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Abstract

We initiate the study of compression that preservesthationto an instance of problem rather than
preserving the instance itself. Our focus is on the comjiritisg of NP problems. We conside¥ P
problems that have long instances but relatively shortegises. The question is, can one efficiently
compress an instance and store a shorter representatiomaigains the information of whether the
original input is in the language or not. We want the lengthhef compressed instance to be polyno-
mial in the length of thavitnessrather than the length of original input. Such compressimatbées to
succinctly store instances until a future setting will allsolving them, either via a technological or
algorithmic breakthrough or simply until enough time heaspsked.

We give a new classification @f"P with respect to compression. This classification forms atistr
fication of VP that we call theV’C hierarchy. The hierarchy is based on a new type of reductdiac
W-reduction and there are compression-complete problenmesich class.

Our motivation for studying this issue stems from the vagptrgraphic implications compressibility
has. For example, we say that SAT is compressible if thergt®ai polynomiap(-, -) so that given a
formula consisting ofn clauses oven variables it is possible to come up with an equivalent (w.r.t
satisfiability) formula of size at most(n,logm). Then given a compression algorithm for SAT we
provide a construction of collision resistant hash funciiéromany one-way function. This task was
shown to be impossible via black-box reductions [50], amiged the construction presented is inherently
non-black-box. Another application of SAT compressililis a cryptanalytic result concerning the
limitation of everlasting security in the bounded storagedei when mixed with (time) complexity
based cryptography. In addition, we study an approach tetaaeting an Oblivious Transfer Protocol
from anyone-way function. This approach is based on compressioc®Adrthat also has a property that
we callwitness retrievability However, we mange to prove severe limitations on the ghihitachieve
witness retrievable compression of SAT.

1 Introduction

In order to deal with difficult computational problems several well estadtisbptions were developed,
including: approximation algorithms, subexponential algorithms, parametmplexity and average-case
complexity. In this paper we explore our favorite approach for dealingpvithlems:postponghem (hope-
fully, without cluttering our desk or disk). We initiate the study of the compbdgy of NP problems for
their resolution in some future setting. Rather than solving a given instareask whether a shorter
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instance with the same solution can be found efficiently. We emphasize thaéwetanterested in main-
taining the information about the original instance (as is the case in typicahsadiocompression), but
rather maintain the solution only. The solution can possibly be much shortethteanput (as short as a
yes/no answer), thus the potential of such a compression is high.

Specifically, we consideN P problems that have long instances but relatively short witnessed/Rn
languagel is defined by an efficiently computable relatidh, such that an input (or instance)is in L
if and only if there exists a witness such thatR (x,w) = 1. Throughout the paper, ak(P instance is
characterized by two parametersandn: The length of the instance is denoted byn and the length of
the witnessw is denoted by.. The problems of interest are those having short withesses;, ke< m.
Traditionally, the study of\"P languages evolves around the ability or inability to efficiently decide if an
instance is in the language or not, or to find a witnestr an instancer within polynomial time. We
introduce the question of compressibility of such instances.

Compressing SAT Instances: To illustrate the relevant setting, we use the well known example of SAT.
An instance® for SAT consists of a CNF formula over variables and we define thét € SAT if there
exists an assignment to thevariables that satisfies all the clausesbofThe question of compressibility of
SAT is the following:

Example 1.1 (Compression of SAT instances)

Does there exist an efficient algorithm and a polynomial -) with the following input and output:
Input: A CNF formula® with m clauses oven variables (we are interested in >> n).

Output: A formulaV of sizep(n,logm) such that¥ is satisfiable if and only ifp is satisfiable.

The idea is that the length df should be essentially unrelated to the original lengttbut rather to the
number of variables (or in other words, to the size of the witness). Typivediyhink of the parameters,
andn as related by some function, and it is instructive (but not essential) to tiink as larger than any
polynomial inn. So potentially, the length oF can be significantly shorter than that®f*

In general, one cannot expect to compress all the formulas, or elsewd have an efficient algorithm
for all NP problems®> However, once we introduce the setting of a shorter witness, then cesigres
becomes plausible. Note that® = AP and we actually know the algorithm f& AT then clearly
compression is trivial, simply by solving the satisfiability®find outputting if ® € SAT and0 otherwise.

Motivation for Compression: Compressing for the future is an appealing notion for various settings.
There are numerous plausible scenarios that will give us more powelvio mblems in the future. We
could potentially find out thaP = NP and solve all oulN P problems then. We may have faster computers
or better means of computing such as quantum computers or any othegbhysibod for solving problems
(see Aaronson [1] for a list of suggestions). Above all, the futureileritdts and lots of time, a resource
that the present is usually short of. Saving the problems of today as tegyesented is wasteful, and
compression of problems will allow us to store a far greater number of prsbier better days.

Our interest in studying the issue of compression stems from the vast cryplogianplications of
compressibility. We demonstrate three questions in cryptography that cesigra@lgorithms would resolve
(see Section 1.3). We are confident that the compression of problems ifoptiess applications both within

!Note, that since our requirement for compression is only relevaptéiiiems wheren >> n, then an\"P-complete problem
such as 3-SAT (where all clauses have exactly 3 literals) is irrelevambfopression as in such formulasis already at most
O(n?).

2Suppose that every formula can be compressed by a single bit, theensiedly reapplying compression to the input will result
in a very short formula that may be solved by brute enumeration.



and outside of cryptography. For example, in subsequent worksoR@md Ishai [15] show the relevance
of the notion of compression to derandomization and Dziembowski [17] siioat compression is related

to the study of forward-secure storage (see Section 1.4 on related. widrtk concept of compression of
problems is also interesting beyond the confine&/@f problems, and makes sense in any setting where the
compression requires much less resources than the actual solution obbitenp

1.1 Compression of NP instances

We define the notion of compression with respect to\&R language. For simplicity, we assume that an
input to anN'P languageL includes an encoding of the parametethat upper bounds the length of a
potential witness. We also associate with a specific\"P relation Ry, that defines it (as mentioned above).
We note that once the parametetsandn are explicit, it is in most cases immaterial what specific relation
defines the language and the properties we discuss (such as coniliydssib properties of the language
at hand (unless stated otherwise). In essence, a compression algerétspecialized Karp-reduction that
also reduces the length of the instance.

Definition 1.2 (Compression Algorithm for NP Instances) Let L be an NP language wheren andn
denote the instance length and the witness length respectivelgmf@iression algorithrfor L is a proba-
bilistic polynomial time maching along with a languagé.’ in AP (or more accurately io\"P (poly(m)))*
and a polynomiap(-, -) such that for all large enough:

1. Forall z € {0,1}™ with parametem the length ofZ(x) is at mostp(n, log m).
2. Z(x) € L'ifand only ifz € L

We allow a negligible error in the successf(where probability is over the internal randomnessAf If
the error is zero then we call the compression errorless.

The paper consists of two parfart | is a study of the concept of compression\6P instances from a
complexity point of view.Part Il introduces the cryptographic applications of compression algorithms.

How much to compress: Definition 1.2 (of compression algorithms) requires a very strong compress
asking that the length of the compression is polynomial@mdlog m. For the purposes of part | of the paper
(the complexity study), it is essential that the compression is at least $yfpgal inm in order to ensure
that the reductions defined with respect to compressibility (See Section®@)ndpose. Furthermore,
for part Il (the applications) this definition may be strongly relaxed, wieges a compression ta' ¢ for
some constart suffices for some applications.

The Complexity of L’:  Another requirement of Definition 1.2 is that the languagbe in NP (poly(m)).

In general, this requirement may also be relaxed and the result still be rg&drior some applications.

In particular, we do not need to put a bound on the complexity’obut only require that there is enough
information inZ(z) to determine whether € L or not. One case where we use a definition with unbounded
extraction is the compression of search problems in Section 2.7. It shoudtbé however that in some
settings the requirement fdr' to be inNP(poly(m)) is essential, such as when defining the witness re-
trievability property (Definition 1.5). Moreover, in some cases it is naturélitiher restrictZ’ to actually

*Typically, the parametet is indeed part of the description of the problem (e.g. for Clique, SATgkpath and others).

By N'P(poly(m)) we mean in nondeterministic-timgoly(m) (that is, verifiable in timepoly(m) when given a non-
deterministic hint).

®For clarity we choose a polynomial Ing m, although this may be replaced by any sub-polynomial funetith) (a function
such that for large enough for any polynomialy(-) we havem'(m) < g(m)).
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be in VP (that is in NP (poly(n,logm)). For instance, this is the case in the definition of compression
of SAT (Example 1.1). Finally, note that if the compressiorn®rless then L’ must be inNVP(poly(m))
simply by the definition of compressién.

Paper organization: In the rest of the introduction we survey the results of this paper, inclygangl
(the complexity study) and part Il (the cryptographic applications). ttice 1.4 we discuss related and
subsequent works. The main complexity study of the compressibility Bfproblems appears in Section
2. The Cryptographic applications are in Sections 3,5 and 4. In Section (es@ibe the application
of compression to constructing CRH from any one-way function. Sectjoredents the implication to the
hybrid bounded storage model, while Section 5 discusses witness releiesatpression and its application
to the construction of OT from any one-way function. We conclude with audsion and some open
problems (Section 6).

1.2 Part I: Classifying NP Problems with Respect to Compression.

We are interested in figuring out whigli’? languages are compressible and, in particular, whether impor-
tant languages such as SAT and Clique are compressible. For stadafemenstrate some non-trivial lan-
guages that do admit compression (Section 2.1): we show compressiie foell known\P-complete
problem of vertex-cover and for anoth&fP-complete language known as minimum-fill-in. We show a
generic compression of sparse languages (languages containingeheliiv words from all possible in-
stances). As specific examples we mention the language consisting of #tahgse the output of a crypto-
graphic pseudorandom generator and the sparse subset sunmprbbeddition we show compression for
the promise problem GapSATHowever, these examples are limited and do not shed light on the general
compression of othelP problems. Moreover, it becomes clear that the traditional notions of tiedsc
and completeness ik P do not apply for the case of compression (i.e., the compressiongfameomplete
language does not immediately imply compression for alV@?). This is not surprising since this is also
the case with other approaches for dealing whff’-hardness such as approximation algorithms or subex-
ponential algorithms (see for example [47]) and parameterized compleg@y14] and further discussion

in Section 1.4 on related work). For each of these approaches, aigipeapew reductions where developed,
none of which is directly relevant to our notion of compression.

We introduce W-reductions in order to study the possibility of compressirigusaproblems inVP.
These are reductions that address the length of the witness in addition to rebiplie an\P language.
W-reductions have the desired property thak ifV-reduces ta.’, then any compression algorithm faf
yields a compression algorithm fér. Following the definition of W-reductions we define also the matching
notion of compression-complete and compression-hard languageslésisa ¢

The VC classification: We introduce a classification ¢ 7 problems with respect to compression. The
classification presents a structured hierarchy/@? problems, that is surprisingly different from the tradi-
tional view and closer in nature to th& hierarchy of parameterized complexity (see [14]). We call our
hierarchyVC, short for “verification classes”, since the classification is closely réladehe verification
algorithm of NP languages when allowed a preprocessing stage. We give here a @seydescription

of the classes, just in order to convey the flavor of the classificatiorm&ladefinitions appear in Section
2.3. In the following definition, when we use the term “verification” we actuailgan “verification with
preprocessing”:

®Suppose that there exists a compression algorHor L then definel’ to be the language of alf () such that: € L. Then,
for everyy € L’ a verification algorithm takes as a nondeterministic witness a valaevitness tac € L along with randomness
for the compression algorithm and verifies that indged Z(z). Thus if Z never introduces an error thén is in NP (poly(m)).
’I.e. a promise problem were either the formula is satisfiable or eveigyrmsent does not satisfy a relatively large number of
clauses.



e For k > 2, the classVCy, is the class of languages that have verification which can be presented
as a depthk polynomial size circuit (polynomial im andm). For example, the language SAT is
compression-complete for the clag€,. Other examples include Integer-Programming that resides
in VCioe, and Dominating-Set that is iWC3. Both of which are shown to be compression-hard for
VCs.

e V(C, is the class of languages that hdweal verification. That is, languages which can be verified
by testing only a small part (of siz@ly(n,logm)) of the instance. This class contains many natural
examples such as the Clique language or Long-path.

e VCor is the class of languages that have verification which can be presenteel @R ofm small
instances of SAT (each of sizg. This class contains the languages that are relevant for the crypto-
graphic applications. The Clique language is compression-hard for this (@daim 2.21).

e V(C is the class of compressible languages. In particular it includes vertex, gparse languages
and GapSAT.

We show that the classes described form a hierarchy (see Lemma 2.0feémd?.22). That is:
VCy CVCor CVC1 CVCy CVC5...

We discuss some of the more interesting classes itheerarchy, classify some centr&lP problems and
mention compression-complete problems for the classes. Note that the existaraompression algorithm
for a complete problem for some class entails the collapse of the hierardbythagt class intd’Cy.

In addition, we study the compression.®fP searchproblems. That is, compressing an instance in a
way that maintains all the information about a witness for the problem. We staivhila compression of a
class of decision problems also implies compression for the corresporadinchgproblems. Formally:

Theorem 1.3 If a classVC;, has a compression algorithm, then there is a compression algorithm for the
search problem of a relatioR;, of L € V(.

This theorem turns out to be useful for the cryptanalysis result regatide bounded storage model we
present in Section 4.

