
Inverting Onto Functions Might Not Be Hard

Harry Buhrman∗

CWI, Amsterdam

Lance Fortnow†

University of Chicago

Michal Koucký‡

Mathematical Institute of Czech Academy of Sciences

John D. Rogers§

DePaul University, Chicago

Nikolai Vereshchagin¶

Moscow State University

February 17, 2006

Abstract

The class TFNP, defined by Megiddo and Papadimitriou, consists of multivalued functions
with values that are polynomially verifiable and guaranteed to exist. Do we have evidence that
such functions are hard, for example, if TFNP is computable in polynomial-time does this
imply the polynomial-time hierarchy collapses?

We give a relativized negative answer to this question by exhibiting an oracle under which
TFNP functions are easy to compute but the polynomial-time hierarchy is infinite.

To create the oracle, we introduce Kolmogorov-generic oracles where the strings placed in
the oracle are derived from an exponentially long Kolmogorov-random string. We also show
that relative to this same oracle, P 6= UP and TFNPSAT functions are not computable in
polynomial-time with a SAT oracle.

1 Introduction

Megiddo and Papadimtriou [MP91] defined the class TFNP, the class of multivalued functions with
values that are polynomially verifiable and guaranteed to exist. This class of functions includes
Factoring, Nash Equilibrium, finding solutions of Sperner’s Lemma, and finding collisions of hash
functions.

Fenner, Fortnow, Naik and Rogers [FFNR03] consider the hypothesis, which they called “Q”
that for every function in TFNP there is a polynomial-time procedure that will output a value
of that function. Fenner et. al. showed that Q is equivalent to a number of different hypotheses
including

• Given an NP machine M with L(M) = Σ∗, there is a polynomial-time computable function
f such that f(x) is an accepting computation of M(x).

∗Email: buhrman@cwi.nl
†Email: fortnow@cs.uchicago.edu
‡Email: mkoucky@cs.mcgill.ca
§Email: jrogers@cs.depaul.edu
¶Email: ver@mech.math.msu.su

1

Electronic Colloquium on Computational Complexity, Report No. 24 (2006)

ISSN 1433-8092

• Given an honest onto polynomial-time computable function g there is a polynomial-time
computable function f such that g(f(x)) = x.

• For all polynomial-time computable subsets S of SAT there is a polynomial-time computable
function f such that for all φ in S, f(φ) is a satisfying assignment to φ.

• For all NP machines M such that L(M) = SAT, there is a polynomial-time computable
function f such that for every φ in SAT and accepting path p of M(φ), f(φ, p) is a satisfying
assignment of φ.

Fenner et. al. ask whether we can draw any complexity collapses from Q, in particular if Q
implies that the polynomial-time hierarchy collapses. We give a relativized negative answer to this
question by exhibiting an oracle relative to which Q holds and the polynomial-time hierarchy is
infinite.

Our proof uses a new “Kolmogorov Generic” which uses finite extensions of subsets of indepen-
dently random strings.

We also show that for any Kolmogorov Generic G,

1. PG 6= UPG.

2. QNP
G

does not hold, i.e., that is relative to Kolmogorov generics there is an onto function
computable with a SAT oracle which we cannot invert even with the help of a SAT oracle.

2 Definitions and preliminaries

The set of all finite-length binary strings is denoted Σ∗.

2.1 Complexity classes

Our model of computation is the oracle Turing machine, both deterministic (DTM) and nondeter-
ministic (NTM). Unless otherwise noted, all machines in this paper run in polynomial time. We
assume that the reader is familiar with the complexity classes P, NP, PSPACE, Σp

k, and Πp
k for

k ≥ 0. The class ∆p
k is defined as PΣp

k−1 .
A k-alternating machine TM is one whose computation alternates k−1 times between existential

steps and universal steps.
We call Proposition Q the statement “For every nondeterministic polynomial-time machine M

that accepts Σ∗, there is a polynomial-time function f such that f(x) is an accepting path of the
computation M(x).”

