computationally unboundedadversary, even if the shared
secret key is eventually revealed.

However, if the parties do not meet in advance to agree on a secret key then everlasting security requires
high storage requirements from Alice and Bob [18], rendering encryption in this model less appealing.
Hoping to overcome this, it was suggested to combine the BSM with computational assumptions (what is
called here the hybrid BSM). In particular, to run a computational key agreement protocol in order to agree
on a shared secret key, and then run one of the existing BSM schemes. Dziembowski and Maurer [18]
showed that this idea does not necessarily work in all cases, by showingan attack on a protocol consisting
of the combination of a specific (artificial) computational key agreement protocol with a specific BSM
encryption scheme.

We show that compression ofNP instances can be used to attackall hybrid BSM schemes. Or in
other words, if a compression of SAT exists, then the hybrid BSM is no more powerful than the standard
BSM. One interpretation of this result is that in order to prove everlasting security for a hybrid BSM scheme,
without further conditions, one must prove that there exists no compression algorithm for SAT. Alternatively,
as a relaxation, one should come up with a reasonable incompressibility assumption regarding the resulting
formulae. Note however that a straightforward assumption of the form “thisdistribution on SAT formulae
is incompressible” is not efficiently falsifiable, in the sense of Naor [44], that is, it is not clear how to set up
a challenge that can be solved in case the assumption is false.
ON RANDOM ORACLES: The authors of this paper show in [25] that if all parties are given access to a
random oracle, then there actually exists everlasting security in the hybrid BSM without an initial key and
with low storage requirements from Alice and Bob9. Therefore, finding a compression algorithm for SAT
would show an example of a task that is simple with random oracles but altogether impossible without

8The construction of CRH requires that the error probability of compression algorithm will be zero. This can be slightly relaxed
to an error that is exponentially small inm (rather thann).

9This does not contradict the compressibility of SAT, since the cryptanalyticresult is not black-box and assumes access to the
full description of the programs of Alice and Bob. Thus this result is not preserved in the presence of a random oracle.
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them. This is stronger than previous results (such as [7, 23, 40]) that show a specific protocol that becomes
insecure if the random oracle is replaced by a function with a small representation. This would constitute an
argument against relying (blindly) on random oracles to determine whethera task is feasible at all.

The actual model and results: The bounded storage modelbounds the storage space of an adversary
rather than its running time. It utilizes the public transmission of a long random string R of lengthm
(sometimes referred to as the broadcast string), and relies on the assumption that an eavesdropper cannot
possibly store all of this string. The everlasting security achieved by encryption schemes in this model
means that an encrypted message remains secure even if the adversary eventually gains more storage or
gains knowledge of (original) secret keys that may have been used. However, if the honest parties do not
share any private information in advance, then achieving everlasting security requires storage capacity of
Ω(

√
m) from the honest parties (as shown in [18]).

The hybrid bounded storage model(see [25] for formal definitions and notions of security) assumes
computational limitations on the eavesdropper up until the time that the transmission of R has ended. Com-
putational assumptions with such a strict time limit are generally very reasonable. For instance, in the key
agreement example, all that we require is that the computational protocol is not broken in the short time
period between its execution and the transmission ofR. An assumption such as the Diffie Hellman key
agreement [11] cannot be broken within half an hour, can be made with far greater degree of trust than actu-
ally assuming the long term security of a computational key agreement protocol. We consider two models,
and give a cryptanalysis result for each of them:

• The Basic BSM Scheme:The honest parties may only interact before the broadcast ofR (except for
actually sending the encrypted message). Thus the encryption key is fully determined at the end of
the broadcast ofR. Such a scheme is fully breakable in the standard BSM (without initial keys).We
show that compression of SAT allows to break any basic hybrid scheme (Theorem 4.2).10

• The General BSM Scheme:Alice and Bob can interact both beforeandafter the broadcast ofR. In
the standard BSM (without initial keys) such a scheme is breakable unless Alice and Bob use storage
of sizeΩ(

√
m). In the hybrid BSM, we show (Theorem 4.4) that if a compression of SAT exists then

such a scheme is breakable unless Alice and Bob use storage of sizeΩ(
√

m/p(n, log m)), wheren is
the security parameter of the computational protocol andp is a polynomial (related to the polynomial
of the compression algorithm and the running time of the protocol that Alice andBob use).

Witness retrievable compression and the existence of Minicrypt: The next application is an attempt to
use compression in order to prove, in the terminology of [29], thatMinicrypt=Cryptomania. Impagli-
azzo [29] summarizes five possibilities for how the world may look like based ondifferent computational
assumptions. The two top worlds areMinicrypt, where one-way functions exist but oblivious transfer
protocols do not exist (in this world some interesting cryptographic applications are possible, and in partic-
ularsharedkey cryptography exists) andCryptomania where Oblivious Transfer protocols do exist (and
hence also a wide range of cryptographic applications like secure computation andpublic key cryptogra-
phy). Whether OT can be constructed from any one-way function is a major open problem in cryptography.
Impagliazzo and Rudich [31] addressed this problem and proved that key agreement protocols (and hence
also OT) cannot be constructed from any one-way function using black-box reductions.

We explore an approach of using compression in order to bridge the gap between the two worlds. In
order to do so we introduce an additional requirement of a compression algorithm.

10Basic schemes are very relevant to the hybrid BSM as they include a combination of a key agreement protocol with a private
key scheme (such as the scheme described by [18]).
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Definition 1.5 (Witness Retrievable Compression)LetZ, L andL′ define a compression algorithm as in
Definition 1.2 and letRL be anNP relation for L. The compression is said to bewitness retrievablewith
respect toRL if there exists a probabilistic polynomial time machineW such that if inputx ∈ L then for
every witnesswx for RL it holds thatwy = W (wx, Z(x)) is a witness forZ(x) ∈ L′. We allow a negligible
error in the success ofW (where probability is over the internal randomness ofZ andW ).

Theorem 1.6 If there exists a witness retrievable compression algorithm for a certain typeof SAT formulas,
then there exists an Oblivious Transfer protocol based onanyone-way function.

As in the CRH construction (Theorem 1.4), the construction of OT in Theorem 1.6 is inherently non-black-
box. Unfortunately we show that this approach cannot work with a compression algorithm for thegeneral
SAT problem, due to the following theorem:11

Theorem 1.7 If one-way functions exist then there is no witness retrievable compression of SAT.

Furthermore, we also rule out the possibility of other types of witness retrievable compression that may be
sufficient for Theorem 1.6. More precisely, the inability of witness retrievable compression does not change
when allowing an error in the retrieval, or when dealing with a case where there is a unique witness (see
Corollary 5.7). These developments rule out basing the approach of Theorem 1.6 on the compression of
a general and standard language. The approach may still work out with awitness retrievable compression
algorithm for the specific CNF formulas as stated in Theorem 1.6.

Finally, we point out that all of the examples of compression algorithms in this paper (in Sections 2.1
and 2.9) are in fact witness retrievable. This demonstrates that these examples fall short of the general
compression that we are seeking. In fact a major obstacle in achieving compression for problems such as
SAT seems to be that most ideas are witness retrievable.

1.4 Related Work

The relationship between compression and complexity in general is a topic thathas been investigated since
the early days of Complexity Theory (i.e. Kolmogorov Complexity [37]). However, the feature that we are
introducing in this work is compressibility with respect to thesolution (witness) rather than the instance.
The goal of maintaining the solution differs our work from a line of seemingly related works about notions
of compression ([16, 51, 54] to name a few), all of which aim at eventuallyretrieving the input of the
compression algorithm.

There are several examples of other relaxations to solvingNP problems in polynomial time. Each of
these relaxations yields a corresponding classifications ofNP. These classifications, like ours, are sub-
tle and usually turn out to be different than the traditionalNP classification. For example, Papadimitriou
and Yannakakis [48] introduce L-reductions and the classes MAX NP and MAX SNP, with respect to ap-
proximation algorithms. Impagliazzo, Paturi and Zane [30] define reductions with respect to solution in
sub-exponential time.

Perhaps the most relevant classification to ours is that of parameterized complexity (see the monograph
on this subject by Downey and Fellows [14]). Parameterized complexity studies the tractability of problems
when one of the parameters is considered to be fixed or very small. This is relevant to compression since
typically this parameter is related to the length of the witness. On the one hand, some (but not all) parame-
terized complexity algorithms yield natural compression algorithms (see examplesand discussion in Section

11The first version of this paper [26] (dated Feb 17, 2006) did not contain this theorem and was hence more optimistic on the
possibility of finding a witness preserving compression algorithm for SAT.
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2.1). In addition, some (but certainly not all) compression algorithms may imply a parameterized complex-
ity algorithm. Also theW -hierarchy of parameterized complexity is reminiscent of theVC-hierarchy (they
are both defined by reduction to circuits of bounded depth). However, our study of compression yields quite
a different classification. This is mainly because in parameterized complexity the witness length is taken to
be very small and as such, there is no restriction on running in time that is exponential (or higher) in this
parameter. In compression, on the other hand, the parameter (witness length) is usually of substantial size
(even if much smaller than the instance length).

A related notion to parameterized complexity that is reminiscent of our work islimited non-determinism,
which started with the work of Kintala and Fischer [36], see survey by Goldsmith, Levy and Mundheck [22].
This was further studied by Papadimitriou and Yannakakis [49] who defined a few syntactic classes within
the class of polylog non-determinism (LOGNP and LOGSNP ). The interesting point is that several
natural problems are complete for these classes. The notion of reduction used is the usual polynomial
reduction and hence the classifications arising from this study are very different from ourVC hierarchy.

Subsequent Works: Dubrov and Ishai [15] discussed the compression of problems and showed that a
certain incompressibility assumption has an application to derandomization. Specifically they construct a
generator that fools procedures that use more randomness than their output length. Their work was mostly
conducted independently of ours, following conversations regarding an early phase of our work. In addition,
inspired by our CRH construction, they prove that any one-way permutation can either be used for the above
mentioned derandomization, or else can be used to construct a weak version of CRH.12

In a recent paper, Dziembowski [17] shows the relevance of our notion of witness retrievable compres-
sion to a method for achievingforward-secure storage. He shows a cryptanalytic result of such compression.
Furthermore, following our approach for construction of OT from one-way functions, he shows that for ev-
ery one-way function either a specific storage scheme is forward-secure, or there exists an OT protocol based
on this one-way function.

2 Part I: On the Compression ofNP Instances

Attempting to compressNP instances requires a different approach than solvingNP problems. Intuitively,
a solution for compression might arise while trying to solve the problem. While a full solution of anNP
problem may take exponential time, it is plausible that the first polynomial numberof steps leaves us without
an explicit solution but with a smaller instance. Indeed, some algorithms in the parameterized complexity
world work like this (see some examples in the next section). On the other hand, we allow the possibility
that the compressed version is actually harder to solve (computational time-wise) than the original one (and
may require a somewhat longer witness altogether).

2.1 Examples of Compression Algorithms for some Hard Problems

We start by showing three examples of compression algorithms for problems that are conjectured not to be
in P. Two of these example areNP-complete problems, while the third is taken from cryptography.

Vertex Cover: The well studiedNP-complete problem of Vertex-Cover receives as input a graphG =
(V, E) and asks whether there exists a subset of verticesS ⊆ V of size at mostk such that for every edge

12This weak version of CRH (like the stronger common version) cannot beconstructed from any one-way permutation by black-
box reductions. (in [50]).
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(u, v) ∈ E eitheru or v are inS. The parameters are the instance lengthm, which is at mostO(|E| log |V |),
and the witness lengthn = k log |V |

Claim 2.1 There exists a witness retrievable compression algorithm for Vertex-Cover.