1.3 Partll: Implications to Cryptography

As the main motivation for the study of compression, we provide some strong atiptis of compress-

ibility to cryptography. The implications described are of contrasting flav@ns the one hand we show
constructions of cryptographic primitives using compression algorithmie wh the other hand we show
a cryptanalysis using compression algorithms (or alternatively, this caortsédered as an application of
incompressibility of languages). For simplicity we provide the implication with retsigethe compression

of SAT. We note however, that the same statements can actually be made wittessimp of languages
from the clas®’Cor (see Definition 2.19). This class is the lowest class invtihierarchy, and potentially

easier to compress than SAT. Moreover, the instances that we need toessniqr our applications are
further limited in the sense that (i) the instances ard/iRN Co-NP and (ii) the (positive and negative)
instances have a unigue witness.



On Collision Resistant Hash from any One-Way Function: Collision Resistant Hash functions (CRH)
are important cryptographic primitives with a wide range of applications[25g41, 5]. Loosely speaking,
a CRH is a familyH of length reducing functions, such that no efficient algorithm can firlismms
induced by a random hash from the family. Currently there is no knowstagetion of CRH from general
one-way functions or one-way permutations, and moreover, Simon e that basing CRH on one-
way permutations cannot be achieved using black-box reductions. WVelsbw a general compression
algorithm may be used to bridge this gap.

Theorem 1.4 If there exists an errorle§sompression algorithm for SAT then there exists a construction of
collision resistant hash functions based on any one-way function.

The construction of the CRH in Theorem 1.4 is inherently non-black-bdxuaes the program of the one-
way function via Cook’s Theorem [8]. This is essential to the validity of thipraach, in light of the
black-box impossibility result [50].

An interesting corollary of this result is a construction of statistically hiding dihmitment from any
one-way function, which is currently an open problem ([45, 24] shaghsonstructions based on one-way
functions with a specific structure).

On Everlasting Security and the Hybrid Bounded Storage Model: Thebounded storage mod@SM)

of Maurer [39] provides the setting for the appealing notioewarlasting securitj3, 12]. Loosely speaking,
two parties, Alice and Bob, that share a secret key in advance, may &85t to encrypt messages in
a way that the messages remain secure against a computationally unbadmdesiry, even if the shared
secret key is eventually revealed.

However, if the parties do not meet in advance to agree on a secretékegyvhrlasting security requires
high storage requirements from Alice and Bob [18], rendering encryptichis model less appealing.
Hoping to overcome this, it was suggested to combine the BSM with computatieethpsons (what is
called here the hybrid BSM). In particular, to run a computational keyesgeat protocol in order to agree
on a shared secret key, and then run one of the existing BSM schenméemiawski and Maurer [18]
showed that this idea does not necessarily work in all cases, by shawiagiack on a protocol consisting
of the combination of a specific (artificial) computational key agreement gobteith a specific BSM
encryption scheme.

We show that compression @f P instances can be used to attadk hybrid BSM schemes. Or in
other words, if a compression of SAT exists, then the hybrid BSM is ho mosegul than the standard
BSM. One interpretation of this result is that in order to prove everlasticgygg for a hybrid BSM scheme,
without further conditions, one must prove that there exists no compreggjorithm for SAT. Alternatively,
as a relaxation, one should come up with a reasonable incompressibility dssuregarding the resulting
formulae. Note however that a straightforward assumption of the form diktsbution on SAT formulae
is incompressible” is not efficiently falsifiable, in the sense of Naor [44}; it it is not clear how to set up
a challenge that can be solved in case the assumption is false.

ON RANDOM ORACLES: The authors of this paper show in [25] that if all parties are givensscte a
random oracle, then there actually exists everlasting security in the hyBNt\Bithout an initial key and
with low storage requirements from Alice and Bolrherefore, finding a compression algorithm for SAT
would show an example of a task that is simple with random oracles but altogeipessible without

8The construction of CRH requires that the error probability of comjmasdgorithm will be zero. This can be slightly relaxed
to an error that is exponentially smallin (rather tham).

This does not contradict the compressibility of SAT, since the cryptanalsialt is not black-box and assumes access to the
full description of the programs of Alice and Bob. Thus this result is mes@rved in the presence of a random oracle.



them. This is stronger than previous results (such as [7, 23, 40]) thatalspecific protocol that becomes
insecure if the random oracle is replaced by a function with a small regegg®. This would constitute an
argument against relying (blindly) on random oracles to determine whatiask is feasible at all.

The actual model and results: The bounded storage modébunds the storage space of an adversary
rather than its running time. It utilizes the public transmission of a long randdnmg s of lengthm
(sometimes referred to as the broadcast string), and relies on the assuthptian eavesdropper cannot
possibly store all of this string. The everlasting security achieved byyption schemes in this model
means that an encrypted message remains secure even if the adveesdnaley gains more storage or
gains knowledge of (original) secret keys that may have been usedevdq if the honest parties do not
share any private information in advance, then achieving everlastingityequires storage capacity of
Q(y/m) from the honest parties (as shown in [18]).

The hybrid bounded storage modgdee [25] for formal definitions and notions of security) assumes
computational limitations on the eavesdropper up until the time that the transmi$gtohas ended. Com-
putational assumptions with such a strict time limit are generally very reasorfatriénstance, in the key
agreement example, all that we require is that the computational protocol lwoken in the short time
period between its execution and the transmissio® ofAn assumption such as the Diffie Hellman key
agreement [11] cannot be broken within half an hour, can be made wignfater degree of trust than actu-
ally assuming the long term security of a computational key agreement pkotieaonsider two models,
and give a cryptanalysis result for each of them:

e The Basic BSM SchemeThe honest parties may only interact before the broadcdst(ekcept for
actually sending the encrypted message). Thus the encryption key is éwdlyndned at the end of
the broadcast oR. Such a scheme is fully breakable in the standard BSM (without initial k&ys).
show that compression of SAT allows to break any basic hybrid schense(@im 4.2).°

e The General BSM SchemeAlice and Bob can interact both beforedafter the broadcast &®. In
the standard BSM (without initial keys) such a scheme is breakable unliessafnd Bob use storage
of sizeQ2(y/m). In the hybrid BSM, we show (Theorem 4.4) that if a compression of Sédtethen
such a scheme is breakable unless Alice and Bob use storage 8f(sjze /p(n, log m)), wheren is
the security parameter of the computational protocolzaista polynomial (related to the polynomial
of the compression algorithm and the running time of the protocol that AlicdBabdise).

Witness retrievable compression and the existence of Minicrypt: The next application is an attempt to
use compression in order to prove, in the terminology of [29],¥Mhati cr ypt =Cr ypt omani a. Impagli-
azzo [29] summarizes five possibilities for how the world may look like basediftarent computational
assumptions. The two top worlds aveni cr ypt , where one-way functions exist but oblivious transfer
protocols do not exist (in this world some interesting cryptographic appliteice possible, and in partic-
ular sharedkey cryptography exists) arct ypt omani a where Oblivious Transfer protocols do exist (and
hence also a wide range of cryptographic applications like secure comopusadpublic key cryptogra-
phy). Whether OT can be constructed from any one-way function is arropgn problem in cryptography.
Impagliazzo and Rudich [31] addressed this problem and proved thatgteement protocols (and hence
also OT) cannot be constructed from any one-way function using filegkeductions.

We explore an approach of using compression in order to bridge theajajedn the two worlds. In
order to do so we introduce an additional requirement of a compressioritaig.

1%Basic schemes are very relevant to the hybrid BSM as they include aimation of a key agreement protocol with a private
key scheme (such as the scheme described by [18]).



Definition 1.5 (Witness Retrievable Compression)Let Z, L and L’ define a compression algorithm as in
Definition 1.2 and letR;, be anN\/ P relation for L. The compression is said to bétness retrievablavith
respect toRR;, if there exists a probabilistic polynomial time machiié such that if inputz € L then for
every witnessu,, for Ry, it holds thatw, = W (w,, Z(z)) is a witness foiZ (x) € L'. We allow a negligible
error in the success diV (where probability is over the internal randomnesszoand ).

Theorem 1.6 If there exists a withess retrievable compression algorithm for a certaindySAT formulas,
then there exists an Oblivious Transfer protocol basedmyone-way function.

As in the CRH construction (Theorem 1.4), the construction of OT in Timedré is inherently non-black-
box. Unfortunately we show that this approach cannot work with a cossjme algorithm for thgeneral
SAT problem, due to the following theorehh:

Theorem 1.7 If one-way functions exist then there is no witness retrievable compnestRAT.

Furthermore, we also rule out the possibility of other types of withess rabiecompression that may be
sufficient for Theorem 1.6. More precisely, the inability of witness reatids compression does not change
when allowing an error in the retrieval, or when dealing with a case where th&@ unique witness (see
Corollary 5.7). These developments rule out basing the approach oféhel.6 on the compression of
a general and standard language. The approach may still work out wathess retrievable compression
algorithm for the specific CNF formulas as stated in Theorem 1.6.

Finally, we point out that all of the examples of compression algorithms in tihuerp@n Sections 2.1
and 2.9) are in fact witness retrievable. This demonstrates that theselezdalpshort of the general
compression that we are seeking. In fact a major obstacle in achievingessign for problems such as
SAT seems to be that most ideas are witness retrievable.

1.4 Related Work

The relationship between compression and complexity in general is a toplwathaken investigated since
the early days of Complexity Theory (i.e. Kolmogorov Complexity [37]). Hegrethe feature that we are
introducing in this work is compressibility with respect to thaution (witness) rather than the instance.
The goal of maintaining the solution differs our work from a line of seeminglagted works about notions
of compression ([16, 51, 54] to name a few), all of which aim at eventualifeving the input of the
compression algorithm.

There are several examples of other relaxations to soldifiyproblems in polynomial time. Each of
these relaxations yields a corresponding classifications®f These classifications, like ours, are sub-
tle and usually turn out to be different than the traditiaN&P classification. For example, Papadimitriou
and Yannakakis [48] introduce L-reductions and the classes MAX NPVaX SNP, with respect to ap-
proximation algorithms. Impagliazzo, Paturi and Zane [30] define redwctioth respect to solution in
sub-exponential time.

Perhaps the most relevant classification to ours is that of parameterizetegiynfsee the monograph
on this subject by Downey and Fellows [14]). Parameterized complexitjesttite tractability of problems
when one of the parameters is considered to be fixed or very small. Thigvameto compression since
typically this parameter is related to the length of the witness. On the one haneé,(bat not all) parame-
terized complexity algorithms yield natural compression algorithms (see exaamuekscussion in Section

"The first version of this paper [26] (dated Feb 17, 2006) did not éotiés theorem and was hence more optimistic on the
possibility of finding a witness preserving compression algorithm for SAT.



2.1). In addition, some (but certainly not all) compression algorithms may impéyangeterized complex-
ity algorithm. Also thelV-hierarchy of parameterized complexity is reminiscent of\fldehierarchy (they
are both defined by reduction to circuits of bounded depth). Howenestady of compression yields quite
a different classification. This is mainly because in parameterized complegityithess length is taken to
be very small and as such, there is no restriction on running in time that imexpal (or higher) in this
parameter. In compression, on the other hand, the parameter (witnethy isngsually of substantial size
(even if much smaller than the instance length).

A related notion to parameterized complexity that is reminiscent of our wdirkited non-determinisin
which started with the work of Kintala and Fischer [36], see survey by $itth, Levy and Mundheck [22].
This was further studied by Papadimitriou and Yannakakis [49] who dififew syntactic classes within
the class of polylog non-determinisdh@GN P and LOGSN P). The interesting point is that several
natural problems are complete for these classes. The notion of redusgdnisithe usual polynomial
reduction and hence the classifications arising from this study are vésyedtit from our/’C hierarchy.

Subsequent Works: Dubrov and Ishai [15] discussed the compression of problems amndeshihat a
certain incompressibility assumption has an application to derandomizationifiGglycthey construct a
generator that fools procedures that use more randomness than tpeirlength. Their work was mostly
conducted independently of ours, following conversations regardimgdy phase of our work. In addition,
inspired by our CRH construction, they prove that any one-way permntedio either be used for the above
mentioned derandomization, or else can be used to construct a weaknar€iBH 2

In a recent paper, Dziembowski [17] shows the relevance of ourmofigvitness retrievable compres-
sion to a method for achievirfgrward-secure storageHe shows a cryptanalytic result of such compression.
Furthermore, following our approach for construction of OT from @rag-functions, he shows that for ev-
ery one-way function either a specific storage scheme is forwardesamuhere exists an OT protocol based
on this one-way function.

2 Part I: On the Compression of NP Instances

Attempting to compress/P instances requires a different approach than solifigproblems. Intuitively,
a solution for compression might arise while trying to solve the problem. Whildl adlution of anNP
problem may take exponential time, it is plausible that the first polynomial nuailsézps leaves us without
an explicit solution but with a smaller instance. Indeed, some algorithms in thenptarized complexity
world work like this (see some examples in the next section). On the other Warallow the possibility
that the compressed version is actually harder to solve (computational tiragtias the original one (and
may require a somewhat longer witness altogether).

2.1 Examples of Compression Algorithms for some Hard Problem
We start by showing three examples of compression algorithms for problataréhconjectured not to be
in P. Two of these example argP-complete problems, while the third is taken from cryptography.

Vertex Cover: The well studiedVP-complete problem of Vertex-Cover receives as input a gr@ph
(V, E') and asks whether there exists a subset of verices V" of size at mosk such that for every edge

12This weak version of CRH (like the stronger common version) cannobhstructed from any one-way permutation by black-
box reductions. (in [50]).



