
Finding Lower Bounds for Nondeterministic

State Complexity is Hard

Hermann Gruber and Markus Holzer

Institut für Informatik, Technische Universität München,
Boltzmannstraße 3, D-85748 Garching bei München, Germany

email: {gruberh,holzer}@informatik.tu-muenchen.de

Abstract. We investigate the following lower bound methods for regular
languages: The fooling set technique, the extended fooling set technique,
and the biclique edge cover technique. It is shown that the maximal at-
tainable lower bound for each of the above mentioned techniques can
be algorithmically deduced from a canonical finite graph, the so called
dependency graph of a regular language. This graph is very helpful when
comparing the techniques with each other and with nondeterministic
state complexity. In most cases it is shown that for any two techniques
the gap between the best bounds can be arbitrarily large. The only ex-
ception is the biclique edge cover technique which is always as good as
the logarithm of the deterministic or nondeterministic state complex-
ity. Moreover, we show that deciding whether a certain lower bound
w.r.t. one of the investigated techniques can be achieved is in most cases
computationally hard, i.e., PSPACE-complete and hence are as hard as
minimizing nondeterministic finite automata.

1 Introduction

Finite automata are one of the oldest and most intensely investigated compu-
tational models. It is well known that deterministic and nondeterministic finite
automata are computationally equivalent, and that nondeterministic finite au-
tomata can offer exponential state savings compared to deterministic ones [20].
Nevertheless, some challenging problems of finite automata are still open. For
instance, to estimate the size, in terms of the number of states, of a minimal
nondeterministic finite automaton for a regular language is stated as an open
problem in [2] and [13]. This is contrary to the deterministic case, where for a
given n-state deterministic automaton the minimal automaton can be efficiently
computed in O(n log n) time. Observe, that computing a state minimal nonde-
terministic finite automaton is known to be PSPACE-complete [16]. Moreover,
it has been shown, that upper or lower bounds on the state size of minimal non-

deterministic automata with a guaranteed relative error better than
√

n
poly(log(n))

cannot be obtained in polynomial time, provided some cryptographic assumption
holds [9].

Several authors have introduced communication complexity methods for prov-
ing such lower bounds; see, e.g., [4, 8, 12]. Although the bounds provided by these

Electronic Colloquium on Computational Complexity, Report No. 27 (2006)

ISSN 1433-8092

techniques are not always tight and in fact can be arbitrarily worse compared
to the nondeterministic state complexity, they give good results in many cases.
In this paper we investigate the fooling set technique [8], the extended fool-
ing set technique [4, 12], and the biclique edge cover technique. Note that the
latter method is an alternative representation of the nondeterministic message
complexity [12]. One drawback of all these methods is that getting such a good
estimate seems to require conscious thought and ”clever guessing.” However, we
show for the considered techniques that this is in fact not the case. In order
to achieve this goal, we present a unified view of these techniques in terms of
bipartite graphs. This setup allows us to show that there is a canonical bipartite
graph for each regular language, which is independent of the considered method,
such that the best attainable lower bound can be determined algorithmically for
each method. This canonical bipartite graph is called the dependency graph of
the language.

The dependency graph is a tool that allows us to compare the relative
strength of the methods, and to determine whether they provide a guaranteed
relative error w.r.t. the nondeterministic state complexity. Following [2], no lower
bound technique is known to have such a bounded error, but a lower bound can
be obtained by noticing that the numbers of states in minimal deterministic
automata and in minimal nondeterministic automata are at most exponentially
apart from each other. We are able to prove that the biclique edge cover technique
always gives an estimate at least as good as this trivial lower bound, whereas
the other methods cannot provide any guaranteed relative error. On the other
hand, we give evidence that the guarantee for the biclique edge cover technique
is essentially optimal. In turn we improve a result of [14, 17] on the gap between
nondeterministic message complexity and nondeterministic state complexity.

Finally, we also address computational complexity issues and show that de-
ciding whether a certain lower bound w.r.t. one of the investigated techniques
can be achieved is in most cases computationally hard, i.e, PSPACE-complete
and hence these problems are as hard as minimizing nondeterministic finite au-
tomata. Here it is worth mentioning that the presented algorithms for the upper
bounds also rely on the dependency graph, which vertices are the equivalence
classes of the Myhill-Nerode relation for the language L and its reversed LR.
Hence, doing the computation on this object in a straight forward manner would
result in an exponential time algorithm. This is due to the fact that the index
of the Myhill-Nerode equivalence relation for LR can be exponential in terms
of the index of the Myhill-Nerode relation for L, or equivalently to the size of
the minimal deterministic finite automaton accepting L. Nevertheless, by clever
encoding the equivalence classes we succeed to implicitly represent the depen-
dency graph, which finally results in PSPACE-algorithms for the problems under
consideration.

The paper is organized as follows: In the next section we define the basic
notions. Section 3 introduces the three lower bound techniques we are interested
in. Then the dependency graph is defined in Section 4 and based on this graph
the question “How good is a lower bounded induced by one of these lower bound

2

techniques?” is answered in Section 5. The penultimate section is devoted to
computational complexity considerations on how to compute witnesses (fool-
ing sets, extended fooling sets, biclique edge covers) for a certain lower bound
technique. Finally, in Section 7 we summarize our results and state some open
problems.

2 Definitions

We assume the reader to be familiar with the basic notations in formal language
and automata theory as contained in [11]. In particular, let Σ be an alphabet
and Σ∗ the set of all words over the alphabet Σ containing the empty word λ.
The length of a word w is denoted by |w|, where |λ| = 0. The reversal of a
word w is denoted by wR and the reversal of a language L ⊆ Σ∗ by LR, which
equals the set {wR | w ∈ L }.

A nondeterministic finite automaton is a 5-tuple A = (Q, Σ, δ, q0, F), where Q
is a finite set of states, Σ is a finite set of input symbols, δ : Q×Σ → 2Q is the
transition function, q0 ∈ Q is the initial state, and F ⊆ S is the set of accepting
states. The transition function δ is extended to a function from δ : Q×Σ∗ → 2Q

in the natural way, i.e., δ(q, λ) = {q} and δ(q, aw) =
⋃

q′∈δ(q,a) δ(q′, w), for q ∈ Q,
a ∈ Σ, and w ∈ Σ∗. The language accepted by A is

L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }.

Two automata are equivalent if they accept the same language.
A nondeterministic finite automaton A = (Q, Σ, δ, q0, F) is deterministic if

|δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ. In this case we simply write δ(q, a) = p
instead of δ(q, a) = {p}. By the powerset construction one can show every non-
deterministic finite automaton can be converted into an equivalent deterministic
finite automaton by increasing the number of states from n to 2n; this bound
is known to be sharp [19]. Thus, deterministic and nondeterministic finite au-
tomata are equally powerful.

For a regular language L, the deterministic (nondeterministic, respectively)
state complexity of L, denoted by sc(L) (nsc(L), respectively) is the minimal
number of states needed by a deterministic (nondeterministic, respectively) finite
automaton accepting L. Observe, that the minimal deterministic finite automata
is isomorphic to the deterministic finite automaton induced by the Myhill-Nerode
equivalence relation ≡L, which is defined as follows: For u, v ∈ Σ∗ let u ≡L v if
and only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ Σ∗. Hence, the number of states
of the minimal deterministic finite automaton accepting the language L ⊆ Σ∗

equals the index, i.e., the cardinality of the set of equivalence classes, of the
Myhill-Nerode equivalence relation ≡L. The set of all equivalence classes w.r.t
≡L is referred to Σ∗/≡L and we denote the equivalence class of a word u w.r.t.
the relation ≡L by [u]L. Moreover, we define the relation L≡ as follows: For
u, v ∈ Σ∗ let uL ≡ if and only if wu ∈ L ⇐⇒ wv ∈ L, for all w ∈ Σ∗. The
set of all equivalence classes w.r.t. L≡ is referred to Σ∗/L≡ and we denote the
equivalence class of a word u w.r.t. the relation L≡ by L[u].