We will label Σp
kQ the statement “For every nondeterministic polynomial-time Turing machine

M with oracle from Σk−1 that accepts Σ∗, there is a function f computable by a ∆p
k machine such

that, for all x, f(x) is an accepting computation of M(x).”
It is easy to see the following:

Proposition 1 If Σp
kQ is true then ∆p

k = Σp
k ∩ Πp

k.

2

2.2 Kolmogorov complexity and randomness

An excellent introduction to Kolmogorov complexity can be found in the textbook by Li and
Vitányi [LV97]. We will state here the definitions and results relevant to our work. Roughly
speaking, the Kolmogorov complexity of a binary string x is defined as the minimal length of a
program that generates x; the conditional complexity C(x|y) of x conditional to y is the minimal
length of a program that produces x with y as input.

A conditional description method is a partial computable function Φ (that is, a Turing machine)
mapping pairs of binary strings to binary strings. A string p is called a description of x conditional

to y with respect to Φ if Φ(p, y) = x. The complexity of x conditional to y with respect to Φ is
defined as the minimal length of a description of x conditional to y with respect to Φ:

CΦ(x|y) = min{|p| | Φ(p, y) = x}.

A conditional description method Ψ is called universal if for all other conditional description meth-
ods Φ there is a constant C such that

CΨ(x|y) ≤ CΦ(x|y) + C

for all x, y. The Solomonoff–Kolmogorov theorem states that universal methods exist. We fix a
universal Ψ and define conditional Kolmogorov complexity C(x|y) as CΨ(x|y). We call this Ψ the
reference universal Turing machine. The (unconditional) Kolmogorov complexity C(x) is defined
as the Kolmogorov complexity of x conditional to the empty string. Comparing the universal
function Ψ with the function Φ(p, y) = Ψ(p, empty string) we see that the conditional Kolmogorov
complexity does not exceed the unconditional one:

C(x|y) ≤ C(x) + O(1).

Comparing the universal function Ψ with the function Φ(p, y) = p we see that the Kolmogorov
complexity does not exceed the length:

C(x) ≤ |x| + C (1)

for some C and all x. For most stings this inequality is close to an equality: the number of strings
x of length n with

C(x) < n − m

is less than 2n−m. Indeed, the total number of descriptions of length less than n − m is equal to

1 + 2 + · · · + 2n−m−1 = 2n−m − 1.

In particular, for every n there is a string x of length n and complexity at least n. Such strings are
called incompressible, or random.

Let f(x, y) be a computable function mapping strings to strings. To describe the string f(x, y)
it is enough to concatenate x and y. Thus we obtain:

C(f(x, y)) ≤ 2|x| + |y| + C. (2)

where C depends on f and on the reference universal machine but not on x, y. The factor of 2 is
needed, as we have to separate x from y. To this end we write the former in a self-delimiting form.

3

As a self-delimiting encoding of a string u we take the string ū obtained from u by doubling all its
bits and appending the pattern 01. For instance, 001 = 00001101. A similar inequality holds for
computable functions of more than 2 strings:

C(f(x1, x2, . . . , xn)) ≤ |x1| + 2|x2| + · · · + 2|xn| + O(1). (3)

2.3 Generic oracles

The oracles we use are generic oracles. What does this mean? To explain this we need to recall
some definitions from category theory.

A condition on an oracle A is a finite set of requirements having the form x ∈ A and y 6∈ A,
where x, y ∈ Σ∗. We say that an oracle A satisfies a condition α if all the requirements in α are
satisfied by A. Let U be a family of oracles and let Uα denote the set of all A ∈ U satisfying α. An
interval in U is a non-empty subset of U having the form Uα. A subset S of U is called dense in U
if every non-empty interval I in U has a sub-interval J in U included in S. Countable intersections
of dense sets are called large subsets of U .