(u,v) € E eitheru orv are inS. The parameters are the instance lengthwhich is at mosO(| E| log |V']),
and the witness length = k log |V|

Claim 2.1 There exists a witness retrievable compression algorithm for VertexeCove

Proof: We are following the parameterized complexity algorithm for vertex-covexsgnted in [14] and
attributed to Buss). If a vertex-coveér of size k exists, then any vertex of degree greater thanust be
inside the set. The compression algorithm simply identifies all such vertices and lists them totee,
while removing all their outgoing edges (that do not need to be coveredhiey eertices). The graph left
after this process has maximal degkeand furthermore all edges have at least one end in the cover. Thus,
if the original graph has & vertex cover then the total number of edges left is at mhégat mostk vertices

in the cover with at mosk edges each). If there are more thgnedges then the answer to the problem

is NO, otherwise, such a graph can be represented by the list of a,edbeeh takes:? log k bits. The
compression can be made witness retrievable since if we use the origirlaldabertices to store the new
graph, then the original cover is also a cover for the new compresapt.grC

It is interesting to note that we do not know of a compression algorithm fo€tiggie problem or the
Dominating Set problem, which are strongly linked to the vertex-cover pmoethe traditional study of
NP, and in fact, in Theorems 5.1, 3.1 and 4.2 we show strong implications of a essipn algorithm for
these languages.

Sparse Languages: There exists a simple and generic compression algorithm fapaltselanguages.
That is, languages that contains only a small fraction of all possible inplis.general idea is to apply a
random hash function on the instance with an output that is substantially sthalter. The new language
contains all words that are hashed values of a word in the original lgegi&e note that the compressed
languagel’ lies in N'P(poly(m)).X® We describe the method via an explicit example of such a sparse
language. The example can easily be generalized to all sparse languages

Example 2.2 (PRG-Output) Let G be a pseudorandom generator stretchingrafit seed to ann bit
output (withm >> n). Define the languageRG-outpubver inputsy € {0, 1} as

Lg = {y| there exists am s.t. G(x) = y}

The language PRG-output is hard to solve for random instances asddhg anderlying PRG is secure.
Yet it has a simple compression algorithm. Note that simply saving, say, therfiksts of the instance is
insufficient because ij only differs fromG(x) in one bit, then this bit may be anywhere in thebits.

Claim 2.3 There exists a witness retrievable compression algorithm for PRG-output.

Proof: Let H be a family of almost pairwise independent hash functions frerbits to 2n bits. The
compression algorithm simply chooses a random H and outputsh(y), k). The new language 5, =

{(z, h)| there exists an s.t. h(G(z)) = z}.

Naturally, ify € L thenalsqh(y), h) € L, with the same witness (and thus the witness retrievability).

On the other hand, iff ¢ L¢ then by the properties d¢f, for every seed: we have thaPr,[h(G(z)) =
h(y)] < O(272"), and by a union bound over all€ {0,1}", we getPr,[h(y) € L] < O(27™). Finally,
since there are almost pairwise independent hash functions whosgptiesds of lengthO(n) + log m (for
example see [42]), then the algorithm is indeed compressinay.

BRecall that\"P (poly(m)) stands for nondeterministic-timegy(m)).
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We give another example of a sparse language that has a compressigth@ighat is better in the sense
that the compressed language iS\IfP (poly(n, log m)) (or actually in\P) rather than inNVP(poly(m))
as implied by the general method.

Example 2.4 (Sparse Subset SumJhe languagsparse subset sutakes as input valuesr, . .. x, each
in {0, 1}™ (with m >> n) and a target valug” € {0, 1}". An input is in the language if there is a subset
S C [n] where) ", ¢ x; = T (the sum is taken moduly”).

Claim 2.5 There exists a witness retrievable compression algorithm for sparsetssins.

Proof: To compress an instance of sparse subset sum simply pick a large rgmgoeR2” < P <
22ntlogm and store the numbegs = z; mod P (for everyi € [n]), the targetl’>» = T mod P and P.

The compressed instance is of lengin(n + logm)) and also serves as an instance for subset sum. If
there exists a sef for which ), z; = T then alsay _,_ 4 v; = Tp (hence the witness retrievability). On
the other hand, we want that if the original instance was not in the langbagéor any subsef it will hold
that) .. gy # Tp. Inorder to ged . s y; = Tp itis required thatP is a divisor of D = >, g x; — T
However D has at mosin/n prime divisors that are greater than, while the primeP is taken from a
range containing(2?"m/n) primes. Therefore, for ever§ it holds thatPrp[>", g i = Tp] < 272" and

by a union bound over all sefs the probability of an error is bounded By”. O

Minimum Fill-In:  The minimum fill-in problem is atvP-hard problem that takes as input a gréphnd

a parametek, and asks whether there exist at mbstdges that can be added to the graph that would turn it
into a chordal graph, i.e. one with no induced cycles of length more thahi8.pfoblem has applications

in ordering a Gaussian elimination of a matrix.

Claim 2.6 The minimum fill-in problem with parametgmas witness retrievable compression.

Proof: Kaplan, Shamir and Tarjan [33] prove that this problem is fixed-parantetetable (this notion
of tractability in parameterized complexity means that the problem is polynomial-tiad® whenk is
sufficiently small, and in particular for all fixek). Their algorithm partitions the graph into two sets of
nodesA and B where A is of sizek? and there are no chordless cycles (i.e. an induced cycle of length
greater than 3) iiz that contain vertices il3. The complexity of this partition i©(k?|V'||E|). They then
prove thatG has ak edge fill-in if and only if the graph induced k¥ has ak edge fill-in.

Thus the compression algorithm follows the same partitioning and stores onfyrapb induced by
the small setd. The new graph has at masst vertices and thus can be presented by gl (k) log |k|
bits. The fill-in for the new instance is exactly that of the original instancetlamsithe compression can be
witness retrievable if the original labels of the vertices are used for the remsgd graph as well.O

This use of an algorithm from parameterized complexity is not a coincidehice.“problem kernel”
method (see [14], chapter 3) is to first reduce the problem to a small stange that, like compression,
contains the answer to the original problem. Then the algorithm runs in erfiahtime algorithm on this
small instance. As was discussed in Section 1.4, if the running time of thesfiksttion happens to be only
polynomial in the parameter, then the first phase of the algorithm is a corgpredgorithm.

In this context, it is important to note that a compression algorithm for a largil@es nohecessarily
give a parameterized complexity algorithm for the same language. At finstglia seems that one can
first run the compression algorithm, and then solve the compressed prbhlbrte force and thus get a
fixed parameter algorithm. However, such a strategy does not workigitice compression algorithm the
witness is allowed to grow by a factor pdly(n, log m), and thus solving the compressed problem by brute
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force may require a super-polynomial timenn Moreover, even if the withess does not grow, in many cases
the witness size depends on the instance size and not on the parametée gjoirethe Clique problem if
the parameter is the clique sizethen the witness length is = klogm) thus making the above strategy
altogether irrelevant.

2.2 W-Reductions and Compression-Completeness

The few examples of compression that we have showed clearly indicatbérsttidy ofA//P problems with
respect to compression gives a distinct perspective, differenttinertraditional study afVP. The reason

is that the typical Karp-reduction betwe@iP problems does not distinguish between the length of the
witness and the length of the instance. For example, when reducing SAT @idgfoe problem, one builds

a large graph from a CNF formula and asks whether or not it has a Cliggizedk. However, in this new
instance, the witness si¥&s a polynomial inm (the length of the SAT formula) rather thanthe number

of variables in the formula). Thus, it is not clear how to use a compresgionitam for Clique to get a
compression algorithm for SAT.

W-reductions and compression-completeness:In order to show that a compression algorithm fdr
implies a compression algorithm fdr, a more restricted type of reduction is needed. We call this a W-
reduction and it is similar to a Karp-reduction but asks an extra propettiyeolength of the witness.

Definition 2.7 (W-Reduction) For two NP languagesL and L’ we say thatl, W-reducesto L' if there
exist polynomialg; and p» and a polynomial time computable functigrthat takes an instance for L
and outputs an instancg(z) for L’ such that:

1. f(z) e L'ifanonlyifx € L.
2. If z is of lengthm with witness lengt, then f(x) is of lengthp; (n, m) with witness length only
p2(n,logm).
We first note that this reduction composes, that is:
Claim 2.8 If L W-reduces td.’ and L’ W-reduces td.” then W-reduces td.”.

We next claim that W-reduction indeed fulfills its goal with respect to congioas

Claim 2.9 Let L and L' be NP languages such that’ W-reduces td.. Then given a compression algo-
rithm for L, one can obtain a compression algorithm ot

Proof: Suppose that is an instance for languag€ of lengthm with witness lengtm. The compression
algorithm for L’ runs as follows: First use the W-reductionfcand get an instancg(x) for L, and then
run the compression algorithm fdr on f(z). By the properties of the reductiof(z) is of lengthm’ =
p1(n, m) with witness length’ = py(n,logm). The outcome of the compression is therefore of length
poly(n',logm’) = poly(n,logm). Furthermore, this outcome is in soMé&P languagel” if and only if
f(z) € L which in turn happens if and only if € L’. Thus the combined process gives a compression
algorithm for instances of/. O

¥The witness for Clique is a choice bfvertices from the graph
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We remark that in the complexity discussion of compression we choose teigmoissue of witness
retrievability. Nevertheless, in order for the W-reduction to relay this @rypthe reduction itself must also
have a witness retrievability property. That is, given a witnedsr = € L then one can efficiently compute
w' for f(x) € L' (without the knowledge aof). We define complete problems with respect to compression:
these are defined similarly to the standard notion, but with respect to Vtrenst

Definition 2.10 (Compression-Complete)A problemL is compression-complete for claGsf:
1. LeC
2. ForeveryL’' € C the languagd.’ W-reduces td..

A language is calledompression-hartbr classC if only requirement 2 holds.

The relevance of compression-complete problem is stated in the following sifapie

Claim 2.11 Let L be compression-complete for clagghen given a compression algorithm fby one can
obtain a compression algorithm for ardy € C.

The proof follows directly from the definition of completeness and Claim 2.9.

2.3 The)(C Classification

We now introduce the new classification arising from the study of compiktysith AP problems. For this
we define a series gf P languages. Some notation: bgiacuit of depth £ we mean a depth alternating
AND-OR circuit where the fan-in of the gates is bounded only by the sizheotircuit and negations are
only on the input variables (no NOT gates).

Definition 2.12 (Depth, CircuitSAT)

For anyk > 2 consider the\/P problem calledDepth,CircuitSAT:

Input: a circuit C of sizem and depth at most overn variables.

Membership: C' € Depth,CircuitSAT if there exists a satisfying assignment'to

The next language, LocalCircuitSAT, is a less natural one. It is dedigmeapture computations that
do not need to access the whole input, but can rather check only a salbiiaction of the input (a good
example is verifying that a set of vertices in a graph is indeed a Clique)z beta string of lengthn, if
I = (i1,...,1,) is alist ofn locations inx then we denote by () the values of: at these locations.

Definition 2.13 (LocalCircuitSAT)
Input: A stringz of lengthm and a circuitC' overn + n - log m variables and of sizén + n - logm).1®
Membership: If there exists a lisf of n locations inz such thatC'(z (1), I) = 1.

We can now introduce our classification/8fP problems:

Definition 2.14 (TheVC classification of AP problems) Consider NP problems wheren denotes the
instance size and denotes the witness size. We define the dldssfor everyk > 0. The definition is
divided into three cases:

5The choice of the circuit to be of size’ (over n’ variables) is arbitrary and other polynomial functions suffice as well.
Furthermore, such a circuit of small size may be meaningful sincalhtite variables have to be used and some might be just
dummy variables.
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e k= 0: The classV(y is the class of all languages that admit compression algorithms.
e k= 1: The classV(; is the class of all languages that W-reduce to LocalCircuitSAT.
e k > 2: The classVCy, is the class of all languages that W-reduce to DeflincuitSAT.

For any functionk(m, n) (wherek(m,n) < m) also defineVCy,, ) as the class of all languages that
W-reduce to Deptl,,, ) CircuitSAT. Finally, define’C = VC,, (the class fok(m,n) = m).

A first observation is that simply by definition, the languages LocalCircuit&8Ad Depth CircuitSAT are
compression-complete for their respective classes. The most notabhplexia for the clas3’C = NP
where the complete problem is CircuitSAT (satisfiability of a polynomial size itjrcu

When discussing a W-reduction to a depthircuit, we can actually assume without loss of generality
that the top gate of this circuit is an AND gate. An immediate corollary is that SAT {$hsatisfiability of
CNF formulas) is compression complete for the cld€s. Formally, let DepthCircuitSAT 4y p denote the
language DeptCircuitSAT when restricted to circuits where the top gate is an AND gate.

Claim 2.15 For anyk > 2, we have that a language € VCj, if and only if L W-reduces to the language
Depth, CircuitSATy v p.

Proof: We show that any instance that contains a circuit where the top gate is an-@Rudés to an
instance with top gate AND. We prove this first fer> 3. Denote the input circuit by’ = \/j N Cit
where eaclt’; ; is a top OR deptlik — 2) circuit. If C' is satisfiable they\, C;; is satisfiable for at least one
choice ofj. Add to the witness the indexof this satisfiable sub-circuit (s given by the boolean variables
i1, ..., ig where¢ is logarithmic inpoly(m,n)). For eachj, denoteC’;, = Cj; V il' v ... v il , wherei/
denotes @ j. Notice thatcj’.yt is always satisfied foj # ¢, and forj = i is satisfied if and only i’; ; is
satisfied. Thus the circuit can now be written@s= A, C} , that is satisfiable if and only if the original
circuit was. The top OR gate @f is therefore removed in the new instaric¢ewhile adding only a small
number of variables, thus the input to the circuit witness remains of pedg(n, log m) as required.