Proof: We are following the parameterized complexity algorithm for vertex-cover (presented in [14] and
attributed to Buss). If a vertex-coverS of sizek exists, then any vertex of degree greater thank must be
inside the setS. The compression algorithm simply identifies all such vertices and lists them in thecover,
while removing all their outgoing edges (that do not need to be covered by other vertices). The graph left
after this process has maximal degreek, and furthermore all edges have at least one end in the cover. Thus,
if the original graph has ak vertex cover then the total number of edges left is at mostk2 (at mostk vertices
in the cover with at mostk edges each). If there are more thenk2 edges then the answer to the problem
is NO, otherwise, such a graph can be represented by the list of all edges, which takesk2 log k bits. The
compression can be made witness retrievable since if we use the original labels of vertices to store the new
graph, then the original cover is also a cover for the new compressed graph. 2

It is interesting to note that we do not know of a compression algorithm for theClique problem or the
Dominating Set problem, which are strongly linked to the vertex-cover problem in the traditional study of
NP, and in fact, in Theorems 5.1, 3.1 and 4.2 we show strong implications of a compression algorithm for
these languages.

Sparse Languages: There exists a simple and generic compression algorithm for allsparselanguages.
That is, languages that contains only a small fraction of all possible inputs.The general idea is to apply a
random hash function on the instance with an output that is substantially smallerthanm. The new language
contains all words that are hashed values of a word in the original language. We note that the compressed
languageL′ lies in NP(poly(m)).13 We describe the method via an explicit example of such a sparse
language. The example can easily be generalized to all sparse languages.

Example 2.2 (PRG-Output) Let G be a pseudorandom generator stretching ann bit seed to anm bit
output (withm >> n). Define the languagePRG-outputover inputsy ∈ {0, 1}m as

LG = {y| there exists anx s.t.G(x) = y}

The language PRG-output is hard to solve for random instances as long as the underlying PRG is secure.
Yet it has a simple compression algorithm. Note that simply saving, say, the first2n bits of the instancey is
insufficient because ify only differs fromG(x) in one bit, then this bit may be anywhere in them bits.

Claim 2.3 There exists a witness retrievable compression algorithm for PRG-output.

Proof: Let H be a family of almost pairwise independent hash functions fromm bits to 2n bits. The
compression algorithm simply chooses a randomh ∈ H and outputs(h(y), h). The new language isL′

G =
{(z, h)| there exists anx s.t.h(G(x)) = z}.

Naturally, ify ∈ LG then also(h(y), h) ∈ L′
G with the same witness (and thus the witness retrievability).

On the other hand, ify /∈ LG then by the properties ofH, for every seedx we have thatPrh[h(G(x)) =
h(y)] < O(2−2n), and by a union bound over allx ∈ {0, 1}n, we getPrh[h(y) ∈ L′

G] < O(2−n). Finally,
since there are almost pairwise independent hash functions whose description is of lengthO(n)+log m (for
example see [42]), then the algorithm is indeed compressing.2

13Recall thatNP(poly(m)) stands for nondeterministic-time(poly(m)).
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We give another example of a sparse language that has a compression algorithm that is better in the sense
that the compressed language is inNP(poly(n, log m)) (or actually inNP) rather than inNP(poly(m))
as implied by the general method.

Example 2.4 (Sparse Subset Sum)The languagesparse subset sumtakes as inputn valuesx1, . . . xn each
in {0, 1}m (with m >> n) and a target valueT ∈ {0, 1}m. An input is in the language if there is a subset
S ⊆ [n] where

∑

i∈S xi = T (the sum is taken modulo2m).

Claim 2.5 There exists a witness retrievable compression algorithm for sparse subset sum.

Proof: To compress an instance of sparse subset sum simply pick a large randomprime 2n < P <
22n+log m and store the numbersyi = xi mod P (for everyi ∈ [n]), the targetTP = T mod P andP .
The compressed instance is of lengthO(n(n + log m)) and also serves as an instance for subset sum. If
there exists a setS for which

∑

i∈S xi = T then also
∑

i∈S yi = TP (hence the witness retrievability). On
the other hand, we want that if the original instance was not in the languagethen for any subsetS it will hold
that

∑

i∈S yi 6= TP . In order to get
∑

i∈S yi = TP it is required thatP is a divisor ofD =
∑

i∈S xi − T .
HoweverD has at mostm/n prime divisors that are greater than2n, while the primeP is taken from a
range containingO(22nm/n) primes. Therefore, for everyS it holds thatPrP [

∑

i∈S yi = TP ] ≤ 2−2n and
by a union bound over all setsS, the probability of an error is bounded by2−n. 2

Minimum Fill-In: The minimum fill-in problem is anNP-hard problem that takes as input a graphG and
a parameterk, and asks whether there exist at mostk edges that can be added to the graph that would turn it
into a chordal graph, i.e. one with no induced cycles of length more than 3. This problem has applications
in ordering a Gaussian elimination of a matrix.

Claim 2.6 The minimum fill-in problem with parameterk has witness retrievable compression.

Proof: Kaplan, Shamir and Tarjan [33] prove that this problem is fixed-parametertractable (this notion
of tractability in parameterized complexity means that the problem is polynomial-time solvable whenk is
sufficiently small, and in particular for all fixedk). Their algorithm partitions the graph into two sets of
nodesA andB whereA is of sizek3 and there are no chordless cycles (i.e. an induced cycle of length
greater than 3) inG that contain vertices inB. The complexity of this partition isO(k2|V ||E|). They then
prove thatG has ak edge fill-in if and only if the graph induced byA has ak edge fill-in.

Thus the compression algorithm follows the same partitioning and stores only thegraph induced by
the small setA. The new graph has at mostk3 vertices and thus can be presented by onlypoly(k) log |k|
bits. The fill-in for the new instance is exactly that of the original instance andthus the compression can be
witness retrievable if the original labels of the vertices are used for the compressed graph as well.2

This use of an algorithm from parameterized complexity is not a coincidence.The “problem kernel”
method (see [14], chapter 3) is to first reduce the problem to a small sub-instance that, like compression,
contains the answer to the original problem. Then the algorithm runs in exponential time algorithm on this
small instance. As was discussed in Section 1.4, if the running time of the first reduction happens to be only
polynomial in the parameter, then the first phase of the algorithm is a compression algorithm.

In this context, it is important to note that a compression algorithm for a language does notnecessarily
give a parameterized complexity algorithm for the same language. At first glance it seems that one can
first run the compression algorithm, and then solve the compressed problemby brute force and thus get a
fixed parameter algorithm. However, such a strategy does not work sincein the compression algorithm the
witness is allowed to grow by a factor ofpoly(n, log m), and thus solving the compressed problem by brute
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force may require a super-polynomial time inm. Moreover, even if the witness does not grow, in many cases
the witness size depends on the instance size and not on the parameter alone(e.g. in the Clique problem if
the parameter is the clique sizek then the witness length isn = k log m) thus making the above strategy
altogether irrelevant.

2.2 W-Reductions and Compression-Completeness

The few examples of compression that we have showed clearly indicate thatthe study ofNP problems with
respect to compression gives a distinct perspective, different fromthe traditional study ofNP. The reason
is that the typical Karp-reduction betweenNP problems does not distinguish between the length of the
witness and the length of the instance. For example, when reducing SAT to theClique problem, one builds
a large graph from a CNF formula and asks whether or not it has a Clique of sizek. However, in this new
instance, the witness size14 is a polynomial inm (the length of the SAT formula) rather thann (the number
of variables in the formula). Thus, it is not clear how to use a compression algorithm for Clique to get a
compression algorithm for SAT.

W-reductions and compression-completeness:In order to show that a compression algorithm forL′

implies a compression algorithm forL, a more restricted type of reduction is needed. We call this a W-
reduction and it is similar to a Karp-reduction but asks an extra property onthe length of the witness.

Definition 2.7 (W-Reduction) For two NP languagesL and L′ we say thatL W-reducesto L′ if there
exist polynomialsp1 andp2 and a polynomial time computable functionf that takes an instancex for L
and outputs an instancef(x) for L′ such that:

1. f(x) ∈ L′ if an only ifx ∈ L.

2. If x is of lengthm with witness lengthn, thenf(x) is of lengthp1(n, m) with witness length only
p2(n, log m).

We first note that this reduction composes, that is:

Claim 2.8 If L W-reduces toL′ andL′ W-reduces toL′′ thenL W-reduces toL′′.

We next claim that W-reduction indeed fulfills its goal with respect to compression:

Claim 2.9 Let L andL′ beNP languages such thatL′ W-reduces toL. Then given a compression algo-
rithm for L, one can obtain a compression algorithm forL′.

Proof: Suppose thatx is an instance for languageL′ of lengthm with witness lengthn. The compression
algorithm forL′ runs as follows: First use the W-reduction toL and get an instancef(x) for L, and then
run the compression algorithm forL on f(x). By the properties of the reductionf(x) is of lengthm′ =
p1(n, m) with witness lengthn′ = p2(n, log m). The outcome of the compression is therefore of length
poly(n′, log m′) = poly(n, log m). Furthermore, this outcome is in someNP languageL′′ if and only if
f(x) ∈ L which in turn happens if and only ifx ∈ L′. Thus the combined process gives a compression
algorithm for instances ofL′. 2

14The witness for Clique is a choice ofk vertices from the graph
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We remark that in the complexity discussion of compression we choose to ignore the issue of witness
retrievability. Nevertheless, in order for the W-reduction to relay this property, the reduction itself must also
have a witness retrievability property. That is, given a witnessw for x ∈ L then one can efficiently compute
w′ for f(x) ∈ L′ (without the knowledge ofx). We define complete problems with respect to compression:
these are defined similarly to the standard notion, but with respect to W-reductions.

Definition 2.10 (Compression-Complete)A problemL is compression-complete for classC if:

1. L ∈ C
2. For everyL′ ∈ C the languageL′ W-reduces toL.

A language is calledcompression-hardfor classC if only requirement 2 holds.

The relevance of compression-complete problem is stated in the following simpleclaim.

Claim 2.11 LetL be compression-complete for classC, then given a compression algorithm forL, one can
obtain a compression algorithm for anyL′ ∈ C.

The proof follows directly from the definition of completeness and Claim 2.9.

2.3 TheVC Classification

We now introduce the new classification arising from the study of compressibility of NP problems. For this
we define a series ofNP languages. Some notation: by acircuit of depth k we mean a depthk alternating
AND-OR circuit where the fan-in of the gates is bounded only by the size ofthe circuit and negations are
only on the input variables (no NOT gates).

Definition 2.12 (DepthkCircuitSAT)
For anyk ≥ 2 consider theNP problem calledDepthkCircuitSAT:
Input: a circuit C of sizem and depth at mostk overn variables.
Membership: C ∈ DepthkCircuitSAT if there exists a satisfying assignment toC.

The next language, LocalCircuitSAT, is a less natural one. It is designed to capture computations that
do not need to access the whole input, but can rather check only a sub-linear fraction of the input (a good
example is verifying that a set of vertices in a graph is indeed a Clique). Letx be a string of lengthm, if
I = (i1, . . . , in) is a list ofn locations inx then we denote byx(I) the values ofx at these locations.

Definition 2.13 (LocalCircuitSAT)
Input: A stringx of lengthm and a circuitC overn + n · log m variables and of size(n + n · log m).15

Membership: If there exists a listI of n locations inx such thatC(x(I), I) = 1.

We can now introduce our classification ofNP problems:

Definition 2.14 (TheVC classification ofNP problems) ConsiderNP problems wherem denotes the
instance size andn denotes the witness size. We define the classVCk for everyk ≥ 0. The definition is
divided into three cases:

15The choice of the circuit to be of sizen′ (over n′ variables) is arbitrary and other polynomial functions suffice as well.
Furthermore, such a circuit of small size may be meaningful since notall the variables have to be used and some might be just
dummy variables.
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• k = 0: The classVC0 is the class of all languages that admit compression algorithms.

• k = 1: The classVC1 is the class of all languages that W-reduce to LocalCircuitSAT.

• k ≥ 2: The classVCk is the class of all languages that W-reduce to DepthkCircuitSAT.

For any functionk(m, n) (wherek(m, n) ≤ m) also defineVCk(m,n) as the class of all languages that
W-reduce to Depthk(m,n)CircuitSAT. Finally, defineVC = VCm (the class fork(m, n) = m).

A first observation is that simply by definition, the languages LocalCircuitSATand DepthkCircuitSAT are
compression-complete for their respective classes. The most notable example is for the classVC = NP
where the complete problem is CircuitSAT (satisfiability of a polynomial size circuit).