3

Finally, we recall two remarkable simple lower bound techniques for the non-
deterministic state complexity of regular languages. Both methods are commonly
called fooling set techniques and were introduced in [4] and [8]. Although the
difference in both theorems look quite harmless, the two techniques are essen-
tially different. The latter technique reads as follows—for the convenience of the
reader we recall the. proof of this theorem:

Theorem 1 (Fooling Set Technique). Let L ⊆ Σ∗ be a regular language and
suppose there exists a set of pairs S = { (xi, yi) | 1 ≤ i ≤ n } such that

1. xiyi ∈ L for 1 ≤ i ≤ n,
2. xiyj 6∈ L, for 1 ≤ i, j ≤ n, and i 6= j,

then any nondeterministic finite automaton accepting L has at least n states,
i.e., nsc(L) ≥ n. Here S is called a fooling set for L.

Proof. Let A = (Q, Σ, δ, q0, F) be any nondeterministic finite automaton ac-
cepting the language L. Since xiiyi ∈ L, there is a state qi in Q such that
qi ∈ δ(q0, xi) and δ(qi, y1) ∩ F 6= ∅. Assume that a fixed choice of qi has been
made for any i with 1 ≤ i ≤ n. We prove that qi 6= qj for i 6= j. For the sake
of a contradiction assume that qi = qj for some i 6= j. Then the nondetermin-
istic finite automaton accepts both words xiyj and xjyi. This contradicts the
assumption that { (xi, yi) | 1 ≤ i ≤ n } is a fooling set for the language L. Hence,
the nondeterministic finite automaton A has at least n states. ut

Observe, that the below given theorem, which is due to [4], follows also by
the proof of Theorem 1.

Theorem 2 (Extended Fooling Set Technique). Let L ⊆ Σ∗ be a regular
language and suppose there exists a set of pairs S = { (xi, yi) | 1 ≤ i ≤ n } such
that

1. xiyi ∈ L for 1 ≤ i ≤ n, and
2. i 6= j implies xiyj 6∈ L or xjyi 6∈ L, for 1 ≤ i, j ≤ n.

Then any nondeterministic finite automaton accepting L has at least n states,
i.e., nsc(L) ≥ n. Here S is called an extended fooling set of L.

Note that the lower bounds provided by these techniques are not always
tight and in fact can be arbitrarily bad compared to the nondeterministic state
complexity. Nevertheless, they give good results in many cases—for the fooling
set technique see the examples provided in [8].

3 Lower Bound Techniques and Bipartite Graphs

In this section we develop a unified view of fooling sets and extended fooling
sets in terms of bipartite graphs and introduce a technique that leverage the

4

shortcomings of the fooling set techniques. We need some notations from graph
theory.

A bipartite graph is a 3-tuple G = (X, Y, E), where X and Y are the (not
necessarily finite, or disjoint) sets of vertices, and E ⊆ X ×Y is the set of edges.
A bipartite graph H = (X ′, Y ′, E′) is a subgraph of G if X ′ ⊆ X , Y ′ ⊆ Y , and
E′ ⊆ E. The subgraph H ′ is induced if E′ = (X ′ × Y ′) ∩ E. Given a set of
edges E′, the subgraph induced by E ′ w.r.t. E is the smallest induced subgraph
containing all edges in E ′.

The relation between a fooling sets and graphs is quite natural, because a
(extended) fooling set S can be interpreted as the edge set of a bipartite graph
G = (X, Y, S) with X = {x | there is a y such that (x, y) ∈ S } and Y = { y |
there is a y such that (x, y) ∈ S }. In case S is a fooling set, the induced bipartite
graph is nothing other than a ladder, i.e., a collection of pairwise vertex-disjoint
edges. More generally, the notation of (extended) fooling sets carries over to
bipartite graphs as follows: Let G = (X, Y, E) be a bipartite graph.

1. Then a set S ⊆ E is a fooling set for G, if for every two different edges e1

and e2 in S, the subgraph induced by the edges e1 and e2 w.r.t. E is the
rightmost graph of Figure 1,

2. and a set S ⊆ E is an extended fooling set for G, if for every two different
edges e1 and e2 in S, the subgraph induced by the edges e1 and e2 w.r.t. E
is one of the graphs depicted in Figure 1.

ei

ej

ei

ej

ei

ej

Fig. 1. Three important bipartite (sub)graphs.

Now let us associate to any language L ⊆ Σ∗ and sets X, Y ⊆ Σ∗ a bipartite
graph G = (X, Y, EL), where (x, y) ∈ EL if and only if xy ∈ L, for every x ∈ X
and y ∈ Y . Then it is easy to see that the following statement holds—we omit
the straight forward proof.

Theorem 3. Le L ⊆ Σ∗ be a regular language. Then the set S is a (extended,
respectively) fooling set for L if and only if the edge set S ⊆ EL is a (extended,
respectively) fooling set for the bipartite graph G = (Σ∗, Σ∗, EL). ut

For the lower bound technique to come we need the notion of a biclique
edge cover for bipartite graphs. Let G = (X, Y, E) be a bipartite graph. A set
C = {H1, H2, . . .} of non-empty bipartite subgraphs of G is an edge cover of G

5

if every edge in G is present in at least one subgraph. An edge cover C of the
bipartite graph G is a biclique edge cover if every subgraph in C is a biclique,
where a biclique is a bipartite graph H = (X, Y, E) satisfying E = X × Y . The
bipartite dimension of G is referred to as d(G) and is defined to be the size of the
smallest biclique edge cover of G if it exists and is infinite otherwise. Then the
biclique edge cover technique reads as follows—this technique is a reformulation
of the nondeterministic message complexity method (see [12] and the appendix)
in terms of graphs:

Theorem 4 (Biclique Edge Cover Technique). Let L ⊆ Σ∗ be a regular
language and suppose there exists a bipartite graph G = (X, Y, EL) with X, Y ⊆
Σ∗ (not necessarily finite) for the language L. Then any nondeterministic finite
automaton accepting L has at least the bipartite dimension of G number of states,
i.e., nsc(L) ≥ d(G).

Proof. Let A = (Q, Σ, δ, q0, F) be any nondeterministic finite automaton accept-
ing L. We show that every finite automaton induces a finite size biclique edge
cover of the bipartite graph G. For each state q ∈ Q let Hq = (Xq, Yq , Eq) with
Xq = X ∩ {w ∈ Σ∗ | δ(q0, w) 3 q }, Yq = Y ∩ {w ∈ Σ∗ | δ(q, w) ∩ F 6= ∅ },
and Eq = Xq × Yq . We claim that C = {Hq | q ∈ Q } is a biclique edge cover
for G. By definition each Hq, for q ∈ Q, is a biclique. Moreover, each bipartite
graph Hq is a subgraph of G. Since by construction Xq ⊆ X and Yq ⊆ Y it re-
mains to show that Eq ⊆ E. To this end assume that x ∈ Xq and y ∈ Yq . Then
the word xy belongs to the language L because q ∈ δ(q0, x) and δ(q, y)∩ F 6= ∅.
But then (x, y) is an edge of G. Finally, we must prove that C is an edge cover.
Let (x, y) be an edge in G, for x ∈ X and y ∈ Y . Then the word xy is in L and
since the nondeterministic finite automaton A accepts the language L, there is
a state q in Q such that q ∈ δ(q0, x) and δ(q, y) ∩ F 6= 0. Therefore x ∈ Xq

and y ∈ Yq and moreover (x, y) is an edge in Eq , because Hq is a biclique. This
proves that C is a biclique edge cover of G.

Now assume that there is a nondeterministic finite automaton accepting L
which number of states is strictly less than the bipartite dimension of G. Then
this automaton induces a biclique edge cover C of G, which size is bounded by
the number of states and thus is also strictly less than the bipartite dimension
of G. This is a contradiction because the bipartite dimension is defined to be the
size of the smallest biclique edge cover. Therefore any nondeterministic finite
automaton accepting L has at least the bipartite dimension of G number of
states. ut

By the above given theorem we obtain the following corollary.

Corollary 5. Let L be a regular language over the alphabet Σ. Then the bipartite
graph G = (Σ∗, Σ∗, EL) has finite bipartite dimension. ut

4 The Dependency Graph of a Language

In applying the lower bound theorems from the previous section to any particular
language it is necessary to choose pairs (xi, yi) or set X and Y appropriately. For

6

fooling sets a heuristic,1 which of course also applies to the other techniques, was
proposed in [8] and seems to work well in most cases. In fact, we show that such
a heuristic is not needed. To this end we define the following bipartite graph:

Definition 6. Let L ⊆ Σ∗. Then the dependency graph for the language L
is defined to be the bipartite graph GL = (X, Y, EL), where X = Σ∗/ ≡L and
Y = Σ∗/L≡ and ([x]L, L[y]) ∈ EL if and only if xy ∈ L.