In the caseé: > 3, the depth of the new instance becorkes 1. In the case that = 2, the bottom level
that included only variables is transformed into an OR of variables, thusetecincuit is simply a CNF
formula (and the depth remaiks=2). O

The VC Hierarchy: The)C classification indeed defines a hierarchical structure. That is:
VCo CVC1 CVCy CVC3--- CVC.

And in general, for every two polynomially bounded functidris, m), (n, m) such that for alk, m we
havek(n,m) < {(n,m) thenVCi(m,n) C VCi(m,n). FurthermoreC = NP by the definition of
NP. These observations follow trivially by the definitions, the only non-triyiatt being the fact that
VC1 C VC,, that is proved next.

Lemma 2.16 VC1 C V(s

Proof: We need to show a W-reduction from LocalCircuitSAT to SAT. The input isefoee a long string
x and small circuitC' on n + nlogm variables. Letiy,...i,, denote the potential locations in the string
that the circuitC receives as inputs. Also define the variabjes..., v, to indicate the values of in the
corresponding locations (thatgs = x;, for ¢ € [n]). Thus the circuitC runs on the variableg,, ..., v, and
the bits ofiq, ...i,.
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We first note that' is of sizep(n,logm) = (n + nlogm) and may be reduced (via Cook’s Theorem
[8]) to a CNF formula® overO(p(n,logm)) variables and of siz€(p(n,logm)) that is satisfiable if and
only if C'is satisfiable.

Thus we have a CNF formula over the variablgs..., y,, i1, ...i, and some extra variables. This for-
mula’s satisfiability will be equivalent to the membership of the LocalCircuitSATamse if we manage to
force the variables of to take the valueg, = z;,. This is done by adding additional clauses to the CNF
in the following manner: For simplicity we describe this only fgr where the same is repeated for every
othery, for ¢ € [n]. Define for eacly € [m] a formula®; = (y; = z;) V (i1 # j). Notice that®;, = 1 if
and only ify; = z;,. Denote the bits of; by iy 1, ..., 41 ¢ Whered = [logm]. An alternative way to write
®; is as the following CNF (recall that denotes @ j):

Oj = (yi VIV VL VEL) A @V 3 Vil VL Vi)

Finally, to forcey; = z;, we simply take the new CNF to bie- A /\je[m] ®,;. The same is repeated to force
y =z forallt € [n]. O

2.4 TheV(C Classification and Verification with Preprocessing

We now discuss th¥C hierarchy from a different angle, that of the verification complexity ofraglaage.
This approach, though slightly more cumbersome than the definition via Vétieds, gives more intuition
as to what it means to be in a clag€,. The new view defines th®C hierarchy with respect to the
verification algorithm forZ, that is, the efficient procedure that takes a witnedsr = € L and verifies that
itis indeed a true witness. We point out that the nature of verification algusithay vary when discussing
different NP problems. For example, in theClique problem the verification algorithm needs to check
only O(k?) edges in the graph, and thus can read only a sub-linear part of thedestar8AT, on the other
hand, all the clauses in the formula must be checked when verifying a witnes

Simply looking at the verification algorithm of a language is not sufficient. Skarters, classification
according to verification does not distinguish between probleny® that are trivially compressible and
NP-complete languages. Instead, we consider the notion of verification vefirqmessing. This is the
process for verifying that € L when given a witness, that also allows a preprocessing stage to the estanc
Formally:

Definition 2.17 (Verification with Preprocessing) Let L be an/N\P language with instances of length
and witness length. A pair of polynomial timealgorithms(P, V') are called averification with prepro-
cessindor L if the following two step verification holds:

1. Preprocessing:P gets an instance and outputs a new instande(z).

2. Verification: There exists a polynomial-, -) such thatr € L if and only if there exists a witness
of length at mosp(n, log m) such thatV' (P(z),w) = 1.

Notice that when allowing for preprocessing, then all probleni8 imave a paif P, V') whereP solves the
problem and stores the answer whifesimply relays this answer. Thus when considering the complexity
of V' in this definition, then easy problems indeed have very low complexity.

The VC Classification via Verification with Preprocessing: An alternative and equivalent way to view
the classes in th¥C hierarchy is based on the verification algorithrin a verification with preprocessing
pair (P, V). The problems are divided into two families:

15



e Theclas3/C; is the set of the languages that have very efficient verificatiorpglg(n, log m) rather
thanpoly(n, m)). We assume random access to the instance, thus such a verificatiathedgmly
accesses a sub-linear fraction of the instance.

e The languages whose verification is not very efficient (run in tiig(n, m)). This family is further
classified into sub categories. The cl®&%, is the class of languages where the verification algorithm
V has a representation as a depgbolynomial size circuit (polynomial in. andm).

This definition is equivalent to the definition via W-reductions since the Wggoh to the complete
problem can simply be viewed as the a preprocessing stage. In the otheliadiy every preprocessing
stage is actually a W-reduction to the language definet by

2.5 Within VC, - The classVCor

Arguably, the most interesting class in the hierarchy is the bottom #&ss It contains many natural
problems such as Clique or small subset-$utiat only test local properties of the input. Furthermore, it is
presumably the easiest to find compression algorithms for. We furthee @imhierarchy within the class
VC1 by introducing another class, the clagsor. Consider the language OR(L) that take a large OR of
small instances of a languade Formally:

Definition 2.18 (OR(L))

Let L be anNP language. Define the language OR(L) as follows:
Input: m instancesey, ..., z.,, to the languagd., each of size:.
Membership: If there exists € [m] such thatz; € L.

Specifically the languag®R(CircuitSAT) is defined as:

Input: m different circuits where each circuit is of size
Membership: If one of them circuits is satisfiable.

This language is used to define the following class:
Definition 2.19 The clas9/Cor, is the class of all languages that W-reduce to OR(CircuitSAT).

We first note that in each of the small instances, the instance length and witness length are polyno-
mially related. So unlike the general case where we focused only onwitioelss languages, when talking
about OR(L), any language € N'P\ P is interesting. For example, the language OR(3-SAT) is not trivially
compressible. Moreover, it is compression-completaiop .

Claim 2.20 Let L be anyNP-complete language, then OR(L) is compression-completédeyi.

Proof: The W-reduction from OR(CircuitSAT) to OR(L) simply runs the standardpki@duction from
CircuitSAT to L for each of then circuits independently. The witness for each circuit was of at mastd
is now of sizep(n) for some polynomiap. In addition the witness contains an index of the instancg of
that is satisfied, thus the total witness lengthp(is) + logm. O

For example, the proble®R(Clique) that getsm small graphs (oven vertices) and asks whether
at least one of the graphs hasized clique (wheré& = O(n)) is also compression-complete foC 5.
Moreover, we note the following claim that is relevant to our cryptograppmications (in Sections 5 and
4):

15This problem takesn values and a target value and asks if there is a small {gizibset of the values that adds up to the
target.
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Claim 2.21 Clique is compression-hard fafCop.

Proof: The languag® R(Clique) W-reduces to Clique simply by taking one graph that is the union of all
the small graphs in th@ R(Clique) instance. Clearly there is a clique in the union if and only if there is a
clique in at least one sub-graphd

A similar claim is true for all problems involving searching for a connectedygyth of sizen in a
graph of sizen as long as the problem of deciding whether a graph of iz¢ contains such a subgraph
is NP-Hard for some polynomial(-). This is true, for instance, for the problem of whether there is a path
of lengthn.Y” On the other hand we have that:

Claim 2.22 VCpr C VC;

Proof: This is best seen by W-reducing OR(Clique) to LocalCircuitSAT. GiveaphsGy, ..., G, for
OR(Cligue), generate the instance= G4, ..., G,,, and a circuitC that receives the locations of a clique in
one of the graphs and checks whether they are indeed the edges itotagms form a clique (all belong
to the same graph and are the edges inducek \®rtices etc...). The size of the circuitzign, logm) for
some polynomiap since it checks only locations in that belong to one graph (of sizg. Finally, add
p(n,logm) dummy variables to the circuit so that the circuit C has size becomes equal nartiteer of
input variables (as is required in LocalCircuitSAT)3

FurthermoreVCy C VCor, Since any compressible language can be W-reduced by the compression
algorithm to a language with instance siz@:,logm) and this instance can reduced to CircuitSAT and
viewed as an OR of a single small circuit and hence 8@y . Note that here too, one may need to add
dummy variables to keep the Circuit quadratic in its input. Altogether we have that:

VCo C VCor C VC;.

2.6 The)C Classification and some\P Problems

In general, most of th¥'C classification focuses on W-reductions to defpttircuits. The reasoning for this
is that there is a certain tradeoff between depth and the number of variklwes precisely, we can reduce
the depth of a verification circuit, but only at the price of adding additiomailables (this is done using
methods from Cook’s Theorem [8] and requires adding a variablesfch gate in one intermediate level of
the circuit). Since the number of variables is the focal point when disayssimpression (as it coincides
with the witness size), then depth turns out to be central in our classification.

Given our current state of knowledge, there are a few plausible viétveavorld. The twoendpoint
scenarios are (i) there is compression for every languagé7h(as would be implied by a compression
algorithm for CircuitSAT), (ii) there is only compression for a few selediybems, such as the examples in
section 2.1. A third option is that there is a compression algorithm for some cesipmecomplete problem
in the hierarchy (say fovCy), which would imply the collapse of all the classes beld@. to VCy.

We will briefly go over a few key classes in the hierarchy and a few exagflaatural\P problems
and their classification (as we know it) within th¢ hierarchy:

The classVCy: Currently we know that this class contains all the languag@s languages that are already
compressed by definition (such&SAT), and the languages that we showed compression algorithms
to (Vertex-cover, PRG-output and Minimum-fill-in).

It is interesting to note that whereas the problem of finding a path of lenitfiixed parameter tractable [2], Feige and Kilian
[20] give indications that the Clique problem is hard for smafl/ia subexponential simulations).
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The classVCpg: This class contains all languages @Ror an P languagel.. One natural example is
the OR(SAT) problem which is actually a depth 3 circuit where the fan-ineatvtlo bottom levels is
bounded by» and only the top gate is allowed to be of greater fan-in. Some important |laggjirag
this class are those that need to be compressed in the cryptographictapigaSections 5 and 4.

The classV(Cy: Since we are only interested in problems where the witnessisizenuch smaller than
the instance sizeq, then many natural problems with this restriction ar& @y . For example, graph
problems that ask whether a small graph can be embedded in a large ggatlhira)’C,. The Clique
problem (with a clique of siza), or Long-Path (a path of lengthithat does not hit any vertex twice)
are such small graph embedding problems. Small Subset-Sum is anothai featguage in/C;.
This language receives a setrafvalues and a target sum and asks whether there is a smalhfsize
subset for which the values add up exactly to the target sum.

Dominating Set: The problem asks, given a graph, whether there is a sktveftices such that all the
graphisinits neighbor set. Dominating set is in the cldGgas implied by the following verification:
the witness is a sef and the algorithm tests thetvertexv 3 vertexu € S such that(u, v) is in the
graph. They translates to and AND gate and tHdranslates to an OR gate. Finally, testing that an
edge is in the graph requires an AND over th@og m) bits representing this edge. In total, this is a
depth 3 circuit. Note that a straightforward verification of vertex coveralsib yield a depth 3 circuit.
However, while vertex cover is compressible and’tty, for dominating set we are unaware a better
method. In addition, dominating setdiempression-hard fovCs. This is seen by a standard reduction
of SAT to dominating set in which a SAT formula withvariables andn clauses is transformed into
a graph withm + 3n vertices with the property that the graph has a dominating set ofsiff¢he
SAT formula is satisfiablé®

Weighted-SAT: Given a CNF formula of length the problem asks if it has a satisfying assignment of
weight at most: (at mostk variables are assigned the vallle Unlike our previous discussions of
SAT, the number of variables here is only boundedrbgind the short withess simply consists of the
list of all variables that receive the valui€that is, the witness is of length= k log m). This problem
serves as the basic complete problem for the parameterized complexityiclasswhich is at the
bottom of the W-hierarchy (see [14]). However, with regards to cosygiodity, we only know how

to place it in the clas¥C4. This is shown by the following verification procedure (using the same

logic as with Dominating-Set): For every witness (lift)the algorithm tests that clause” either
Jaliteralz € C such thatr € L or 34 a negated literat € C such that: ¢ L. The verification of
x € L adds up to total depth by testing thatly € L such thatr = y (wherez = y is tested by an
AND over the bits ofr andy). On the other hand, verifying that ¢ L requires total depth as it

runsvy € L we haver # y. The overall depth is thus dominated by the negated variables and is thus

4.

OR of (large) instances: Consider the Or of CNF formulas over few variables (unlike the languaes AT)
where the CNF formulas are considerably smaller than the fan-in of the @R gauch a language
thus contains depth three circuits, but is actually®y, as implied by Claim 2.15.