Let P (A) be a property of an oracle A. We say that P holds for a generic oracle in U if the
set {A ∈ U | P (A)} is large in U . Assume that U has the following property: the intersection of
every infinite descending chain

I1 ⊃ I2 ⊃ I3 ⊃ . . .

of intervals in U is non-empty. Then by the usual diagonalization we can show that every large
subset of U is non-empty. Using a metaphor, we can say that “generic oracles exist.” Our usage of
the term “generic” oracle is similar to the usage of the term “random” oracle. Indeed, we say that
a property P holds for a random oracle if the set of oracles satisfying P is a measure 1 set.

Note that if a property P holds for a generic oracle in U and Q holds for a generic oracle in U
then so does P ∧ Q. Therefore if we want to prove that Proposition Q holds but that the PH is
infinite relative to a generic oracle in U we can prove these things separately. The same applies to
countable families of properties. If each Pi holds for a generic oracle in U then the property ∀i Pi

also holds for a generic oracle in U . For example, if we want to prove that P 6= NP relative to a
generic oracle in U we can define a relativized language L that is in NP for generic oracle in U
and then define a set of requirements Ri, where Ri is the statement “DTM Mi does not accept L.”
Then it is enough to prove, for every i, that Ri holds relative to a generic oracle in U . To this end
it suffices to prove that the set of A ∈ U such that Ri holds is dense in U : every interval I in U
has a subinterval J in U such that Ri holds for all A ∈ J .

Good introductions and several applications of the approach we are using here may be found
in the papers by Fortnow, et al [FFKL03] and Fortnow and Rogers [FR03].

2.4 Kolmogorov-generic oracles

Let us now define the specific set U of oracles. A generic oracle in U will be called a Kolmogorov

generic oracle. For each n fix a binary string Zn of length n2n that is incompressible, that is,
C(Zn) ≥ |Zn|. Divide Zn into substrings z1, . . . , z2n , each of length n. Let Yn be the set {〈i, zi〉|1 ≤
i ≤ 2n}. The set U is the set of all subsets of

⋃

n Yn where the union is over all “tower” n =

1, 2, 22, 222

, The next tower number from n is 2n. When proving that a certain property holds
for a Kolmogorov generic oracle G we use the fact that every two different lengths of strings in G

4

are exponentially far apart. When discussing a particular polynomial-time computation, we only
have to worry about strings at exactly one length in the oracle. Longer strings cannot be queried
by the computation and so cannot affect it. Shorter strings can all be queried and found by the
computation.

2.5 Categorical properties

We say that a property P of an oracle Turing machine M is categorical in an interval I (with
respect to Kolmogorov-generic oracles) if every sub-interval of I has an oracle A such that M A has
this property. For example, if every sub-interval of I has an oracle A such that a machine accepts
Σ∗, we say that it accepts Σ∗ categorically in I.

3 Results

Throughout the following discussion, we will assume that P = PSPACE. We will see later that
we can remove this assumption.

Theorem 1 Relative to a Kolmogorov-generic oracle, Proposition Q is true.

Proof. As explained above it suffices for every polynomial-time oracle NTM M , to prove that
relative to a Kolmogorov-generic oracle,

M accepts Σ∗ ⇒ there is a polynomial time machine

finding for each input an accepting computation of M .
(4)

Fix M . We will show that the set of oracles satisfying (4) is dense. Let I = Uα be an interval in U .
We need to construct a sub-interval J of I such that (4) is true for all G ∈ J . If M does not accept
Σ∗ categorically in I then there is a sub-interval of I such that M does not accept Σ∗ relative to
all oracles in this sub-interval. Then we can let J be equal to this sub-interval of I. Thus we can
assume that M accepts Σ∗ categorically in I.

Consider the following polynomial-time deterministic algorithm A that, given an input x, finds
an accepting path of the computation MG(x). Let n be the closest tower number to |x|. Then
|x| ≤ (2n +n)/2 and hence MG(x) cannot query strings in Y2n provided |x| large enough (for short
strings x we make an exhaustive search).