It is easy to see that the dependency graph GL for a language L is indepen-
dent from the chosen representation of the equivalence classes. Hence all these
graphs are isomorphic to each other. Moreover, it is worth mentioning that the
dependency graph of a language was implicitly defined in [18]. Now we are ready
to state the main lemma of this section.

Lemma 7. Let L ⊆ Σ∗ be a regular language and G = (Σ∗, Σ∗, EL) its associ-
ated bipartite graph.

1. The maximum size of a (extended, respectively) fooling set for G is n if and
only if the maximum size of a (extended, respectively) fooling set for the
dependency graph GL equals n.

2. The bipartite dimension of G is n if and only if the bipartite dimension of
the dependency graph GL equals n.

Proof. We only prove the first statement. The second statement can be shown
with similar arguments.

Let S = { (ui, vi) | 1 ≤ i ≤ n } be a (extended) fooling set for the bipartite
graph G = (Σ∗, Σ∗, EL). By definition any two different edges in S are vertex-
disjoint, if S is interpreted as a subset of EL. Moreover, we find that any two
different edges (ui, vi) and (uj , vj) obey ui 6≡L uj and viL 6≡ vj . Otherwise the
(extended) fooling set property is not satisfied. Thus, the idea to obtain the finite
bipartite graph that mirrors all relevant properties of G is to replace the vertex
sets by the corresponding equivalence classes.

The construction is done in two steps. Any edge (ui, vi) in G can be replaced
by (u′

i, vi) whenever ui ≡L u′
i. Thus, the “left vertices” in G can be replaced by

an essential set of words xi pairwise nonequivalent with respect to ≡L. Since L
is regular, this set is finite. To conclude the first step, the bipartite graph G′ is
defined as the subgraph induced by the vertex set (X, Σ∗), where X = {xi | 1 ≤
i ≤ m } and m is the index of Σ∗/≡L. The (extended) fooling set S is updated
accordingly. We denote this (extended) fooling set by S ′. Note that S and S′

are of same size. For the second step we argue as follows: Define the equivalence
relation ∼X on Σ∗ by v ∼X v′ if and only if xv ∈ L ⇐⇒ xv′ ∈ L, for all
x ∈ X . We show that this relation is the same as the relation L≡. By definition

1 In [8] the following heuristic is proposed: “Construct a nondeterministic finite au-
tomaton A = (Q, Σ, δ, q0, F) accepting L, and for each state q in Q let xq be the
shortest string such that δ(q0, xq) = q, and let yq be the shortest string such that
δ(q, yq) ∩ F 6= ∅. Then choose the set S to be some appropriate subset of the pairs
{ (xq, yq) | q ∈ Q }.”

7

v ∼X v′ implies vL≡ v′. Conversely, let v ∼X v′. For each u ∈ Σ∗ we have
uv ∈ L ⇐⇒ [u]Lv ⊆ L. Thus we conclude [u]Lv ⊆ L if and only if uv ∈ L iff
uv′ ∈ L if and only if [u]Lv′ ⊆ L. Hence v ∼X v′. This shows that ∼X is just an
alternative formulation of L≡, and we can apply a similar replacement procedure
as in the first step, now for the “right vertices” in G′ using the relation ∼X . This
results in a bipartite graph G′′, which is defined as the subgraph induced by the
vertex set (X, Y), where Y is chosen in a similar way as the xi’s above, but now
w.r.t. equivalence relation Σ∗/L≡. Similarly we modify the (extended) fooling
set S′ and obtain the set S′′. It is easy to see that S ′′ is in fact a (extended)
fooling set for G′′, and that it is of same size as the original (extended) fooling
set S. This completes the construction. ut

An immediate consequence of the previous theorem is that finding the best
possible lower bound for the technique under consideration is indeed solvable
in an algorithmic manner. For instance, a fooling set corresponds to an induced
matching [6] in GL, and an extended fooling set to a cross-free matching [7]
in GL, and vice versa. The drawback of the dependency graph GL is that its size
can be exponential in terms of the state complexity of the deterministic finite
automaton for the language [21].

5 How Good are the Lower Bounds Induced by These

Techniques?

We compare the introduced techniques with each other w.r.t. the lower bounds
that can be obtain in the best case and to the nondeterministic state complex-
ity. The first theorem shows that the bound based on the biclique edge cover
technique can be seen as a generalization of the extended fooling set technique.

Theorem 8. Let L be a regular language. Then the bipartite dimension of the
dependency graph GL is equal to or greater than the maximum size of an extended
fooling set for L.

Proof. The proof of this fact is entirely graph theoretic. We need some further
notations from graph theory: An undirected simple graph is a tuple Γ = (V, E),
where V is the set of vertices and E ⊆ {{u, v} | u, v ∈ V and u 6= v } the set of
edges. A set C ⊆ V of vertices is a clique, if {v, v′} ∈ E for all vertices v, v′ ∈ C.
The clique number of G, denoted by ω(Γ), is the maximum size of a clique in Γ .
A coloring of the vertex set is an assignment of a color to each vertex in a way
such that each pair of vertices sharing an edge receives a different color. The
chromatic number χ(Γ) is then the least number of colors needed in order to
color the vertex set.

As it turns out, the bipartite dimension of a bipartite graph G can be deter-
mined in an associated undirected simple graph via the following result, which
is due to [10]. Let G = (X, Y, E) a bipartite graph and ΓG be its associated
undirected simple graph whose vertex set is the edge set of G, and for each pair
of vertex-disjoint edges ei = (xi, yi) and ej = (xj , yj) in G, let {ei, ej} be an

8

edge in ΓG if and only if the subgraph induced by ({ui, uj}, {vi, vj}) is one of
the constellations shown in Figure 1. Then the result in [10] reads as follows:

Let G = (X, Y, E) be a bipartite graph and ΓG be its associated undi-
rected simple graph. Then the bipartite dimension of G equals the chro-
matic number of ΓG, i.e., d(G) = χ(ΓG).

Next we show that a extended fooling sets correspond to cliques in the
graph ΓG, and thus are related to the clique number ω(ΓG).

Let G = (X, Y, E) be a bipartite graph and S ⊆ E a set of edges. Then S
is an extended fooling set for G if and only if S is a clique in ΓG.

We argue as follows: If S is an extended fooling set for G, then every pair of
distinct edges ei, ej ∈ S forms a constellation as in Figure 1, each giving rise to
an edge {ei, ej} in ΓG. Thus, when S is seen as a set of vertices in ΓG, then all
members in S are pairwise connected by an edge in ΓG. Thus, S is a clique in ΓG.
Conversely, assume S is not an extended fooling set for G. Then S contains a
pair of edges ei = (xi, yi) and ej = (xj , yj) such that either (i) xi = xj or yi = yj ,
or (ii) (xi, yj) ∈ E and (xj , yi) ∈ E. In both cases, {ei, ej} is not an edge in ΓG,
and S is not a clique in ΓG. We immediately obtain the following relation:

Let L be a regular language and GL the dependency graph of L. Then
the maximum size extended fooling set for L has size ω(ΓGL

).

The relation χ(Γ) ≥ ω(Γ) holds for any graph Γ because all vertices in a
clique are mutually connected by edges, and thus indeed n colors are needed to
color a clique of size n. Therefore by [10] the bipartite dimension of a bipartite
graph is always equal to or greater than the maximum possible size of an ex-
tended fooling set. This completes the proof of the stated claim. ut

Before we compare the techniques introduced so far, let us give a small ex-
ample.

Example 9. Consider the finite language L = {ab, ac, bc, ba, ca, cb}, which has
nondeterministic state complexity five—see Figure 2. Then one can easily verify
that, for instance,

S = {(λ, ab), (ba, λ)} ∪ {(a, b), (b, a)}

is a fooling set and

S′ = {(λ, ab), (ba, λ)} ∪ {(a, b), (b, c), (c, a)}

an extended fooling set for L. Note that the size of S ′ exactly matches the
nondeterministic state complexity of L, while S is one element off the optimum,
but best possible w.r.t. the fooling set condition.

