
On Expected Constant-Round Protocols

for Byzantine Agreement

Jonathan Katz∗† Chiu-Yuen Koo∗‡

Abstract

In a seminal paper, Feldman and Micali (STOC ’88) show an n-party Byzantine agreement
protocol tolerating t < n/3 malicious parties that runs in expected constant rounds. Here,
we show an expected constant-round protocol for authenticated Byzantine agreement assuming
honest majority (i.e., t < n/2), and relying only on the existence of a secure signature scheme and
a public-key infrastructure (PKI). Combined with existing results, this gives the first expected
constant-round protocol for secure computation with honest majority in a point-to-point network
assuming only one-way functions and a PKI. Our key technical tool — a new primitive we
introduce called moderated VSS — also yields a simpler proof of the Feldman-Micali result.

We also improve the techniques of Lindell, et al. (PODC ’02) for sequential composition of
protocols without simultaneous termination (something that is inherent for Byzantine agreement
protocols using o(n) rounds). Our approach is simpler and yields more round-efficient protocols.

∗Dept. of Computer Science, University of Maryland. {jkatz,cykoo}@cs.umd.edu.
†This research was supported by NSF Trusted Computing grant #0310751, NSF CAREER award #0447075, and

US-Israel Binational Science Foundation grant #2004240.
‡Supported by NSF Trusted Computing grant #0310751.

Electronic Colloquium on Computational Complexity, Report No. 28 (2006)

ISSN 1433-8092

1 Introduction

When designing cryptographic protocols, it is often convenient to abstract away various details
of the underlying communication network. As one noteworthy example,1 it is often convenient to
assume the existence of a broadcast channel which allows any party to send the same message to
all other parties (and all parties to be assured they have received identical messages) in a single
round. With limited exceptions (e.g., in a small-scale wireless network or when a semi-trusted
third party can be assumed), it is understood that the protocol will be run in a network where
only point-to-point communication is available and the parties will have to “emulate” the broadcast
channel by running a broadcast protocol. Unfortunately, this “emulation” typically increases the
round complexity of the protocol substantially.

Much work has therefore focused on reducing the round complexity of broadcast or the related
task of Byzantine agreement (BA)2 [31, 27]; we survey this work in Section 1.2. As discussed there,
a seminal result of Feldman and Micali [18] is a protocol for Byzantine agreement in a network
of n parties tolerating t < n/3 malicious parties that runs in an expected constant number of
rounds. This resilience is the best possible — regardless of round complexity — unless additional
assumptions are made. The most common assumption is the existence of a public-key infrastructure
(PKI) such that each party Pi has a public key pki for a digital signature scheme that is known
to all other parties (a more formal definition is given in Section 2); broadcast or BA protocols
in this model are termed authenticated. Authenticated broadcast protocols are known for t < n
[31, 27, 14], but all existing protocols that assume only a PKI and secure signatures require Θ(t)
rounds.3 (Recent work of Fitzi and Garay [21] gives an authenticated BA protocol beating this
bound, but using specific number-theoretic assumptions; see Section 1.2 for further discussion.)

1.1 Our Contributions

As our main result, we extend the work of Feldman and Micali and show an authenticated BA
protocol tolerating t<n/2 malicious parties and running in expected constant rounds. Our protocol
assumes only the existence of signature schemes and a PKI, and is secure against a rushing adversary
who adaptively corrupts up to t parties. For those unfamiliar with the specifics of the Feldman-
Micali protocol, we stress that their approach does not readily extend to the case of t < n/2. In
particular, they rely on a primitive termed graded VSS and construct this primitive using in an
essential way the fact that t < n/3. We take a different approach: we introduce a new primitive
called moderated VSS (mVSS) and use this to give an entirely self-contained proof of our result.

We suggest that mVSS is a useful alternative to graded VSS in general, even when t < n/3. For
one, mVSS seems easier to construct: we show a generic construction of mVSS in the point-to-point
model from any VSS protocol relying on a broadcast channel, while a generic construction of this
sort for graded VSS seems unlikely. Perhaps more importantly, mVSS provides a conceptually-
simpler and more natural approach to the problem at hand: in addition to our authenticated BA
protocol for t < n/2, our techniques give a BA protocol (in the plain model) for t < n/3 which

1Other “abstractions” include the assumptions of private and/or authenticated channels. For computationally-
bounded adversaries these can be realized without affecting the round complexity using public-key encryption and
digital signatures, respectively. See also Section 2.

2In BA, parties begin with an input value, and all honest parties must terminate with identical outputs. Further-
more, if all honest parties initially hold the same input, then they all output this value. It is easy to see (and well
known) that in the case of honest majority broadcast can be obtained from BA using one additional round.

3The conference version of [18] claims an expected O(1)-round solution for t < n/2, but we are unaware of any
proof of this claim (none appears in Feldman’s thesis [16]) and the claim no longer appears in the journal version [18].

1

is more round-efficient than the Feldman-Micali protocol and which also admits a self-contained
proof (included here) that we believe is significantly simpler than that of [18].

As mentioned earlier, cryptographic protocols are often designed under the assumption that a
broadcast channel is available; when run in a point-to-point network, these protocols must “em-
ulate” the broadcast channel by running a broadcast protocol as a sub-routine. If the original
(outer) protocol uses multiple invocations of the broadcast channel, and these invocations are each
emulated using a probabilistic broadcast protocol, subtle issues related to the parallel and sequential
composition4 of the various broadcast sub-protocols arise; see the detailed discussion in Section 4.
Parallel composition can be dealt with using existing techniques [4, 21]. As for sequential composi-
tion, Lindell, et al. [29] recently showed how to handle the difficulties arising there. As an additional
contribution of our paper, we show a different approach for handling sequential composition that is
both simpler than the techniques of [29] and also yields more round-efficient protocols. The reader
is referred to Section 4 for further discussion.

The above results, in combination with prior work [2, 13], yield the first expected constant-
round protocol for secure computation in a point-to-point network which tolerates an adversary
corrupting any minority of the parties and is based only on the existence of one-way functions
and a PKI. (The expected constant-round protocol of Goldwasser and Lindell [25], which does not
assume a PKI, achieves a weaker notion of security which does not guarantee output delivery.)

1.2 Prior Work on Broadcast/Byzantine Agreement

In a synchronous network with pairwise authenticated channels and no additional set-up assump-
tions, BA among n parties is achievable iff the number of corrupted parties t satisfies t < n/3
[31, 27]; furthermore, in this case the corrupted parties may be computationally unbounded. In
this setting, a lower bound of t+1 rounds for any deterministic BA protocol is known [19]. A proto-
col with this round complexity — but with exponential message complexity — was shown by Pease,
et al. [31, 27]. Following a long sequence of works, Garay and Moses [23] show a fully-polynomial
BA protocol with optimal resilience and round complexity.

To circumvent the above-mentioned lower bound, researchers beginning with Rabin [33] and
Ben-Or [3] explored the use of randomization to obtain better round complexity. This line of
research [6, 10, 17, 15] culminated in the work of Feldman and Micali [18], who show a BA protocol
with optimal resilience t < n/3 that runs in an expected constant number of rounds. Their protocol
requires channels to be both private and authenticated (but see footnote 1 and the next section).

To achieve resilience t ≥ n/3, additional assumptions are needed even if randomization is used.
The most widely-used model is one which assumes digital signatures and a public-key infrastructure
(PKI); recall that protocols in this setting are termed authenticated. The implicit assumption in
this setting is that the adversary is computationally bounded (so that it cannot forge signatures),
although information-theoretic “pseudo-signatures” have also been suggested [32]. Pease, et al.
[31, 27] show an authenticated broadcast protocol for t < n, and a fully-polynomial protocol
achieving this resilience was given by Dolev and Strong [14]. These works rely only on the existence
of digital signature schemes and a PKI, and do not require private channels.

The (t + 1)-round lower bound for deterministic protocols holds in the authenticated setting as
well [14], and the protocols of [31, 27, 14] meet this bound. Some randomized protocols beating
this bound for the case of n/3 ≤ t < n/2 are known [35, 6, 37], but these are only partial results:

4These issues are unrelated to those considered in [28] where the different executions are oblivious of each other.
Here, in contrast, there is an outer protocol scheduling all the broadcast sub-protocols. For the same reason, we do
not consider concurrent composition since we are interested only in “stand-alone” security of the outer protocol.

2

• Toueg [35] gives an expected O(1)-round protocol, but assumes a trusted dealer. Also, after
the dealing phase the parties can only run the BA protocol a bounded number of times.

• A protocol by Bracha [6] implicitly requires a trusted dealer to ensure that parties agree on a
“Bracha assignment” in advance (see [17]). Furthermore, the protocol only achieves expected
round complexity O(log n) and tolerates (slightly sub-optimal) t ≤ n/(2 + ε) for any ε > 0.

• Waidner [37], building on [6, 17], shows that the dealer in Bracha’s protocol can be replaced
by an Ω(t)-round pre-processing phase during which a broadcast channel is assumed. The
expected round complexity (after the pre-processing) is also improved from O(log n) to O(1).

The latter two results assume private channels.
Fitzi and Garay [21] (building on [35, 7, 30]) give the first full solution to this problem: that

is, they show the first authenticated BA protocol with optimal resilience t < n/2 and expected
constant round complexity that does not require any trusted dealer or pre-processing (other than
a PKI). Even assuming private channels, however, their protocol requires specific number-theoretic
assumptions (essentially, some appropriately-homomorphic public-key encryption scheme) and not
signatures alone. We remark that, because of its reliance on additional assumptions, the Fitzi-Garay
protocol cannot be adapted to the information-theoretic setting using pseudo-signatures.

2 Model and Technical Preliminaries

By a public-key infrastructure (PKI) in a network of n parties, we mean that prior to any protocol
execution all parties hold the same vector (pk1, . . . , pkn) of public keys for a digital signature
scheme, and each honest party Pi holds the correctly-generated secret key ski associated with pki.
Malicious parties may generate their keys arbitrarily, even dependent on keys of honest parties.

Unless otherwise stated, all our results are in the point-to-point model, by which we mean the
standard synchronous communication model in which parties communicate using pairwise authen-
ticated and private channels. Authenticated channels can be realized easily using digital signatures
once a PKI is assumed. For static adversaries, private channels can be realized using semantically-
secure public-key encryption by having each party Pi send to each party Pj a public key PKi,j

for a public-key encryption scheme (using different keys for each sender avoids issues of malleabil-
ity); this adds only a single round. For adaptive adversaries, more complicated solutions are
available [1, 9] but we do not discuss these further. For simplicity, in our proofs we assume un-
conditional authenticated/private pairwise channels with the understanding that these guarantees
hold only computationally if the above techniques are used.