When discussing a W-reduction to a depthk circuit, we can actually assume without loss of generality
that the top gate of this circuit is an AND gate. An immediate corollary is that SAT (that is, satisfiability of
CNF formulas) is compression complete for the classVC2. Formally, let DepthkCircuitSATAND denote the
language DepthkCircuitSAT when restricted to circuits where the top gate is an AND gate.

Claim 2.15 For anyk ≥ 2, we have that a languageL ∈ VCk if and only ifL W-reduces to the language
DepthkCircuitSATAND.

Proof: We show that any instance that contains a circuit where the top gate is an OR W-reduces to an
instance with top gate AND. We prove this first fork ≥ 3. Denote the input circuit byC =

∨

j

∧

t Cj,t

where eachCj,t is a top OR depth(k−2) circuit. If C is satisfiable then
∧

t Cj,t is satisfiable for at least one
choice ofj. Add to the witness the indexi of this satisfiable sub-circuit (i is given by the boolean variables
i1, ..., i` where` is logarithmic inpoly(m, n)). For eachj, denoteC ′

j,t = Cj,t ∨ ij̄11 ∨ ... ∨ ij̄`

` , whereij̄

denotesi ⊕ j. Notice thatC ′
j,t is always satisfied forj 6= i, and forj = i is satisfied if and only ifCi,t is

satisfied. Thus the circuit can now be written asC ′ =
∧

j,t C ′
j,t that is satisfiable if and only if the original

circuit was. The top OR gate ofC is therefore removed in the new instanceC ′ while adding only a small
number of variables, thus the input to the circuit witness remains of orderpoly(n, log m) as required.

In the casek ≥ 3, the depth of the new instance becomesk − 1. In the case thatk = 2, the bottom level
that included only variables is transformed into an OR of variables, thus the new circuit is simply a CNF
formula (and the depth remainsk = 2). 2

The VC Hierarchy: TheVC classification indeed defines a hierarchical structure. That is:

VC0 ⊆ VC1 ⊆ VC2 ⊆ VC3 · · · ⊆ VC.

And in general, for every two polynomially bounded functionsk(n, m), `(n, m) such that for alln, m we
havek(n, m) ≤ `(n, m) thenVCk(m, n) ⊆ VC`(m, n). Furthermore,VC = NP by the definition of
NP. These observations follow trivially by the definitions, the only non-trivialpart being the fact that
VC1 ⊆ VC2, that is proved next.

Lemma 2.16 VC1 ⊆ VC2

Proof: We need to show a W-reduction from LocalCircuitSAT to SAT. The input is therefore a long string
x and small circuitC on n + n log m variables. Leti1, ...in denote the potential locations in the string
that the circuitC receives as inputs. Also define the variablesy1, ..., yn to indicate the values ofx in the
corresponding locations (that isyt = xit for t ∈ [n]). Thus the circuitC runs on the variablesy1, ..., yn and
the bits ofi1, ...in.
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We first note thatC is of sizep(n, log m) = (n + n log m) and may be reduced (via Cook’s Theorem
[8]) to a CNF formulaΦC overO(p(n, log m)) variables and of sizeO(p(n, log m)) that is satisfiable if and
only if C is satisfiable.

Thus we have a CNF formula over the variablesy1, ..., yn, i1, ...in and some extra variables. This for-
mula’s satisfiability will be equivalent to the membership of the LocalCircuitSAT instance if we manage to
force the variables ofy to take the valuesyt = xit . This is done by adding additional clauses to the CNF
in the following manner: For simplicity we describe this only fory1, where the same is repeated for every
otheryt for t ∈ [n]. Define for eachj ∈ [m] a formulaΦj = (y1 = xj) ∨ (i1 6= j). Notice thatΦi1 = 1 if
and only ify1 = xi1 . Denote the bits ofi1 by i1,1, ..., i1,d whered = dlog me. An alternative way to write
Φj is as the following CNF (recall thatij̄ denotesi ⊕ j):

Φj = (yi ∨ xj ∨ ij̄11,1 ∨ ... ∨ ij̄d

1,d) ∧ (yi ∨ xj ∨ ij̄11,1 ∨ ... ∨ ij̄d

1,d)

Finally, to forcey1 = xi1 we simply take the new CNF to beΦC ∧∧

j∈[m] Φj . The same is repeated to force
yt = xit for all t ∈ [n]. 2

2.4 TheVC Classification and Verification with Preprocessing

We now discuss theVC hierarchy from a different angle, that of the verification complexity of a language.
This approach, though slightly more cumbersome than the definition via W-reductions, gives more intuition
as to what it means to be in a classVCk. The new view defines theVC hierarchy with respect to the
verification algorithm forL, that is, the efficient procedure that takes a witnessw for x ∈ L and verifies that
it is indeed a true witness. We point out that the nature of verification algorithms may vary when discussing
differentNP problems. For example, in thek-Clique problem the verification algorithm needs to check
only O(k2) edges in the graph, and thus can read only a sub-linear part of the instance. In SAT, on the other
hand, all the clauses in the formula must be checked when verifying a witness.

Simply looking at the verification algorithm of a language is not sufficient. Forstarters, classification
according to verification does not distinguish between problems inP that are trivially compressible and
NP-complete languages. Instead, we consider the notion of verification with preprocessing. This is the
process for verifying thatx ∈ L when given a witness, that also allows a preprocessing stage to the instance.
Formally:

Definition 2.17 (Verification with Preprocessing) Let L be anNP language with instances of lengthm
and witness lengthn. A pair of polynomial timealgorithms(P, V ) are called averification with prepro-
cessingfor L if the following two step verification holds:

1. Preprocessing:P gets an instancex and outputs a new instanceP (x).

2. Verification: There exists a polynomialp(·, ·) such thatx ∈ L if and only if there exists a witnessw
of length at mostp(n, log m) such thatV (P (x), w) = 1.

Notice that when allowing for preprocessing, then all problems inP have a pair(P, V ) whereP solves the
problem and stores the answer whileV simply relays this answer. Thus when considering the complexity
of V in this definition, then easy problems indeed have very low complexity.

The VC Classification via Verification with Preprocessing: An alternative and equivalent way to view
the classes in theVC hierarchy is based on the verification algorithmV in a verification with preprocessing
pair (P, V ). The problems are divided into two families:
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• The classVC1 is the set of the languages that have very efficient verification (i.e.poly(n, log m) rather
thanpoly(n, m)). We assume random access to the instance, thus such a verification algorithm only
accesses a sub-linear fraction of the instance.

• The languages whose verification is not very efficient (run in timepoly(n, m)). This family is further
classified into sub categories. The classVCk is the class of languages where the verification algorithm
V has a representation as a depthk polynomial size circuit (polynomial inn andm).

This definition is equivalent to the definition via W-reductions since the W-reduction to the complete
problem can simply be viewed as the a preprocessing stage. In the other direction, every preprocessing
stage is actually a W-reduction to the language defined byV .

2.5 Within VC1 - The classVCOR

Arguably, the most interesting class in the hierarchy is the bottom classVC1. It contains many natural
problems such as Clique or small subset-sum16 that only test local properties of the input. Furthermore, it is
presumably the easiest to find compression algorithms for. We further refine our hierarchy within the class
VC1 by introducing another class, the classVCOR. Consider the language OR(L) that take a large OR of
small instances of a languageL. Formally:

Definition 2.18 (OR(L))
LetL be anNP language. Define the language OR(L) as follows:
Input: m instancesx1, ..., xm to the languageL, each of sizen.
Membership: If there existsi ∈ [m] such thatxi ∈ L.
Specifically the languageOR(CircuitSAT) is defined as:
Input: m different circuits where each circuit is of sizen.
Membership: If one of them circuits is satisfiable.

This language is used to define the following class:

Definition 2.19 The classVCOR is the class of all languages that W-reduce to OR(CircuitSAT).

We first note that in each of them small instances, the instance length and witness length are polyno-
mially related. So unlike the general case where we focused only on shortwitness languages, when talking
about OR(L), any languageL ∈ NP\P is interesting. For example, the language OR(3-SAT) is not trivially
compressible. Moreover, it is compression-complete forVCOR.

Claim 2.20 LetL be anyNP-complete language, then OR(L) is compression-complete forVCOR.

Proof: The W-reduction from OR(CircuitSAT) to OR(L) simply runs the standard Karp reduction from
CircuitSAT toL for each of them circuits independently. The witness for each circuit was of at mostn and
is now of sizep(n) for some polynomialp. In addition the witness contains an index of the instance ofL
that is satisfied, thus the total witness length isp(n) + log m. 2

For example, the problemOR(Clique) that getsm small graphs (overn vertices) and asks whether
at least one of the graphs hask sized clique (wherek = O(n)) is also compression-complete forVCOR.
Moreover, we note the following claim that is relevant to our cryptographicapplications (in Sections 5 and
4):

16This problem takesm values and a target value and asks if there is a small (sizen) subset of the values that adds up to the
target.

16



Claim 2.21 Clique is compression-hard forVCOR.

Proof: The languageOR(Clique) W-reduces to Clique simply by taking one graph that is the union of all
the small graphs in theOR(Clique) instance. Clearly there is a clique in the union if and only if there is a
clique in at least one sub-graph.2

A similar claim is true for all problems involving searching for a connected subgraph of sizen in a
graph of sizem as long as the problem of deciding whether a graph of sizep(n) contains such a subgraph
is NP-Hard for some polynomialp(·). This is true, for instance, for the problem of whether there is a path
of lengthn.17 On the other hand we have that:

Claim 2.22 VCOR ⊆ VC1

Proof: This is best seen by W-reducing OR(Clique) to LocalCircuitSAT. Given graphsG1, ..., Gm for
OR(Clique), generate the instancex = G1, ..., Gm and a circuitC that receives the locations of a clique in
one of the graphs and checks whether they are indeed the edges in theselocations form a clique (all belong
to the same graph and are the edges induced byk vertices etc...). The size of the circuit isp(n, log m) for
some polynomialp since it checks only locations inx that belong to one graph (of sizen). Finally, add
p(n, log m) dummy variables to the circuit so that the circuit C has size becomes equal to thenumber of
input variables (as is required in LocalCircuitSAT).2

Furthermore,VC0 ⊆ VCOR, since any compressible language can be W-reduced by the compression
algorithm to a language with instance sizep(n, log m) and this instance can reduced to CircuitSAT and
viewed as an OR of a single small circuit and hence is inVCOR. Note that here too, one may need to add
dummy variables to keep the Circuit quadratic in its input. Altogether we have that:

VC0 ⊆ VCOR ⊆ VC1.

2.6 TheVC Classification and someNP Problems

In general, most of theVC classification focuses on W-reductions to depthk circuits. The reasoning for this
is that there is a certain tradeoff between depth and the number of variables. More precisely, we can reduce
the depth of a verification circuit, but only at the price of adding additional variables (this is done using
methods from Cook’s Theorem [8] and requires adding a variable for each gate in one intermediate level of
the circuit). Since the number of variables is the focal point when discussing compression (as it coincides
with the witness size), then depth turns out to be central in our classification.

Given our current state of knowledge, there are a few plausible views of the world. The twoendpoint
scenarios are (i) there is compression for every language inNP (as would be implied by a compression
algorithm for CircuitSAT), (ii) there is only compression for a few select problems, such as the examples in
section 2.1. A third option is that there is a compression algorithm for some compression-complete problem
in the hierarchy (say forVCk), which would imply the collapse of all the classes belowVCk to VC0.

We will briefly go over a few key classes in the hierarchy and a few examples of naturalNP problems
and their classification (as we know it) within theVC hierarchy:

The classVC0: Currently we know that this class contains all the languages inP, languages that are already
compressed by definition (such as3-SAT), and the languages that we showed compression algorithms
to (Vertex-cover, PRG-output and Minimum-fill-in).

17It is interesting to note that whereas the problem of finding a path of lengthn is fixed parameter tractable [2], Feige and Kilian
[20] give indications that the Clique problem is hard for smalln (via subexponential simulations).
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The classVCOR: This class contains all languages OR(L) for anNP languageL. One natural example is
the OR(SAT) problem which is actually a depth 3 circuit where the fan-in at the two bottom levels is
bounded byn and only the top gate is allowed to be of greater fan-in. Some important languages in
this class are those that need to be compressed in the cryptographic applications in Sections 5 and 4.