For the latter statement it remains to be shown that there is no larger fooling
set than S for L. To this end we argue as follows: (i) Any element of a fooling

9

a
b

c

b, c
a, c

a, b

a, b
a, c

b, c

c b a

Fig. 2. Two non-isomorphic minimal nondeterministic finite automata for the finite
language L = {ab, ac, bc, ba, ca, cb}.

set for L is obviously of the form (λ, y), (x, λ) with |x| = |y| = 2, or (x, y) with
|x| = |y| = 1. (ii) No three or more different pairs of the form (λ, y) or (x, λ)
with |x| = |y| = 2 can be present simultaneously in any fooling set for L. Assume
to the contrary that there are at least three pairs of this form. Then with loss
of generality there are two pairs with first component λ. This contradicts the
obvious fact that in any fooling set no two elements can be present with the same
first or second component. (iii) No three or more different pairs of the form (x, y)
with |x| = |y| = 1 can be present simultaneously in any fooling set for L. Assume
to the contrary that there are at least three pairs of this form. Let (xi, yi) with
i ≥ 3 be these pairs satisfying xiyi ∈ L, for |xi| = |yi| = 1. Then from the fooling
set property we conclude x1y3 6∈ L and x2y3 6∈ L, and therefore x1 = y3 and
x2 = y3. Thus we obtain x1 = x2, a contradiction, by similar reasons as above.
This proves that the fooling set S is already of maximal size.

For the biclique edge cover technique we define the bipartite graph G =
(X, Y, EL) for L with X = {λ, a, b, c, ab}, Y = {λ, a, b, c, ab}. The edge set EL

is depicted in Figure 3. This graph is the edge-disjoint union of two graphs G1

and G2, where G1 is a 2-ladder and G2 is the bi-complement of a 3-ladder.
Clearly, the bipartite dimension of G1 equals 2, and by [3] follows that the bipar-
tite dimension of G2 equals 3. Hence the bipartite dimension of G = (X, Y, EL)
equals 5, which is optimal.

Figure 4 is an eye-catching proof of the fact that the finite language L has an
extended fooling set of size 5 using the graph ΓGL

—the 5-clique is outlined in
boldface. The reader is invited to check that the depicted graph is indeed ΓGL

,
and to find a 5-coloring for this graph.

When comparing the techniques under consideration we obtain the following
result:

Theorem 10. There is a sequence of languages (Ln)n≥1 such that the nonde-
terministic state complexity of Ln is at least n, i.e., nsc(Ln) ≥ n, but any fooling
set for L has size at most c, for some constant c. An analogous statement holds
for extended fooling sets versus fooling sets, nondeterministic state complexity
versus extended fooling sets, and the bipartite dimension versus extended fooling
sets.

10

a

b

c

λ

ab

a

b

c

ab

λ

Fig. 3. The dependency graph GL (only vertices are shown that are connected by
edges) of the finite language L = {ab, ac, bc, ba, ca, cb}.

(λ,ab)

(ab,λ)

(c,b)

(c,a)

(b,a)

(b,c)

(a,c)

(c,a)

Fig. 4. The undirected simple graph ΓGL
for the finite language L =

{ab, ac, bc, ba, ca, cb}.

11

Proof. Nondeterministic state complexity versus fooling sets: The statement is
due to [8] and uses as witness languages

Ln = {w ∈ 0∗ | |w| = 0 or |w| 6= 0 mod n }.
Extended fooling sets versus fooling sets: Let Σ = { ai | 1 ≤ i ≤ n }. Consider

the finite language Ln = { aiaj | 1 ≤ i ≤ j ≤ n }. It is easy to see that
Sn = { (ai, ai) | 1 ≤ i ≤ n }∪ {(λ, a1a1), (a1a1, λ)} is an extended fooling set
for Ln of size at least n+2. Then the analysis that any fooling set for Ln has
size at most 3 goes as follows: (i) First one observes, that any fooling set can
only contain at most one pair of the form (λ, w) or (w, λ). Then (ii) no two
pairs of the form (ai, aj) and (ak, a`) with 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ ` ≤ n
can be members of any fooling set for Ln. W.l.o.g. assume that i ≤ k, then
aia` ∈ Ln, which contradicts the fooling set property. Hence, any fooling set
for Ln can have at most 3 elements. This bound is tight, which is seen by
the fooling set S = {(λ, a1a1), (a1a1, λ), (a1, a1)} for the language Ln.

Nondeterministic state complexity versus extended fooling sets: Let us consider
the language Ln = {w ∈ 0∗ | |w| = 0 or |w| 6= 0 mod n }. We will show
that there is no extended fooling set of size four for Ln. As any subset of
a extended fooling set is again an extended fooling set, there cannot be an
extended fooling set of larger cardinality either. The idea of the proof is that
any subgraph of GLn

induced by a set of four vertex-disjoint edges contains
too many edges for being an extended fooling set for Ln.
For an arbitrary bipartite graph G, let S = { (xi, yi) | 1 ≤ i ≤ 4 } be an
extended fooling set for G. Then for any pair (xi, yi) and (xj , yj) in S with
i 6= j, there is at least one non-edge in the corresponding induced subgraph
of G, namely (xi, yj) or (xj , yi). There are

(

4
2

)

= 6 such pairings, so the
subgraph induced by S can have at most 4 · 4 − 6 = 10 edges.
Now let us turn to the dependency graph GLn

. The cases n ≤ 3 are triv-
ial. Now assume n ≥ 4. For the graph GLn

= (X, Y, EL), we choose the
representation

X = { 0k | 1 ≤ k ≤ n },
Y = { 0n−k | 0 ≤ k ≤ n − 1 },

and define (0i, 0j) ∈ EL, if i + j 6= n. Let S = { (xi, yi) | 1 ≤ i ≤ 4 } be
a set of pairwise vertex-disjoint edges in GLn

. Set U = {xi | 1 ≤ i ≤ 4 }
and V = { yi | 1 ≤ i ≤ 4 }, and let G the bipartite subgraph induced by
(U, V). Out of the maximally 16 edges from U to V , at most four pairs
(xi, yj) can be non-edges: Assume |xi| = k mod n. Then (xi, yj) /∈ EL

implies |yj | = (n − k) mod n. Two words of the same length modulo n are
equivalent w.r.t. ≡L. Hence V contains only one word with this property. We
conclude that for each element in U , there is at most one member yj in V
such that (xi, yj) /∈ EL, and the bipartite graph G has at least 12 edges.
This contradicts our previous result that S induces a subgraph of at most 10
edges.
Finally it is easy to see that the nondeterministic state complexity of Ln

grows with n and cannot be bounded by any constant.

12

Bipartite dimension versus extended fooling sets: Consider the language Ln =
{w ∈ 0∗ | |w| = 0 or |w| 6= 0 mod n } used in the proof above, where it
was shown that any extended fooling for Ln has size at most 4. In order to
prove the above stated result it suffices to show that the bipartite dimension
of GLn

grows with n and cannot be bounded by any constant.
For the dependency graph GLn

= (X, Y, EL) we chose the same represen-
tation as in the proof above. Let GLn

:= (X, Y, (X × Y) \ EL) be the bi-
complement of GLn

w.r.t. the edge set EL. Observe, that GLn
is an induced

matching with n edges, i.e., an n-ladder. The bipartite dimension of graphs
with the property that their complement w.r.t. the edge set is an induced
matching with n edges was determined in [3]. It was shown that it equals k,
where k is the smallest integer such that n ≤

(

k
b k

2
c
)

. So k grows with n, and

cannot be bounded by any constant as n tends to infinity. ut
As the reader may have noticed, the comparison between bipartite dimension

and nondeterministic state complexity is missing in the above given theorem. The
following theorem shows that the bipartite dimension of a regular language is a
measure of descriptional complexity.

Theorem 11. Let L ⊆ Σ∗ be a regular language and GL the dependency graph
for L. Then 2d(GL) is greater or equal to the deterministic state complexity of L,
i.e., 2d(GL) ≥ sc(L).

