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Abstract

We study the structure of EG[2], the class of Eisenberg-Gale markets with two agents. We
prove that all markets in this class are rational and they admit strongly polynomial algorithms
whenever the polytope containing the set of feasible utilities of the two agents can be described
via a combinatorial LP. This helps resolve positively the status of two markets left as open
problems by [JV]: the capacity allocation market in a directed graph with two source-sink
pairs and the network coding market in a directed network with two sources.

Our algorithms for solving the corresponding nonlinear convex programs are fundamentally
different from those obtained by [JV]; whereas they use the primal-dual schema, we use a
carefully constructed binary search.

We also settle a third open problem of [JV], that of determining whether the notion of
competition monotonicity characterizes the class of SUA markets within UUA markets. We
give a positive resolution of this problem as well.

1 Introduction

The classic Eisenberg-Gale convex program captures, as its optimal solution, equilibrium allo-
cations for the linear case of Fisher’s market equilibrium model [EG59, BS00]. Over the years,
convex programs with the same basic structure were found for more general utility functions: scal-
able utilities [Eis61], Leontief utilities [CV04], Linear Substitution utilities [Ye] and homothetic
utilities with productions [JVY05].

Interestingly enough, a program with the same structure as the Eisenberg-Gale program is
used by Kelly [Kel97] in his seminal work giving a mathematical model for understanding TCP
congestion control. Given a network (directed or undirected) with edge capacities specified and a
set of source-sink pairs (agents), each with initial endowment of money specified, Kelly’s program
maximizes the total utility of the agents. Using KKT conditions, Kelly showed that the optimal
allocation of flows and prices (which are the Lagrangian variables of his program) must satisfy
the following equilibrium conditions:
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e Only saturated edges can have positive prices.

e All flows are sent along a minimum cost (with respect to the prices) path from source to
sink.

e The money of each source-sink pair is fully spent.

A useful interpretation of edge prices in the context of TCP congestion control is either as prob-
ability of packet loss in TCP Reno or as queuing delay in TCP Vegas [TWHLO5].

Continuous time algorithms, not having polynomial time guarantees, were developed for prob-
lems in Kelly’s resource allocation model by several researchers, e.g., see [KMT98, WLLDO05,
Kel03], and this study eventually led to new protocols and practical impact, e.g., see the FAST
project [WJLHO7, WWCL06, CKLLO05]. [KV] observed that the above-stated flow equilibrium
problem generalizes the linear case of Fisher’s model, and stated, “Continuous time algorithms
similar to TCP are known, but insights from discrete algorithms may be provocative”.

Recently, progress on this question was made by Jain and Vazirani [JV]. They defined the
notion of Eisenberg-Gale markets which generalizes all the models stated in the first paragraph
(see Section 2 for definitions), and studied the class of Eisenberg-Gale markets from the five
viewpoints of solvability via strongly polynomial time algorithms, rationality, efficiency, fairness
and competition monotonicity, and they found a surprisingly rich structure. They also stated a
host of open problems whose resolution should lead to a deeper understanding not only of these
markets but also of the issue of solvability of nonlinear convex programs via strongly polynomial
algorithms. In this paper we investigate Eisenberg-Gale markets further and settle three open
problems of [JV]. In particular, we dispel the belief that existence of underlying max-min relations
is essential to obtaining strongly polynomial algorithms for these markets.

1.1 Rationality and Strongly polynomial solvability

A remarkable property of the Eisenberg-Gale program is that, despite its being nonlinear, it
always has a rational solution if all the input parameters are rational. We will say that a market
or a nonlinear program is rational if it has this property and irrational otherwise. Interestingly
enough, rationality is not unique to the Eisenberg-Gale program. [JV] established rationality
and strongly-polynomial solvability for the following cases of the above-stated flow equilibrium
problem:

e There is only one source, though multiple sinks, and the network is directed or undirected.

e The network is undirected and has two source-sink pairs.

Both these settings support combinatorial max-flow min-cut theorems — due to Ford and Fulkerson
[FF56] and Elias, Feinstien and Shannon [EFS56], and Hu [Hu63], respectively. In all other cases
there is a gap between max-flow and min-cut, and computing the latter is NP-hard. Let us
partition these into two:

e The graph is directed or undirected with three or more source-sink pairs. NP-hardness for
this case was established in [DJP194], and [GJTV05] show that this case is irrational.



e The graph is directed and there are two source-sink pairs. This case was shown NP-hard
in [GVY94], and [JV] left its rationality as an open problem.