The classVC1: Since we are only interested in problems where the witness sizen is much smaller than
the instance sizem, then many natural problems with this restriction are inVC1. For example, graph
problems that ask whether a small graph can be embedded in a large graph are all inVC1. The Clique
problem (with a clique of sizen), or Long-Path (a path of lengthn that does not hit any vertex twice)
are such small graph embedding problems. Small Subset-Sum is another natural language inVC1.
This language receives a set ofm values and a target sum and asks whether there is a small (sizen)
subset for which the values add up exactly to the target sum.

Dominating Set: The problem asks, given a graph, whether there is a set ofk vertices such that all the
graph is in its neighbor set. Dominating set is in the classVC3 as implied by the following verification:
the witness is a setS and the algorithm tests that∀ vertexv ∃ vertexu ∈ S such that(u, v) is in the
graph. The∀ translates to and AND gate and the∃ translates to an OR gate. Finally, testing that an
edge is in the graph requires an AND over theO(log m) bits representing this edge. In total, this is a
depth 3 circuit. Note that a straightforward verification of vertex cover willalso yield a depth 3 circuit.
However, while vertex cover is compressible and inVC0, for dominating set we are unaware a better
method. In addition, dominating set iscompression-hard forVC2. This is seen by a standard reduction
of SAT to dominating set in which a SAT formula withn variables andm clauses is transformed into
a graph withm + 3n vertices with the property that the graph has a dominating set of sizen iff the
SAT formula is satisfiable.18

Weighted-SAT: Given a CNF formula of lengthm the problem asks if it has a satisfying assignment of
weight at mostk (at mostk variables are assigned the value1). Unlike our previous discussions of
SAT, the number of variables here is only bounded bym and the short witness simply consists of the
list of all variables that receive the value1 (that is, the witness is of lengthn = k log m). This problem
serves as the basic complete problem for the parameterized complexity classW [1], which is at the
bottom of the W-hierarchy (see [14]). However, with regards to compressibility, we only know how
to place it in the classVC4. This is shown by the following verification procedure (using the same
logic as with Dominating-Set): For every witness (list)L, the algorithm tests that∀ clausesC either
∃ a literalx ∈ C such thatx ∈ L or ∃ a negated literal̄x ∈ C such thatx 6∈ L. The verification of
x ∈ L adds up to total depth3 by testing that∃y ∈ L such thatx = y (wherex = y is tested by an
AND over the bits ofx andy). On the other hand, verifying thatx 6∈ L requires total depth4 as it
runs∀y ∈ L we havex 6= y. The overall depth is thus dominated by the negated variables and is thus
4.

OR of (large) instances: Consider the Or of CNF formulas over few variables (unlike the languageOR(SAT )
where the CNF formulas are considerably smaller than the fan-in of the OR gate). Such a language
thus contains depth three circuits, but is actually inVC2, as implied by Claim 2.15.

Integer Programming (IP): An instance of integer programming consists of a list ofm linear constraints
on n integer variables with the goal of maximizing a linear target function over thesen variables

18In a nutshell, the reduction creates a triangle for each variablexi of the formula. One of the nodes of the triangle is identified
with the positive variable and another with its negation while the third is connectedonly to the other two. In addition, a vertex is
created for each clause in the formula. Now, each literal is connected withall of the clauses that it appears in. The generated graph
has a dominating set of sizen iff the formula is satisfiable.
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(under the list of constraints). Unlike its counterpart of linear programming, where the variables may
take real values and is polynomial time solvable, integer programming isNP-hard even when the
variables are restricted to taking only the values0 and1 (one of Karp’s original problems [34]). Thus,
the decision variant of integer programming, where the number of constraints is much larger than the
number of variables, is interesting with respect to compression. First, compressing it is at least as hard
as compressing SAT: given a SAT instance withn variables andm constraints it is simple to come up
with a corresponding IP instance with2n variables andm constraints, i.e. IP isVC2-hard. On the other
hand, a straightforward verification of a witness for this problem takes theproposed assignment for
then variables and checks if it satisfies each of the constraints. The verification of a linear constraint
can be achieved in logarithmic depth (inn), placing IP inVCk(n) for k(n) = Ω(log n). We are
unaware of a (significantly) better classification (of lower depth) for integer programming.

2.7 On Compression of Search Problems

So far, theNP problems that we discussed were all decision problems, that is, they ask ifx ∈ L, and are
answered by YES or NO. When considering a specificNP relationRL associated withL, 19 then the above
decision problem has a natural search problem associated with it, which is toactually find a witness tox ∈ L
with respect to the relationRL. A solution to such a problem is ann bit string rather than just a single bit.

Loosely speaking, a compression algorithm for the search instance should produce a shorter output that
contains enough information about some witness for the original problem.

Definition 2.23 (Compression for search problem)A compression algorithm for anNP search problem
L (with respect toRL) is a pair of algorithms(Z, E) with a polynomialp(·, ·), whereZ is a polynomial
time compression algorithm andE is an unbounded extraction algorithm. Given an instancex with witness
parametern we should have that:

1. Z(x) is of length at mostp(n, log m).

2. If x ∈ L and there is a witness of lengthn, thenE(Z(x)) = w wherew is a witness tox ∈ L with
respect toRL.

We now show that a compression for decision problems also yields a compression for search problems,
without an increase in the hierarchy.

Theorem 2.24 If a classVCk has a compression algorithm, then there is a compression algorithm for the
search problem of a relationRL of L ∈ VCk.

The technique of the proof below also comes in handy in proving Theorem 4.4, regarding the application of
the ability to compress, say SAT, to cryptanalysis in hybrid bounded storagemodel. In the following proof,
a witness tox ∈ L refers to a witness according to the specific relationRL associate withL.

Proof: Given an instancex to a languageL, for anyi ∈ [n], consider theNP problemLi that asks whether
there exist ann bit witnessw to x ∈ L such thatwi = 1 (the ith bit of w is 1). The languageLi is also in
VCk since its verification circuit is the same as the one forL with an additional AND to the variablewi (this
AND gate is incorporated into the top level AND of the circuit thus the depth remainsk).

Our first attempt is to compress the instancex for everyi ∈ [n] with respect to the languageLi (denote
such a compression byZLi

(x)). Thus we storeZLi
(x) for all i ∈ [n], which amounts ton · p(n, log m) bits,

19Let L be anNP language with parametersm andn. A relationRL associated withL is a polynomial time functionRL :
{0, 1}m × {0, 1}n → {0, 1}, such that for everyx ∈ {0, 1}m it holds thatx ∈ L iff there exists aw ∈ {0, 1}n such that
RL(x, w) = 1.
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for some polynomialp(n, log m), which is also inpoly(n, log m). Now suppose that there is only a single
witnessw to x; then one can extractw bit by bit, by solving the compressed instance of each bit. However,
this idea fails whenw is not the only witness, and we may inconsistent answers for the differentbits.

The second attempt is to use the reduction of Valiant and Vazirani [53] to a unique witness. The idea is
to choose a pairwise-independent hash functionh that is appropriately shrinking, and add to the language
the requirement thath(w) = 0. We use the following lemma:

Lemma 2.25 ([53]) Let L be anNP language and for everyx denote byWx the set of all witnesses to
x ∈ L. Let ` be such that2` ≤ |W | ≤ 2`+1. LetH`+2 be a family of pairwise independent hash functions
with h : {0, 1}n → {0, 1}`+2 for all h ∈ H`+2. Then

Prh∈H`+2
[|{w : w ∈ Wx andh(w) = 0}| = 1] ≥ 1

8

Consider theNP languageLh wherex ∈ Lh if it has a witnessw for x ∈ L andh(w) = 0. We note that
this language is also inVCk since the additional requirement can be computed efficiently overn variables
(the hash is efficient) and by Cook’s theorem this may be represented as aCNF formula over these variables
plus onlypoly(n) additional variables. Thus adding the requirement of the hash does not add to the depth
of the verification circuit forL.

Now, if we enumerate on all values of` then with probability at least18 , for the correct̀ we will get that
Lh has a unique witness and storingZLh

i

(x) for all i suffices to maintain the information about this witness.
This can be repeated sufficiently many times (say O(n) times) so that with overwhelming probability, one
of the attempts will indeed give a unique witness. However, this solution is also insufficient, since we have
stored a list ofO(n2) compressed values (O(n) repetitions for each value of` ∈ [n]) and we are guaranteed
that with overwhelming probability one of them is a witness forx but we do not known which one (recall
that we cannot store the original instance and thus cannot verify that a witness is correct).

Our final attempt succeeds in reducing the list of potential witnesses into a unique and true witness. This
compression is as follows: Denote byLī the language that asks whether there exist ann bit witnessw to
x ∈ L such thatwi = 0 (similar toLi but withwi negated). The compression of an instancex to the search
problemL goes as follows:
For everỳ ∈ [n] repeat the followingn times:

• Chooseh ∈R H`+2.
• For all i ∈ [n] storeZLh

i

(x) andZLh

ī

(x).

The extraction procedure is as follows: For all` andh ∈ H`+2, solve all the compressed instance pairs.
For every pairZLh

i

(x) andZLh

ī

, if they both are negative or both are positive then ignore all values that are

compressed with thish. Only if for all i we have exactly one of the instances being correct then output the
ith bit of w according to the result.

The above algorithm indeed compresses since it only adds a factor ofn3 to the overall storage. With
probability at least1 − 2−O(n) at least one of the chosenh’s is successful in leaving exactly one witness to
x ∈ Lh, and this witness will be extracted. Finally, ifh did not leave exactly one witness, then this will be
identified: If there are no witnesses thenZLh

i

(x) andZLh

ī

will both be negative for alli. If there is more

than one witness, then for at least one choice ofi bothZLh
i

(x) andZLh

ī

will be positive. 2

2.8 On Maintaining Other Information

We have seen that compression may maintain much more than just a yes/no answer. A natural question to
ask what other types of information may be maintained through compression algorithms. The following are
some examples:
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Number of witnesses:The compression described above actually maintains an approximation of the num-
ber of witnesses tox ∈ L (with respect toRL). Once the chosenk is too large, there will be a sharp
drop in the probability of having a witness and this can be observed when extracting the witnesses
and indicate what is the rightk.

An almost random witness: The compression above also outputs a witness that is almost uniformly
distributed overWx. Or more accurately, the probability of getting each witness is bounded by a
constant times1/|Wx|.

On maintaining all witnesses: As opposed to maintaining a single witness or the number of witnesses,
a compressed instance cannot always maintain the information aboutall of the witnesses of an input
instance. This is shown by the following simple information theoretic argument: encode anm bit
string s with a DNF circuitC by constructing for each positionj ∈ [m] a formulaCj on log m
variables. Ifs[j] = 1 then takeCj to be circuit that is satisfied iff the variables encode the index
j. If s[j] = 0 thenCj is the non-satisfiable circuitCj = 0. The circuitC is formed by taking an
OR of all these circuits (C =

∨

j∈[m] Cj). The satisfying assignments ofC correspond exactly to

the 1’s in s. ConsiderC as an input to the language as CircuitSAT20. Suppose that there exists a
compression algorithm that maintains all of the witnesses of a circuitC. In particular, this means that
them bit strings may also be extracted from the compressed instance. But this is clearly impossible
information theoretically, sincem random bits may not be represented bypoly(n, log m) < m bits.
So we conclude that if our goal is come up with a compression algorithm for SAT then we must come
up with a way of losing information about the witnesses.

In the examples of compression that we have seen in Section 2.1, the compression algorithms for
vertex cover, PRG-output and Minimum fill-in actually maintain all the witnesses.On the other hand,
the compression for GapSAT (which we will see in Section 2.9) does not necessarily maintain this
information, as it is based on sampling.

2.9 Speculation on Compression

We give two arguments that may be viewed as evidence to the existence and non-existence of compression
respectively.