When we say a protocol (for broadcast, VSS, etc.) tolerates t malicious parties, we always mean
that it is secure against a rushing adversary who may adaptively corrupt up to t parties and coordi-
nate the actions of these parties as they deviate from the protocol in an arbitrary manner. Parties
not corrupted by the adversary are called honest. Our definitions always implicitly encompass
both the “unconditional” and “authenticated” cases, in the following way: For t < n/3 we allow a
computationally-unbounded adversary (this is the unconditional case). For t < n/2 we assume a
PKI and also assume in our proofs that the adversary cannot forge a new valid signature on behalf
of any honest party (this is the authenticated case). Using a standard hybrid argument and assum-
ing the existence of one-way functions, this implies that authenticated protocols are secure against
computationally-bounded adversaries. Using information-theoretic pseudo-signatures instead of
standard digital signatures, authenticated protocols are secure even against a computationally-
unbounded adversary (except with negligible probability).

When we describe signature computation in authenticated protocols we often omit for simplicity
additional information that must be signed along with the message. Thus, when we say that party

3

Pi signs message m and sends it to Pj , we implicitly mean that Pi signs the concatenation of m
with additional information such as: (1) the identities of the sender/receiver, (2) the current round
number, (3) an identifier for the message (in case multiple messages are sent to Pj in the same
round); and (4) an identifier for the protocol (in case multiple sub-protocols are being run [28]).
This information is also verified, as appropriate, when the signature is verified.

When we say, e.g., that a protocol is “constant-round,” this implies that honest parties terminate
in a constant number of rounds regardless of the actions of the adversary.

Byzantine agreement/broadcast. We will focus on constructing protocols for Byzantine agree-
ment, which readily imply protocols for broadcast. The standard definitions follow.

Definition 1 (Byzantine agreement): A protocol for parties P1, . . . , Pn, where each party Pi holds
initial input vi, is a Byzantine agreement protocol tolerating t malicious parties if the following
conditions hold for any adversary controlling at most t parties:

Agreement All honest parties output the same value.

Validity If all honest parties begin with the same input value v, then all honest parties output v.

If the {vi} are restricted to binary values, the protocol achieves binary Byzantine agreement. ♦

Definition 2 (Broadcast): A protocol for parties P = {P1, . . . , Pn}, where a distinguished dealer
P ∗ ∈ P holds an initial input M , is a broadcast protocol tolerating t malicious parties if the following
conditions hold for any adversary controlling at most t parties:

Agreement All honest parties output the same value.

Validity If the dealer is honest, then all honest parties output M . ♦

3 Byzantine Agreement in Expected Constant Rounds

In this section, we construct expected constant-round protocols for Byzantine agreement in both the
unconditional (t < n/3) and authenticated (t < n/2) settings. Our main result is the protocol for
the case t < n/2 (which is the first such construction assuming only a PKI and digital signatures);
however, we believe our result for the case t < n/3 is also interesting as an illustration that our
techniques yield a conceptually-simpler and more efficient protocol in that setting as compared
to [18]. We develop both protocols in parallel so as to highlight the high-level similarities in each.

3.1 Basic Primitives

We begin by reviewing the notions of gradecast and VSS :

Gradecast. Gradecast, a relaxed version of broadcast, was introduced by Feldman and Micali [18,
Def. 11]; we provide a definition which is slightly weaker than theirs but suffices for our purposes.

Definition 3 (Gradecast): A protocol for parties P = {P1, . . . , Pn}, where a distinguished dealer
P ∗ ∈ P holds an initial input M , is a gradecast protocol tolerating t malicious parties if the following
conditions hold for any adversary controlling at most t parties:

• Each honest party Pi outputs a message mi and a grade gi ∈ {0, 1, 2}.

• If the dealer is honest, then the output of every honest party Pi satisfies mi = M and gi = 2.

• If there exists an honest party Pi who outputs a message mi and the grade gi = 2, then the
output of every honest party Pj satisfies mj = mi and gj ≥ 1. ♦

4

The following result is due to [18] and proved for completeness in Appendix A.1:

Lemma 1. There exists a constant-round gradecast protocol tolerating t < n/3 malicious parties.

In Appendix A.2, we prove an analogue of the above for the case of authenticated gradecast.

Lemma 2. There exists a constant-round authenticated gradecast protocol tolerating t < n/2 ma-
licious parties.

Verifiable Secret Sharing (VSS). VSS [11] extends the concept of secret sharing [5, 34] to the
case of Byzantine faults. Below we provide what is essentially the standard definition.

Definition 4 (Verifiable secret sharing): A two-phase protocol for parties P = {P1, . . . , Pn}, where
a distinguished dealer P ∗ ∈ P holds initial input s, is a VSS protocol tolerating t malicious parties
if the following conditions hold for any adversary controlling at most t parties:

Validity Each honest party Pi outputs a value si at the end of the second phase (the reconstruction
phase). Furthermore, if the dealer is honest then si = s.

Secrecy If the dealer is honest during the first phase (the sharing phase), then at the end of this
phase the joint view of the malicious parties is independent of the dealer’s input s.

Reconstruction At the end of the sharing phase the joint view of the honest parties defines a
value s′ such that all honest parties will output s′ at the end of the reconstruction phase. ♦

Note that the value s′ referred to in the reconstruction property, above, can be extracted in poly-
nomial time given the view of the honest parties at the end of the sharing phase (this follows easily
by considering the adversary who simply aborts during the reconstruction phase).

The first result that follows is well-known (cf. [24, 20]); the second is not explicit in the literature
but follows readily from known results. For completeness, proofs appear in Appendices A.3 and A.4.

Lemma 3. There exists a constant-round VSS protocol tolerating t < n/3 malicious parties, and
which relies on a broadcast channel only during the sharing phase.

Lemma 4. There exists a constant-round authenticated VSS protocol tolerating t < n/2 malicious
parties, and which relies on a broadcast channel only during the sharing phase.

3.2 Moderated VSS

We introduce a variant of VSS called moderated VSS, in which there is a distinguished party (who
may be identical to the dealer) called the moderator. Roughly speaking, the moderator “simulates”
a broadcast channel for the other parties. At the end of the sharing phase, parties output a
boolean flag indicating whether or not they trust the moderator. If the moderator is honest, all
honest parties set this flag to 1. Furthermore, if any honest party sets this flag to 1 then the
protocol achieves all the properties of VSS (cf. Def. 4). A formal definition follows.

Definition 5 (Moderated VSS): A two-phase protocol for parties P = {P1, . . . , Pn}, where there
is a distinguished dealer P ∗ ∈ P who holds an initial input s and a moderator P ∗∗ ∈ P (who may
possibly be the dealer), is a moderated VSS protocol tolerating t malicious parties if the following
conditions hold for any adversary controlling at most t parties:

• Each honest party Pi outputs a bit fi at the end of the first phase (called the sharing phase),
and a value si at the end of the second phase (called the reconstruction phase).

5

• If the moderator is honest during the sharing phase, then each honest party Pi outputs fi = 1
at the end of this phase.

• If there exists an honest party Pi who outputs fi = 1 at the end of the sharing phase, then the
protocol achieves VSS; specifically: (1) if the dealer is honest then all honest parties output
s at the end of the reconstruction phase, and the joint view of all the malicious parties at the
end of the sharing phase is independent of s, and (2) the joint view of the honest parties at
the end of the sharing phase defines a value s′ such that all honest parties output s′ at the
end of the reconstruction phase. ♦

We stress that if all honest parties Pi output fi = 0 at the end of the sharing phase, then
no guarantees are provided; e.g., honest parties may output different values at the end of the
reconstruction phase, or the malicious parties may learn the dealer’s secret in the sharing phase.

The main result of this section is the following, which holds for any t < n:

Theorem 5. Assume there exists a constant-round VSS protocol Π, using a broadcast channel in
the sharing phase only, which tolerates t malicious parties. Then there exists a constant-round
moderated VSS protocol Π′, using a gradecast channel, which tolerates t malicious parties.

Proof We show how to “compile” Π so as to obtain the desired Π′. Essentially, Π′ is constructed
by replacing each broadcast in Π with two invocations of gradecast: one by the party who is
supposed to broadcast the message, and one by the moderator P ∗∗. In more detail, Π′ is defined
as follows: At the beginning of the protocol, all parties set their flag f to 1. The parties then run
an execution of Π. When a party P is directed by Π to send message m to P ′, it simply sends this
message. When a party P is directed by Π to broadcast a message m, the parties run the following
“simulated broadcast” subroutine:

1. P gradecasts the message m.

2. The moderator P ∗∗ gradecasts the message it output in the previous step.

3. Let (mi, gi) and (m′
i, g

′
i) be the outputs of party Pi in steps 1 and 2, respectively. Within the

underlying execution of Π, party Pi will use m′
i as the message “broadcast” by P .

4. Furthermore, Pi sets fi := 0 if either (or both) of the following conditions hold: (1) g′i 6= 2,
or (2) m′

i 6= mi and gi = 2.

Party Pi outputs fi at the end of the sharing phase, and outputs whatever it is directed to output
by Π at the end of the reconstruction phase.

We now prove that Π′ is a moderated VSS protocol tolerating t malicious parties. First of all,
if the moderator P ∗∗ is honest during the sharing phase then no honest party Pi sets fi := 0. To
see this, note that if P ∗∗ is honest then g′i = 2 each time the simulated broadcast subroutine is
executed. Furthermore, if Pi outputs some mi and gi = 2 in step 1 of that subroutine then, by
definition of gradecast, P ∗∗ also outputs mi in step 1. Hence m′

i = mi and fi remains 1.
To show the second required property of moderated VSS, consider any execution of the simulated

broadcast subroutine. We show that if there exists an honest party Pi who holds fi = 1 upon
completion of that subroutine, then the functionality of broadcast was achieved (in that execution
of the subroutine). It follows that if Pi holds fi = 1 at the end of the sharing phase, then Π′

provided a faithful execution of all the broadcasts in Π and so the functionality of VSS is achieved.
If Pi holds fi = 1, then g′i = 2. (For the remainder of this paragraph, all variables are local

to a particular execution of the broadcast subroutine.) Since g′i = 2, the properties of gradecast
imply that any honest party Pj holds m′

j = m′
i and so all honest parties agree on the message that

was “broadcast.” Furthermore, if the “dealer” P (in the simulated broadcast subroutine) is honest

6

then gi = 2 and mi = m. So that fact that fi = 1 means that m′
i = mi = m, and so all honest

parties use the message m “broadcast” by P in their underlying execution of Π.

By applying the above theorem to the VSS protocol of Lemma 3 (resp., Lemma 4) and then
instantiating the gradecast channel using the protocol of Lemma 1 (resp., Lemma 2), we obtain:

Corollary 6. There exists a constant-round protocol for moderated VSS (in the point-to-point
model) tolerating t < n/3 malicious parties.