Proof. Let GL = (X, Y, EL) and assume that the bipartite dimension of GL

equals k. Then the edge set of GL can be covered by a set of bicliques C =
{H1, H2, . . . , Hk}. For x ∈ Σ∗, let B(x) ⊆ C be the set of bicliques where x
occurs as a “left vertex.” We claim that B(x) = B(x′) implies x ≡L x′, for all
x, x′ ∈ Σ∗. Suppose that y ∈ Σ∗ occurs as a “right vertex” in some biclique
in B(x). If B(x) = B(x′), then both (x, y) ∈ EL and (x′, y) ∈ EL. The other
possibility is that y does not occur as a right vertex in any biclique from B(x).
Then B(x) = B(x′) implies that (x, y) /∈ EL and (x′, y) /∈ EL. By definition
of GL we have (x, y) ∈ EL if and only if xy ∈ L. To conclude, if B(x) = B(x′),
then xy ∈ L ⇐⇒ x′y ∈ L, for all y ∈ Σ∗, which is the definition of the Myhill-
Nerode equivalence ≡L of L. Then define x ∼ x′ with x, x′ ∈ Σ∗ if and only
if B(x) = B(x′). This equivalence relation induces 2|C| equivalence classes, and
is a refinement of the Myhill-Nerode relation. Thus we have shown that 2|C| is
greater or equal than the deterministic state complexity of L. ut

Hence, d(GL) ≥ log sc(L) and d(GL) ≥ log nsc(L). By Corollary 5 and The-
orem 11 we obtain a characterization of regular languages in terms of bipartite
dimension.

Corollary 12. Let L ⊆ Σ∗ be an arbitrary language and G = (Σ∗, Σ∗, EL)
the bipartite graph associated with L. Then L is a regular language if and only
if d(G) is finite. ut

The above result is essentially optimal. In [14, 17] it was shown that the non-

deterministic state complexity can be Ω(2
√

d), where d is the bipartite dimension

13

of the dependency graph. We improve on this result showing that this gap can
be actually even larger using the languages Ln = {w ∈ 0∗ | |w| 6= 0 mod n}.

Theorem 13. There is a sequence of languages (Ln)n≥1 over a one letter al-

phabet such that nsc(Ln) = Ω
(

d
−1/2
n · 2dn

)

, where dn is the bipartite dimension

of GLn
.

Proof. Let Ln = {w ∈ 0∗ | |w| 6= 0 mod n }. As in the proof of Theorem 10
one can show that the bipartite dimension of the dependency graph GLn

is the
unique integer k such that

(

k − 1

bk−1
2 c

)

< n ≤
(

k

bk
2c

)

.

By Stirling’s approximation of the factorial
(k−1
b k−1

2
c
)

= Ω
(

2k/
√

k
)

and we con-

clude that

n = Ω

(

2d(GLn
)

√

d(GLn
)

)

.

It remains to be shown that there are infinitely many n such that nsc(Ln) ≥
n. We show that this is the case, whenever n is a prime number and thus taking
the sequence (Lpi

)i≥1, where pi is the ith prime number, will prove the stated
result. To this end we argue as follows: An unary language L is called n-cyclic,
if 0i ∈ L ⇐⇒ 0i+n ∈ L, for every i ≥ 0. Moreover, language L is minimally
n-cyclic, if L is n-cyclic, but not m-cyclic for any m < n. In [15, Corollary 2.1]
it was shown that if L is a minimally p-cyclic unary language, where p is prime,
then nsc(L) = p. We show that Ln is minimally n-cyclic. It can be readily seen
that Ln is n-cyclic. Assume to the contrary that Ln is also m-cyclic with m < n.
Then λ /∈ Ln implies 0m /∈ Ln. But the shortest nonempty word not in the
language has length n, a contradiction. Thus, the stated claim follows. ut

6 Computational Complexity of Lower Bound Techniques

To determine the nondeterministic state complexity of a regular language is
known to be a computationally hard task, namely PSPACE-complete [16]. In this
section we consider three decision problems based on the lower bound techniques
presented so far. The fooling set problem is defined as follows:

– Given a deterministic finite automaton A and a natural number k in binary,
i.e., and encoding 〈A, k〉.

– Is there a fooling set S for the language L(A) of size at least k?

The extended fooling set and the biclique edge cover problem are analogously
defined. We start our investigations with the fooling set problem.

Theorem 14. The fooling set problem is NP-hard and contained in PSPACE.

14

Proof. For the NP-hardness we reduce the NP-complete induced matching prob-
lem on bipartite graphs [6] to the problem under consideration. The induced
matching problem on bipartite graphs is defined as follows: Given a bipartite
graph G = (X, Y, E) and an integer k encoded in binary, does E contain an
induced matching of size at least k?

Let 〈G, k〉 be an instance of the induced matching problem for bipartite
graphs. Assume G = (X, Y, E) with X = {1, 2, . . . , n} and Y = {1, 2, . . . , m}.
Then we define the regular language LG = { aibj | (i, j) ∈ E } over the alphabet
Σ = {a1, a2, . . . , an, b1, b2, . . . , bm}. It is easy to see that there is a deterministic
finite automaton A for LG of size polynomially in n and m. Then one can easily
verify that there is an induced matching for G of size at least k if and only if
there is a fooling set for LG of size at least k + 2. Note that if M is an induced
matching for G, then S = { (ai, bj) | (i, j) ∈ M}∪ {(λ, w), (w, λ)} is a maximum
fooling set for LG, where w is any word in LG. Hence the induced matching
problem for bipartite graphs reduces to the fooling set problem.

It remains to prove the containment within PSPACE. Let 〈A, k〉 be the in-
stance of the fooling set problem, where A = (Q, Σ, δ, qo, F) is a deterministic
finite automaton and k an integer. If S is a fooling set, then one can assume
w.l.o.g. that for every (x, y) ∈ S we have |x| ≤ |Q| and |y| ≤ 2|Q|. Moreover we
note that the size of S cannot exceed |Q|. This gives the idea to the following
algorithm: A polynomially space bounded nondeterministic Turing machine can
guess k words xi with |xi| ≤ |Q| and store the states qi = δ(q0, xi) in a k-vector.
Then the Turing machine guesses words yi of length at most 2|Q| in sequence,
for 1 ≤ i ≤ k, and verifies that the fooling set property is satisfied. Thus, for
the word yi the Turing machine checks whether δ(qi, yi) ∈ F and δ(qj , yi) 6∈ F ,
if i 6= j. Of course, due to the space bounds, the machine cannot remember the
whole of the word yi, but it suffices to guess the word letter by letter and to
update the k-state vector accordingly. This shows containment in PSPACE. ut

Next, let us consider the extended fooling set technique, where we can give
a precise complexity bound. Despite the striking similarity to the definition
of a fooling set, it turns out that finding a maximum extended fooling set is,
from a computational point of view, as least as hard as the nondeterministic fi-
nite automaton minimization task itself, i.e., PSPACE-complete. The PSPACE-
hardness is shown by a reduction from the PSPACE-complete deterministic finite
automaton union universality problem, and closely follows that of the PSPACE-
hardness of the nondeterministic finite automaton minimization problem [16].
The deterministic finite automaton union universality problem is defined as fol-
lows:

– Given a list of deterministic finite automata A1, A2, . . . , An over a common
alphabet Σ.

– Is
⋃n

i=1 L(Ai) = Σ∗?

Now we are ready for the computational complexity of the the extended fooling
set problem.

Theorem 15. The extended fooling set problem is PSPACE-complete.

15

Proof. Note that the upper bound for fooling sets as shown in Theorem 14 easily
transfers to extended fooling sets.

For the hardness we argue as follows: The given construction relies on a
definition of a special language L commonly specified by multiple deterministic
finite automata—recall the construction given in [16].

Let 〈A1, A2, . . . , An〉 be the instance of the union universality problem for
deterministic finite automata, where Ai = (Qi, Σ, δi, qi1, Fi), for 1 ≤ i ≤ n
is a deterministic finite automaton with state set Qi = {qi1, qi,2, . . . qi,ti

}. Ob-
viously, the deterministic finite automata union universality problem remains
PSPACE-complete, if for given deterministic finite automata A1, A2, . . . , An, all
words of length at most one are in

⋃n
i=1 L(Ai), and all states are reachable

from the respective start state by reading some word in Σ∗. We assume that
Qi ∩ Qj = ∅ for i 6= j. The language P (i, j) is defined as the set of words which
could be accepted by Ai if qij was redefined as the only accepting state, that is
P (i, j) = {w ∈ Σ∗ | δi(qi1, w) = qij }. We introduce a new symbol ai for each
automaton Ai, and a new symbol bij for each state qij in

⋃n
i=1 Qi. In addition,

we have new symbols c, d and f . Define the language P (i) as a marked version
of the language accepted by Ai:

P (i) =

ti
⋃

j=1

[ai · P (i, j) · bij].

The language Q(i) consists of short prefixes of words in L(Ai), which are marked
at the end:

Q(i) = {wbij | w ∈ (Σ ∪ λ) and δ(qi1, w) = qij }.