An Optimistic View - Compression of a promise problem and the PCP Theorem: Consider the promise
problem GapSAT that takes as input a CNF formulaΦ of sizem over n variables and the guarantee that
eitherΦ is satisfiable or it is at most(1 − 1

2n
)-satisfiable (no assignment satisfies more than(1 − 1

2n
) of its

clauses). The task is to decide ifΦ is satisfiable or far from satisfiable.
Such a problem has a simple and witness retrievable compression. The idea isto chooseO(n2) random

clauses fromΦ and take the AND of these clauses to be the compressed formulaΨ. This compression works
because ifΦ is far from satisfiable then for every assignment the formulaΨ is satisfied with probability
at most2−2n (Ψ does not contain one of the12n

m unsatisfied clauses). Taking a union bound over all
assignments, we get that with probability(1 − 2−n) the formulaΨ has no satisfying assignment. On the
other hand, ifΦ is satisfiable then the same assignment also satisfiesΨ (and hence the witness retrievability).
Note that our definition of GapSAT is robust in the sense that GapSAT is compressible whenever the gap is
(1 − 1

p(n)) for every choice of a polynomialp(·).
The above simple compression algorithm is especially interesting in light of the PCP Theorem. One way

to view the PCP Theorem is as an efficient reduction from an instance of SAT to an instance of GapSAT.

20The circuitC is actually an instance for the languageOR(CircuitSAT ).
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Thus one can hope to combine the PCP reduction with the above compression and get a compression for
general SAT. However, reducing general SAT to GapSAT via the PCP isnot a W-reduction as the witness
size grows to the order of the instance size. For starters, the PCP Theorem is typically defined over 3-CNF
formulas, and the reduction of a general sizem CNF to a 3-CNF addsO(m) variables. In order for this
approach to achieve compression for SAT, we require a new PCP Theorem that is actually a W-reduction.

GapSAT is just one example of a gap problem that admits compression. For instance, one can consider
the promise problem GapClique where a graph of sizem either has a Clique of sizem/n or contains no
Clique of sizen. As in the case of GapSAT, GapClique is compressible by sampling a subset of its vertices.
Thus, coming up with a W-reduction from a general(n′, m′)-Clique problem (the graph of sizem′ either
contains a clique of sizen′ or not) to(n, m)-GapClique would enable the compression of Clique. We view
finding PCPs that are also W-reductions as a major research direction, especially in light of the recent new
proof to the PCP Theorem of Dinur [13].

A Pessimistic View - On Oblivious Compression: We have seen in Section 2.8 that it is impossible to
maintain all of the information in an instance when compressing it and some information is necessarily lost
(for example the list of all witnesses cannot be kept). On the other hand, we show that if compression exists
then it is not likely to lose too much information about the original instance. Sucha result would entail the
collapse of the polynomial hierarchy to its second level. More formally:

Let Z be a compression algorithm for SAT. We consider it as a two input algorithm taking a formula
Φ and local randomnessr ∈ {0, 1}`. Denote byZ(Φ, U`) the random variable taking the output ofZ
with fixed inputΦ and randomr ∈R {0, 1}`. Let X be a distribution over formulas. The random variable
Z(X, U`) denotes the output ofZ under a choice of randomr and a randomΦ from the distributionX.

The compressionZ is said to beoblivious if there exists a samplable distributionX over satisfiable
formulas, such that for every satisfiable instanceΦ the distributionZ(Φ, U`) and the distributionZ(X, U`)
are statistically close (within statistical distanceε).

Claim 2.26 If there exists an oblivious compression for SAT, then the polynomial hierarchy collapses to its
second level.

Proof: We show that if oblivious compression of SAT instances exists then Co-SAT∈ AM. Consider the
following interactive proof that an instanceΦ 6∈ SAT . The verifier chooses a random satisfiable formula
Ψ ∈ X randomnessr ∈ U` and flips a random coinc. If c = 0 then the verifier sendsξ = Z(Φ, r) to the
prover, if c = 1 he sendsξ = Z(Ψ, r). The prover then answers1 if the compressed instance is satisfiable
and0 otherwise. The verifier accepts if the provers answer equals his bitc and rejects otherwise.
Completeness:If indeedΦ 6∈ SAT , then the prover will be able to tell whether the verifier used a coinc = 0
or c = 1, simply by testing the satisfiability ofξ and replying correctly.
Soundness:Suppose thatΦ ∈ SAT , then by the obliviousness property ofZ the messageξ is from nearly
the same distribution whetherc = 0 or c = 1 and the prover is bound to error with probability1

2 + ε. 2

Thus, oblivious compression for SAT is not likely to exist. However, the languages we would like to
compress for the applications in Sections 3, 5 and 4 are actually inNP ∩ Co−NP, and thus for these
applications even oblivious compression is actually a valid possibility.

Part II: Cryptographic Applications
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3 On Collision Resistant Hash from Any One-Way Function

Loosely speaking, a collection of collision resistant hash functions (CRH)is a familyH of length reducing
functions, such that no efficient algorithm can find collisions induced by arandom hash from the family.
That is, no PPTM can find for a randomly chosenh ∈R H, a pair of input stringsx andx′ such thatx 6= x′

but h(x) = h(x′). In addition we want an efficient algorithm for sampling fromH using (possibly secret)
randomness (the secret coins approach is potentially more powerful thenwhen only public coins are used
[28]). CRHs are important primitives with wide cryptographic applications, e.g. [35, 41, 5] (see discussion
and formal definitions in, for example, [32]). Currently there is no knownconstruction of CRH from general
one-way functions or one-way permutations, and moreover, Simon [50] showed that basing CRH on one-
way permutations cannot be achieved using black-box reductions. We show that compression can be used
to bridge this gap.

Theorem 3.1 If there exists an errorless compression algorithm for SAT, or for any problem that is compression-
hard forVCOR, then there exists a family of Collision Resistant Hash functions (CRH) based on any one-way
function.

Proof: Let (Commit, V erify) be a statistically binding computationally hiding commitment scheme based
on the one-way functionf . Recall that the protocolCommit takes from the sender a stringS and random-
nessr and after an interaction the receiver gets a commitmentσ. The polynomial time algorithmV erify
takes the commitmentσ and a possible opening to valueS′ with randomnessr′ and verifies thatS′, r′ are
consistent withσ. One could take for example the commitment scheme of Naor [43] based on the one-way
functionf .21 In our setting we can work under the assumption that the sender (in the commitment) is honest,
and in such a case, the commitment may be achieved without interaction at all.22

The CRH construction is inspired by the approach of Ishai, Kushilevitz andOstrovsky [32] for con-
structing collision resistant hash from Private Information Retrieval (PIR). A very high level intuition is to
choose a hash function from a naive hash family with no guarantees (in theconstruction below we use the
selection function). The new hash function is defined by a commitment to the naive hash function, and
outputs a compression maintaining the information of the committed naive hash function when applied to
the input. The actual construction is given in Figure 1.

By the compressing properties ofZ we get thathσ,rZ
indeed shrinks its input (note that shrinkage by a

single bit allows further shrinking by composition). We also have that samplinghσ,rZ
from H can be done

efficiently (with secret coins).
As for collisions, letx 6= x′ be two strings in{0, 1}m that form a collision, i.e.,hσ,rZ

(x) = hσ,rZ
(x′).

This equality implies, by the property of the compression, thatΦσ,x is satisfiable iffΦσ,x′ is satisfiable (here
we use the fact that the compression is errorless). Due to the binding property of the commitment we have
that any assignment satisfyingΦσ must havey = i (recall thati is the index thatσ is a commitment to).
Thus the first part ofΦσ,x is only satisfied wheny = i. But the second part is only satisfied ifxy = 1,
thusΦσ,x is satisfied if and only ifxi = 1. We get thatΦσ,x is satisfiable if and only ifxi = 1 andΦσ,x′ is
satisfiable if and only ifx′

i = 1. Therefore it must be the case thatxi = x′
i, since otherwise one of them is

0 and the other one is1 andΦσ,x satisfiability is not that ofΦσ,x′ . necessarily the stringsx andx′ are such
thatxi = x′

i. But for somej we havexj 6= x′
j and for thatj we deduce thatσ is not a commitment toj.

21To be more exact, the commitment of [43] can be based on the pseudorandom generator of H̊astad et al. [27] which in turn can
be based on the functionf .

22In the scheme of Naor [43], the receiver is required to provide the sender with a (public) random string. Certainly, an honest
sender can generate this string by himself without harming the properties of the commitment. Thus in such a setting, the sender can
generate the commitment without interaction.
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CRH family Hf :

Description of the hash function:Let Z be a compression algorithm for SAT. A function in the
CRH collection is denotedhσ,rZ

and defined by a commitmentσ to a valuei ∈ [m], and
randomnessrZ for Z. The commitment uses security parametern (wheren << m).

Input to hσ,rZ
: a stringx ∈ {0, 1}m

The CNF formula Φσ,x is defined as follows:

• Denote byV erifyσ the algorithmV erify with the inputσ fixed. That is,V erifyσ

takes as inputsy andr and accepts if and only if they form a legal opening of the
commitmentσ (and in particular this means thaty = i).

• TranslateV erifyσ into a CNF formulaΦσ over the variablesy1, ..., y` of y and the
bits of r (using Cook’s reduction).

• For everyj ∈ [m] define the clauseCj,x = (yj̄1
1 ∨ yj̄2

2 ∨ ....∨ yj̄`

` ) if xj = 0 (wherey0

denotes̄x andy1 denotesx) andCj,x = 1 if xj = 1.

• Set
Φσ,x = Φσ ∧

∧

j∈[m]

Cj,x

The hash function:
hσ,rZ

(x) = Z(Φσ,x, rZ)

Figure 1: The construction of Collision Resistant Hash from any one-wayfunction.

Suppose now that we have an efficient method of finding a collisionx andx′ for a given(σ, rZ). Pick
any j such thatxj 6= x′

j . Then we know thatσ is not a commitment toj. This procedure can be used to
break the hiding properties of the commitment scheme, since it yields an efficient method that distinguishes
the commitment value from random with advantage1/m: given (the real)i and a random onei′ ∈ [m] in
a random order, run the above procedure to obtainj. If j equals one of the two valuesi or i′, then guess
this one as the random one and otherwise flip a coin. This contradicts our assumptions on building blocks
(namely, the one-way function).

To prove the result when using compression for any language that is compression-hard forVCOR, a
similar construction is defined based on the OR of small circuits rather than CNFformulas: For every
j ∈ [m] let Cσ,j be the circuit that outputs one if and only if there exists randomnessr such thatσ is
consistent with(j, r) (that isσ is a possible commitment to the valuej using randomnessr). LetCσ,x be the
circuit that takes the OR of allCσ,j such thatxj = 1 and letZ be a compression algorithm for the language
OR(CircuitSAT). We definehσ,rZ

(x) = Z(Cσ,x, rZ). The proof is identical to the case of SAT.2

Note that instead of an errorless compression we can do away with an error probability slightly smaller than
2−m. That is, for allx we want the probability thatZ(Φσ,x, rZ) preserves the satisfiability ofΦσ,x to be at
least1 − 2−m+u where the probability is overσ andrZ andu ≈ log m. In this case we can argue (using a
union bound) that with probability at least1 − 2−u nox exists violating the preservation of satisfiability.

We also note that the construction is inherently non-black box as it uses the code of the one-way function
(via the commitment) in the application of Cook’s Theorem. This is essential for thevalidity of the whole
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approach in light of the black-box impossibility of Simon [50]. Theorem 3.1 implies the following corollary:

Corollary 3.2 If there exists an errorless compression algorithm for SAT or for any problem that is compression-
hard forVCOR, then there existstatistically hiding, computationally binding commitmentschemes based on
any one-way function.

The corollary follows since CRH imply statistically hiding bit commitment, see Naor andYung [46] (and
Damg̊ard, Pedereson and Pfitzman [9] for commitment to many bits). As mentioned in theintroduction, the
currently known minimal assumptions for constructing statistically hiding bit commitments are the existence
of one-way permutations [45] and the more general one-way functions with known pre-image size [24].

4 On Everlasting Security and the Hybrid Bounded Storage Model

The bounded storage model, introduced by Maurer [39], bounds thespace(memory size) of dishonest
players rather than their running time. The model is based on a long random string R of lengthm that is
publicly transmitted and accessible to all parties. Security relies on the assumption that an adversary cannot
possibly store all of the stringR in his memory. The requirement is that the honest parties Alice and Bob
can interact using a small local storage (of sizen wheren << m) while security is guaranteed against an
eavesdropper Charlie with much larger, yet bounded storage space.