Corollary 7. There exists a constant-round protocol for authenticated moderated VSS (in the
point-to-point model) tolerating t < n/2 malicious parties.

3.3 From Moderated VSS to Oblivious Leader Election

In this section, we construct an oblivious leader election (OLE) protocol based on any moderated
VSS protocol. The following definition of oblivious leader election is adapted from [21]:

Definition 6 (Oblivious leader election): A two-phase protocol for parties P1, . . . , Pn is an oblivious
leader election protocol with fairness δ tolerating t malicious parties if each honest party Pi outputs
a value vi ∈ [n], and the following condition holds with probability at least δ (over random coins
of the honest parties) for any adversary controlling at most t parties:

There exists a j ∈ [n] such that (1) each honest party Pi outputs vi = j, and (2) Pj was
honest at the end of the first phase.5

If the above event happens, then we say an honest leader was elected. ♦

Our construction of OLE uses a similar high-level approach as the construction of an oblivious
common coin from graded VSS [18]. However, we introduce different machinery and start from
moderated VSS. Intuitively, we generate a random coin ci ∈ [n4] for each party Pi. This is done by
having each party Pj select a random value cj,i ∈ [n4] and then share this value using moderated
VSS with Pi acting as moderator. The cj,i are then reconstructed and the ci are computed as ci =
∑

j cj,i mod n4. An honest party then outputs i minimizing ci. Since moderated VSS (instead of
VSS) is used, each party Pk may have a different view regarding the values of the {ci}. However:

• If Pi is honest then (by the properties of moderated VSS) all honest parties reconstruct the
same values cj,i (for any j) and hence compute an identical value for ci.

• Even if Pi is dishonest, as long as there exists an honest party Pj such that Pj outputs fj = 1
in all invocations of moderated VSS where Pi acts as the moderator, then (by the properties
of moderated VSS) all honest parties compute an identical value for ci.

Relying on the above observations, we devise a way such that all honest parties output the same i
(such that Pi was furthermore honest at the end of the sharing phase) with constant probability.

Theorem 8. Assume there exists a constant-round moderated VSS protocol tolerating t malicious
parties. Then there exists a constant-round OLE protocol with fairness δ = n−t

n
− 1

n2 tolerating t
malicious parties. Specifically, if n ≥ 3 and t < n/2 then δ ≥ 1/2.

Proof We describe an OLE protocol. Each party Pi begins with {trusti,j}
n
j=1 set to 1.

Phase 1 Each party Pi chooses random ci,j ∈ [n4] for 1 ≤ j ≤ n. The following is executed n2

times in parallel for each ordered pair (i, j):
5Note that we cannot simply require that Pj is honest since an adaptive adversary can always corrupt the leader

once it has been elected.

7

All parties execute the sharing phase of a moderated VSS protocol in which Pi acts
as the dealer with input ci,j, and Pj acts as the moderator. If a party Pk outputs
fk = 0 in this execution, then Pk sets trustk,j := 0.

Upon completion of the above, let trustk
def
= {j : trustk,j = 1}.

Phase 2 The reconstruction phase of the moderated VSS protocol is run n2 times in parallel to
reconstruct the secrets previously shared. Let ck

i,j denote Pk’s view of the value of ci,j . (If

a reconstructed value lies outside [n4], then ck
i,j is assigned some default value in the correct

range.) Each party Pk sets ck
j :=

∑n
i=1 ck

i,j mod n4, and outputs j ∈ trustk that minimizes ck
j

among all j ∈ trustk (ties are broken arbitrarily).

We prove that the protocol satisfies Definition 6. Following execution of the above, define:

trusted = {k : there exists a Pi that was honest at the end of phase 1 for which k ∈ trusti}.

Note that if Pi was honest in phase 1, then i ∈ trusted. Furthermore, by the properties of moderated
VSS, if k ∈ trusted then for any honest Pi, Pj and any 1 ≤ ` ≤ n, we have ci

`,k = cj
`,k and hence

ci
k = cj

k; thus, we may freely omit the superscript in this case. We claim that for k ∈ trusted,
the coin ck is uniformly distributed in [n4]. Let c′k =

∑

` : P` is malicious in phase 1 c`,k mod n4 (this is
the contribution to ck of the parties that are malicious in phase 1), and let Pi be honest. Since
k ∈ trusted, the properties of VSS hold for all secrets {c`,k}

n
`=1 and thus c′k is independent of ci,k.

(If we view moderated VSS as being provided unconditionally, independence holds trivially. When
this is instantiated with a protocol for moderated VSS, independence follows from the information-
theoretic security of moderated VSS.6) It follows that ck is uniformly distributed in [n4].

By union bound, with probability at least 1 − 1
n2 all coins {ck : k ∈ trusted} are distinct.

Conditioned on this, with probability at least n−t
n

the j ∈ trusted minimizing cj corresponds to an
honest party Pj ; when this occurs, all honest parties output j. This concludes the proof.

Combining Theorem 8 with Corollaries 6 and 7, we obtain:

Corollary 9. There exists a constant-round protocol for OLE with fairness 2/3 tolerating t < n/3
malicious parties. (Note that when n < 4 the result is trivially true.)

Corollary 10. There exists a constant-round protocol for authenticated OLE with fairness 1/2
tolerating t < n/2 malicious parties. (Note that when n < 3 the result is trivially true.)

3.4 From OLE to Byzantine Agreement

For the unauthenticated case (i.e., t < n/3), Feldman and Micali [18] show how to construct
an expected constant-round binary Byzantine agreement protocol based on any constant-round
oblivious common coin protocol. We construct a more round-efficient protocol based on oblivious
leader election. This also serves as a warmup for the authenticated case.

Theorem 11. Assume there exists a constant-round OLE protocol with fairness δ = Ω(1) tolerating
t < n/3 malicious parties. Then there exists an expected constant-round binary Byzantine agreement
protocol tolerating t malicious parties.

6Formally, one could define an appropriate ideal functionality within the UC framework [8] and show that any
protocol for moderated VSS implements this functionality (see the remark on extraction following Def. 4); security
under parallel composition then follows. One could also appeal to a recent result [26] showing security of statistically-
secure protocols under parallel self composition when inputs are not chosen adaptively (as is the case here).

8

Proof We describe a protocol for binary Byzantine agreement, assuming the existence of an OLE
protocol tolerating t < n/3 malicious parties. Each party Pi uses local variables bi ∈ {0, 1} (which
is initially Pi’s input), locki (initially set to 0), and accepti (initially set to false).

Step 1 Each Pi sends bi to all parties. Let bj,i be the bit Pi receives from Pj . (When this is run at
the outset of the protocol, a default value is used if Pi does not receive anything from Pj . In
subsequent iterations, if Pi does not receive anything from Pj then bj,i remains unchanged.)

Step 2 Each party Pi sets Sb
i := {j : bj,i = b} for b ∈ {0, 1}. If |S0

i | ≥ t + 1, then Pi sets bi := 0.
If |S0

i | ≥ n − t, then Pi sets locki := 1.

Each Pi sends bi to all parties. If Pi receives a bit from Pj , then Pi sets bj,i to that value;
otherwise, bj,i remains unchanged.

Step 3 Each party Pi defines Sb
i as in step 2. If |S1

i | ≥ t + 1, then Pi sets bi := 1. If |S1
i | ≥ n − t,

then Pi sets locki := 1.

Each Pi sends bi to all parties. If Pi receives a bit from Pj , then Pi sets bj,i to that value;
otherwise, bj,i remains unchanged.

If locki = 0, then Pi sets accepti := true.

Step 4 Each party Pi defines Sb
i as in step 2. If |S0

i | ≥ t + 1, then Pi sets bi := 0. If |S0
i | ≥ n − t,

then Pi sets accepti := false.

Each Pi sends bi to all parties. If Pi receives a bit from Pj , then Pi sets bj,i to that value;
otherwise, bj,i remains unchanged.

Step 5 Each party Pi defines Sb
i as in step 2. If |S1

i | ≥ t + 1, then Pi sets bi := 1. If |S1
i | ≥ n − t,

then Pi sets accepti := false.

Each Pi sends bi to all parties. If Pi receives a bit from Pj , then Pi sets bj,i to that value;
otherwise, bj,i remains unchanged.

Step 6 All parties execute the OLE protocol; let `i be the output of Pi. Each Pi does the following:
if accepti = true, then Pi sets bi := b`i,i. If locki = 1, then Pi outputs bi and terminates;
otherwise, Pi goes to step 1.

We refer to an execution of steps 1 through 6 as an iteration. We begin by establishing the
following: (i) if — immediately prior to any given iteration — there exists a bit b such that bi = b
for all honest Pi, then all honest parties who have not yet terminated will output b and terminate
the protocol at the end of that iteration. (ii) If an honest party Pi sets locki := 1 in some iteration,
then all honest parties Pj who have not yet terminated hold bj = bi by the end of step 6 of that
iteration. (iii) If an honest party Pi sets accepti := false in some iteration, then all honest parties
Pj who have not yet terminated hold bj = bi by the end of step 5 of that iteration.

Consider (i) in the case bi = b = 0 for all honest Pi (the case b = 1 is analogous). Then7

|S0
i | ≥ n − t in step 2 for any honest Pi, and so Pi sets locki := 1 and holds bi = 0 at the end of

this step. In step 3, |S1
i | ≤ t and so bi remains unchanged. By a similar argument, each honest Pi

sets accepti := false in step 4, and bi remains unchanged in step 5. Since accepti = false, the
value bi again remains unchanged in step 6; since locki = 1, honest party Pi outputs bi = b = 0
and terminates. This proves (i), which also proves validity of the protocol (cf. Def. 1).

7This statement is immediate if no honest parties have yet terminated. But even if an honest party Pj had
terminated in the previous iteration with output bj = b = 0, then Pi holds bj,i = 0 in step 2 of the current iteration
(since Pj sent bj,i = 0 in step 5 of the previous iteration and sends no value in step 1 of the current iteration).

9

For (ii), consider the case when an honest Pi sets locki := 1 in step 2 of some iteration (the
case when Pi sets locki := 1 in step 3 is exactly analogous). This implies that |S0

i | ≥ n − t and
hence |S0

j | ≥ n− 2t ≥ t + 1 and bj = bi = 0 at the end of step 2 for any honest Pj . Since this holds

for all honest parties, it follows that in step 3 we have |S1
j | ≤ t, and so bj remains 0, for all honest

Pj . Arguing now as in the previous paragraph, we see that all honest Pj set acceptj := false in
step 4, and bj remains 0 for all honest Pj at the end of step 5. Since acceptj = false, the value
bj remains 0 for all honest Pj at the end of step 6. This proves (ii).