Let B be the set of symbols bij introduced above. Then the auxiliary language R
is given by

R = ({c} ∪ Σ)(d ∪ Σ)Σ∗({f} ∪ B).

Lastly, let

L =

n
⋃

i=1

[P (i) ∪ aiL(Ai) ∪ Q(i)] ∪ R ∪ Σ∗. (1)

Given A1, A2, . . . , An, it is easy to construct in polynomial time

– a deterministic finite automaton with a single state accepting Σ∗,
– a deterministic finite automaton with four states accepting R,
– a deterministic finite automaton with |Σ| + 2 states accepting the language
⋃n

i=1 Q(i), and
– a deterministic finite automaton with 2+

∑n
i=1 |Qi| states accepting

⋃n
i=1[P (i)∪

aiL(Mi)].

By the well-known product construction, a deterministic finite automaton ac-
cepting the union of these four languages can be obtained in polynomial time,
and the union of these languages equals L.

16

We show that the size of a maximum extended fooling set for L depends on
whether

⋃n
i=1 L(Ai) equals Σ∗. Let k = 4 +

∑n
i=1 |Qi|. Then size of a maximum

extended fooling set for L equals k, if the union of deterministic finite automata
languages under consideration is universal, and equals k + 1 otherwise. To this
end we argue as follows: Define the set of pairs S = S ′ ∪ S′′ with

S′ = { (aiwij , bij) | 1 ≤ i ≤ n and 1 ≤ j ≤ ti }
and

S′′ = {(λ, a1b11), (a1b11, λ), (c, df), (cd, f)},

where wij is any word in P (i, j), for each 1 ≤ i ≤ n and 1 ≤ j ≤ ti. We claim
that S is an extended fooling set for L.

It is readily observed that xy ∈ L for all (x, y) ∈ S. Next, we note that the
word aiwijbi` is in L only if j = `. Of course, if j = ` then aiwijbi` ∈ L. Assume
now i 6= `. Since the word begins with ai and ends with bi`, it is not in L, or
it is in P (i) ∪ ai · L(Ai). It is clear that wij ∈ P (i, j). Any word in P (i) ending
with bi` is in ai · P (i, `) · bi`, so wij ∈ P (i, j) ∩ P (i, `). But automaton Ai is
deterministic, so P (i, j) ∩ P (i, `) = ∅ if j 6= `, and thus aiwijbi` /∈ L. Thus, all
elements in S′ obey the extended fooling set property. We turn to the elements
in S′′: Obviously, a1b11 ∈ L. But neither any of the words aiwijbija1b1,1 nor
any of a1b1,1aiwijbij are in L. Therefore S′ can be augmented by adding the
elements (λ, a1b11) and (a1b11, λ). Similar, none of the words cbij , ca11b11, c,
and cddf are in L, so the element (c, df) can be added to the set without altering
this property. And finally, none of the words cdbij , cda1,1b1,1, and cd is in L.
Therefore, S is in fact an extended fooling set as claimed above.

The rest of the proof consists in showing that there is an extended fooling
set of cardinality at least k + 1 if and only if

⋃n
i=1 L(Ai) 6= Σ∗. In the case

the language in question is universal, an explicit construction shows that the
nondeterministic state complexity is at most k, see [16, Claim 3.2] and Figure 5.
This NFA is not proper, since it contains ε-transitions, but these can be removed
without increasing the number of states using the standard construction found
in [22, Theorem 3.2].

Hence, there cannot be an extended fooling set of size k + 1 in this case.
Conversely, let w ∈ Σ∗ be a word not in

⋃n
i=1 L(Ai). Since |w| ≥ 2, we can write

w = xy with |x| ≥ 1 and |y| ≥ 1. We claim that S∪{(x, y)} (the union is disjoint)
is also a larger extended fooling set for L: Assume this is not the case. Then there
is (x′, y′) ∈ S such that xy′ and x′y are both in L. We first rule out the case
that (x′, y′) is in S′′. Then xa1b1,1 /∈ L, if |x| ≥ 1, and a1b1,1y /∈ L, if |y| ≥ 1.
Any word in L beginning with c ends either with f , or bij , for some i, j. Hence,
neither cy nor cdy is in L. So (x′, y′) must be in S′ and of the form (aiwij , bij).
Then both aiwijy and xbij are in L, see Figure 6 for illustration. We can deduce
that wijy ∈ L(Ai), since the word aiwijy begins with ai. And x ∈ P (i, j), since
the word xbij ends with bij . Since Ai is deterministic and wij is also in P (i, j),
we have wij ≡L(Ai) x, where ≡L(Ai) is the Myhill-Nerode equivalence relation
for L(Ai). But wijy ∈ L(Ai) implies, by definition of the equivalence relation,

17

q0

qn1

qnj

wnj

An

qi1

qij

wij

Ai

q11

q1j

w1j

A1

λ, an

λ, ai

λ, a1

bnj

bij

b1j

c, a, for a ∈ Σ

d, a, for a ∈ Σ

a, for a ∈ Σ

f, a, for a ∈ Σ ∪ B

Fig. 5. Schematic view of a k-state nondeterministic finite automaton with λ-moves
accepting the language L—provided

Sn

i=1
L(Ai) = Σ∗. Otherwise, an additional state

is needed, which has a a-loop, for a ∈ Σ and is connected from the start state with an
a-transition, for a ∈ Σ. The structures inside the boxes are copies of the deterministic
finite automata A1, A2, . . . , An.

u′ = aiwij bij = v′

u v

Fig. 6. This would be a constellation in the graph G = (Σ∗, Σ∗, EL) contradicting the
extended fooling set condition.

18

that xy ∈ L(Ai), contradicting xy = w ∈ Σ∗ \⋃n
i=1 L(Ai). We conclude there is

an extended fooling set of size k + 1 in this case. ut

Finally, we show that that deciding the biclique edge cover problem is also
PSPACE-complete, although the dependency graph of the given language can
be of exponential size in terms of the input.

Theorem 16. The biclique edge cover problem is PSPACE-complete.

Proof. The PSPACE-hardness follows along the lines of the proof for the PSPACE-
completeness of the extended fooling set problem and the fact that the bipartite
dimension is sandwiched between the maximum size of an extended fooling set
and the nondeterministic state complexity. To be more precise, let L be the
language defined in Equation (1). In the case where L, the union of the deter-
ministic finite automata languages, is not universal, there is an extended fooling
set of size k + 1, and since the bipartite dimension cannot be lower we have
d(GL) ≥ k + 1. In the other case, the nondeterministic state complexity is at
most k (recall Figure 5, see also [16, Claim 3.2]), and matches the size of the
extended fooling set S for L. But the bipartite dimension of the graph GL is
sandwiched between both measures. Thus, d(GL) ≤ k.

The containment in PSPACE is seen as follows: We present a PSPACE al-
gorithm deciding on input 〈A, k〉 whether there is a biclique edge cover of size
at most k for GL(A). Since PSPACE is closed under complement, this routine
can also be used to decide whether there is no biclique edge cover of size at
most k−1, and moreover that the bipartite dimension of the graph is at least k.

Due to the space constraints, keeping the dependency graph GL(A) in mem-
ory is ruled out, since the index of L(A) ≡ can be exponential in the size of
the given deterministic finite automaton. Recall, that the vertex sets of GL(A)

can be chosen to correspond to the equivalence classes of ≡L(A) and L(A)≡. So
the first vertex set is in one-to-one correspondence with the state set Q of the
automaton A, while by Brzozowski’s theorem [5], the second vertex set corre-
sponds one-to-one to a certain subset of 2Q. Namely, for A = (Q, Σ, δ, q0, F) let
AR = (Q, Σ, δR, F, {q0}), where p ∈ δR(q, a) if and only if δ(p, a) = q, be a finite
automaton with multiple initial states, the so called reversed automaton of A.
Moreover, let D(AR) be the automaton obtained by applying the “lazy” subset
construction to the automaton AR, that is we generate only the subsets reachable
from the set of start states of the finite state automaton AR. Then these subsets
of Q correspond to the equivalence classes of L(A)≡. Since this automaton can
be of size exponential in |Q|, however, it cannot be kept in the working memory,
too. Nevertheless, assuming Q = {q0, q1, . . . qn−1}, we can represent the subsets
of Q as binary string of length n in a natural fashion. By these mappings, we
may assume now that GL(A) = (X, Y, EL(A)) with X = Q, Y = {0, 1}n, and
the suitably induced edge relation EL(A). Thus, we have established a compact
representation of the vertices in the dependency graph. Next, we need a routine
to decide membership in the edge set of GL(A).