Integer Programming (IP): An instance of integer programming consists of a listolinear constraints
on n integer variables with the goal of maximizing a linear target function over thegariables

8n a nutshell, the reduction creates a triangle for each variabté the formula. One of the nodes of the triangle is identified
with the positive variable and another with its negation while the third is connectigdo the other two. In addition, a vertex is

created for each clause in the formula. Now, each literal is connectedlviththe clauses that it appears in. The generated graph

has a dominating set of sizeiff the formula is satisfiable.
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(under the list of constraints). Unlike its counterpart of linear programpvisigre the variables may
take real values and is polynomial time solvable, integer programmingFfshard even when the
variables are restricted to taking only the valdesd1 (one of Karp’s original problems [34]). Thus,
the decision variant of integer programming, where the number of cortstiaimuch larger than the
number of variables, is interesting with respect to compression. First, essipg it is at least as hard
as compressing SAT: given a SAT instance withariables andn constraints it is simple to come up
with a corresponding IP instance with variables anan constraints, i.e. IP i¥C,-hard. On the other
hand, a straightforward verification of a withess for this problem takegithigosed assignment for
then variables and checks if it satisfies each of the constraints. The verificztelinear constraint
can be achieved in logarithmic depth @), placing IP inVCy(n) for k(n) = Q(logn). We are
unaware of a (significantly) better classification (of lower depth) for mtggogramming.

2.7 On Compression of Search Problems

So far, theNP problems that we discussed were all decision problems, that is, they ask if, and are
answered by YES or NO. When considering a spedifi relationR;, associated wittL, 1° then the above
decision problem has a natural search problem associated with it, whichdagially find a withessto € L
with respect to the relatioR;,. A solution to such a problem is anbit string rather than just a single bit.

Loosely speaking, a compression algorithm for the search instancklgivoduce a shorter output that
contains enough information about some witness for the original problem.

Definition 2.23 (Compression for search problem)A compression algorithm for alV’P search problem
L (with respect toR;) is a pair of algorithms(Z, E') with a polynomialp(-,-), whereZ is a polynomial
time compression algorithm anfd is an unbounded extraction algorithm. Given an instaneéth witness
parametem we should have that:

1. Z(z) is of length at mosp(n, logm).

2. If x € L and there is a witness of length then E(Z(x)) = w wherew is a witness tac € L with
respect taRy,.

We now show that a compression for decision problems also yields a caigorder search problems,
without an increase in the hierarchy

Theorem 2.24 If a classVC;, has a compression algorithm, then there is a compression algorithm for the
search problem of a relatioR;, of L € VCy,.

The technique of the proof below also comes in handy in proving Theor¢megarding the application of
the ability to compress, say SAT, to cryptanalysis in hybrid bounded stonadel. In the following proof,
a witness tar € L refers to a witness according to the specific relafignassociate with..

Proof: Given an instance to a languagéd., for any: € [n], consider theV'P problemL; that asks whether
there exist am bit witnessw to = € L such thaty; = 1 (thei'” bit of w is 1). The languagé; is alsoin
V(. since its verification circuit is the same as the onelfavith an additional AND to the variable; (this
AND gate is incorporated into the top level AND of the circuit thus the depth .

Our first attempt is to compress the instander everyi € [n] with respect to the languade (denote
such a compression ;.. (x)). Thus we storéZy,. (x) for all i € [n], which amounts ta - p(n, log m) bits,

%L et L be anAP language with parameters andn. A relation R;, associated with. is a polynomial time functiorR;, :
{0,1}™ x {0,1}" — {0,1}, such that for every: € {0,1}™ it holds thatz € L iff there exists aw € {0,1}" such that
Rr(z,w) = 1.
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for some polynomiap(n,log m), which is also inpoly(n,logm). Now suppose that there is only a single
withessw to x; then one can extract bit by bit, by solving the compressed instance of each bit. However,
this idea fails whenw is not the only witness, and we may inconsistent answers for the diffieitsnt

The second attempt is to use the reduction of Valiant and Vazirani [53] hiqa@ witnhess. The idea is
to choose a pairwise-independent hash functiaghat is appropriately shrinking, and add to the language
the requirement thdt(w) = 0. We use the following lemma:

Lemma 2.25 ([53]) Let L be an /NP language and for every denote byiV, the set of all withesses to
x € L. Let/ be such thag’ < |[W| < 21, LetH, - be a family of pairwise independent hash functions
with i : {0,1}" — {0,1}*2 for all h € Hy,». Then

1
Prien, o [{w : w € Wy andh(w) = 0} = 1] > 3

Consider the\'P languagel.” wherez ¢ L" if it has a witnessw for = € L andh(w) = 0. We note that
this language is also iWC;, since the additional requirement can be computed efficiently owariables
(the hash is efficient) and by Cook’s theorem this may be representedNE tormula over these variables
plus onlypoly(n) additional variables. Thus adding the requirement of the hash doeslshdd she depth
of the verification circuit forl.

Now, if we enumerate on all values 6then with probability at Iea%, for the correct we will get that
L" has a unique witness and storifgs. () for all i suffices to maintain the information about this witness.
This can be repeated sufficiently many times (say O(n) times) so that with loglning probability, one
of the attempts will indeed give a unique witness. However, this solution is asffizient, since we have
stored a list oD (n?) compressed value®)(n) repetitions for each value éfe [n]) and we are guaranteed
that with overwhelming probability one of them is a witnessfdvut we do not known which one (recall
that we cannot store the original instance and thus cannot verify thimess is correct).

Our final attempt succeeds in reducing the list of potential witnesses intigaeuand true witness. This
compression is as follows: Denote By the language that asks whether there exist doit witnessw to
x € L such thatw; = 0 (similar to L; but with w; negated). The compression of an instamde the search
problemL goes as follows:
For every! € [n] repeat the following: times:

e Chooseh € Hyio.
e Foralli € [n] storeZ;,(x) andZ,»(z).

The extraction procedure is as follows: For@a#indh € H,. -, solve all the compressed instance pairs.
For every paitZ; »(z) andZ; », if they both are negative or both are positive then ignore all values that a
compressed with this. OnIyY'if for all 7 we have exactly one of the instances being correct then output the
it* bit of w according to the result.

The above algorithm indeed compresses since it only adds a factdrtofthe overall storage. With
probability at least — 2= at least one of the chosérs is successful in leaving exactly one witness to
x € Ly, and this witness will be extracted. Finally,/ifdid not leave exactly one witness, then this will be
identified: If there are no witnesses th@@?(x) andZ;» will both be negative for alf. If there is more

than one witness, then for at least one choicetwith Z, . (x) andZ, . will be positive. O

2.8 On Maintaining Other Information

We have seen that compression may maintain much more than just a yes/no. ahsatiral question to
ask what other types of information may be maintained through compressamnittags. The following are
some examples:
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Number of witnesses:The compression described above actually maintains an approximation afrthe n
ber of witnesses t@ € L (with respect taR;). Once the choseh is too large, there will be a sharp
drop in the probability of having a witness and this can be observed wheacerg the withesses
and indicate what is the riglt

An almost random witness: The compression above also outputs a witness that is almost uniformly
distributed overlV,.. Or more accurately, the probability of getting each witness is bounded by a
constant timeg /|W,|.

On maintaining all withesses: As opposed to maintaining a single witness or the number of witnesses,
a compressed instance cannot always maintain the information abadfithe witnesses of an input
instance. This is shown by the following simple information theoretic argumemidenanm bit
string s with a DNF circuitC' by constructing for each position € [m] a formulaC; onlogm
variables. Ifs[j] = 1 then takeC; to be circuit that is satisfied iff the variables encode the index
J. If s[j] = 0 thenCj is the non-satisfiable circui’; = 0. The circuitC is formed by taking an
OR of all these circuits@ = \/je[m} C;). The satisfying assignments 6f correspond exactly to

the 1I's in s. ConsiderC as an input to the language as Circuit$ATSuppose that there exists a
compression algorithm that maintains all of the witnesses of a cittuih particular, this means that
them bit string s may also be extracted from the compressed instance. But this is clearly ibiposs
information theoretically, sincex random bits may not be representedgoyy(n,logm) < m bits.

So we conclude that if our goal is come up with a compression algorithm fortisek we must come
up with a way of losing information about the withesses.

In the examples of compression that we have seen in Section 2.1, the csimpraigorithms for
vertex cover, PRG-output and Minimum fill-in actually maintain all the withes®esthe other hand,
the compression for GapSAT (which we will see in Section 2.9) does natssadly maintain this
information, as it is based on sampling.

2.9 Speculation on Compression

We give two arguments that may be viewed as evidence to the existenceraedistence of compression
respectively.

An Optimistic View - Compression of a promise problem and the PCP Thecem: Consider the promise
problem GapSAT that takes as input a CNF form@ilaf sizem overn variables and the guarantee that
either® is satisfiable or it is at mogtt — 5-)-satisfiable (no assignment satisfies more tfiar 5-) of its
clauses). The task is to decidelifis satisfiable or far from satisfiable.

Such a problem has a simple and witness retrievable compression. Thetaead®se) (n?) random
clauses fromb and take the AND of these clauses to be the compressed formdihis compression works
because if® is far from satisfiable then for every assignment the formles satisfied with probability
at most2—2" (U does not contain one of th%m unsatisfied clauses). Taking a union bound over all
assignments, we get that with probability — 2~") the formula¥ has no satisfying assignment. On the
other hand, ifb is satisfiable then the same assignment also satiBfiaad hence the witness retrievability).
Note that our definition of GapSAT is robust in the sense that GapSAT isramsiple whenever the gap is
(1- Wln)) for every choice of a polynomial-).

The above simple compression algorithm is especially interesting in light of tReTlR€orem. One way
to view the PCP Theorem is as an efficient reduction from an instance bt&an instance of GapSAT.

2The circuitC is actually an instance for the langua@&(C'ircuitSAT).
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Thus one can hope to combine the PCP reduction with the above compresdigetaa compression for
general SAT. However, reducing general SAT to GapSAT via the P@Btia W-reduction as the witness
size grows to the order of the instance size. For starters, the PCP Thisangically defined over 3-CNF
formulas, and the reduction of a general sizeCNF to a 3-CNF add®(m) variables. In order for this
approach to achieve compression for SAT, we require a new PCPé&rhdbat is actually a W-reduction.

GapSAT is just one example of a gap problem that admits compression. Fordasone can consider
the promise problem GapClique where a graph of sizeither has a Clique of size./n or contains no
Clique of sizen. As in the case of GapSAT, GapClique is compressible by sampling a sulitsetertices.
Thus, coming up with a W-reduction from a genefal, m’)-Clique problem (the graph of size’ either
contains a clique of size’ or not) to(n, m)-GapClique would enable the compression of Clique. We view
finding PCPs that are also W-reductions as a major research directiatjaly in light of the recent new
proof to the PCP Theorem of Dinur [13].

A Pessimistic View - On Oblivious Compression: We have seen in Section 2.8 that it is impossible to
maintain all of the information in an instance when compressing it and some infomignecessarily lost
(for example the list of all witnesses cannot be kept). On the other hansghow that if compression exists
then it is not likely to lose too much information about the original instance. Suelkult would entail the
collapse of the polynomial hierarchy to its second level. More formally:

Let Z be a compression algorithm for SAT. We consider it as a two input algoritkinga formula
® and local randomness € {0,1}. Denote byZ(®, U,) the random variable taking the output Bf
with fixed input® and randomr € {0, 1}*. Let X be a distribution over formulas. The random variable
Z(X,Uy) denotes the output df under a choice of randomand a randon® from the distributionX.

The compressiorY is said to beobliviousif there exists a samplable distributidd over satisfiable
formulas, such that for every satisfiable instaficthe distributionZ(®, U,) and the distributior® (X, Uy)
are statistically close (within statistical distaree

Claim 2.26 If there exists an oblivious compression for SAT, then the polynomialrbiigraollapses to its
second level.

Proof: We show that if oblivious compression of SAT instances exists then CosSATM. Consider the
following interactive proof that an instande ¢ SAT. The verifier chooses a random satisfiable formula
U ¢ X randomness € U, and flips a random coin. If ¢ = 0 then the verifier sends = Z(®, r) to the
prover, ifc = 1 he sendg = Z(¥,r). The prover then answetsif the compressed instance is satisfiable
and0 otherwise. The verifier accepts if the provers answer equals hisabill rejects otherwise.
Completenesdfindeed® ¢ S AT, then the prover will be able to tell whether the verifier used a ¢eind

or ¢ = 1, simply by testing the satisfiability gfand replying correctly.

SoundnessSuppose thab € SAT, then by the obliviousness property Zfthe messagg is from nearly
the same distribution whether= 0 or ¢ = 1 and the prover is bound to error with probabilgw e. O

Thus, oblivious compression for SAT is not likely to exist. However, thglmges we would like to
compress for the applications in Sections 3, 5 and 4 are actually/mn Co—N"P, and thus for these
applications even oblivious compression is actually a valid possibility.

Part Il: Cryptographic Applications
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3 On Collision Resistant Hash from Any One-Way Function

Loosely speaking, a collection of collision resistant hash functions (G&&family H of length reducing
functions, such that no efficient algorithm can find collisions induced ndom hash from the family.
That is, no PPTM can find for a randomly choser  H, a pair of input strings: andz’ such thatr #
buth(xz) = h(2’). In addition we want an efficient algorithm for sampling fr@thusing (possibly secret)
randomness (the secret coins approach is potentially more powerfulvtiem only public coins are used
[28]). CRHSs are important primitives with wide cryptographic applicatiorg, [85, 41, 5] (see discussion
and formal definitions in, for example, [32]). Currently there is no knoamstruction of CRH from general
one-way functions or one-way permutations, and moreover, Simon f[&0}exd that basing CRH on one-
way permutations cannot be achieved using black-box reductions. &vetbat compression can be used
to bridge this gap.