Claim (iii) is proved by an argument exactly analogous to those of the previous paragraphs.
Now consider the first iteration in which an honest party Pi terminates with output bi = b. We

show that all honest parties terminate with identical output in either the current iteration or the
following one. Since Pi terminated, we must have locki = 1; but then (ii) shows that every honest
party Pj holds bj = bi at the end of step 6 of the current iteration. By (i), any honest parties who
do not terminate in the current iteration will terminate in the following iteration with output b.

Finally, we show that if an honest leader8 P` is elected in step 6 of some iteration, then all
honest parties Pi terminate by the end of the next iteration. By (i), it is sufficient to show that
bi = b`,i = b` at the end of step 6 of the current iteration. Consider two sub-cases: if all honest Pj

hold acceptj = true then this is immediate. Otherwise, say honest Pj holds acceptj = false.
By (iii), b` = bj at the end of step 5, and hence all honest parties Pi have bi = bj by the end of
step 6 (regardless of whether accepti is true or false).

If the OLE protocol elects an honest leader with constant probability, it follows that agreement
is reached in an expected constant number of iterations. Since each iteration uses only a constant
number of rounds, this completes the proof.

When t < n/3, any binary Byzantine agreement protocol can be transformed into a (multi-
valued) Byzantine agreement protocol using two additional rounds [36]. Parallel composition (see
Section 4) can also be used to achieve the same result without using any additional rounds. Using
either approach in combination with the above and Corollary 9, we have:

Corollary 12. There exists an expected constant-round protocol for Byzantine agreement (and
hence also broadcast) tolerating t < n/3 malicious parties.

For the authenticated case (i.e., t < n/2), Fitzi and Garay [21] construct a binary Byzantine
agreement protocol based on OLE; however, they do not explicitly describe how to achieve termi-
nation. We construct a multi-valued Byzantine agreement protocol based on OLE and explicitly
show how to achieve termination. In the proof below, we assume a gradecast channel for simplicity
of exposition; in Appendix B, we show how to improve the round complexity of our protocol by
working directly in the point-to-point model.

Theorem 13. Assume there exist a constant-round authenticated gradecast protocol and a constant-
round authenticated OLE protocol with fairness δ = Ω(1), both tolerating t < n/2 malicious parties.
Then there exists an expected constant-round authenticated Byzantine agreement protocol tolerating
t malicious parties.

Proof Let V be the domain of possible input values, let the input value for party Pi be vi ∈ V ,
and let φ ∈ V be some default value. Each Pi begins with an internal variable locki set to ∞.

Step 1 Each Pi gradecasts vi. Let (vj,i, gj,i) be the output of Pi in the gradecast by Pj .

Step 2 For any v such that v = vj,i for some j, party Pi sets Sv
i := {j : vj,i = v ∧ gj,i = 2} and

S̃v
i := {j : vj,i = v ∧ gj,i ≥ 1}. If locki = ∞, then:

8This implies in particular that P` was uncorrupted in step 5 of the iteration in question.

10

1. If there exists a v such that |S̃v
i | > n/2, then vi := v; otherwise, vi := φ.

2. If |Svi

i | > n/2, then set locki := 1.

Step 3 Each Pi gradecasts vi. Let (vj,i, gj,i) be the output of Pi in the gradecast by Pj .

Step 4 For any v such that v = vj,i for some j, party Pi defines Sv
i and S̃v

i as in step 2. If
locki = ∞, then:

• If there exists a v such that |S̃v
i | > n/2, then vi := v; otherwise, vi := φ.

Pi sends vi to all parties. Let vj,i be the value Pi receives from Pj .

Step 5 All parties execute the OLE protocol; let `i be the output of Pi.

Step 6 Each Pi does the following: if locki = ∞ and |Svi

i | ≤ n/2, then Pi sets vi := v`i,i.

Step 7 If locki = 0, then Pi outputs vi and terminates the protocol. If locki = 1, then Pi sets
locki := 0 and goes to step 1. If locki = ∞, then Pi goes to step 1.

We refer an execution of steps 1 through 7 as an iteration. An easy observation is that once
an honest party Pi holds locki 6= ∞, then (assuming Pi remains honest) vi is unchanged for the
remainder of the protocol and Pi terminates with output vi by (at latest) the end of the following
iteration. We first claim that if — immediately prior to any given iteration — there exists a value
v such that vi = v for all honest Pi and no honest parties have yet terminated, then all honest
parties will terminate and output v by the end of the following iteration. (This in particular proves
validity.) To see this, note that in this case all honest parties gradecast v in step 1. By the
properties of gradecast, all honest parties will be in Sv

i and S̃v
i for any honest Pi. It follows that

vi = v and locki 6= ∞ for all honest Pi after step 2. The observation mentioned earlier shows that
all honest parties will terminate within at most one additional iteration with output v, as desired.

Now consider the first iteration in which an honest party Pi sets locki := 1 (in step 2). We
claim that, by the end of that iteration, vj = vi for all honest Pj and no honest parties will have yet
terminated. The claim regarding termination is immediate since honest parties do not terminate
until the iteration following the one in which they set lock := 1 (and we are considering the first
such iteration). As for the first property, note that by the properties of gradecast Svi

i ⊆ S̃vi

j . Since

Pi set locki := 1 we know that |S̃vi

j | ≥ |Svi

i | > n/2 and so Pj sets vj = vi after step 2. Since
this holds for all honest parties, every honest party gradecasts vi in step 3 and thus |Svi

j | > n/2 in
step 4. It follows that vj = vi at the end of that iteration.

Combining the above arguments, it follows that if an honest Pi sets locki := 1 in some itera-
tion I, then vj = vi for all honest Pj at the end of iteration I; all honest Pj have lockj 6= ∞ by
the end of iteration I + 1; and all honest parties will have terminated with identical outputs by the
end of iteration I + 2.

We next show that if an honest leader9 P` is elected in some iteration then all honest Pi hold
the same value vi by the end of that iteration. By what we have argued above, it suffices to consider
the case where locki = ∞ for all honest parties Pi after step 2. Now, if in step 6 all honest Pi have
|Svi

i | ≤ n/2, it follows easily that each honest Pi sets vi := v`,i = v` (using the fact that P` was
honest in step 4) and so all honest parties hold the same value vi at the end of step 6. So, say there
exists an honest party Pi such that |Svi

i | > n/2 in step 6. Consider another honest party Pj :

• If |S
vj

j | > n/2, then Svi

i ∩ S
vj

j 6= ∅ and (by properties of gradecast) vj = vi.

9This implies in particular that P` was uncorrupted in step 4 of the iteration in question.

11

• If |S
vj

j | ≤ n/2, then Pj sets vj := v`,j. But, using properties of gradecast, Svi

i ⊆ S̃vi

` and so P`

set v` := vi in step 4 (since P` was honest at that point). Hence Pj sets vj := v`,j = v` = vi.

This concludes the proof.

Combining Lemma 2, Corollary 10, and Theorem 13 we obtain our main result:

Corollary 14. There exists an expected constant-round protocol for authenticated Byzantine agree-
ment (and hence also for authenticated broadcast) tolerating t < n/2 malicious parties.

Exact round complexities. In Appendix C, we compute the exact round complexities of our
protocols for BA and authenticated BA (after applying some simple optimizations). We also show
some simple ways of reducing the amortized round complexities when multiple (sequential) execu-
tions of our protocols are run; this is important when our protocols are used as sub-routines to
implement a broadcast channel within some larger protocol.

4 Secure Multiparty Computation in Expected Constant Rounds

Beaver, et al. [2] and Damg̊ard and Ishai [13] show computationally-secure constant-round protocols
Π for secure multi-party computation tolerating dishonest minority, assuming the existence of one-
way functions and a broadcast channel (the solution of [13] is secure against an adaptive adversary).
To obtain an expected constant-round protocol Π′ in the point-to-point model (assuming one-way
functions and a PKI), a natural approach is to replace each invocation of the broadcast channel in
Π with an invocation of an expected constant-round (authenticated) broadcast protocol bc; i.e., to
set Π′ = Πbc. There are two subtle problems with this approach:

Parallel composition. In protocol Π, all n parties may access the broadcast channel in the same
round; this results in n parallel executions of bc in protocol Πbc. Although the expected round
complexity of each execution of bc is constant, the expected number of rounds for all n executions
of bc to terminate may no longer be constant.

A general technique for handling this issue is proposed by [4]; their solution is somewhat com-
plicated. For our protocols, however, we may rely on an idea of Fitzi and Garay [21] that applies to
OLE-based protocols such as ours. The main idea is that when multiple broadcast sub-routines are
run in parallel, only a single leader election (per iteration) is required for all of these sub-routines.
Using this approach, the expected round complexity for n parallel executions will be identical to
the expected round complexity of a single execution.

Sequential composition. A second issue is that bc does not provide simultaneous termination.
(As noted in [29], this is inherent for any o(t)-round broadcast protocol.) This may cause problems
both in the underlying protocol Π as well as in sequential executions of bc within Πbc.

Lindell, et al. [29] suggest a method for dealing with this issue which is also rather complex. In
Section 5 we show a new method for dealing with this issue; besides being (in our opinion) simpler,
this approach yields protocols which are more round- and communication-efficient as compared to
protocols resulting from the approach of Lindell, et al. [29].

In any case, we have the following result (security without abort is the standard notion of
security in the case of honest majority; see [25]):

Theorem 15. Assuming the existence of one-way functions, for every probabilistic polynomial-
time functionality f there exists an expected constant-round protocol for computing f in a network
with pairwise private/authenticated channels and a PKI. The protocol is secure without abort, and
tolerates t < n/2 adaptive corruptions.

12

5 Sequential Composition

We have already noted that certain difficulties arise due to sequential composition of protocols
without simultaneous termination (see also the discussion in [29]). As an example of what can
go wrong, assume some protocol Π (that assumes a broadcast channel) requires some party Pi to
broadcast values in rounds 1 and 2. Let bc1, bc2 denote the corresponding invocations of broadcast
within the composed protocol Πbc (which runs in a point-to-point network). Then, because honest
parties in bc1 do not terminate in the same round, honest parties may begin execution of bc2 in
different rounds. But security of bc2 is no longer guaranteed in this case!

We begin by reviewing the solution from [29]. Let us first define the term staggering gap:

Definition 7 A protocol Π has staggering gap g = gap(Π) if any honest parties Pi, Pj are guar-
anteed to terminate Π within g rounds of each other.

Lindell, et al. begin with the following result (cf. [29, Lemma 3.1]) stated informally here:

Lemma 16. Let Π be a protocol with staggering gap g and expected round complexity r. Then for
any constant c ≥ 0 there exists a protocol Expand(Π) which achieves the same security guarantees
as Π as long as all honest parties begin execution of Expand(Π) within c rounds of each other.
Expand(Π) has expected round complexity (2c + 1) · r and staggering gap c + g · (2c + 1).