This model has enjoyed much success for the task of private key encryption. It has been shown that Alice
and Bob who share a short private key can exchange messages secretly using only very small storage23,
while an eavesdropper who can store up to a constant fraction ofR (e.g. 1

2m bits) cannot learn anything
about the messages (this was shown initially by Aumann and Rabin [4] and improved in [3, 12, 19, 38]
and ultimately in Vadhan [52]). These encryption schemes have the importantproperty calledeverlasting
security(put forward in [3, 12]), where once the broadcast is over andR is no longer accessible then the
message remains secure even if the private key is exposed and Charlie gains stronger storage capabilities.

In contrast, the situation is less desirable when Alice and Bob do not share any secret information in
advance. The solution of Cachin and Maurer [6] for this task requires Alice and Bob to use storage of size
at leastn = Ω(

√
m), which is not so appealing in this setting. Dziembowski and Maurer [18] proved that

this is also the best one can do.

The Hybrid Bounded Storage Model: The inability to achieve secure encryption in the bounded storage
model with memory requirements smaller thann =

√
m has lead to the following suggestion that we call

thehybrid BSM: Let Alice and Bob agree on their secret key using a computationally secure key agreement
protocol (e.g. the Diffie-Hellman protocol [11]). The rationale being thatwhile an unbounded eavesdropper
will eventually break the key, if this happens after the broadcast had already occurred, then the knowledge
of the shared key would be useless by then (this should be expected fromthe everlasting security property
where getting the shared key after the broadcast has ended is useless). This hybrid model is very appealing
as it attempts to achieve everlasting security by adding assumptions on the ability of an adversary that has a
strict time limit. Assumptions of this sort are generally very reasonable since all that werequire is that the
computational protocol is not broken in the short time period between its execution and the transmission of
R. For instance, an assumption such as the Diffie Hellman key agreement [11]cannot be broken within half
an hour, can be made with far greater degree of trust than actually assuming the long term security of this
protocol.

23Requiresn = O(` + log m + log 1

ε
) bits of memory for aǹ bit message and errorε.
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Somewhat surprisingly, Dziembowski and Maurer [18] showed that this rationale may fail. They in-
troduce a specific computationally secure key agreement protocol (containing a non-natural modification
based on private information retrieval (PIR) protocols). If this key agreement protocol is used in the hybrid
BSM setting with a specific private key scheme, then the eavesdropper cancompletely decrypt the encrypted
message. However, their result does not rule out the possibility that the hybrid idea will work with some
other key agreement protocol. For instance, using the plain Diffie Hellman key agreement may still work.

In this work we show that if compression of SAT exists then there exists an attack on the everlasting
security ofanyhybrid BSM scheme.

4.1 Two Possible Models

We define the hybrid BSM24 as a setting where the running time of the eavesdropper Charlie is polynomially
bounded up until and during the broadcast ofR, and unbounded after that. We discuss two variants of a
BSM scheme. We first discuss these in the standard BSM where the eavesdropper is unbounded over time,
and then compare them to the hybrid setting where computational restrictions are imposed:

• The Basic BSM Scheme:The basic scheme does allows interaction only up to the start of the broad-
cast ofR (after that only the encrypted message is sent). Thus the key is fully determined by the time
the broadcast has ended. Such a scheme is fully breakable in the BSM (without an initial secret key)
since the unbounded adversary can find some randomness consistent with Alice’s view, and simulates
Alice’s actions and thus recover the encryption key25. Basic schemes in the hybrid BSM are inter-
esting as they include any combination of a key agreement protocol with a private key scheme (such
as the one described by [18]). We show that if sufficiently strong compression exists then there exist
attacks on any such scheme.

• The General BSM Scheme:Alice and Bob interact both beforeandafter the broadcast ofR. Dziem-
bowski and Maurer [18] show that such a scheme is breakable unlessn2 > Ω(m) (without initial se-
cret keys). For the hybrid BSM, we show that if compression exists then there exists an attack on any
such scheme as long asn2 > Ω(m/p(n, log m)), for some polynomialp (related to the polynomial
of the compression algorithm and to the running time of the protocol that Alice and Bob use).

Thus we prove that if compression of SAT (or of anyVCOR-hard language) is feasible then the hybrid BSM
is essentially no more powerful than the standard BSM.

4.2 The Basic Hybrid BSM

Definition 4.1 (Basic hybrid BSM scheme)A basic hybrid BSM scheme consist of the following: Alice
and Bob run a protocolΠ that is polynomial inn (this could be a key agreement scheme with security
parametern). Denote byT the transcript of this protocol. Alice and Bob use their respective views of the
protocolΠ (i.e. the transcriptT and their local randomness) to agree onn bits from the broadcast string
R that they should store. They store these bits and then use the stored bits to generate an encryption keyK
(the scheme requires that they agree on the same key).

We show that sufficiently strong compression of SAT can be used to breakany hybrid BSM scheme.
For the discussion here takeK to be a one bit key. The general idea is that while the eavesdropper may not

24The hybrid BSM model and notions of everlasting security in this model areformally defined in [25].
25Since Alice must be able to decrypt the message then simulating Alice with any randomness that is consistent with the transcript

must output the same key.
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figure out in time what locations to store, he can use this transcript to save a relatively short (compressed)
CNF formula whose satisfiability coincides with the value of the keyK. Later, when he is given unbounded
computational power, he will be able to extract this bit from the compressed formula.

Theorem 4.2 If there exists a compression algorithm for SAT or for any compression-hard language for
VCOR, with polynomialp1, then any basic hybrid BSM scheme can be broken using memoryp2(n, log m)
(wherep2 is a polynomial related top1 and the running time of the protocolΠ).

Proof: Denote the locations of the bits that Alice and Bob store byi1, ..., in. Consider the algorithmV that
takes the transcriptTΠ and the broadcast stringR as inputs and Alice’s local randomness, and locations
i1, ..., in as a witness. The algorithm should check if the witness and inputs are indeedconsistent with one
another (for example,V should verify that a key agreement with the randomness of Alice, the transcript T
indeed chooses the indicesi1, ..., in to store) and output1 if and only if they are consistent and generate an
encryption keyK = 1. The main observation is that theNP language defined by this relationV is in VC1.
Thus, if SAT has a compression algorithm then there is also a compression algorithm for all ofVC1 (from
Lemma 2.16) including the language defined byV .

The attack of the eavesdropper Charlie is as follows: Charlie generates the verification programV
and feeds the instance(T,R) to the compression algorithm for the languageV . By the properties of the
compression, the output is a CNF formula that is satisfiable if and only ifK = 1. The length of the output
is of some polynomial lengthp2(n, log m). If the polynomialp2 is sufficiently small then the compressed
instance is shorter than Charlie’s space bound1

2m, and he stores this output. Finally, at a later stage, Charlie
can use his unbounded powers to solve the compressed problem and retrieve the bitK.

We note that a slightly more involved argument works also with compression forVCOR. The idea is to
use independent compression for the bitR(ij) for everyj ∈ [n]. Every suchR(ij) may be presented as the
OR ofm circuits of sizep(n) each, for some polynomialp. 2

4.3 The General Hybrid BSM

The general scheme is like the basic one but the encryption keyK is not necessarily fully defined by the end
of the broadcast. In addition, the parties are allowed to interact after the broadcast is over. We note that the
bounded storage key exchange scheme of Cachin and Maurer [6] requires such late interaction.

Definition 4.3 (General hybrid BSM scheme)The general hybrid BSM scheme consist of the following:
Alice and Bob run a protocolΠ1 that is polynomial inn. Denote byT1 the transcript of this protocol. Alice
and Bob use their respective views of the protocolΠ1 to determine somen bits that each should store from
the broadcast stringR. After the broadcast they interact in a second protocolΠ2 (with transcriptT2) at the
end of which, both agree on encryption keyK.

Theorem 4.4 If there exists compression algorithm for SAT or for any compression-hard language for
VCOR with compressionp1(n, log m), then there exists an attack on any general hybrid BSM scheme where
n2 > m/p2(n, log m) (wherep2 is a polynomial related top1 and the running time of the protocolΠ1).

Proof: LetK(T1,R, T2) denote the encryption key that is agreed on when the protocol is run with transcripts
T1, T2 and randomnessR. Because agreement is guaranteed then this key must be well defined. Denote
by AT1

the set of all possible randomnessrA of Alice that are consistent with the transcriptT1. Let sA =
SA(T1,R, rA) denote the bits that Alice stores at the end of the broadcast when running with randomness
rA, transcriptT1 and broadcast stringR. Finally, denote bySA(T1,R) the random variable that takes the
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valueSA(T1,R, rA) for a uniform choice ofrA ∈ AT1
. That is,SA(T1,R) is randomly chosen from all

possiblesA that Alice might have stored when running with transcriptT1 and broadcast stringR.
We use the following key lemma of Dziembowski and Maurer [18].

Lemma 4.5 ([18]) LetSA(T1,R) andK(T1,R, T2) be defined as above. For anyR andT1 let SC(T1,R)
denote the random variables that takesn independent samples ofSA(T1,R). Then:

H(K(T1,R, T2)|SC(T1,R)) ≤ n2/m

.

In other words, a strategy for an eavesdropper is to storen independent samples of the random variable
SA(T1,R). This strategy guarantees that the eavesdropper will have stored (with high probability) enough
information on the encryption keyK. Thus an eavesdropper withO(m) storage capacity may break the
scheme as long asn2 < O(m).

Lemma 4.5 was used in [18] in a setting where the eavesdropper is unbounded and can hence sample the
random variableSA(T1,R). However, in our setting the eavesdropper is computationally bounded anddoes
not have the power to generate this distribution. Instead, we use compression to store information about
samples ofSA(T1,R) to be extracted after the broadcast is over (when the eavesdropper is unbounded).

The main idea is to use compression for search problems, as was demonstratedin Section 2.7. Define
theNP languageLA as follows:

LA = {(T1,R)|∃ witnessw = (rA, sA) such thatrA ∈ AT1
andsA = SA(T1,R, rA)}

The first thing to notice is thatLA is in VCOR. This is shown once more by the same argument as
in Theorems 4.2 or 3.1, and based on the fact that the protocolΠ1 is polynomial time inn. Once this is
established, then given a compression algorithm forVCOR we invoke Theorem 2.24 to get a compression
algorithm to the search problem associated withLA. Running this compression once, allows us to extract
a witness toLA and in particular to get one samplesA of a consistent view of Alice. Running thisn times
supposedly givesn samples of such a view, which supposedly suffices to break the scheme byLemma 4.5.

However, in order to invoke Lemma 4.5, we need the samples to be taken according to the distribution
SA(T1,R), which is taken by a uniform distribution overrA ∈ AT1

. We will show that while sampling via
the compression of search problems does not give the desired distribution, it is still sufficient.

A closer inspection of our compression for search technique shows thatwe do not necessarily sample
uniformly onAT1

. However, we do sample close to uniformly, in the sense that no element inAT1
gets more

than double the probability of another element inAT1
. We then show that taking twice as many samples

as was originally needed guarantees that amongst the stored bits we haven random samples of the random
variableSA(T1,R), and thus we have stored enough bits fromR to break the scheme.

Recall from Section 2.7 that the compression algorithm for search problemschooses a random pairwise-
independent hash functionh and saves only a witness(rA, sA) that isuniquelyhashed to the value0 by h.
SincerA fully determinessA (when givenT1 andR) then without loss of generality we view the witness
simply asrA, furthermore, assume w.l.o.g. thatrA is of lengthn. Suppose that̀ ∈ [n] is such that2` <
|AT1

| ≤ 2`+1. LetH`+2 be a family of pairwise independent hash functions withh : {0, 1}n → {0, 1}`+2

for all h ∈ H`+2. Then for everyrA ∈ AT1
the probability that a randomh ∈ H`+2 uniquely mapsrA to

zero is at most2−(`+2) (sincePrh∈H`+2
[h(rA) = 0] = 2−(`+2)). By the pairwise independence ofH it holds

that for all otherr′A ∈ AT1
with r′A 6= rA we have thatPrh∈H`+2

[h(r′A) 6= 0|h(rA) = 0] = 1− 2−(`+2). By
a union bound over allr′A ∈ AT1

with r′A 6= rA, combined with the probability thath(rA) = 0, we get:

Prh∈H`+2
[h uniquely mapsrA to 0] ≥ 2−(`+2) · 1

2
= 2−(`+3).
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Altogether, for allrA ∈ AT1
it holds that

2−(`+2) ≥ Prh∈H`+2
[h uniquely mapsrA to 0] ≥ 2−(`+3).