The algorithm A first asks the value of G on all the strings in Yi for i ≤ log n. As |x| ≥ n/2
this can be done in time polynomial in |x|. Recall that all of strings in Yn are derived from Zn.
Using the assumption that P = PSPACE, the algorithm tries to find an accepting path of M(x)
along which all of the oracle queries to strings in Yn expect not to find that string in the oracle.
If no such path exists, this means that every path expects to find at least one string in the oracle.
In that case consider the condition β that is obtained from α by adding requirements y 6∈ G for all
y ∈ Yn (we can assume that the length of strings in Yn greater than the length of all strings in α).
Then MG does not accept x for every G ∈ U satisfying β. But this contradicts the fact that M
categorically in I accepts Σ∗.

Let p be the lexicographically least such accepting path. The algorithm now queries every string
queried along p. If none of the strings are in the oracle then p is a valid accepting path relative to
the oracle and so A outputs it. Otherwise, A places each string it finds into a set Q and repeats

5

its search, this time looking for paths in M(x) that only expect to find the strings in Q. We then
repeat the process until A outputs a path.

We can describe each of the strings we add to Q by the index of the query A makes to the
oracle, k log |x| bits if A runs in time |x|k. We can describe Zn by the strings in Yn not queried,
the indices used to describe each string in Q, the input x and the values of G on strings of length
at most log n. So by (3) we have

n2n ≤ C(Zn) ≤ (2n − |Q|)n + 2k|Q| log |x| + 2|x| + 2n + O(1)

≤ (2n − |Q|)n + 2k|Q| log |x| + 7|x|.

We have |Q| ≤ 7|x|/(n − 2k log |x|). We have two cases

1. 2k log |x| ≥ n: Then |x| ≥ 2n/2k and so even if we queried every string 〈i, u〉, i ≤ 2n, |u| = n,
we are still running in time polynomial in |x|.

2. 2k log |x| < n: Then |Q| ≤ 7|x| and since we add a string to |Q| in every step, we are running
in time polynomial in |x|.

Noting that the above proof is still valid under the hypothesis that P = PSPACE, we can
remove the hypothesis that P = PSPACE by first relativizing to an oracle making P = PSPACE.
It is known that relative to every PSPACE-complete set H we have P = PSPACE. Thus, relative
to a Kolmogorov generic oracle G, Q-property holds relative to H. In other words, for a Kolmogorov
generic G, Q-property holds relative to the oracle

G ⊕ H = {0x | x ∈ G} ∪ {1x | x ∈ H}.

Theorem 2 Relative to a Kolmogorov generic oracle G, Σp
k 6= Σp

k+1.

Proof.
Stockmeyer and Meyer [MS72] show that if Σp

k = Σp
k+1 then Σp

k = Σp
j for all j ≥ k. So it is

sufficient for us to show that Σp
k−2 6= Σp

k+1 for all k ≥ 3 relative to G.
We use the Sipser [Sip83] functions as defined by Hastad [Has89]. The function f m

k is represented
by a depth k alternating circuit tree with a top OR gate on top with fan-in

√

m/ log m, bottom
fan-in

√

km log m/2 and all other fanouts are m. Each variable occurs just once at each leaf.

Theorem 3 (H̊astad) Depth k − 1 circuits computing f m
k are of size at least 2Ω(

√
m/(k log m)).

Pick a tower n. Set m = 2n/k. The number of variables of fm
k is mk−1

√

k/2 < 2n for large n.
For each of the variables of this formula assign a unique i ∈ {0, 1}n so we can in polynomial-time
find i from the variable and vice-versa.

Now consider the language Lk(G) such that input 1n is in L(G) if fm
k is true if we set the

variables corresponding to i to one if 〈i, zi〉 is in G and zero otherwise.
We will show relative to a Kolmogorov generic oracle G, Lk(G) ∈ Σp,G

k+1 − Σp,G
k−2.

First notice that Lk(G) ∈ Σp,G
k+1 for all G ∈ U : Consider a alternating Turing machine that

uses k-alternations to simulate the circuit. To determine whether a variable corresponding to i

6

is true the machine makes the NP query “is there a z such that 〈i, z〉 is in G.” This gives us a
ΣNP,G

k = Σp,G
k+1 machine accepting Lk(G).