Suppose we want to sequentially compose protocols bc1, . . . , bc`, each having staggering gap g.
A näıve solution is to apply Lemma 16 sequentially ` times, setting c in each case to the staggering
gap of the preceding protocol (see [29] for details). However, the staggering gap of Expand(bci) in
this case grows as Ω

(

(2g)i
)

, implying that the expected round complexity of Expand(bc`) grows
exponentially in `. Even if ` is constant, this is clearly prohibitive.

Instead, Lindell, et al. propose a way to reduce the staggering gap of each Expand(bci) to a
constant independent of i. Let SBA denote a BA protocol running in expected constant rounds and
with constant staggering gap g. At a high level, the solution of [29] is to run SBA every so often
during execution of Expand(bci), with a party setting its input (in SBA) to 1 iff it has terminated
its execution of Expand(bci). If a party outputs 1 in such an execution of SBA, it terminates its
execution of Expand(bci). In this way, the staggering gap of Expand(bci) is exactly gap(SBA) = g.

Besides being a somewhat complicated solution, the message complexity increases due to the
multiple executions of SBA. The round complexity also increases: say we start with a protocol Π
which uses a broadcast channel in each of its ` rounds, and compile it to a protocol Π′ (running in
a point-to-point network) using the techniques of Lindell, et al. as described above. Letting rc(·)
denote the expected round complexity of a protocol, we have

rc(Π′) = ` ·
(

(2g + 1) · rc(bc) + rc(SBA)
)

, (1)

where it is further required (for technical reasons) that rc(SBA) ≥ g · (2g + 2).
We show a simpler technique in which we reduce the staggering gap of each “expanded” broad-

cast sub-routine to 1 without having to run an expensive BA protocol “on top of” bc, using the
following improvement of Lemma 16 for the case of broadcast (a proof appears in Appendix D):

Lemma 17. Let bc be a protocol for (authenticated) broadcast with staggering gap g. Then for any
constant c ≥ 0 there exists a protocol Expand′(bc) which achieves the same security as bc as long
as all honest parties begin execution of Expand′(bc) within c rounds of each other. Furthermore,

rc
(

Expand′(bc)
)

= (2c + 1) · rc(bc) + 1,

and the staggering gap of Expand′(bc) is 1.

13

Applying the above lemma to again compile a protocol Π (which uses a broadcast channel in each
of its ` rounds) to a protocol Π′ (running in a point-to-point network), we now obtain

rc(Π′) = ` · (3 · rc(bc) + 1) ,

an improvement over (1).

References

[1] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic adversaries.
In Advances in Cryptology — Eurocrypt ’92.

[2] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In 22nd
Annual ACM Symposium on Theory of Computing (STOC), pages 503–513, 1990.

[3] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols.
In 2nd Annual ACM Symposium on Principles of Distributed Computing (PODC), 1983.

[4] M. Ben-Or and R. El-Yaniv. Resilient-optimal interactive consistency in constant time. Distrib.
Comput., 16(4):249–262, 2003.

[5] G. Blakley. Safeguarding cryptographic keys. In National Computer Conference, volume 48,
pages 313–317. AFIPS Press, 1979.

[6] G. Bracha. An O(log n) expected rounds randomized Byzantine generals protocol. J. ACM,
34(4):910–920, 1987.

[7] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantipole: Practical asyn-
chronous Byzantine agreement using cryptography (extended abstract). In 19th Annual ACM
Symposium on Principles of Distributed Computing (PODC), 2000.

[8] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2001.

[9] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation.
In 28th Annual ACM Symposium on Theory of Computing (STOC), 1996.

[10] B. Chor and B. Coan. A simple and efficient randomized Byzantine agreement algorithm.
IEEE Trans. Software Engineering, 11(6):531–539, 1985.

[11] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving
simultaneity in the presence of faults. In 26th Annual IEEE Symposium on the Foundations
of Computer Science (FOCS), 1985.

[12] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty compu-
tations secure against an adaptive adversary. In Advances in Cryptology — Eurocrypt ’99.

[13] I. Damg̊ard and Y. Ishai. Constant-round multiparty computation using a black-box pseudo-
random generator. In Advances in Cryptology — Crypto 2005.

[14] D. Dolev and H. Strong. Authenticated algorithms for Byzantine agreement. SIAM J. Com-
puting, 12(4):656–666, 1983.

14

[15] C. Dwork, D. Shmoys, and L. Stockmeyer. Flipping persuasively in constant time. SIAM J.
Computing, 19(3):472–499, 1990.

[16] P. Feldman. Optimal Algorithms for Byzantine Agreement. PhD thesis, Massachusetts Institute
of Technology, 1988.

[17] P. Feldman and S. Micali. Byzantine agreement in constant expected time (and trusting no
one). In 26th Annual IEEE Symposium on the Foundations of Computer Science (FOCS),
1985.

[18] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous Byzantine agree-
ment. SIAM J. Computing, 26(4):873–933, 1997.

[19] M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive consistency.
Info. Proc. Lett., 14(4):183–186, 1982.

[20] M. Fitzi, J. Garay, S. Gollakota, C. P. Rangan, and K. Srinathan. Round-optimal and efficient
verifiable secret sharing. To appear in TCC ’06.

[21] M. Fitzi and J. A. Garay. Efficient player-optimal protocols for strong and differential con-
sensus. In 22nd Annual ACM Symposium on Principles of Distributed Computing (PODC),
2003.

[22] M. Fitzi and U. Maurer. From partial consistency to global broadcast. In 32nd Annual ACM
Symposium on Theory of Computing (STOC), 2000.

[23] J. A. Garay and Y. Moses. Fully polynomial Byzantine agreement for n > 3t processors in
t + 1 rounds. SIAM J. Comput., 27(1):247–290, 1998.

[24] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity of verifiable secret
sharing and secure multicast. In 33rd Annual ACM Symposium on Theory of Computing
(STOC), 2001.

[25] S. Goldwasser and Y. Lindell. Secure computation without agreement. J. Cryptology,
18(3):247–287, 2005.

[26] E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure protocols and secu-
rity under composition. To appear in STOC 2006.

[27] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst., 4(3):382–401, 1982.

[28] Y. Lindell, A. Lysyanskaya, and T. Rabin. On the composition of authenticated Byzantine
agreement. In 34th Annual ACM Symposium on Theory of Computing (STOC), 2002.

[29] Y. Lindell, A. Lysyanskaya, and T. Rabin. Sequential composition of protocols without simul-
taneous termination. In 21st Annual ACM Symposium on Principles of Distributed Computing
(PODC), 2002.

[30] J. B. Nielsen. A threshold pseudorandom function construction and its applications. In Ad-
vances in Cryptology — Crypto 2002.

15

[31] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, 1980.

[32] B. Pfitzmann and M. Waidner. Information-theoretic pseudosignatures and Byzantine agree-
ment for t ≥ n/3. Technical Report RZ 2882 (#90830), IBM Research, 1996.

[33] M. Rabin. Randomized Byzantine generals. In 24th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 1983.

[34] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[35] S. Toueg. Randomized Byzantine agreements. In 3rd Annual ACM Symposium on Principles
of Distributed Computing (PODC), 1984.

[36] R. Turpin and A. B. Coan. Extending binary Byzantine agreement to multivalued Byzantine
agreement. Information Processing Letters, 18(2):73–6, 1984.

[37] M. Waidner. Byzantinische Verteilung ohne Kryptographische Annahmen trotz Beliebig Vieler
Fehler (in German). PhD thesis, University of Karlsruhe, 1991.

A Additional Proofs

A.1 Proof of Lemma 1

We show a constant-round gradecast protocol (essentially from [18, Section 5.1]) tolerating t < n/3
malicious parties. The protocol proceeds as follows:

Round 1 The dealer sends M to all other parties.

Round 2 Let Mi denote the message received by Pi (from the dealer) in the previous round. Pi

sends Mi to all the parties.

Round 3 Let Mj,i denote the message received by Pi from Pj in the previous round. Each party
Pi does the following: if there exists an M∗

i such that |{j : Mj,i = M∗
i }| ≥ 2n/3 then Pi sends

this M∗
i to all the parties. Otherwise, Pi sends nothing.

Output determination Let M∗
j,i denote the message (if any) received by Pi from Pj in the

previous round. Each party Pi determines its output as follows: if there exists an M∗∗
i such

that |{j : M∗
j,i = M∗∗

i }| ≥ 2n/3, then Pi outputs mi := M∗∗
i and gi := 2. Otherwise, if there

exists10 an M∗∗
i such that |{j : M∗

j,i = M∗∗
i }| ≥ n/3, then Pi outputs mi := M∗∗

i and gi := 1.
Otherwise, Pi outputs mi :=⊥ and gi := 0.

Let us now prove that the above protocol satisfies Definition 3. Assume first that the dealer
is honest. Then each honest party Pi receives Mi = M in round 1 and sends this to all parties in
round 2. So in round 3, for each honest Pi it holds that M∗

i = M and so Pi sends this value to all
the parties. It follows that any honest party Pi outputs mi = M and gi = 2.

Before proving the second required property, we claim that if any two honest parties Pi, Pj send
a message in round 3 then they in fact send the same message. To see this, say Pi sends M∗

i in
round 3. Then Pi must have received M∗

i from at least 2n/3 parties in round 2, and so strictly
more than n/3 honest parties must have sent M∗

i in round 2. But this means that Pj receives any

10It will follow from the proof below that at most one such M∗∗
i exists in this case.

16

value M∗
j 6= M∗

i from strictly fewer than n−n/3 = 2n/3 parties in round 2, and so Pj either sends
M∗

i or nothing in round 3.
Now assume there is an honest party Pi who outputs a message mi and grade gi = 2, and let Pj

be any other honest party. Pi must have received mi from at least 2n/3 parties in round 3, and so
more than n/3 honest parties sent mi as their round-3 message. It follows that |{k : M∗

k,j = mi}| ≥
n/3 and so Pj outputs grade gj ≥ 1. Say there was an mj 6= mi for which |{k : M∗

k,j = mj}| ≥ n/3.
Then at least one honest party sent mj 6= mi as its round-3 message, contradicting what we have
shown in the previous paragraph. So, Pj outputs message mi as required.

A.2 Proof of Lemma 2

We show a constant-round authenticated gradecast protocol tolerating t < n/2 malicious parties.
(The following is adapted from work of Fitzi and Maurer [22] in a different setting.)

Round 1 The dealer computes a signature σ of M and sends (M,σ) to all parties.

Round 2 Let (Mi, σi) be the message received by party Pi (from the dealer) in the previous round.
If σi is a valid signature of Mi (with respect to the dealer’s public key), then Pi sends (Mi, σi)
to all other parties; otherwise Pi sets Mi :=⊥ and sends nothing.