Thus whenever the hash used is indeed of length` + 2, the probability of samplingrA ∈ AT1
is almost

uniform (up to a factor of2 for each element). Since we repeat the compression for every choice of` ∈ [n]
then in particular samples are stored for the correct`.

By Lemma 2.25 we know that at least1
8 of the repeated compressions indeed store information about a

valid witness (a sample ofrA ∈ AT1
). Thus, choosing, say,9n independenth ∈ H`+2 guarantees at leastn

samples (by a Chernoff bound, as the choices are independent). But as mentioned above, these samples are
just close to uniform overAT1

rather than truly uniform. The solution is to simply run more compressions,
say, for25n independent choices ofh ∈ H`+2. This would guarantee that with overwhelming probability,
at least3n samples actually are stored. We show that3n samples via the unique hashing method containn
truly uniform samples of witnesses.

This last argument follows by a hypothetical method for sampling uniformly from AT1
. At a first stage,

3n samples are taken using the unique hashing method. Now a diluting second stage is run: Suppose that the
least likely element to be sampled gets probabilitypmin. For any elementrA that is sampled with probability
prA

, keep the sample with probabilitypmin

prA

and delete it otherwise. Thus every element is eventually chosen

with the same probabilitypmin, and sincepmin

prA

≥ 1
2 then at leastn samples are eventually chosen (with

overwhelming probability). Note that the diluting stage is not necessarily efficiently computable, but this is
taken just as a mental experiment in order to show that among the3n samples, there existn independent
samples of the random variableSA(T1,R). Thus by storing3n samples via the unique hash method, we
have stored enough bits fromR to break the keyK. 2

5 On Witness Retrievable Compression and Public Key Cryptography Based
on Any One-Way Function

5.1 On Oblivious Transfer from any One-Way Function

As mentioned in the introduction, whether one-way functions are sufficientfor public key cryptography
is a long standing open problem. In fact, many researchers view the black-box impossibility result of
Impagliazzo and Rudich [31] as an indication that general one-way functions are insufficient for public
key cryptography. We now describe an approach to bridging this gap using witness retrievable compression
of a specific language.

Theorem 5.1 If there exists a witness retrievable compression algorithm for a specific type of SAT formulas,
then there exists an Oblivious Transfer (OT) protocol based on any one-way function.

Proof: The construction actually builds a Private Information Retrieval (PIR) protocol, and then uses the
construction of Di Crescenzo, Malkin and Ostrovsky [10] to build an OT protocol from the PIR protocol.
Recall that a PIR protocol has a sender with a database of sizem and a receiver that chooses to learn one
entry from the database. It is required that the receiver learns the bit of his choice, but a computationally
bounded sender learns essentially nothing about this choice. In addition,the total communication should be
strictly smaller thanm.

Let f be a one-way function and take(Commit, V erify) to be a commitment based on the one-way
functionf (as in Section 3). In this proof we work under the assumption that the partiesare semi-honest
(that is, the parties follow the protocol as prescribed and are only allowedto try and infer extra information
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from the transcript of the protocol). The semi-honest assumption is justifiedby the compiler of Goldreich,
Micali and Wigderson [21] that showed how to transform a semi-honest protocol into one against malicious
parties (again, the only needed cryptographic assumption is the existence of a one-way function). Consider
the protocol in Figure 2.

Protocol PIRf :
Alice’s input: databaseD of m bits. LetD[i] denote theith bit in D.
Bob’s input: indexi ∈ [m] denote the bits ofi by i1, ..., i`

1. Bob commits to i: Bob commits to i with randomnessrB, Alice receivesσ =
Commit(i, rB).

2. Alice computesΦ: The CNF formulaΦ is defined as follows:

• Denote byV erifyσ the algorithmV erify with the inputσ fixed. That is,V erifyσ

takes as inputsx andr and accepts if and only if they form a legal opening of the
commitmentσ (and in particular this means thatx = i).

• TranslateV erifyσ into a CNF formulaΦσ over the variablesx1, ..., x` of x and the
bits of r (using Cook’s reduction).

• For everyj ∈ [m] define the clauseCj = (xj̄1
1 ∨ xj̄2

2 ∨ .... ∨ xj̄`

` ) if D[j] = 0 (where
x0 denotes̄x andx1 denotesx) andCj = 1 if D[j] = 1.

• Set
Φ = Φσ ∧

∧

j∈[m]

Cj

3. Alice CompressesΦ: Let (Z, W ) be a witness retrievable compression algorithm for CNF
formulas of the form ofΦ. Alice runsΨ = Z(Φ) and sendsΨ to Bob.

4. Bob checks witness:Note that Bob knows the witness toV erifyσ and can compute a
witnessw for Φσ. Bob checks ifW (w, Ψ) is a satisfying assignment forΨ. If it is Bob
outputs1, otherwise he outputs0.

Figure 2: The construction of a PIR protocol from any one-way function.
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It remains to show that the protocolPIRf is indeed a PIR protocol. Due to the fact that the commitment
is binding (up to a negligible error), then an assignment satisfyingΦσ must havex = i (recall thati is the
index that Bob committed to). Thus the first part ofΦ is only satisfied whenx = i. But the second
part is only satisfied ifD[x] = 1, thusΦ is satisfied if and only ifD[i] = 1. By the property of the
compression algorithm, alsoΨ is satisfiable iffD[i] = 1. Hence, using the witness retrievable properties of
the compression, Bob figures out whether or notΨ is satisfiable, and learns the bitD[i] (up to a negligible
error).

The second property is that the sender Alice learns no computational information about Bob’s choice.
This follows directly from the guarantees of the commitment scheme (note that Bob does not send any
information outside of the commitment). The third and final requirement regardsthe length of the commu-
nication. But the length of the communication is a fixed polynomial inp(n) (depending on the commitment
protocol and the parameter of the compression algorithm). So choosing a large enough databases with
m > p(n) guarantees a non trivial PIR protocol and hence an OT protocol.2

Note that the OT protocol derived in Theorem 5.1 is a one-round protocol (that is, one message sent
from the receiver followed by one message from the sender). This follows from the construction of the PIR
protocol and the construction of [10] that preserves the number of rounds. One implication of this fact is that
such an OT protocol may be used to construct a two round key agreementscheme, that in turn maybe used
to construct a public key encryption. In general, this is achieved by fixingthe first message of the protocol
to be as the public key. Formally:

Corollary 5.2 If there exists a witness retrievable compression algorithm for a specific type of SAT in-
stances, then based on any one-way function one can construct a publickey encryption scheme (PKE) that
is semantically secure against chosen plaintext attacks.

5.2 On the Limitation of the Witness Retrievability Property

Witness retrievable compression is defined (Definition 1.5) as a compressionwith an additional algorithm
W such that for every witnesswx for RL it holds thatwy = W (wx, Z(x)) is a witness forZ(x) ∈ L′. Recall
that all of the examples of compression algorithms (in Sections 2.1 and 2.9) arein fact witness retrievable.
This property is essential to the success of the construction of the OT protocol in Theorem 5.1, (without it
the receiver would have to run in time that is super-polynomial). In this sectionwe show that if one-way
functions exist then a compression algorithm for SAT cannot be witness retrievable (this regards the general
language SAT rather than a specific distribution of instances as generatedin Theorem 5.1). Moreover, this
statement also holds for other general languages mentioned in Theorem 5.1(that are potentially easier to
compress than SAT). In particular, there is no witness retrievable compression for the Clique language or
for the languageOR(SAT ) (that is complete forVCOR). We give the formal statements below with respect
to the languageOR(SAT ) and deduce the statements for SAT and Clique as corollaries.

We also rule out other natural definitions of witness retrievability that would have been sufficient for
the proof of Theorem 5.1 to go through. Suppose we relax the witness retrievability requirement to hold
only with some probabilityε, then we show that if one-way functions exist then this probabilityε has to be
very low, at most an inverse polynomial inm. Such a low probability of success isnot sufficient for the
OT construction in Theorem 5.1 to follow (we note though, that witness retrievability with this low success
probability is still sufficient for the cryptanalytic result in [17]). We then show that the same situation also
holds for languages that are guaranteed to haveunique witnesses(i.e. unique-SAT and unique-OR(SAT)).
This is of relevance since the instances being compressed in the proof of Theorem 5.1 all have at most a
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single witness.26

We emphasize that the OT construction may still be successful under the compression of formulas of
the specific type that are generated in the proof. However, we cannot generalize this method to work with
compression of a more standard language.

On the Impossibility of Perfect Witness Retrieval: Recall that the languageOR(SAT ) takes as an input
a list ofm CNF formulas (each of lengthn) and accepts if at least one of the formulas is satisfiable. Consider
the following way of generating an instance ofOR(SAT ). Takem bit commitmentsσ1, . . . , σm, each with
security parametern. For each commitmentσi, generate using Cook’s Theorem a CNF formulaφσi

that is
satisfiable if and only ifσi is a commitment to1. As an instance ofOR(SAT ) we take the OR of them CNF
formulasφσ1

, ..., φσm
. We denote this instance byφ(σ1, . . . , σm). Denote bywσi

a satisfying assignment
for φσi

(such an assignment can be generated by an openingσi to the value1). The assignmentwσi
also

serves as a witness forφ(σ1, . . . , σm) ∈ OR(SAT ). Our first impossibility result is for compression of
OR(SAT ) with errorless witness retrievability.

Lemma 5.3 If one-way functions exist then there is no witness retrievable compression for OR(SAT ) with
perfect witness retrieval.

Proof: The proof follows by showing that a witness retrievable compressionZ for OR(SAT ) can be
used to transmit anm bit string between two parties with sub-linear communication. As a setup stage, the
receiver generatesm random commitments to1 andm random commitments to0 and sends them to the
sender. Denoted these by(σ1

1, . . . , σ
1
m) and(σ0

1, . . . , σ
0
m) respectively.

For every stringx ∈ {0, 1}m denoteφx = φ(σx1

1 , . . . , σxm

m ) (wherexi denotes theith bit of x). In order
to send stringx ∈ {0, 1}m the sender sendsZ(φx) to the receiver. We claim that the receiver can, with
overwhelming probability, learn the stringx, thus contradicting the fact that the message sent is significantly
shorter thanm. Note that the receiver knows witnesseswσ1

i
for all i and that a witness forφx ∈ OR(SAT )

consists of a witnesswσ1
i

of aφσ1
i

that is included inφx. The receiver extractsx as follows:

ProcedureRec on input Z(φx):

• For everyi ∈ [m]:

1. RunW = W (Z(φx), wσ1
i
)

2. If W is a witness forZ(φx) then setyi = 1, otherwise, setyi = 0.

• Outputy = y1, ..., ym.

Denote byXi the random variable of theith bit of x and byYi the random variable of the corresponding
output ofRec. We view the process as a channel between a sender who holds the random variablesX =
X1, ..., Xm to a receiver who gets the random variablesY = Y1, ..., Ym and claim that with overwhelming
probabilityY = X.

If Xi = 1 then the opening ofσ1
i should yield a witness forZ(φx), from the perfect witness retrievability,

and thusYi = 1. We should show that ifXi = 0, then indeedYi = 0 (up to a negligible error). Note that
X is uniformly distributed over{0, 1}m, whereasY is determined by the random choice of commitments
(σ1

1, . . . , σ
1
m) and(σ0

1, . . . , σ
0
m), the random coins ofZ andW and the random variableX.