Theorem 3.1 If there exists an errorless compression algorithm for SAT, or for aalglpm that is compression-
hard forVCo g, then there exists a family of Collision Resistant Hash functions (CRH) basmaymne-way
function.

Proof: Let (Commit, Verify) be a statistically binding computationally hiding commitment scheme based
on the one-way functiorf. Recall that the protocdl'ommit takes from the sender a stritsgand random-
nessr and after an interaction the receiver gets a commitmenthe polynomial time algorithn¥ eri fy
takes the commitment and a possible opening to vali$é with randomness’ and verifies that’, r’ are
consistent withe. One could take for example the commitment scheme of Naor [43] based ongheay
function .21 In our setting we can work under the assumption that the sender (in the commjiisteonest,
and in such a case, the commitment may be achieved without interactior4at all.

The CRH construction is inspired by the approach of Ishai, Kushilevitz@stdovsky [32] for con-
structing collision resistant hash from Private Information Retrieval YPAR/ery high level intuition is to
choose a hash function from a naive hash family with no guarantees (eottstruction below we use the
selection function). The new hash function is defined by a commitment to tkie hash function, and
outputs a compression maintaining the information of the committed naive hagiofunden applied to
the input. The actual construction is given in Figure 1.

By the compressing properties Bfwe get that., ., indeed shrinks its input (note that shrinkage by a
single bit allows further shrinking by composition). We also have that sampling from H can be done
efficiently (with secret coins).

As for collisions, letr # =’ be two strings in{0, 1}™ that form a collision, i.e.ks.,, (z) = hor, (2').
This equality implies, by the property of the compression, dhat is satisfiable iff®, . is satisfiable (here
we use the fact that the compression is errorless). Due to the bindingrprap the commitment we have
that any assignment satisfyirg, must havey = ¢ (recall that: is the index that is a commitment to).
Thus the first part ofb, . is only satisfied whery = i. But the second part is only satisfiedaf = 1,
thus®, , is satisfied if and only if;; = 1. We get thatd, , is satisfiable if and only if; = 1 and®, ./ is
satisfiable if and only if; = 1. Therefore it must be the case that= 2/, since otherwise one of them is
0 and the other one isand®,, , satisfiability is not that ofp,, .. necessarily the stringsandz’ are such
thatz; = . But for somej we haver; # m; and for thatj; we deduce thai is not a commitment tg.

2To be more exact, the commitment of [43] can be based on the pseddonagenerator of Bistad et al. [27] which in turn can
be based on the functigh

2|n the scheme of Naor [43], the receiver is required to provide thdesemith a (public) random string. Certainly, an honest
sender can generate this string by himself without harming the propeftiss commitment. Thus in such a setting, the sender can
generate the commitment without interaction.
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CRH family H;:

Description of the hash function: Let Z be a compression algorithm for SAT. A function in the
CRH collection is denoted, ,, and defined by a commitmentto a valuei € [m], and
randomness for Z. The commitment uses security parametéwheren << m).

Inputto h,.,,: astringz € {0,1}™
The CNF formula @, is defined as follows:

e Denote byVerify, the algorithmVeri fy with the inputo fixed. That is,Verify,
takes as inputg andr and accepts if and only if they form a legal opening of the
commitments (and in particular this means that= 7).

e TranslateVerify, into a CNF formula®, over the variableg;, ..., y, of y and the
bits of » (using Cook’s reduction).
e For everyj € [m] define the claus€’; , = (y{1 % y;'E V..V yzfl) if 2; = 0 (wherey"
denotest andy' denotesr) andC; , = 1if z; = 1.
e Set
oo =Dy A [\ Cja
j€m]
The hash function:
hU,TZ (x) = Z((I)J,QDTZ)

Figure 1: The construction of Collision Resistant Hash from any onefurastion.

Suppose now that we have an efficient method of finding a colligsiand’ for a given(c, rz). Pick
any j such thatr; # x; Then we know thatr is nota commitment tgj. This procedure can be used to
break the hiding properties of the commitment scheme, since it yields an dffivéthod that distinguishes
the commitment value from random with advantdge:: given (the real) and a random oné € [m] in
a random order, run the above procedure to obfaitf ; equals one of the two valuésor ¢/, then guess
this one as the random one and otherwise flip a coin. This contradicts sswumpsons on building blocks
(namely, the one-way function).

To prove the result when using compression for any language that isressign-hard folCor, a
similar construction is defined based on the OR of small circuits rather thanf@iNtulas: For every
Jj € [m] let Cys; be the circuit that outputs one if and only if there exists randomnessch thato is
consistent with(j, ) (that iso is a possible commitment to the valpi@sing randomness. LetC, , be the
circuit that takes the OR of all’; ; such thatr; = 1 and letZ be a compression algorithm for the language
OR(CircuitSAT). We definé,,, (z) = Z(Cy 4, 7). The proof is identical to the case of SATD

Note that instead of an errorless compression we can do away with aqperbability slightly smaller than
27™. That is, for allz we want the probability thaZ (®, ., 7z) preserves the satisfiability df, , to be at
leastl — 2=™*“ where the probability is over andr; andu ~ log m. In this case we can argue (using a
union bound) that with probability at leakt- 27" no z exists violating the preservation of satisfiability.
We also note that the construction is inherently non-black box as it usesdee€tthe one-way function
(via the commitment) in the application of Cook’s Theorem. This is essential foraliaity of the whole
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approach in light of the black-box impossibility of Simon [50]. Theorem 3.1 inshe following corollary:

Corollary 3.2 Ifthere exists an errorless compression algorithm for SAT or for anlglpro that is compression-
hard forVCo g, then there exisdtatistically hiding, computationally binding commitmeschemes based on
any one-way function.

The corollary follows since CRH imply statistically hiding bit commitment, see Naoryamg [46] (and
Damgard, Pedereson and Pfitzman [9] for commitment to many bits). As mentionediintribduction, the
currently known minimal assumptions for constructing statistically hiding bit commitsrege the existence
of one-way permutations [45] and the more general one-way functidhknown pre-image size [24].

4 On Everlasting Security and the Hybrid Bounded Storage Model

The bounded storage modeintroduced by Maurer [39], bounds tlpace(memory size) of dishonest
players rather than their running time. The model is based on a long rartdomm® of lengthm that is
publicly transmitted and accessible to all parties. Security relies on the assnittati@n adversary cannot
possibly store all of the strin® in his memory. The requirement is that the honest parties Alice and Bob
can interact using a small local storage (of sizetheren << m) while security is guaranteed against an
eavesdropper Charlie with much larger, yet bounded storage space.

This model has enjoyed much success for the task of private key eioeryjt has been shown that Alice
and Bob who share a short private key can exchange messagesysesing only very small storadé
while an eavesdropper who can store up to a constant fracti@ (@fg. %m bits) cannot learn anything
about the messages (this was shown initially by Aumann and Rabin [4] andvietpio [3, 12, 19, 38]
and ultimately in Vadhan [52]). These encryption schemes have the impprtadrty calleceverlasting
security(put forward in [3, 12]), where once the broadcast is over BRnid no longer accessible then the
message remains secure even if the private key is exposed and Chadistganger storage capabilities.

In contrast, the situation is less desirable when Alice and Bob do not shargearet information in
advance. The solution of Cachin and Maurer [6] for this task requifiee And Bob to use storage of size
at leastn = Q(y/m), which is not so appealing in this setting. Dziembowski and Maurer [18]qutehat
this is also the best one can do.

The Hybrid Bounded Storage Model: The inability to achieve secure encryption in the bounded storage
model with memory requirements smaller thar= /m has lead to the following suggestion that we call
thehybrid BSM Let Alice and Bob agree on their secret key using a computationally s&eyragreement
protocol (e.qg. the Diffie-Hellman protocol [11]). The rationale being thiaite an unbounded eavesdropper
will eventually break the key, if this happens after the broadcast haaldgireccurred, then the knowledge
of the shared key would be useless by then (this should be expectedheoenerlasting security property
where getting the shared key after the broadcast has ended is us€héss)ybrid model is very appealing
as it attempts to achieve everlasting security by adding assumptions on the dlatitpdversary that has a
strict time limit Assumptions of this sort are generally very reasonable since all thegquére is that the
computational protocol is not broken in the short time period between itsgge@and the transmission of
R. For instance, an assumption such as the Diffie Hellman key agreemengjirigt be broken within half
an hour, can be made with far greater degree of trust than actually agstimaifong term security of this
protocol.

#Requiresr = O(¢ + logm + log 1) bits of memory for art bit message and errer

25



Somewhat surprisingly, Dziembowski and Maurer [18] showed that #iismale may fail. They in-
troduce a specific computationally secure key agreement protocol if@iogta non-natural modification
based on private information retrieval (PIR) protocols). If this keyeagrent protocol is used in the hybrid
BSM setting with a specific private key scheme, then the eavesdroppeocgietely decrypt the encrypted
message. However, their result does not rule out the possibility that tiredhgiea will work with some
other key agreement protocol. For instance, using the plain Diffie Hellmaad®ement may still work.

In this work we show that if compression of SAT exists then there exists arkattathe everlasting
security ofanyhybrid BSM scheme.

4.1 Two Possible Models

We define the hybrid BSkf as a setting where the running time of the eavesdropper Charlie is polynomially
bounded up until and during the broadcastyfand unbounded after that. We discuss two variants of a
BSM scheme. We first discuss these in the standard BSM where the emedis unbounded over time,
and then compare them to the hybrid setting where computational restricteoims@osed:

e The Basic BSM SchemeThe basic scheme does allows interaction only up to the start of the broad-
cast ofR (after that only the encrypted message is sent). Thus the key is fully de&stioyrthe time
the broadcast has ended. Such a scheme is fully breakable in the BSMuidthinitial secret key)
since the unbounded adversary can find some randomness consitigiiteg’s view, and simulates
Alice’s actions and thus recover the encryption ®eyBasic schemes in the hybrid BSM are inter-
esting as they include any combination of a key agreement protocol withagkey scheme (such
as the one described by [18]). We show that if sufficiently strong cossje exists then there exist
attacks on any such scheme.

e The General BSM SchemeAlice and Bob interact both befoendafter the broadcast &. Dziem-
bowski and Maurer [18] show that such a scheme is breakable umess2(m) (without initial se-
cret keys). For the hybrid BSM, we show that if compression exists thexe #xists an attack on any
such scheme as long a8 > Q(m/p(n,logm)), for some polynomiap (related to the polynomial
of the compression algorithm and to the running time of the protocol that Alidd3ab use).

Thus we prove that if compression of SAT (or of aWgo z-hard language) is feasible then the hybrid BSM
is essentially no more powerful than the standard BSM.

4.2 The Basic Hybrid BSM

Definition 4.1 (Basic hybrid BSM scheme)A basic hybrid BSM scheme consist of the following: Alice
and Bob run a protocoll that is polynomial inn (this could be a key agreement scheme with security
parametem). Denote byT" the transcript of this protocol. Alice and Bob use their respective viewseof th
protocolII (i.e. the transcriptl’ and their local randomness) to agree arbits from the broadcast string

R that they should store. They store these bits and then use the stored bitetatgean encryption kel

(the scheme requires that they agree on the same key).

We show that sufficiently strong compression of SAT can be used to laakybrid BSM scheme.
For the discussion here také to be a one bit key. The general idea is that while the eavesdropper rhay no

%4The hybrid BSM model and notions of everlasting security in this moddioaneally defined in [25].
%3ince Alice must be able to decrypt the message then simulating Alice witlhadgmness that is consistent with the transcript
must output the same key.
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figure out in time what locations to store, he can use this transcript to saati&ely short (compressed)
CNF formula whose satisfiability coincides with the value of the keylater, when he is given unbounded
computational power, he will be able to extract this bit from the compresseatlfa.

Theorem 4.2 If there exists a compression algorithm for SAT or for any compressiahihaguage for
VCor, With polynomialp;, then any basic hybrid BSM scheme can be broken using memorylog m)
(whereps is a polynomial related t@, and the running time of the protocal).

Proof: Denote the locations of the bits that Alice and Bob storéby.., i,,. Consider the algorithriy’ that
takes the transcrigfy; and the broadcast strirl@ as inputs and Alice’s local randomness, and locations
i1, ..., 1, @S @ witness. The algorithm should check if the witness and inputs are indesidtent with one
another (for exampldy should verify that a key agreement with the randomness of Alice, the tiph%$t
indeed chooses the indicés ..., i,, to store) and output if and only if they are consistent and generate an
encryption keyK = 1. The main observation is that tAéP language defined by this relatidnis in VC; .
Thus, if SAT has a compression algorithm then there is also a compressaittatgfor all of VC, (from
Lemma 2.16) including the language definediby

The attack of the eavesdropper Charlie is as follows: Charlie generaesetification program/
and feeds the instanc@’, R) to the compression algorithm for the langudde By the properties of the
compression, the output is a CNF formula that is satisfiable if and oily# 1. The length of the output
is of some polynomial lengtps(n,logm). If the polynomialp, is sufficiently small then the compressed
instance is shorter than Charlie’s space boglmj and he stores this output. Finally, at a later stage, Charlie
can use his unbounded powers to solve the compressed problem ancbriste bitk .

We note that a slightly more involved argument works also with compressiondgr. The idea is to
use independent compression for theit;) for everyj € [n]. Every suchR(i;) may be presented as the
OR of m circuits of sizep(n) each, for some polynomial O

4.3 The General Hybrid BSM

The general scheme is like the basic one but the encryptiokisynot necessarily fully defined by the end
of the broadcast. In addition, the parties are allowed to interact after thaeltaist is over. We note that the
bounded storage key exchange scheme of Cachin and Maurer (jagquch late interaction.