Round 3 Let (Mj,i, σj,i) be the message received by Pi from Pj in the previous round. If there
exists a j such that Mj,i 6= Mi but σj,i is a valid signature of Mj,i (with respect to the dealer’s
public key), then Pi sets Mi :=⊥.

If Mi 6=⊥, then Pi computes a signature σ′
i of Mi and sends (Mi, σ

′
i) to all parties. (If Mi =⊥,

then Pi sends nothing.)

Round 4 Let (M ′
j,i, σ

′
j,i) be the message received by Pi from Pj in the previous round. If there

exist ` ≥ n/2 distinct indices j1, . . . , j` and a message M∗ such that M ′
j1,i = · · · = M ′

j`,i
= M∗

and σ′
jk,i is a valid signature of M∗ (with respect to the public key of Pjk

) for 1 ≤ k ≤ `, then
Pi sends (M∗, j1, σ

′
j1,i, . . . , j`, σ

′
j`,i

) to all other parties and outputs mi := M∗, gi := 2.

Output determination Assuming Pi has not decided on its output, it proceeds as follows: If
in the previous round Pi received any message (M∗, j1, σ

′
1, . . . , j`, σ

′
`) for which ` ≥ n/2, the

{jk}
`
k=1 are distinct, and σ′

k is a valid signature of M∗ with respect to the public key of party
Pjk

for 1 ≤ k ≤ `, then Pi outputs mi := M∗, gi := 1. Otherwise, Pi outputs mi :=⊥, gi := 0.

We show the above protocol satisfies Definition 3. If the dealer is honest, then in round 3 every
honest party Pi computes a signature σ′

i of the dealer’s message M and sends (M,σ′
i) to all other

parties. Thus, all honest parties will receive at least n/2 correct signatures on M in round 4, and
every honest party Pi will output mi = M,gi = 2 in round 4.

Before proving the second required property, we first claim that no two honest parties Pi, Pj

send messages (Mi, σ
′
i) and (Mj , σ

′
j) in round 3 with Mi 6= Mj . To see this, note that in round 3

Mi (resp., Mj) is either equal to ⊥ or to the message sent by the dealer to Pi (resp., Pj) in the
first round. So if the dealer sent a valid signature on the same message to parties Pi, Pj in the first
round, the claim is obviously true. On the other hand, in any other case at least one of Pi, Pj will
not send any message at all in round 3 (as at least one of mi =⊥ or mj =⊥ will then hold).

Now, say there is an honest party Pi who outputs some message mi and gi = 2. It follows easily
that any honest party Pj who did not output gj = 2 immediately in round 4 will output gj = 1
(and hence we have gj ≥ 1). Furthermore, since any honest parties who sign a message in round 3
sign the same message (as argued in the previous paragraph), it follows that mj = mi.

17

A.3 Proof of Lemma 3

The following 4-round VSS protocol, due to [24], tolerates t < n/3 malicious parties. (Recent
work of Fitzi, et al. [20] improves this to 3 rounds but this is not needed to prove the Lemma.)
The protocol assumes the existence of a broadcast channel in the sharing phase, but not in the
reconstruction phase. We assume a finite field

�
with s ∈

�
, |

�
| > n, and [n] ⊂

�
. In the description

that follows, we also implicitly assume that all parties send a properly-formatted message at all
times (this is without loss of generality, as we may interpret an improper or missing message as
some default message). When the dealer is disqualified this means that execution of the protocol
halts, and all honest parties output some default value (say, 0) in the reconstruction phase.

Sharing Phase

Round 1 The dealer chooses a random bivariate polynomial F ∈
�
[x, y] of degree t in each variable

with F (0, 0) = s. The dealer sends to Pi the polynomials gi(x)
def
= F (x, i) and hi(y)

def
= F (i, y).

In parallel, each Pi sends a random ri,j ∈
�

to each Pj (including itself).

Round 2 Pi broadcasts cj,i := gi(j) + rj,i and di,j := hi(j) + ri,j for all j.

Round 3 For each cj,i 6= dj,i, the following is performed:

• Pi broadcasts aj,i := gi(j).

• Pj broadcasts bj,i := hj(i).

• The dealer broadcasts sj,i := F (j, i).

A party is said to be unhappy if any value he broadcasted in this round does not match the
corresponding value broadcasted by the dealer, and happy otherwise.

Round 4 For each unhappy party Pi, the dealer broadcasts the polynomial gi(x) and each happy
party Pj broadcasts b′j,i := hj(i).

End of sharing phase A party Pj who was happy at the beginning of round 4 becomes unhappy
if the dealer broadcasted gi(x) in round 4 such that b′j,i 6= gi(j). If the number of unhappy
parties is now more than t, the dealer is disqualified.

Reconstruction Phase

Round 1 If Pi was happy at the beginning of round 4 of the sharing phase, then Pi sends si := gi(0)
to all parties; otherwise, Pi sends nothing.

Output determination Party Pi proceeds as follows: if Pj was happy at the beginning of round 4
of the sharing phase, let sj be the value Pj sent to Pi in the previous round; otherwise, set
sj := gj(0) (where gj(x) is the polynomial broadcast by the dealer in round 4 of the sharing
phase). Let g(y) be the degree-t polynomial resulting from applying Reed-Solomon error-
correction to (s1, s2, . . . , sn). Output g(0).

We first prove secrecy. Assume the dealer is honest. We claim that the information the malicious
parties have about the dealer’s secret s at the end of the sharing phase consists entirely of the
polynomials sent to the malicious parties by the dealer in round 1; secrecy follows since F is a
degree-t bivariate polynomial and there are at most t malicious parties. Now, at the end of the
sharing phase the adversary knows (from the information sent by the dealer in round 1) the values
{F (i, j) | Pi or Pj malicious}. To prove the claim, we show that the adversary does not have any
information about F (i, j) if both Pi, Pj are honest. In particular, if Pi, Pj are honest then round 2
leaks no information about gj(i) = F (i, j) or hi(j) = F (i, j) due to the random pads that are used.

18

Furthermore, ci,j = di,j and so no information about F (i, j) is revealed in round 3. Finally, all
honest parties are happy at the end of the sharing phase and so no information about F (i, j) is
revealed in round 4.

We continue to assume the dealer is honest, and prove validity. As noted above, all honest parties
are happy at the end of the sharing phase and so the dealer is not disqualified. Furthermore, every
honest party sends si = gi(0) = F (0, i) to all other parties in the reconstruction phase. Since n > 3t
and there are at most t “bad” shares in {s1, s2, . . . , sn}, Reed-Solomon error-correction recovers
the polynomial g(y) = F (0, y) and hence all honest parties output g(0) = F (0, 0) = s.

Lastly, we prove the reconstruction property. For the case of an honest dealer, this follows from
validity. The reconstruction property is also trivially satisfied if the dealer is disqualified. Thus, in
what follows we assume a dishonest dealer who is not disqualified.

For any party Pi who remains honest throughout the entire protocol, its “contribution” si in
the reconstruction phase (whether sent in round 1 of the reconstruction phase or automatically set

equal to gi(0)) is fixed at the end of the sharing phase. Furthermore, the vectors (s
(j)
1 , . . . , s

(j)
n)

and (s
(k)
1 , . . . , s

(k)
n) used in the output determination step by two honest parties Pj , Pk agree in

at least the 2t + 1 positions corresponding to honest parties. If we can show that the values
{si | Pi is honest at the end of the sharing phase} lie on a degree-t (univariate) polynomial, then
by the properties of Reed-Solomon decoding we see that (1) regardless of the adversary’s actions in
the reconstruction phase, each honest party will recover the same g(y) and hence output the same
g(0); and furthermore (2) this value g(0) is determined by the joint view of the honest parties at
the end of the sharing phase, as desired.

We will use the following claim (see, e.g., [18, Lemma 2]):

Claim 18. Let x1, x2, . . . , xt+1 be distinct elements in
�
, and h1(y), . . . , ht+1(y) be polynomials of

degree t. Then there exists an unique bivariate polynomial F ′(x, y) of degree t in both variables such
that F ′(xi, y) = hi(y) for i = 1, . . . , t + 1.

Since the dealer is not disqualified, there are at least 2t + 1 happy parties at the end of the sharing
phase and at least t+1 of them are honest. Let H denote the indices of an arbitrary set of t+1 such
parties (so i ∈ H means Pi was happy and honest at the end of the sharing phase). By Claim 18,
there exists a unique bivariate polynomial F ′(x, y) of degree t such that F ′(i, y) = hi(y) for i ∈ H.
We prove below that for all honest Pi, the contribution si (in the reconstruction phase) will be
equal to F ′(0, i) and so the values {si | Pi honest} lie on the degree-t polynomial F ′(0, y). The
reconstruction property follows.

Before continuing, note that (using Claim 18 again) there exists a degree-t polynomial F ′′(x, y)
such that F ′′(x, i) = gi(x) for i ∈ H. But then for any i, j ∈ H, we have F ′(i, j) = hi(j) = gj(i) =
F ′′(i, j) (using for the second equality the fact that Pi, Pj are happy and honest) and so in fact the
bivariate polynomials F ′, F ′′ are identical (since |H| = t + 1).

We now prove that si = F ′(0, i) for all honest parties Pi:

1. If Pi was happy at the beginning of round 4, then gi(j) = hj(i) = F ′(j, i) for all j ∈ H. Since
|H| = t + 1 and the polynomials gi(x) and F ′(x, i) have degree t, they must be identical and

so si
def
= gi(0) = F ′(0, i).

2. If Pi was unhappy at the beginning of round 4, let di(x) be the appropriate polynomial
broadcasted by the dealer in round 4. We must have di(j) = hj(i) = F ′(j, i) for all j ∈ H
(since Pj is happy at the end of the sharing phase). As before, since di(x) and F ′(x, i) have

degree t and agree on t + 1 points, they must be identical and so si
def
= di(0) = F ′(0, i).

19

A.4 Proof of Lemma 4

We show a constant-round protocol for authenticated VSS which tolerates t < n/2 malicious
parties. The protocol assumes a broadcast channel during the sharing phase, but not during the
reconstruction phase. Our protocol is adapted from work of Cramer, et al. [12, Section 5]. At a
high level, we introduce two modifications: (1) we replace the “information checking” tool in [12] by
digital signatures; and (2) the protocol of [12] uses the broadcast channel during the reconstruction
phase, and we avoid this by having parties send certain signed messages to each other. In our proof,
we then need to consider the case in which parties send different messages to different parties (this
does not arise in [12] due to the use of the broadcast channel there). We now provide the details.