26The relevant instances in Theorem 5.1 actually have a unique witness onlyif there exists a commitment scheme that has only
a unique opening. As this is not necessarily the case when given any one-way function, we consider for simplicity the case of
one-way permutations (that guarantee a unique opening commitment scheme).
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Claim 5.4 Let X and Y be the random variables described above. Then for everyi ∈ [m] and every
polynomialq(·),

Pr[Yi = 1|Xi = 0] <
1

q(n)
.

Proof: Suppose that the claim is false, that is, for someq(·) and somei, Pr[Yi = 1|Xi = 0] ≥ 1/q(n). For
simplicity we first deal with the case thatPr[Yi = 1|Xi = 0] = 1. In other words,W (Z(φx), wσ1

i
) always

outputs a witness forZ(φx). Consider the two distributionsL0 andL1 on lists ofm − 1 commitments:

• DistributionL0 is defined by a random and independent choice ofm − 1 commitments to0.

• DistributionL1 is defined by first choosing at random a stringV1, V2, . . . , Vm−1 ∈ {0, 1}m−1 and
then generatingm − 1 independent commitments toV1, V2, . . . , Vm−1.

From the hiding property of commitment schemes it holds that these two distributions are indistinguishable,
i.e. given a listL of m − 1 commitments, no computationally bounded distinguisher can tell with non-
negligible bias whetherL was generated byL0 or L1. We will show that if the premise of the claim is
false, it is possible to distinguish the two distributions (without knowledge of theopenings to any of the
commitments in the list).

Given a listL of m − 1 commitments, the distinguisher generatesσ0
i andσ1

i and the corresponding
witnesses. He then generates a formulaφ by addingσ0

i to the ith position in the listL, and runs the
compression onφ. The distinguisher then runsW = W (Z(φ), wσ1

i
) and checks whetherW is a witness to

Z(φ). By the assumption,W will indeed be a witness every time thatφ is satisfiable. On the other hand,W
cannot be a witness ifφ is not satisfiable, simply by the properties of the compression. Thus ifW is indeed
a witness forZ(φ) then it must be thatφ ∈ OR(SAT ) and there is some commitment to1 in the list and
thusL was generated fromL1. Otherwise, it means thatφ 6∈ OR(SAT ) and the original list was fromL0

(ignoring the negligible probability thatL1 generates a list containing only commitments to0).
Now if Pr[Yi = 1|Xi = 0] ≥ 1

q(n) for some polynomialq(·), then the distinguisher follows the same
procedure with the difference that:

• If W = W (Z(φ), wσ1
i
) is a witness forZ(φ) then outputL1.

• If W is not a witness flip a coin and answer eitherL0 orL1 accordingly.

In caseW was indeed a witness, the distinguisher is guaranteed to be correct. Therefore, the above procedure
gives an advantage 1

2q(n) in distinguishing betweenL0 andL1, contradicting the hiding properties of the
commitment scheme.2

Note that the distributionsL0 andL1 will be useful also in the discussion of the unique witnesses case
(Lemma 5.6). 2

On Non-Perfect Witness Retrievability: We now show that the witness retrieval procedure is possible
only if its success probability is sufficiently low (we denote the success probability by 1

q(n,m) ). We upper
bound the success probability by a function of the rate of compression thatthe algorithmZ achieves (we
denote byp(n, m) the polynomial that bounds the length of the output ofZ, i.e. the compressed instance).

Lemma 5.5 If one-way functions exist and suppose that(Z, W ) is a witness retrievable compression for
OR(SAT ) such that for everyφ with parametersm, n the following holds:

1. The compression parameter|Z(φ)| ≤ p(n, m)
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2. The success probability ofW is at least 1
q(n,m) where probability is over the random coins ofZ and

W as well as the choice of the witness.

Thenq(n, m) ≥ Ω( m
p(n,m)).

Proof: The proof uses the same setting as in the proof of Lemma 5.3. Once more, the sender sends a
compressed valueZ(φx) to the receiver that runs the procedureRec and we view this process as a channel
between a sender who holds the random variablesX = X1, ..., Xm to a receiver who gets the random
variablesY = Y1, ..., Ym. Only this time ifXi = 1 it is not guaranteed that alsoYi = 1 (since the witness
retrievability is no longer perfect). Instead, our assumption on the success probability ofW translates to
Pr[Yi = 1 | Xi = 1] ≥ 1

q(n,m) for a randomi. SinceXi is a uniformly distributed bit thenPr[Yi = 1] ≥
1

2q(n,m) for a randomi.
In addition, Claim 5.4 states that for everyi it holds thatPr[Yi = 1 | Xi = 0] ∈ neg(n). Thus, ifYi = 1

thenXi = 1 with overwhelming probability and thereforeH(Xi | Yi = 1) ∈ neg(n) for everyi (whereH
denotes the Shannon entropy). We use the above mentioned facts to provide an upper bound on the average
entropy ofXi (average overi) when givenY :

Ei[H(Xi | Y )] = Ei[Pr(Yi = 1)H(Xi | Yi = 1) + Pr(Yi = 0)H(Xi | Yi = 0)]

≤ 1

2q(n, m)
· neg(n) + (1 − 1

2q(n, m)
) · 1

≤ 1 − 1

2q(n, m)
+ neg(n)

The last inequality is true sinceH(Xi | Yi = 0) ≤ 1 for everyi. We deduce an upper bound on the entropy
of X when givenY :

H(X|Y ) ≤
∑

i

H(Xi | Y ) = mEi[H(Xi | Y )] ≤ m(1 − 1

2q(n, m)
+ neg(n))

Hence, when the receiver getsZ(φx) (and can generateY ), the receiver’s entropy ofX deteriorates by

H(X) − H(X | Y ) ≥ Ω(
m

q(n, m)
).

This can only happen if the sender sent at leastΩ( m
q(n,m)) bits to the receiver, and thusp(n, m) ≥ Ω( m

q(n,m))
as required. 2

Note that the construction of OT protocols from one-way functions in Theorem 5.1 requires that the
compression ratep(n, m) ≤ O(m1−ε) for some constantε > 0. Thus, when put in the context of construct-
ing OT protocols, the above lemma states that a useful compression algorithm for OR(SAT ) cannot have
witness retrievability with probability that is better thanO( 1

mε ).

On Witness Retrieval with a Unique Witness: The limitations on witness retrievability hold also when
there is only a single witness, which is the case in our cryptographic applications. For this we consider
the promise problemOR(SAT )U that isOR(SAT ) with a guarantee that every instance has at most one
satisfying assignment. We generate the interesting instances ofOR(SAT )U as above, from sets of commit-
ments. In this case the set of commitments should be such that at most one of the commitments is to the
value1. For simplicity we also assume that each commitment has a unique opening (this may be achieved
using one-way permutation), so overall such instances have the unique witness property.
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Lemma 5.6 If one-way permutations exist and suppose that(Z, W ) is a witness retrievable compression
for OR(SAT )U such that for every inputφ with parametersm, n the following holds:

1. The compression parameter|Z(φ)| ≤ p(n, m)

2. The success probability ofW is at least 1
q(n,m) for a polynomialq(·, ·) where probability is over the

random coins ofZ andW .

Then 1
q(n,m) −

p(n,m)
m

∈ neg(n).

Proof: Suppose that there is a witness retrievable compression(Z, W ) for OR(SAT )U that succeeds
with probability 1

q(n,m) . In similar fashion to the proof of Claim 5.4 we will show that in such a case
one can efficiently distinguish if a list ofm − 1 commitments was generated by the distributionL0 or
by the distributionL1. Recall that the distributionL0 is a random choice ofm − 1 commitments to0
while the distributionL1 is a choice ofm − 1 random commitments (commitments to either0 or 1). The
distinguisher works without knowledge of the openings to any of the commitments, thus contradicting the
hiding properties of the commitment scheme.

The distinguisher generates a random commitmentσ1 to 1 along with its witnesswσ1 . Now, given a
list L of m − 1 commitments, the distinguisher creates an instanceφ by addingσ1 in a random position in
the listL, and runs the compression onφ. The distinguisher then tries to retrieve a witness toZ(φ) using
the openingwσ1 . In the case thatL ∈ L0 thenφ is an instance ofOR(SAT )U and thus by the assumption
the distinguisher will retrieve a witness with probability at least1

q(n,m) . On the other hand, ifL ∈ L1 then
the instanceφ is a general instance ofOR(SAT ) (without the promise of the unique witness). Lemma 5.5
states that there exists aφ for which the witness retrieval succeeds with probability at mostp(n,m)

m
. A more

careful inspection of the proof of Lemma 5.5 shows that this statement also holds for a randomly chosen
φ (generated by choosingm random commitments not all of which are to0). Thus, if L ∈ L1 then the
witness retrieval succeeds onφ with probability at mostp(n,m)

m
(with probability taken over the choice of

L ∈ L1 and the randomness of the distinguisher). Overall, the distinguisher accepts with probability at
least 1

q(n,m) whenL is from L0 and at mostp(n,m)
m

whenL is from L1. So if 1
q(n,m) − p(n,m)

m
is larger

than a polynomial fraction inn, then this procedure has a distinguishing advantage betweenL0 andL1,
contradicting the security of the commitment scheme.2

All our results have been stated for the languageOR(SAT ). However, they may be applied for other
languages such as SAT and Clique. In particular, we get the statement with respect to SAT as a corollary
(since a compression for SAT can be used as a compression forOR(SAT ) via the reduction in Lemma 2.16).

Corollary 5.7 If one-way functions exist and let(Z, W ) be a witness retrievable compression forSAT (or
for Unique-SAT), such that for every inputφ with parametersm, n the following holds:

1. The compression parameter|Z(φ)| ≤ p(n, m)

2. The success probability ofW is at least 1
q(n,m) where probability is over the random coins ofZ and

W as well as the choice of the witness.

Thenq(n, m) ≥ Ω( m
p(n,m)).
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6 Discussion and Open Problems

The issue of compressibility and the corresponding classification introduced in this work raise many open
problems and directions. The obvious one is to come up with a compression algorithm for a problem
like SAT or Clique (or someVCOR complete or hard problem). Alternatively, show why such tasks are
infeasible (see discussion in Section 2.9). We have seen compressibility of some interestingNP languages
and hence the question is where exactly is boundary between compressibilityand incompressibility. We
tend to conjecture that it is in the low levels of theVC hierarchy. We view PCP amplification methods
such as the recent result of Dinur [13] as potential leads towards achieving compression. This is since these
results show a natural amplification of properties on a graph, and could potentially be combined with a
simple compression of promise problems (such as the example for GapSAT in Section 2.9). The main issue
is doing the PCP amplification without introducing many new variables.

In particular, the following task would suffice for achieving non-trivial compression: given CNF formu-
laeφ1 andφ2 (not necessarily with short witnesses) come up with a formulaφ that is (1) satisfiable if and
only if φ1 ∨ φ2 is satisfiable and (2) shorter thanφ1 ∨ φ2. Moreover, due to the impossibility results for
general witness retrievable compression (Section 5.2), a witness for either φ1 or φ2 cannot efficiently yield
a witness forφ.

Short of showing a compression for general complexity classes, it wouldbe interesting to come up
with further interesting compression algorithms as well as to obtain more hardness results. For instance, is
Clique or any other embedding problem complete forVC1? Is there a natural and simple complete problem
for VC1? Also, theVC hierarchy is by no means the ultimate classification with respect to compressibility.
One can hope to further refine this classification, especially within the confines ofVC1.

Since we currently do not have a general compressibility result for a significant class of languages, it
is important to understand what are the implications ofincompressibility. The application to the bounded
storage model can be viewed as such a statement. Other examples are the previously mentioned works
of Dubrov and Ishai [15] regarding derandomization and Dziembowski[17] with respect to forward-secure
storage. In order to gain confidence in an incompressibility assumption whenused in a cryptographic setting
it is important to come up with anefficiently falsifiableassumption of this nature (see [44]).

Finally we feel that we have just scratched the surface of an important topic and in the future there will
be other implications of compressibility or the impossibility of compression, whetherin cryptography or in
other areas.

Acknowledgements: We thank Yuval Ishai for many helpful comments and specifically for pointing out
that the CRH construction does not require witness retrievability. We are also grateful to Alon Rosen and
Ronen Shaltiel for their comments on the presentation.
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