Definition 4.3 (General hybrid BSM scheme) The general hybrid BSM scheme consist of the following:
Alice and Bob run a protocdll; that is polynomial inn. Denote byl the transcript of this protocol. Alice
and Bob use their respective views of the protdépko determine some bits that each should store from
the broadcast strindR. After the broadcast they interact in a second protddel(with transcriptTs) at the
end of which, both agree on encryption Key

Theorem 4.4 If there exists compression algorithm for SAT or for any compressioa-lzerguage for
VCor With compressiom; (n, log m), then there exists an attack on any general hybrid BSM scheme where
n? > m/p2(n,logm) (Wherep, is a polynomial related tg; and the running time of the protochl,).

Proof: Let K (71, R, T») denote the encryption key that is agreed on when the protocol is run wittipts
T1,T, and randomnesR. Because agreement is guaranteed then this key must be well definedteDe
by A7, the set of all possible randomness of Alice that are consistent with the transcrifit Letsy =
Sa(Th, R,r4) denote the bits that Alice stores at the end of the broadcast when runitingamdomness
74, transcriptl; and broadcast strin§@. Finally, denote byS 4(71, R) the random variable that takes the
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value S (71, R,r4) for a uniform choice of-y € Arp,. Thatis,S4(77,R) is randomly chosen from all
possibles 4 that Alice might have stored when running with transcfipiand broadcast string..
We use the following key lemma of Dziembowski and Maurer [18].

Lemma 4.5 ([18]) LetS4(T1,R) and K (11, R, T>) be defined as above. For a®andT; let S¢(T1, R)
denote the random variables that takesidependent samples 8, (7%, R). Then:

H(K (T, R, T3)|Sc(T1,R)) < n?/m

In other words, a strategy for an eavesdropper is to starelependent samples of the random variable
Sa(T1,R). This strategy guarantees that the eavesdropper will have stored (glitiptobability) enough
information on the encryption kefx. Thus an eavesdropper with(m) storage capacity may break the
scheme as long ag < O(m).

Lemma 4.5 was used in [18] in a setting where the eavesdropper is unlgoamdlean hence sample the
random variabl& 4 (77, R). However, in our setting the eavesdropper is computationally boundediesd
not have the power to generate this distribution. Instead, we use comprésstore information about
samples o8 4 (77, R) to be extracted after the broadcast is over (when the eavesdroppéoisnded).

The main idea is to use compression for search problems, as was demorist@geton 2.7. Define
the NP languagel 4 as follows:

Ly ={(T1,R)|3 witnessw = (ra,s4) suchthat4 € A, andsy = Sa(T1,R,74)}

The first thing to notice is thak 4 is in VCpr. This is shown once more by the same argument as
in Theorems 4.2 or 3.1, and based on the fact that the proibc@ polynomial time inn. Once this is
established, then given a compression algorithmJip z we invoke Theorem 2.24 to get a compression
algorithm to the search problem associated with Running this compression once, allows us to extract
a witness tal. 4 and in particular to get one sampig of a consistent view of Alice. Running thistimes
supposedly givea samples of such a view, which supposedly suffices to break the schebesroga 4.5.

However, in order to invoke Lemma 4.5, we need the samples to be takemliacctar the distribution
Sa(T1,R), which is taken by a uniform distribution over € Ar,. We will show that while sampling via
the compression of search problems does not give the desired distrjbuisostill sufficient.

A closer inspection of our compression for search technique showsvehdb not necessarily sample
uniformly on A7, . However, we do sample close to uniformly, in the sense that no elemdn{ igets more
than double the probability of another elementdn,. We then show that taking twice as many samples
as was originally needed guarantees that amongst the stored bits we tema@om samples of the random
variableS 4 (71, R), and thus we have stored enough bits fr@nto break the scheme.

Recall from Section 2.7 that the compression algorithm for search prolslemeses a random pairwise-
independent hash functignand saves only a witne$s,, s 4) that isuniquelyhashed to the value by h.
Sincer 4 fully determiness 4 (when givenl; andR) then without loss of generality we view the witness
simply asr 4, furthermore, assume w.l.0.g. that is of lengthn. Suppose that € [n] is such thaR’ <
|A7,| < 21, Let H, o be a family of pairwise independent hash functions with{0, 1} — {0, 1}¢*2
for all h € Hy4o. Then for everyr4 € Ap, the probability that a randorh € H, o uniquely maps-4 to
zerois at most~(“*+2) (sincePryesy, ,,[h(ra) = 0] = 2-(“+2)). By the pairwise independencefit holds
that for all othen”, € Ar, with /y # 4 we have thaPryey,,, [h(r"y) # 0lh(ra) = 0] = 1 — 242, By
a union bound over al, € Ap, with r/,  r 4, combined with the probability that(r ,) = 0, we get:

. 1
Pryen, ,[h uniquely maps:4 to 0] > 2~ (+2).. 5= 9~ (+3),

28



Altogether, for allr4 € Ap, it holds that
2= > Prjcyy, , [h uniquely maps 4 to 0] > 2749,

Thus whenever the hash used is indeed of lerigih2, the probability of sampling4 € Ar, is almost
uniform (up to a factor o for each element). Since we repeat the compression for every choice pf]
then in particular samples are stored for the corfect

By Lemma 2.25 we know that at Iea§10f the repeated compressions indeed store information about a
valid witness (a sample ofy € Ar,). Thus, choosing, sagn independent € H,; o guarantees at least
samples (by a Chernoff bound, as the choices are independent)s Bigrdioned above, these samples are
just close to uniform oveAr, rather than truly uniform. The solution is to simply run more compressions,
say, for25n independent choices &f € H,». This would guarantee that with overwhelming probability,
at least3n samples actually are stored. We show thatsamples via the unique hashing method contain
truly uniform samples of witnesses.

This last argument follows by a hypothetical method for sampling uniforminfda, . At a first stage,
3n samples are taken using the unique hashing method. Now a diluting secamisstag Suppose that the
least likely element to be sampled gets probabijlity,,. For any element, that is sampled with probability
pr ., keep the sample with probabili%?M and delete it otherwise. Thus every element is eventually chosen

with the same probability,,;,, and smceM > 1 then at least samples are eventually chosen (with
overwhelming probability). Note that the dllutlng stage is not necessarilyeritlg computable, but this is
taken just as a mental experiment in order to show that amongytlsamples, there exist independent
samples of the random varialfe, (77, R). Thus by storing3n samples via the unique hash method, we
have stored enough bits froR to break the keyx. O

5 On Witness Retrievable Compression and Public Key Cryptography Based
on Any One-Way Function

5.1 On Oblivious Transfer from any One-Way Function

As mentioned in the introduction, whether one-way functions are suffi@rublic key cryptography
is a long standing open problem. In fact, many researchers view the tecknpossibility result of
Impagliazzo and Rudich [31] as an indication that general one-waytiéunscare insufficient for public
key cryptography. We now describe an approach to bridging this gag witness retrievable compression
of a specific language.

Theorem 5.1 If there exists a witness retrievable compression algorithm for a speciBafyAT formulas,
then there exists an Oblivious Transfer (OT) protocol based on anywaryegfunction.

Proof: The construction actually builds a Private Information Retrieval (PIR)goad, and then uses the
construction of Di Crescenzo, Malkin and Ostrovsky [10] to build an @dtqrol from the PIR protocol.
Recall that a PIR protocol has a sender with a database ofis&ed a receiver that chooses to learn one
entry from the database. It is required that the receiver learns thé thig choice, but a computationally
bounded sender learns essentially nothing about this choice. In adtigaiotal communication should be
strictly smaller thanmn.

Let f be a one-way function and tak€'ommit, Verify) to be a commitment based on the one-way
function f (as in Section 3). In this proof we work under the assumption that the pargesemi-honest
(that is, the parties follow the protocol as prescribed and are only alltovied and infer extra information
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from the transcript of the protocol). The semi-honest assumption is judb§i¢kde compiler of Goldreich,
Micali and Wigderson [21] that showed how to transform a semi-homesbdol into one against malicious
parties (again, the only needed cryptographic assumption is the existemoa®-way function). Consider

the protocol in Figure 2.

Protocol PIRy:
Alice’s input: databaseéD of m bits. Let D[i] denote th&th bitin D.
Bob’s input: index: € [m] denote the bits of by i1, ..., i,
1. Bob commits to i: Bob commits to: with randomnessrg, Alice receivesoc =
Commit(i,rp).
2. Alice computes®: The CNF formula® is defined as follows:

e Denote byVerify, the algorithmVeri fy with the inputo fixed. That is,Verify,
takes as inputs andr and accepts if and only if they form a legal opening of
commitments (and in particular this means that= 7).

e TranslateVerify, into a CNF formula®, over the variables, ..., z; of x and the
bits of r (using Cook’s reduction).

e For every;j € [m] define the claus€’; = (ar:];1 Y :z;%2 V...V :c;;‘*) if D[j] = 0 (where
z° denotest andz! denotest) andC; = 1if D[j] = 1.
e Set
o=0,n N\ C
j€lm]
3. Alice Compressesb: Let (Z, W) be a witness retrievable compression algorithm for G
formulas of the form ofb. Alice runs¥ = Z(®) and send¥’ to Bob.

4. Bob checks witness:Note that Bob knows the witness 16erify, and can compute
witnessw for ®,. Bob checks ifi¥ (w, V) is a satisfying assignment far. If it is Bob
outputsl, otherwise he outputs

Figure 2: The construction of a PIR protocol from any one-way functio
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It remains to show that the protocBIl/ ¢ is indeed a PIR protocol. Due to the fact that the commitment
is binding (up to a negligible error), then an assignment satisfingnust haver = i (recall thati is the
index that Bob committed to). Thus the first part dfis only satisfied when: = i. But the second
part is only satisfied ifD[x] = 1, thus® is satisfied if and only ifD[i] = 1. By the property of the
compression algorithm, alsb is satisfiable iffD[i] = 1. Hence, using the witness retrievable properties of
the compression, Bob figures out whether or ¥ids satisfiable, and learns the ] (up to a negligible
error).

The second property is that the sender Alice learns no computationahiation about Bob'’s choice.
This follows directly from the guarantees of the commitment scheme (note thatl8es not send any
information outside of the commitment). The third and final requirement regiaedength of the commu-
nication. But the length of the communication is a fixed polynomial(im) (depending on the commitment
protocol and the parameter of the compression algorithm). So choosingeadaough databases with
m > p(n) guarantees a non trivial PIR protocol and hence an OT protodol.

Note that the OT protocol derived in Theorem 5.1 is a one-round prbfteat is, one message sent
from the receiver followed by one message from the sender). This@liaom the construction of the PIR
protocol and the construction of [10] that preserves the number aflolOne implication of this fact is that
such an OT protocol may be used to construct a two round key agresaof@rhe, that in turn maybe used
to construct a public key encryption. In general, this is achieved by fikiadirst message of the protocol
to be as the public key. Formally:

Corollary 5.2 If there exists a witness retrievable compression algorithm for a specifec af[BAT in-
stances, then based on any one-way function one can construct a keypkncryption scheme (PKE) that
is semantically secure against chosen plaintext attacks.

5.2 On the Limitation of the Witness Retrievability Property

Witness retrievable compression is defined (Definition 1.5) as a compregitioan additional algorithm
W such that for every witness, for R, it holds thatw, = W (w,, Z(x)) is a witness foZ (z) € L’. Recall
that all of the examples of compression algorithms (in Sections 2.1 and 2.9) fact witness retrievable.
This property is essential to the success of the construction of the OTcplatoTheorem 5.1, (without it
the receiver would have to run in time that is super-polynomial). In this seat@sahow that if one-way
functions exist then a compression algorithm for SAT cannot be with&ssvable (this regards the general
language SAT rather than a specific distribution of instances as genardthdorem 5.1). Moreover, this
statement also holds for other general languages mentioned in Theordthah.are potentially easier to
compress than SAT). In particular, there is no witness retrievable cosipnef®r the Clique language or
for the languag® R(S AT) (that is complete fov’Cpr). We give the formal statements below with respect
to the languag® R(S AT') and deduce the statements for SAT and Clique as corollaries.

We also rule out other natural definitions of witness retrievability that woaltbeen sufficient for
the proof of Theorem 5.1 to go through. Suppose we relax the witnessvedtility requirement to hold
only with some probability, then we show that if one-way functions exist then this probakhilitas to be
very low, at most an inverse polynomial in. Such a low probability of successm®t sufficient for the
OT construction in Theorem 5.1 to follow (we note though, that witness ratribty with this low success
probability is still sufficient for the cryptanalytic result in [17]). We theroghthat the same situation also
holds for languages that are guaranteed to haique witnesse§.e. unique-SAT and unique-OR(SAT)).
This is of relevance since the instances being compressed in the probgoféem 5.1 all have at most a
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single witnesg®

We emphasize that the OT construction may still be successful under theessign of formulas of
the specific type that are generated in the proof. However, we caenetdize this method to work with
compression of a more standard language.

On the Impossibility of Perfect Witness Retrieval: Recall that the languageR(S AT') takes as an input

a list of m CNF formulas (each of length) and accepts if at least one of the formulas is satisfiable. Consider
the following way of generating an instance@f(S AT'). Takem bit commitmentsry, ..., o,,, each with
security parametet. For each commitment;, generate using Cook’s Theorem a CNF formpla that is
satisfiable if and only if; is a commitment td. As an instance ad R(S AT') we take the OR of the: CNF
formulas¢y, , ..., ¢o,,. We denote this instance (o1, . ..,0,,). Denote byw,, a satisfying assignment

for ¢, (such an assignment can be generated by an openitigthe valuel). The assignment,, also
serves as a witness fa(oy,...,0,) € OR(SAT). Our first impossibility result is for compression of
OR(SAT) with errorless witness retrievability.