As in the proof of Lemma 3, we assume a finite field
�

with s ∈
�
, |

�
| > n, and [n] ⊂

�
. We

continue to assume, without loss of generality, that parties send properly-formatted messages. If
the dealer is disqualified then execution of the protocol halts, and all parties output some default
value in the reconstruction phase. Finally, we say an ordered sequence of values (v1, . . . , vn) ∈

�n

is t-consistent if there exists a degree-t polynomial f such that f(i) = vi for 1 ≤ i ≤ n.

Sharing Phase

Round 1 The dealer chooses a random bivariate polynomial F ∈
�
[x, y] of degree t in each variable

with F (0, 0) = s. Let ai,j = bi,j
def
= F (i, j). The dealer sends to party Pi the values a1,i, . . . , an,i

and bi,1, . . . , bi,n, along with a signature on each such value.11

Round 2 let ~ai = (a1,i, . . . , an,i) and ~bi = (bi,1, . . . , bi,n) denote the values received by party Pi in
the previous step. If Pi does not receive a valid signature on all these values as specified in the
previous step, then Pi broadcasts a complaint. Pi also checks that ~ai,~bi are each t-consistent.
If not, Pi broadcasts these values along with the dealer’s signatures on them; upon receiving
such a broadcast from any other party (and verifying the dealer’s signatures and the fact that
the values are not t-consistent), the dealer is disqualified.

Round 3 If Pi broadcasted a complaint in round 2, the dealer broadcasts ~ai = (a1,i, . . . , an,i),
~bi = (bi,1, . . . , bi,n), and signatures on each of these values; Pi uses these values for the
remainder of the protocol. If the dealer broadcasts incorrect signatures in response to a
complaint, or if any of the broadcasted ~ai, ~bi are not t-consistent, the dealer is disqualified.

Note that unless the dealer is disqualified at this point, every honest party Pi now has t-
consistent vectors ~ai,~bi, and valid signatures of the dealer on each of {aj,i, bi,j}

n
j=1.

Round 4 Party Pi computes signature σj,i on (j, i, aj,i), and sends (aj,i, σj,i) to party Pj .

Round 5 Pi compares the value ai,j it received from Pj in the previous step to the value bi,j it
received from the dealer. If there is an inconsistency, or if Pj did not send a valid signature,
then Pi broadcasts bi,j and the dealer’s signature on this value.

Round 6 Pi checks if any party Pj broadcasted a value bj,i which is different from the value aj,i

that Pi holds. If so, then Pi broadcasts aj,i and the dealer’s signature on this value.

End of sharing phase If there exists a pair (i, j) such that ai,j and bi,j were both broadcast with
valid signatures of the dealer and ai,j 6= bi,j, the dealer is disqualified.

11More precisely, the dealer signs the “message” (i, j, F (i, j)).

20

Reconstruction Phase

Round 1 For every j such that Pi has a valid signature σi,j (with respect to the public key of Pj)
on bi,j , party Pi sends (bi,j , σi,j) to all other parties. Note that for all other j, party Pi has
already broadcasted bi,j (with the dealer’s signature) in round 5 of the sharing phase.

Output determination For each 1 ≤ j ≤ n, party Pi verifies the signatures on the values received
from Pj in the previous round, and disqualifies Pj if any of the signatures are invalid.

Now, for each Pj which is not yet disqualified, party Pi has values ~bj
i

def
= (bj,1, . . . , bj,n) (each

of these values was either received from Pj in the previous round or was broadcast by Pj in

round 5 of the sharing phase). If ~bj
i is not t-consistent, Pi disqualifies Pj.

Let Hi be the set of non-disqualified parties, from the perspective of Pi. For each j ∈ Hi,
party Pi interpolates ~bj

i to obtain a degree-t polynomial f ′
j(y) (recall that ~bj

i is t-consistent).
Next, Pi interpolates the {f ′

j(y)}j∈Hi
to obtain bivariate polynomial F ′(x, y) of degree t in

both variables (the proof below will show that this is possible). Output F ′(0, 0).

We first prove secrecy. If the dealer is honest, no honest party will complain in round 2.
Furthermore, if Pi, Pj are honest then ai,j = bi,j in round 5 and so bi,j is not broadcast. It follows
that the information malicious parties have about the dealer’s secret s at the end of the sharing
phase consists entirely of the values sent to the dishonest parties by the dealer in round 1. Secrecy
follows since F is a degree-t bivariate polynomial and there are at most t malicious parties.

We next prove validity. It is easy to see that an honest dealer is never disqualified. Let Pi, Pj be

parties that remain honest throughout the entire execution. The vector ~bj
i (in the reconstruction

phase) matches the values sent by the dealer in round 1 and furthermore Pj ∈ Hi; thus, Pi recovers
f ′

j(y) = F (j, y) for every honest Pj . For any malicious Pk ∈ Hi, the value bk,j that Pi holds was
either signed by Pj (in round 4) or broadcast by Pj (in round 5), and so bk,j = F (k, j). Since this

holds for at least t + 1 honest parties Pj and ~bk
i is t-consistent (else k 6∈ Hi), we conclude that

Pi recovers f ′
k(y) = F (k, y) in this case as well. So interpolating the {f ′

j(y)}j∈Hi
yields F (x, y)

(interpolation can be done since |Hi| ≥ t + 1), and the output of Pi is the dealer’s secret F (0, 0).
Finally, we prove reconstruction. The case when the dealer is disqualified is obvious, so assume

the dealer is not disqualified.
Let U be the indices of a set of t+1 parties who are honest at the end of the sharing phase. For

honest Pi, let ~bi = (bi,1, . . . , bi,n) denote the values that Pi will “effectively” send to other parties in
the reconstruction phase (note that some of these values may, in fact, already have been broadcast).
Let f ′

i(y) be the result of interpolating ~bi (this is well-defined since ~bi is t-consistent for honest Pi),
and let F ′(x, y) be the result of interpolating the f ′

i(y) for i ∈ U . We will show that regardless of
the actions of the adversary in the reconstruction phase, each honest party outputs F ′(0, 0).

By construction of F ′, we have bi,k = F ′(i, k) for i ∈ U . We claim that ak,i = F ′(k, i) for i ∈ U .
Let g′i(x) be the result of interpolating ~ai = (a1,i, . . . , an,i) (again, this is well-defined since ~ai is

t-consistent for Pi honest). Note that for j ∈ U we have g′i(j)
def
= aj,i = bj,i or else the dealer would

have been disqualified. So g′i(x) agrees with F ′(x, i) on t + 1 points and hence these polynomials
must be identical, proving the claim.

Applying a similar argument (using the fact that, for Pi honest and j ∈ U , we have bi,j = ai,j =

F ′(i, j) or else the dealer is disqualified), we see that for any honest Pi the vector ~bi interpolates to
f ′

i(y) = F ′(i, y). Furthermore, it is easy to see that if Pi, Pj remain honest then Pi ∈ Hj . For any
corrupted Pk ∈ Hj and honest Pi, the value bk,i that Pk sends to Pj in the reconstruction phase
was either signed by Pi (in round 4) or broadcast by Pi (in round 5), and so bk,i = F ′(k, i). Since

this holds for at least t + 1 honest parties Pi and ~bk
j is t-consistent (else k 6∈ Hj), we conclude that

21

Pj recovers f ′
k(y) = F ′(k, y) in this case as well. So interpolating the {f ′

i(y)}i∈Hj
yields F ′(x, y)

(interpolation can be done since |Hj | ≥ t + 1), and the output of Pj is the dealer’s secret F ′(0, 0).

B Improved Round Complexity for Authenticated BA

Below, we construct an authenticated Byzantine agreement protocol directly in the point-to-point
model (rather than relying on an underlying gradecast protocol). Essentially, this protocol is
obtained from the one described in Theorem 13 by unrolling the gradecast protocol and eliminating
redundant steps.

Let V be the domain of possible input values, let the input value for party Pi be vi ∈ V , let
φ ∈ V be some default value and let ⊥6∈ V . Each Pi begins with an internal variable locki set
to ∞. To avoid having to say this every time, we make the implicit requirement that if locki 6= ∞
then the value of vi is “locked” and remains unchanged (i.e., even if the protocol description below
says to change it).

We say that Pi has a (valid) certificate for v if v ∈ V and there exist k > n/2 distinct indices
j1, . . . , jk such that Pi holds σj1,i, . . . , σjk,i which are valid signatures on v with respect to the public
keys of Pj1, . . . , Pjk

. In this case, we will also call (v, j1, . . . , jk, σj1,i, . . . , σjk,i) the certificate for v.

Step 1 Party Pi computes a signature σi of vi and sends (vi, σi) to all parties.

Step 2 Let (vj,i, σj,i) be the message received by party Pi from Pj. If these messages yield a
certificate for vi, then Pi sends a certificate for vi to all parties. Otherwise Pi sends nothing
and sets vi :=⊥.

Step 3 If in the previous round Pi received a valid certificate for some v∗ 6= vi, then Pi sets vi :=⊥.

If vi 6=⊥, then Pi computes a signature12 σ′
i of vi and sends (vi, σ

′
i) to all parties.

Step 4 Let (vj,i, σ
′
j,i) be the message received by party Pi from Pj (if any) in the previous round.

If these messages yield a certificate for vi, then Pi sends a certificate for vi to all parties and
sets locki := 1; otherwise Pi sends nothing and sets vi :=⊥.

Step 5 If in the previous round Pi received a valid certificate on some value v∗, then Pi sends a
certificate on v∗ to all parties and sets vi := v∗. Otherwise, Pi sends nothing and sets vi :=⊥.

Step 6 If in the previous round Pi received a valid certificate on some value v∗, then Pi sends v∗

to all parties; otherwise, Pi sends ⊥ to all parties. Let v∗j,i be the value Pi received from Pj

in this round.

Step 7 All parties execute the OLE protocol; let `i be the output of Pi. If vi =⊥ and v∗`i,i
6=⊥,

then Pi sets vi := v∗`i,i
. If vi = v∗`i,i

=⊥, then Pi sets vi := φ. If locki = 0, then Pi outputs
vi and terminates the protocol. If locki = 1, then Pi sets locki := 0 and goes to step 1. If
locki = ∞, then Pi goes to step 1.

Lemma 19. Assume there exists a constant-round authenticated OLE protocol with fairness δ =
Ω(1) tolerating t < n/2 malicious parties. Then the above protocol is an expected constant-round
authenticated Byzantine agreement protocol tolerating t malicious parties.

Proof The proof is very similar to the proof of Theorem 13. We refer to an execution of steps 1
through 7 as an iteration. One can check by inspection that if — immediately prior to any given
iteration — there exists a value v such that vi = v for all honest Pi and no honest parties have

12The current round number is also signed to distinguish this signature from others.

22

yet terminated, then all honest parties will terminate and output v by the end of the following
iteration. (This in particular proves validity.)