Let M be a Σp
k−2 oracle Turing machine that runs in time nj. Let I = Uα be an interval in U .

We need to construct a subinterval J of I such that M does not accept L(G) for all G ∈ J . Along
the lines of Sipser [Sip83] we can convert the computation to a circuit whose variables correspond
to queries to G of depth k − 1 and size 2O(nj). Hardwire the queries not of the form (i, zi) to zero
and we have a circuit whose variables are the same as those in f m

k in the definition of Lk(G) on
1n. By Theorem 3 for sufficiently large n this circuit cannot compute f m

k so there must be some
setting of the variables where the circuit and f m

k have different outputs. Add to the condition α
the requirement 〈i, zi〉 ∈ G if variable i is assigned 1 in this setting and the requirement 〈i, zi〉 6∈ G
otherwise. For all G ∈ U satisfying the resulting condition, M G(1n) accepts iff 1n is not in L(G).

Just by the same proof we can show, that for a Kolmogorov generic G, Σp
k 6= Σp

k+1 relative to
G ⊕ H where H is any PSPACE-complete set.

We can also show that one-way functions exist relative to G.

Theorem 4 Relative to a Kolmogorov generic oracle G, P 6= UP.

Proof. Define the relativized language LX as {〈i, 0n〉 : (∃z)|z| = n & 〈i, z〉 ∈ X}. For a string z of
length n, there is at most one string of the form 〈i, z〉 in G so the language is in UPG. A simple
diagonalization argument demonstrates that LG is not in PG.

Proposition Q at other levels

Generalizing Q to other levels in the polynomial time hierarchy gives us the proposition Σp
kQ:

“For every k-alternating polynomial-time Turing machine M that accepts Σ∗, there is a function f
computable by a ∆p

k machine such that, for all x, f(x) is an accepting computation of M(x).” The
implication that P = NP∩coNP holds when Q holds becomes: If Σp

kQ is true then ∆p
k = Σp

k ∩Πp
k.

Can the proof that Q holds relative to a Kolmogorov-generic be lifted to show that Σp
kQ holds

and we get the collapse of the ∆p
k and Σp

k ∩ Πp
k? The answer is no for k = 2 and the proof of this

shows that this is true for a broad class of finite extension oracles.
To show that Σp

2Q fails relative to a Kolmogorov-generic oracle G, fix a length n. Let f be a
function from Σn to Σn−1 where

f(x) = y1 . . . yn−1

and
yj = 1 ⇐⇒ (∃u, z) |u| = n, |z| = 2n + log n, 〈xju, z〉 ∈ G.

No matter what strings are in G, the pigeonhole principle tells us there will always be a collision,
that is, two different strings xa and xb of length m such that f(xa) = f(xb). Also note that placing
strings in the oracle to set the value of f on one string will not change the value of f on any other
string. For x ∈ Σm we call the set {〈xju, z〉 ∈ Y2n+log n} the bag corresponding to x. Note, to set
a particular bit of f(x) to 1 we can choose one of 2n strings from the bag of x to be put in G.

7

Let M be a ΣG
2 machine that on any input of length n guesses two different strings of length n

in its existential step and then accepts iff those strings collide on f . It is clear from the definition of
f that M can find these collisions and that it accepts Σ∗. A PNP

G

machine that finds an accepting
path of M could be modified to output the two colliding strings on that path so, without loss of
generality, we will assume it does just that.

Theorem 5 Relative to a Kolmogorov generic oracle G, no PNP machine can find an accepting

path of the computation M(x) for every x. The same is true relative to G ⊕ H, where H is any

PSPACE-complete set.

Proof. Let P be a DTM oracle machine running in time pP and making queries to LG, an NPG

language. Let N be an oracle NTM machine accepting L that runs in time pN . Let Iα be an
interval in U . It suffices to show that for all large enough n, P LG

(0n) does not find an accepting
computation of MG(0n), that is, it does not find two strings that collide on f , for some G ∈ I.
Indeed, we then can include in α the answers to queries to G along all the computations of N on
all queries to N and the answers to queries to G along the computation of P on 0n.