Lemma 5.3 If one-way functions exist then there is no witness retrievable compnefssi® R (.S AT") with
perfect witness retrieval.

Proof: The proof follows by showing that a witness retrievable compresgidor OR(SAT) can be
used to transmit am bit string between two parties with sub-linear communication. As a setup stage, th
receiver generates, random commitments tb andm random commitments t6 and sends them to the

sender. Denoted these byi, ..., ol) and(0?, ... 0% ) respectively.
For every strings € {0,1}™ denotep, = ¢(ao7",...,o%m) (wherez; denotes thé'” bit of z). In order

to send stringe € {0,1}™ the sender sends(¢,) to the receiver. We claim that the receiver can, with
overwhelming probability, learn the string thus contradicting the fact that the message sent is significantly
shorter thann. Note that the receiver knows witnesses for all 7 and that a witness fas, € OR(SAT)
consists of a witness,,1 of a¢, thatis included in,. The receiver extracts as follows:

Procedure Rec on input Z(¢,,):
e Foreveryi € [m]:

1. RunW = W(Z(¢z), w,1)
2. If W is a witness fotZ (¢, ) then sety; = 1, otherwise, sef; = 0.

o Outputy = y1, ..., Ym.-

Denote byX; the random variable of th#" bit of 2 and byY; the random variable of the corresponding
output of Rec. We view the process as a channel between a sender who holds tbenrsadablesX =
X1, ..., X, to areceiver who gets the random variabiés- Y1, ..., Y, and claim that with overwhelming
probabilityY = X.

If X; = 1then the opening of should yield a witness fof (¢..), from the perfect witness retrievability,
and thusy; = 1. We should show that iX; = 0, then indeed’; = 0 (up to a negligible error). Note that
X is uniformly distributed ovef{0, 1}, whereasy” is determined by the random choice of commitments
(o1,...,0L)and(0y,...,0Y,), the random coins of andWW and the random variabl¥.

rYm rYm

%The relevant instances in Theorem 5.1 actually have a unique witnesif tirdye exists a commitment scheme that has only
a unigue opening As this is not necessarily the case when given any one-way functiercowsider for simplicity the case of
one-way permutations (that guarantee a unique opening commitmemegh
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Claim 5.4 Let X andY be the random variables described above. Then for evegy m| and every
polynomialg(-),
1
Prly; =11X;, =0| < —.
[ | ] o)
Proof: Suppose that the claim is false, that is, for sarg¢ and some, Pr[Y; = 1|X; = 0] > 1/¢(n). For
simplicity we first deal with the case thBt[Y; = 1|X; = 0] = 1. In other words}V (Z(¢.),w,:) always

outputs a witness faZ (¢,,). Consider the two distribution§, and£; on lists ofm — 1 commitments:
e Distribution £ is defined by a random and independent choice:ef 1 commitments td).

e Distribution £; is defined by first choosing at random a strivig V3, ..., V,,—1 € {0,1}~! and
then generating: — 1 independent commitments 1§, V5, ..., V1.

From the hiding property of commitment schemes it holds that these two distrib@tienndistinguishable,
i.e. given a listL of m — 1 commitments, no computationally bounded distinguisher can tell with non-
negligible bias whethef. was generated by, or £;. We will show that if the premise of the claim is
false, it is possible to distinguish the two distributions (without knowledge obfienings to any of the
commitments in the list).

Given a listL of m — 1 commitments, the distinguisher generatésand o} and the corresponding
witnesses. He then generates a formglay addings? to the it position in the listZ, and runs the
compression og. The distinguisher then ruid = W (Z(¢), w,:) and checks whethé# is a witness to
Z(¢). By the assumptiori}/ will indeed be a witness every time thais satisfiable. On the other hard,
cannot be a witness if is not satisfiable, simply by the properties of the compression. Thid§ i§ indeed
a witness forZ(¢) then it must be thap € OR(SAT) and there is some commitmenttan the list and
thus . was generated fromi;. Otherwise, it means that ¢ OR(SAT) and the original list was fronf
(ignoring the negligible probability that; generates a list containing only commitment9)o

Now if Pr[Y; = 1|X; = 0] > ﬁn) for some polynomialj(-), then the distinguisher follows the same
procedure with the difference that:

o If W=W(Z(¢),w,1)is awitness fotZ(¢) then output’;.
o If W is not a witness flip a coin and answer eitlfgror £, accordingly.

In caselV was indeed a witness, the distinguisher is guaranteed to be correctforbetiee above procedure
gives an advantag% in distinguishing betweerf, and £;, contradicting the hiding properties of the
commitment scheme. O

Note that the distribution€, and £, will be useful also in the discussion of the unique withesses case
(Lemma5.6). O

On Non-Perfect Witness Retrievability: We now show that the witness retrieval procedure is possible
only if its success probability is sufficiently low (we denote the success pildipeby m). We upper
bound the success probability by a function of the rate of compressioththalgorithm.z achieves (we
denote byp(n, m) the polynomial that bounds the length of the outpuZof.e. the compressed instance).

Lemma 5.5 If one-way functions exist and suppose th&t11) is a witness retrievable compression for
OR(SAT) such that for every with parametersn, n the following holds:

1. The compression parametef(¢)| < p(n,m)
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2. The success probability &F is at Ieastm where probability is over the random coins Bfand

W as well as the choice of the witness.

Theng(n,m) > Q(p(TTm)).

Proof: The proof uses the same setting as in the proof of Lemma 5.3. Once morenttes sends a
compressed valug(¢,.) to the receiver that runs the proceddtec and we view this process as a channel
between a sender who holds the random varialles- X;, ..., X,,, to a receiver who gets the random
variablesY = Y1, ..., Y,,. Only this time if X; = 1 it is not guaranteed that al§§ = 1 (since the witness
retrievability is no longer perfect). Instead, our assumption on the ssigrebability of W translates to
PriV;=1| X; =1] > q(n{m) for a randomi. SinceX; is a uniformly distributed bit thefr[Y; = 1] >
m for a random.

In addition, Claim 5.4 states that for every holds thatPr[Y; = 1 | X; = 0] € neg(n). Thus, ifY; =1
thenX; = 1 with overwhelming probability and thereforé(X; | Y; = 1) € neg(n) for everyi (where H
denotes the Shannon entropy). We use the above mentioned facts temovigper bound on the average
entropy ofX; (average ovei) when givenY:

Ei[H(X;|Y)] = Ei[Pr(Yi=1)H(X;|Yi=1)+Pr(Y; =0)H(X; |Y; =0)]
1 1
S agumy "I gy
< 1- 1 + neg(n)
- 2q(n, m)

The last inequality is true sindé (X; | Y; = 0) < 1 for everyi. We deduce an upper bound on the entropy
of X when giveny:

H(X|Y) € YT H(X | Y) = mEH(X | )] < m(1 - + neg(n)

2q(n, m)
Hence, when the receiver gef$¢, ) (and can generafg), the receiver’s entropy ok deteriorates by

H(X)— H(X |Y) > Q(———).

q(n,m)

This can only happen if the sender sent at Ié]a(sq%) bits to the receiver, and thygn, m) > Q(q(;”m))
as required. O

Note that the construction of OT protocols from one-way functions in Témacb.1 requires that the
compression ratg(n, m) < O(m'~¢) for some constant > 0. Thus, when put in the context of construct-
ing OT protocols, the above lemma states that a useful compression algawitlihi{S A7) cannot have
witness retrievability with probability that is better théaxi T}L ).

On Witness Retrieval with a Unique Witness:  The limitations on witness retrievability hold also when
there is only a single witness, which is the case in our cryptographic appfisatigor this we consider
the promise problenOR(SAT)Y that isOR(SAT) with a guarantee that every instance has at most one
satisfying assignment. We generate the interesting instan@®B 5 AT)V as above, from sets of commit-
ments. In this case the set of commitments should be such that at most one ofmim&rments is to the
valuel. For simplicity we also assume that each commitment has a unique opening (thieraelyieved
using one-way permutation), so overall such instances have the unitpessvproperty.
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Lemma 5.6 If one-way permutations exist and suppose {t#tlV) is a witness retrievable compression
for OR(SAT)Y such that for every input with parametersn, n the following holds:

1. The compression parametef(¢)| < p(n, m)

2. The success probability oF is at least—— ( ™) for a polynomialg(-, -) where probability is over the
random coins o and V.

Thenq(n{m) - p(niw’;n) € neg(n).
Proof: Suppose that there is a witness retrievable compregsioli’) for OR(SAT)Y that succeeds
with probability . In similar fashion to the proof of Claim 5.4 we will show that in such a case
one can efﬁmentiy distinguish if a list oz — 1 commitments was generated by the distributity or

by the distributionZ;. Recall that the distributior is a random choice ofn — 1 commitments td)
while the distributionZ, is a choice ofm — 1 random commitments (commitments to eitfesr 1). The
distinguisher works without knowledge of the openings to any of the commitimtiwis contradicting the
hiding properties of the commitment scheme.

The distinguisher generates a random commitmaénto 1 along with its witnessu,:1. Now, given a
list L of m — 1 commitments, the distinguisher creates an instanbyg addings! in a random position in
the list L, and runs the compression @n The distinguisher then tries to retrieve a witnes/t@) using
the openingu,:. In the case that € £, then¢ is an instance 0O R(SAT)Y and thus by the assumption
the distinguisher will retrieve a witness with probability at Ie%tm—). On the other hand, if. € £, then
the instance is a general instance 61 R(SAT') (without the promise of the unique witness). Lemma 5.5
states that there existsgefor which the witness retrieval succeeds with probability at n%%t”—) A more
careful inspection of the proof of Lemma 5.5 shows that this statement alds too a randomly chosen
¢ (generated by choosing random commitments not all of which are @. Thus, if L € £, then the
witness retrieval succeeds grnwith probability at most% (with probability taken over the choice of
L € £1 and the randomness of the distinguisher). Overall, the distinguishertaom’&p probability at
least q(nm when L is from £y and at mostp("—m when L is from £;. So if T W is larger
than a pofynomlal fraction im, then this procedure has a distinguishing advantage bet@gemd £,
contradicting the security of the commitment schemel.

All our results have been stated for the language(SAT). However, they may be applied for other
languages such as SAT and Clique. In particular, we get the statemenegjithct to SAT as a corollary
(since a compression for SAT can be used as a compressiOfas AT') via the reduction in Lemma 2.16).

Corollary 5.7 If one-way functions exist and IeZ, W) be a witness retrievable compression 47" (or
for Unique-SAT), such that for every inpitvith parametersn, n the following holds:

1. The compression parametef(¢)| < p(n, m)

2. The success probability &F is at least—— ( ™) where probability is over the random coins Bfand
W as well as the choice of the witness.

Theng(n,m) > Q(p(;”m) ).
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6 Discussion and Open Problems

The issue of compressibility and the corresponding classification intrddaodais work raise many open
problems and directions. The obvious one is to come up with a compressiatthadgdor a problem
like SAT or Clique (or som&’Cpr complete or hard problem). Alternatively, show why such tasks are
infeasible (see discussion in Section 2.9). We have seen compressibilitynefisterestingV P languages
and hence the question is where exactly is boundary between compressihdiipcompressibility. We
tend to conjecture that it is in the low levels of th€ hierarchy. We view PCP amplification methods
such as the recent result of Dinur [13] as potential leads towardsvadpigompression. This is since these
results show a natural amplification of properties on a graph, and cotdatily be combined with a
simple compression of promise problems (such as the example for GapSAGtiorS29). The main issue

is doing the PCP amplification without introducing many new variables.

In particular, the following task would suffice for achieving non-triviahgpression: given CNF formu-
lae ¢1 andg, (not necessarily with short witnesses) come up with a formutiaat is (1) satisfiable if and
only if ¢1 V ¢9 is satisfiable and (2) shorter than v ¢,. Moreover, due to the impossibility results for
general witness retrievable compression (Section 5.2), a withess for @jtloe ¢ cannot efficiently yield
a witness forp.

Short of showing a compression for general complexity classes, it wmailithteresting to come up
with further interesting compression algorithms as well as to obtain more fesrdesults. For instance, is
Clique or any other embedding problem complete)lf@y ? Is there a natural and simple complete problem
for VC,1? Also, theVC hierarchy is by no means the ultimate classification with respect to compressibility.
One can hope to further refine this classification, especially within the endifVC;.

Since we currently do not have a general compressibility result for éfisamt class of languages, it
is important to understand what are the implicationgnabmpressibility The application to the bounded
storage model can be viewed as such a statement. Other examples arevidnesfyrénentioned works
of Dubrov and Ishai [15] regarding derandomization and Dziembojts}iwith respect to forward-secure
storage. In order to gain confidence in an incompressibility assumptionwgsehin a cryptographic setting
it is important to come up with aefficiently falsifiableassumption of this nature (see [44]).

Finally we feel that we have just scratched the surface of an importaiotaod in the future there will
be other implications of compressibility or the impossibility of compression, whétreyptography or in
other areas.

Acknowledgements: We thank Yuval Ishai for many helpful comments and specifically for pajntiat
that the CRH construction does not require witness retrievability. We avegadseful to Alon Rosen and
Ronen Shaltiel for their comments on the presentation.
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