Given the implicit representation of GL(A) in terms of a n-state deterministic
finite automaton A = (Q, Σ, δ, q0, F), there is a PSPACE algorithm deciding,

19

given a state q of A and a subset address s = a0a1 . . . an−1, whether (q, s) ∈
EL(A). Assume x to be a word satisfying δ(q0, x) = q. As |x| ≤ n, it can be
determined and stored to the work tape without affecting the space bounds.
If s corresponds to a reachable subset M in D(AR), then we can guess on the
fly a word y of length at most 2n, and verify that M is reached in D(AR) by
reading y. Now, (q, s) is an edge in GL(A) if and only if xyR is in L(A). This
is the case if and only if (xyR)R = yxR is accepted by D(AR). Recall that the
word y may be of exponential length and cannot be directly stored on the work
tape. But D(AR) is in the state set M after reading y, and we only have to verify
that we reach an accepting state if we continue by reading xR. This is the desired
subroutine for deciding whether (q, s) ∈ EL(A), which runs in (nondeterministic)
polynomial space.

The next obstacle is that, although there surely exists a biclique edge cover
of cardinality at most n for GL(A), a single biclique in this cover can be of
exponential size. Thus we have to reformulate the biclique edge cover problem
in a suitable manner. Let G = (X, Y, E) be a bipartite graph, and for y ∈ Y
define Γ (y) = {x ∈ X | (x, y) ∈ E }. Then the formula

∃C ⊆ 2X : |C| ≤ k ∧
(

∀(x, y) ∈ E : ∃c ∈ C : x ∈ c ∧ c ⊆ Γ (y)
)

(2)

is a statement equivalent to the biclique edge cover problem. This is seen as
follows: Assume C is a set of at most k subsets of X satisfying the above con-
ditions. We construct a set of |C| bicliques covering all edges in G. For c ∈ C,
let c′ be the set of vertices in Y such that Γ (y) ⊇ c. Then (c, c′) induces a
biclique in G, since every vertex in c is adjacent to all vertices in c′. Further-
more, the condition on C ensures that every edge is member of least one such
biclique, and we have obtained a biclique edge cover of size at most k. Con-
versely, assume that {H1, H2, . . . , Hk} is a biclique edge cover of size k for G,
where Hi = (ci, c

′
i, ci × c′i) for 1 ≤ i ≤ k. We set C = {c1, c2, . . . ck}. Then for

every edge (x, y) in G, there is a c ∈ C such that x ∈ c and c ⊆ Γ (y). If Hi is
a biclique covering of the edge (x, y), then obviously x ∈ ci and y is adjacent to
all vertices in ci. This proves the stated claim on Equation (2).

Now let us come back to the input 〈A, k〉, where A = (Q, Σ, δ, q0, F). The
reformulated statement can be checked in PSPACE by guessing a set C of at
most k subsets of Q, and then the Turing machine checks the following for each
pair (x, y) ∈ X×Y , where X and Y is chosen as described above: If (x, y) /∈ EL(A)

it goes to the next pair. Otherwise, it guesses a subset c ∈ C and verifies that
both x ∈ C and that for every x′ ∈ c holds (x′, y) ∈ EL(A). By our previous
investigations it is easy to see that this algorithm can be implemented on a
Nondeterministic polynomial space bounded Turing machine. This proves that
the biclique edge cover problem belongs to PSPACE. ut

Finally, let us mention that the complexity of the fooling set and the extended
fooling set problem does not increase if the regular languages is specified as
a nondeterministic finite automaton. The proofs for the upper bounds on the
complexity carry over to this setup with minor modifications. Currently, we
do not know whether this also true for the biclique edge cover technique, if the

20

regular language is given as a nondeterministic finite automaton. The best upper
bound we are aware of is co-NEXPTIME, obtained by explicit construction of GL

and verifying that there is no biclique edge cover of size at most k.

7 Discussion

Finding nontrivial lower bounds for descriptional complexity is still a challeng-
ing business, even in the seemingly simple case of regular languages. We have
investigated three different techniques for proving lower bounds on the size of
nondeterministic automata and developed a unified framework based on bipar-
tite graphs, which allows a rigorous analysis of the strengths and limitations
of these methods. The capstone of this work is the notion of the dependency
graph of a regular language, a finite canonical object mirroring many properties
of regular languages. One of the main advantages of the dependency graph is
that, in principle, good lower bounds can be found in an algorithmic way, which
does not require conscious thought. Based on this work, we compared the best
possible bounds attainable to the actual nondeterministic state complexity, and
to each other. In passing, using methods from graph theory, we improve a result
by [14] on the gap between nondeterministic message complexity and nondeter-
ministic state complexity. We hope that more such ideas from graph theory can
be successfully applied in the theory of regular languages.

Since the best possible bound for each method can be effectively computed
using the dependency graph, the question arises whether any of them can be com-
puted efficiently. Recently, it has been shown in [9] that lower bounds with a

generous guaranteed relative error as large as
√

n
poly(log(n)) cannot be found in poly-

nomial time, provided some cryptographic assumption holds. But this theorem
does not apply for the techniques presented here, as we found that the relative
error can be even larger than this. However, we showed that deciding whether
a certain lower bound w.r.t. one of the investigated techniques can be achieved
is in all cases computationally hard, i.e., NP-hard or even PSPACE-complete.
That means that this task is already computationally as hard as minimizing
nondeterministic finite automata.

The classification of the computational complexity of the lower bound tech-
niques is nearly complete, but some questions are open, for example whether
finding a maximum fooling set has complexity different to the same question
for extended fooling sets. Furthermore, do these problems get even harder if
the input is specified by a nondeterministic finite automaton instead of a deter-
ministic one? This would be a surprising phenomenon, since the corresponding
minimization problem remains complete for PSPACE: Loosely speaking, one can
ask whether finding lower bounds can be harder than minimization?

As we mentioned in the introduction, the biclique edge cover method for
finding lower bounds is equivalent to nondeterministic message complexity. For
a proof of this fact the reader is referred to the appendix. Lately, the latter has
been generalized by the advent of so-called multi-party nondeterministic message
complexity [1]. This technique can be in some cases much more powerful than the

21

techniques presented here. Can the notion of dependency graphs be generalized
so as to reflect this concept?

Acknowledgments

Thanks to Martin Kutrib for some discussion on the subject during the early
stages of the paper.

References

1. H. N. Adorna. 3-party message complexity is better than 2-party ones for proving
lower bounds on the size of minimal nondeterministic finite automata. Journal of

Automata, Languages and Combinatorics, 7(4):419–432, 2002.
2. H. N. Adorna. Some descriptional complexity problems in finite automata theory.

In R. P. Salde na and C. Chua, editors, Proceedings of the 5th Philippine Computing

Science Congress, pages 27–32, Cebu City, Philippines, March 2005. Computing
Society of the Philippines.

3. S. Bezrukov, D. Fronček, S. J. Rosenberg, and P. Kovář. On biclique coverings.
Preprint, 2005.

4. J.-C. Birget. Intersection and union of regular languages and state complexity.
Information Processing Letters, 43:185–190, 1992.

5. J. A. Brzozowski. Mathematical theory of automata. In Canonical Regular Expres-

sions and Minimal State Graphs for Definite Events, volume 12 of MRI Symposia

Series, pages 529–561. Polytechnic Press, NY, 1962.
6. K. Cameron. Induced matchings. Discrete Applied Mathematics, 24:97–102, 1989.

7. M. Dawande. A notion of cross-perfect bipartite graphs. Information Processing

Letters, 88:143–147, 2003.
8. I. Glaister and J. Shallit. A lower bound technique for the size of nondeterministic

finite automata. Information Processing Letters, 59:75–77, 1996.
9. G. Gramlich and G. Schnitger. Minimizing NFA’s and regular expressions. In

V. Diekert and B. Durand, editors, Proceedings of the 22nd Annual Symposium on

Theoretical Aspects of Computer Science, number 3404 in LNCS, pages 399–411,
Stuttgart, Germany, February 2005. Springer.

10. P. L. Hammer and P. C. Fishburn. Bipartite dimension and bipartite degrees of
graphs. Discrete Applied Mathematics, 160:127–148, 1996.