An easy observation is that at any given step there is at most one value v ∈ V for which some
honest party has a certificate on v (otherwise, some honest party must have signed two different
values; but this cannot occur). Now consider the first iteration in which an honest party Pi sets
locki := 1 (in step 4). We claim that, by the end of that iteration, vj = vi for all honest Pj and
no honest parties will have yet terminated. The claim regarding termination is immediate. From
the above observation, any honest party Pj setting lockj := 1 in this iteration must also hold
vj = vi. For an honest party Pj holding lockj = ∞ after step 4, since Pi sends a certificate for vi

to all parties (in step 4) the earlier observation again implies that Pj sets vj := vi in step 5. Since
vj = vi 6=⊥ (else Pi would not have set locki := 1), Pj will not change the value of vj in step 7.
This establishes the claim, and implies that if any honest party terminates then all honest parties
terminate with the same output.

To complete the proof, we show that if an honest leader P` is elected in some iteration then all
honest parties will hold the same value v by the end of that iteration. By what we have argued in
the previous paragraph, we only need to consider the case where locki = ∞ for all honest Pi in
step 7. If vi =⊥ for all honest Pi by the end of step 5, the claim is immediate since every honest Pi

will change their value of vi to the honest leader’s value (or φ, as appropriate) in step 7. Otherwise,
vi 6=⊥ by the end of step 5 for some honest party Pi. By the observation mentioned earlier, every
honest party Pj holds vj ∈ {vi,⊥} by the end of step 5. Furthermore, P` receives a valid certificate
on vi from Pi in step 5 and so (again using the earlier observation) sends v∗` = vi to all parties in
step 6. Hence every honest party Pj holds vj = vi by the end of that iteration.

This completes the proof.

C Exact Round Complexities

In this section, we compute the exact round complexities of our broadcast/Byzantine agreement
protocols, applying in the process some optimizations. We also discuss the round complexities
for multiple sequential invocations of our protocols (relying on the results stated in Section 5 and
proved in Appendix D).

The unconditional case (t < n/3). Let us examine the Byzantine agreement protocol BA given
in the proof of Theorem 11. Recall that BA consists of multiple iterations; steps 1–5 of each
iteration require only one round each, while in step 6 of an iteration the two phases of an OLE
protocol are run. Taking the OLE protocol from the proof of Theorem 8, note that the second
phase of that OLE protocol takes only a single round. Letting r denote the round complexity of the
first phase of the underlying OLE protocol, we see that the round complexity of a single iteration of
BA is 5 + r + 1 = 6 + r. Multiplying this by the expected number of iterations yields the expected
round complexity of BA.

We can, however, do better. The key observation is that the first phase of the OLE protocol can
be carried out in advance of step 6, and in particular can be carried out in parallel with steps 1–5.
(A similar observation was made in [16].) Even more, we can run multiple invocations of the first
phase of the OLE protocol and “save them up” until needed. Applying these ideas, we obtain the
following protocol for Byzantine agreement (r again denotes the round complexity of the first phase
of the underlying OLE protocol, and we assume r ≥ 5):

1. Run `
def
= dr/6e executions of the first phase of the OLE protocol. These are scheduled so

the final 5 rounds coincide with steps 1–5 of the first iteration of the Byzantine agreement

23

protocol.

2. For the remainder of the Byzantine agreement protocol, continually run ` parallel executions
of the first phase of the OLE protocol in parallel with the steps of the Byzantine agreement
protocol itself. These parallel executions will terminate every r rounds, just as the ` previous
executions get “used up.”

To compute the resulting (expected) round complexity of the Byzantine agreement protocol,
recall that an honest leader is elected with probability at least 2/3 in each iteration, and when
an honest leader is elected all honest parties terminate by the following iteration. The expected
number of iterations until a leader is elected is therefore at most 1/(2/3) = 3/2, and the expected
number of iterations is at most 5/2. Each iteration requires 6 rounds. Furthermore, we have an
additional r − 5 rounds during which the initial ` executions of the first phase of the OLE protocol
are run (recall that the final 5 rounds of these initial ` executions coincide with the first 5 rounds
of the first iteration). We thus obtain that the expected round complexity of BA is at most:

6 ·
5

2
+ (r − 5) = 10 + r.

Finally, by applying the transformation from Section 3.2 to the VSS protocol of Fitzi, et al. [20]
(using the 3-round gradecast protocol from Appendix A.1), we obtain r = 13 for the OLE protocol
constructed here. The expected round complexity of the Byzantine agreement protocol constructed
in this work, then, is at most 10+13 = 23. An additional round is needed to implement broadcast.

The authenticated case (t < n/2). We apply an analogous analysis to the protocol given in
Appendix B. Now an honest leader is elected with probability at least 1/2 in each iteration, and all
honest parties terminate by two iterations following the one in which an honest leader is elected.
The expected number of iterations is therefore at most 1/(1/2) + 2 = 4. Each iteration requires
7 rounds. Furthermore, we again use an additional r − 6 rounds before the first iteration begins to
run dr/7e executions of the first phase of OLE. Hence the expected round complexity is at most:

4 · 7 + (r − 6) = 22 + r.

Applying the transformation from Section 3.2 to the authenticated VSS protocol described in
Appendix A.4 (using the 4-round gradecast protocol from Appendix A.2), we obtain r = 34. The
expected round complexity of the authenticated Byzantine agreement protocol constructed in this
work, then, is at most 22 + 34 = 56. An additional round is needed to implement broadcast.

Amortized round complexity of sequential broadcasts. We focus now on broadcast, rather
than Byzantine agreement. The observation here is that when running multiple sequential execu-
tions of broadcast, we no longer need to count the rounds for the initial “set-up” phase (in which the
first phase of OLE is run, before the first iteration) each time. (The reason is that these can be run
in parallel with the preceding execution of broadcast.) Thus, we obtain an amortized (expected)
round complexity of 1 + 6 · 5

2 = 16 in the unconditional case and 1 + 7 · 4 = 29 in the authenticated
case. Applying Lemma 17 to handle the issue of non-simultaneous termination, we obtain:

• For t < n/3, excepting the first broadcast, each additional invocation of broadcast incurs an
(expected) cost of 3 · 16 + 1 = 49 rounds.

• For t < n/2, excepting the first broadcast, each additional invocation of authenticated broad-
cast incurs an (expected) cost of 3 · 29 + 1 = 89 rounds.

24

D Proof of Lemma 17

We first prove a more general version of the lemma that applies to arbitrary protocols but has
weaker parameters:

Lemma 20. Let Π be a protocol with staggering gap g and expected round complexity r. Then for
any constant c ≥ 0 there exists a protocol Expand′(Π) which achieves the same security guarantees
as Π as long as all honest parties begin execution of Expand′(Π) within c rounds of each other.
Expand(Π) has expected round complexity (2c + 1) · r + c + g · (2c + 1) + 1 and staggering gap 1.

This result holds unconditionally for the case of t < n/3 malicious parties, and under the
assumption of a PKI and secure digital signatures for t < n/2.

Proof We describe protocol Expand′(Π). It consists of two phases: in the first phase, each
party Pi executes Expand(Π). (Recall that Expand(Π) has expected round complexity (2c+1)r and
staggering gap c + g(2c + 1); cf. Lemma 16.) When Pi terminates execution of Expand(Π) with
output vi, it then begins the second phase:

Unconditional case: In each round (of the second phase), Pi does the following:

• If c + g(2c + 1) rounds have passed since terminating Expand(Π), or Pi has received at
least t+1 copies of “exit” (from t+1 distinct parties), then Pi sends “exit” to all parties.

• If Pi has received at least 2t + 1 copies of “exit” (from 2t + 1 distinct parties), then it
terminates Expand′(Π) with output vi.

Authenticated case: In each round (of the second phase), Pi does the following

• If c + g(2c + 1) rounds have passed since terminating Expand(Π), then Pi signs “exit”
and sends this to all parties.

• If Pi has received t + 1 valid signatures (from t + 1 distinct parties) on the message
“exit”, then it sends “exit” along with these t + 1 valid signatures to all parties, and
terminates Expand′(Π) with output vi.

We show that the staggering gap of Expand′(Π) is 1. Let round k be the first round in which some
honest party Pi terminates Expand′(Π). Then:

Unconditional case: When Pi terminates Expand′(Π) in round k, it has received 2t + 1 copies of
“exit”, at least t + 1 of which are from honest parties. Hence all honest parties have received
at least t+1 copies of “exit” by round k and have sent “exit” by round k +1. Since there are
at least 2t + 1 honest parties, it follows that all honest parties receive 2t + 1 copies of “exit”,
and hence terminate Expand′(Π), by round k + 1.

Authenticated case: When Pi terminates Expand′(Π), it has received t + 1 valid signatures on
“exit” which it forwards to all parties. Hence all honest parties receive the forwarded signa-
tures in round k + 1 and terminate by that round.

It is easy to see that no honest party terminates Expand′(Π) until all honest parties have terminated
Expand(Π) and so the security guarantees of Expand′(Π) are the same as those of Expand(Π), which
are the same as those of Π. The claimed round complexity is immediate.

We now prove Lemma 17:

Proof The main difference between here and the proof of the previous lemma is that after the
execution of Expand(Π) is completed, a party will not wait for c + g(2c + 1) rounds before sending
“exit”. Instead, it will send its output from Expand(Π) to all parties. A party who is convinced

25

that this received output value is correct may then terminate Expand′(Π) even if it has not yet
terminated Expand(Π).

We now describe protocol Expand′(Π) in more detail. Each party Pi first executes Expand(Π).
When Pi terminates execution of Expand(Π) with output vi, it sends “exit, vi” to all parties (along
with a signature of this message in the authenticated case). Furthermore, at every round (including
during execution of Expand(Π)), Pi does the following:

Unconditional case: If, for some value v, Pi has received “exit, v” from t + 1 distinct parties
(possibly including itself), then Pi sends “exit, v” to all parties. If a party has received “exit,
v” from 2t + 1 distinct parties (possibly including itself), then it terminates Expand′(Π) with
output v (even if its execution of Expand(Π) has not completed).

Authenticated case: If, for some value v, Pi has received valid signatures from t + 1 distinct
parties (possibly including itself) on “exit, v”, then Pi forwards “exit, v” along with these
t + 1 signatures to all parties, and terminates Expand′(Π) with output v.

The analysis of the staggering gap is the same as in the proof of Lemma 20. As regards the security
guarantees of Expand′(Π), the claim now is that that no honest party terminates Expand′(Π) until
some honest parties has terminated Expand(Π). Still, the security guarantees of Expand′(Π) are the
same as those of Expand(Π), which are the same as those of Π. This completes the proof.

We remark that the proof of Lemma 17 does not apply to arbitrary protocols (rather, we have
explicitly stated the lemma only for protocols achieving broadcast) since we use the fact that all
honest parties should terminate with identical outputs.

26

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