Fix large n. We will decide about membership in G of strings from Yn in at most pP (n) + 1
iterations. We run P on 0n and one by one we decide whether NG answers the i-th query qi of P
by YES or NO. During these iterations we will maintain a set D ⊆ Σn for which we have already
decided the values of f as well as about membership in G of all the strings in bags corresponding
to D.

Iteratively for each qi we do the following. Consider the computation of N G on query qi. Its
outcome is given by an OR of exponentially many ANDs, where each AND is of size at most
pN (pP (n)), and it is an AND of membership and non-membership queries to G. Answers to these
queries to G are already fixed except for strings in bags corresponding to Σn \ D. (All queries to
strings w outside Yn are answered negatively unless the requirement w ∈ G belongs to the condition
α.) If there is a way to make one of the ANDs to evaluate to true by setting membership in G
for strings in at most pN (pP (n)) bags for some Di ⊆ Σn \ D without creating any collision of f on
D ∪Di, we set the membership of all these strings in bags corresponding to Di in that way and we
extend D by Di. In this case we force NG(qi) to evaluate to YES. If there is no way to make any
of the ANDs to evaluate to true given our conditions, we declare that N G(qi) evaluates to NO. We
proceed to the next query of P .

After at most pP (n) queries, P outputs two strings x1 and x2, where f presumably collides. At
this point we set all strings in bags for x ∈ Σn \ D so that f(x) contains exactly n/2 zeros and so

that f(x1) 6= f(x2). We claim that after this P NG
on 0n computes the way how we determined.

Indeed, if P computes differently then there must be a query that P asks to N G which evaluates
to YES although we declared that it will evaluate to NO. Let qi be the first such a query. Hence,
in the representation of the computation N G(qi) one of the ANDs evaluates to true now. Call this
AND G. Consider all x ∈ Σn \ D such that G queries a string in the bag of x. f(x) contains n/2
zeros for every such x. By adding certain 〈xju, z〉 from the bag of x to the oracle G we can change
any zero in f(x) into one without changing the value of G. There are exponentially many values
f(x) that can be obtained in this way. This is true for all bags that are touched by G and that do
not belong to D. Hence, we could have fixed G to true without introducing collisions in f already
in the i-th iteration. Hence, all queries that we declared to be NO are indeed NO.

8

4 Conclusion and open problems

Is there an oracle relative to which the polynomial-time hierarchy is proper and Σp
kQ is true for all

k? As a corollary we would get a relativized world where the hierarchy is proper and ∆p
k = Σp

k∩Πp
k.

The second statement remains open even relative to Kolmogorov generics and, if true, would give
a relativized version of the polynomial-time hierarchy that acts like the arithmetic hierarchy.

Acknowledgments

We thank Steve Fenner and Marcus Schaefer for helpful discussions.

References

[FFKL03] Lance Fortnow, Stephen Fenner, Stuart Kurtz, and Lide Li. An oracle builder’s toolkit.
Information and Computation, 182:95–136, 2003.

[FFNR03] Lance Fortnow, Stephen Fenner, Ashish Naik, and John Rogers. Inverting onto func-
tions. Information and Computation, 186:90–103, 2003.

[FR03] Lance Fortnow and John Rogers. Separability and one-way functions. Computational

Complexity, 11:137–157, 2003.

[Has89] J. Hastad. Almost optimal lower bounds for small depth circuits. Advances in Computing

Research, 5:143–170, 1989.

[LV97] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.
Graduate Texts in Computer Science. Springer, New York, second edition, 1997.

[MP91] N. Megiddo and C. Papadimitriou. On total functions, existence theorems and computa-
tional complexity. Theoretical Computer Science, 81(2):317–324, 1991.

[MS72] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squar-
ing requires exponential space. In Proceedings of the 13th IEEE Symposium on Switching

and Automata Theory, pages 125–129. IEEE, New York, 1972.

[Sip83] M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th ACM Symposium

on the Theory of Computing, pages 61–69. ACM, New York, 1983.

9

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