11. J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation to Au-

tomata. Addison-Wesley, 1968.
12. J. Hromkovič. Communication Complexity and Parallel Computing. Springer,

1997.
13. J. Hromkovič. Descriptional complexity of finite automata: Concepts and open

problems. Journal of Automata, Languages and Combinatorics, 7(4):519–531, 2002.

14. J. Hromkovič, J. Karhumäki, H. Klauck, G. Schnitger, and S. Seibert. Measures
of nondeterminism in finite automata. Report TR00-076, Electronic Colloquium
on Computational Complexity (ECCC), 2000.

15. T. Jiang, E. McDowell, and B. Ravikumar. The structure and complexity of mini-
mal NFAs over unary alphabet. International Journal of Foundations of Computer

Science, 2(2):163–182, June 1991.

22

16. T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on

Computing, 22(6):1117–1141, December 1993.
17. G. Jirásková. Note on minimal automata and uniform communication protocols.

In C. Mart́ın-Vide and V. Mitrana, editors, Grammars and Automata for String

Processing, volume 9 of Topics in Computer Mathematics, pages 163–170. Taylor
and Francis, 2003.

18. T. Kameda and P. Weiner. On the state minimization of nondeterministic finite
automata. IEEE Transactions on Computers, C-19(7):617–627, 1970.

19. F. R. Moore. On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transaction

on Computing, C-20:1211–1219, 1971.
20. M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM

Journal, 3:114, 1959.
21. A. Salomaa, D. Wood, and S. Yu. On the state complexity of reversals of regular

languages. Theoretical Computer Science, 320(2–3):315–329, 2004.
22. S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of

Formal Languages, volume 1, pages 41–110. Springer, 1997.

23

Appendix

Up to here, it seems like our discussion had largely omitted a line of research on
lower bounds for nondeterministic state complexity, namely the nondeterminis-
tic message complexity discussed in [1, 12, 17]. This is for the reason that the
bipartite dimension of the dependency graph equals this complexity measure,
and so there is no need to introduce the whole machinery of communication
complexity in the main part of the paper. However, as this fact is not entirely
obvious, a proof is given here. The following definitions related to communication
complexity are taken literally from the monograph [12].

Definition 17. Let Σ be a finite alpabet, and L ⊆ Σ∗ be a regular language. A
one-way uniform nondeterministic protocol over Σ is a pair (Φ, ϕ), where

1. Φ : Σ∗ → 2{0,1}∗

is a function fulfilling the following properties:
(a) Φ has the “prefix-freeness property,” i.e., if z ∈ Φ(x) and u ∈ Φ(y), then

neither u is a proper prefix of z nor z is a proper prefix of u,
(b) for every x ∈ Σ∗, Φ(x) is a finite set, and
(c) the set {Φ(x) | x ∈ Σ∗ } is finite;

2. ϕ : Σ∗ × {0, 1}∗ → {0, 1} is a function.

A computation of D on a word x = x1x2 is a word u$r, where u ∈ Φ(x1) and
r = ϕ(x2, u). In what follows we call u$r a computation of D on the partition
x1, x2 of the word x, too. A computation of D is called accepting (rejecting,
respectively) if r = 1 (r = 0, respectively). The message complexity of the pro-
tocol D is

nmc(D) = |{u ∈ {0, 1}∗ | u ∈ Φ(x) for some x ∈ Σ∗ }|.

We say D = (Φ, ϕ) accepts the language L, if, for all x, y ∈ Σ∗, there exists an
accepting computation of D on the partition x, y of the word xy if and only if
xy ∈ L. The nondeterministic message complexity of L is

nmc(L) = min{nmc(D) | D is a one-way uniform

nondeterministic protocol accepting L }.

Nondeterministic message complexity is a lower bound for nondeterministic
state complexity, see [12, Theorem 5.2.4.10]. This measure can be reformulated
in terms of Boolean matrices. This setup proves more suitable for our purposes.

Definition 18. A Boolean matrix M = [aij]i∈I;j∈J , with I, J ⊆ N is any matrix
whose entries are all either 0 or 1. A matrix M is called 1-monochromatic matrix
iff the values of all entries are equal to 1. For a Boolean matrix M , assume the
rows are indexed with elements in the set I, and the columns with elements in J .
Let R = {i1, i2, . . .} ⊆ I and S = {j1, j2, . . .} ⊆ J . Then M [R, S] denotes the
submatrix of M consisting of the elements [brs]r=1,2,...,|R|;s=1,2,...,|S|, for brs =
airjs

. Now, let M [R1, S1], M [R2, S2], . . . M [Rk, Sk] be some 1-monochromatic
submatrices of M (not necessarily disjoint). We say that the Boolean matrices

24

M [R1, S1], M [R2, S2], . . . M [Rk, Sk] cover all ones of M if each 1-element in M
is also an element of one of the matrices M [R1, S1], M [R2, S2], . . .M [Rk, Sk].
Finally, Cov(M) is defined as the least natural number t such that all ones in M
can be covered by t 1-monochromatic submatrices provided t exists, and as infi-
nite otherwise.

Next, we define a Boolean matrix based on a language L:

Definition 19. Let Σ = {a1, a2, . . . , ak} be an alphabet. For any two words
x, y ∈ Σ∗, we say that x is before y in the canonical order for Σ∗ if

1. |x| < |y|, or

2. |x| = |y|, x = zx1x
′, y = zy2y

′, where z, x′, y′ ∈ Σ∗ and x1 = ai, y2 = aj,
for some 1 ≤ i < j ≤ k.

Let L ⊆ Σ∗, and w1, w2, w3, . . . be the canonical order of words from Σ∗. We
define the infinite Boolean matrix M(L, Σ) = [aij]i≥1;j≥1 in such a way that
aij = 1 if and only if wiwj ∈ L.

In the case of regular languages, this matrix has a particularly nice property,
see [12, Exercise 5.2.5.14]:

Lemma 20. Let L ⊆ Σ∗ be a regular language. Then

nmc(L) = Cov(M(L, Σ)).

Now we are ready to prove the correspondence between nondeterministic
message complexity and the bipartite dimension of the dependency graph:

Theorem 21. Let L ⊆ Σ∗ be a regular language. Then

nmc(L) = d(GL).

Proof. We prove an intermediate version, namely that the bipartite dimension
of the graph G = (Σ∗, Σ∗, EL) equals Cov(M(L, Σ)). This suffices by means
of Lemma 20 and the equivalence d(GL) = d(G) established in Lemma 7. The
key point is that we can interpret the matrix M(L, Σ) as the adjacency matrix
of the bipartite graph associated with L in the obvious way: There is an edge
(x, y) in the graph if and only if xy ∈ L iff the corresponding element in the
matrix equals one. In the same way, we associate the submatrix M(L, Σ)[R, S]
with a corresponding induced subgraph of G. Obviously, if the induced subgraph
is a biclique then M(L, Σ)[R, S] is 1-monochromatic, and vice versa. Since the
1-entries in M(L, Σ) are in one-to-one correspondence with the edges in G, these
elements can be covered by k 1-monochromatic submatrices if and only if the
edge set EL can be covered by k induced bicliques. This completes the proof. ut

25

Example 22. Reconsider the finite language L = {ab, ac, bc, ba, ca, cb} from Ex-
ample 9. The Boolean matrix M := M(L, {a, b, c}) reads as follows

M =



















































0 0 0 0 0 1 1 1 0 1 1 1 0 . . .
0 0 1 1 0 0 0 0 0 0 0 0 0 . . .
0 1 0 1 0
0 1 1 0 0
0 0 0 0 0
1 0
1 0
1 0
0 0 0 . . .
1 0
1 0
1 0
0 0 . . .
...

...
...

...
. . .



















































,

where λ, a, b, c, a2, ab, ac, ba, b2, bc, ca, cb, c2, . . . is the canonical order of the words
from {a, b, c}∗. Hence, only the upper left corner, to be more precise the ma-
trix M [R, S] with R = S = {1, 2, . . . , 13} is of interest. It is easy to see that
the 1-entries in the first line and the first column of M can be covered by two
monochromatic matrics, while the inner part of M , namely

M [{2, 3, 4}, {2, 3, 4}] =





0 1 1
1 0 1
1 1 0





needs three monochromatic matrices to be covered. Therefore, Cov(M) = 5,
which coincides with the bipartite dimension of the dependency graph GL de-
picted in Figure 3.

26

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