[JV] also established the rationality of the following two markets related to broadcasting:

e Spanning trees in an undirected network with arbitrarily many sources.

e Branchings in a directed network with two sources.

Once again, max-min theorems of Nash-William and Tutte [NW61, Tut61], and [JV], respectively,
played a central role in the algorithms. For the second market, for the case of three or more
sources, [JV] established irrationality. They left the open problem of determining rationality of
the network coding market with two sources; the network in this case is allowed to have Steiner
nodes (see Section 2 for a definition).

To summarize, among the markets characterized so far, an important distinction between the
rational and irrational markets was that combinatorial problems underlying the former satisfied
max-min theorems, which were used critically to establish rationality, and those for the latter
didn’t. The two markets left open do not support max-min theorems. Surprisingly enough,
despite this, both of them turn out to be rational. More generally, in this paper we show that
all markets in EG[2], the class of Eisenberg-Gale markets with two agents, are rational. We also
show that whenever the polytope containing the set of feasible utilities of the two agents can
be described via a combinatorial LP, the market admits a strongly polynomial algorithm; both
markets described above admit such LP’s.

Our algorithm circumvents the lack of underlying max-min theorems by using the more general
LP-Duality Theorem itself. This difference manifests itself in the algorithmic ideas needed in the
two cases — whereas [JV] use the primal-dual schema and their algorithms can be viewed as
ascending price auction, we use a carefully constructed binary search. The algorithms of [JV] are
combinatorial whereas ours are not, ours require a subroutine for solving combinatorial LP’s. The
latter can be accomplished in strongly polynomial time using Tardos’ algorithm [Tar86].

1.2 Competition Monotonicity

[JV] defined two abstract subclasses of Eisenberg-Gale markets — uniform utility allocation (UUA)
markets and submodular utility allocation (SUA) markets, that are central to many of their results.
The latter is properly contained in the former. A UUA market is defined via a valuation function
on subsets of agents specifying a bound on the total utility obtainable by that subset of agents.
If the valuation function is a polymatroid function, the market is said to be a SUA market. [JV]
establish rationality and strongly polynomial solvability of SUA! markets. Further, they study
the notions of efficiency and fairness in UUA markets, and show that each of these characterizes
the class of SUA markets.

Among other structural properties investigated by [JV], they observe that the classic notion
of weak gross substitutability is not always relevant to Eisenberg-Gale markets since they may

'In fact, some of the markets in the capacity allocation framework are SUA markets; this gives an alternate,
albeit slower, algorithm for such markets.



not involve goods but instead deal directly with utilities. They define the relevant notion of
competition monotonicity for these markets and show that when both notions are applicable, the
former is weaker than the latter. A market satisfies competition monotonicity if increasing the
money of one agent cannot lead to an increase in the utility of any other agent. Clearly, after the
money of one agent is increased, the rest of the agents need to compete against a more powerful
competitor and it is reasonable to expect that their utilities will not increase. They also showed
that SUA markets satisfy competition monotonicity and left the open problem of determining
whether this notion leads to a third characterization of SUA markets within UUA markets.

In the second part of our paper we give a positive resolution of this problem as well. For
each UUA market which is not SUA, we show how to construct a pair of instances for which
competition monotonicity fails. Since the valuation function is not submodular, there exists of a
set of agents T and two agents i,j ¢ T which contradict submodularity: the marginal utility of
agent j is greater for T'U 4 than T alone. To construct instances which contradict competition
monotonicity a simple approach would be to construct two instances such that,

e The money of 7 is zero in the first and some huge amount in the second.

e The equilibrium utility of j in both the instances is its marginal utility for the sets 1" and
T U1 respectively.

Unfortunately, such an easy approach does not work and we need a more careful construction.
One of the key ideas in the construction is to achieve a delicate balance of tight sets: the total
utility allocated to agents in the set equals the valuation of that set. We show that one can
choose the sets T, 4, j and an allocation which tightens 7', 7' U4, T'U j with the following surprising
properties:

e No set containing both ¢ and j is tight.

e The intersection of all tight sets containing any one of these is non-empty.

Such a structure enables us to construct a second instance of a market where the money of j,
remains the same, moneys of all other players increase and yet the equilibrium utility of 7 increases.
This contradicts competition monotonicity. We refer the reader to Section 6 for details.

2 Definitions and Results
Jain and Vazirani [JV] define a class of abstract markets, called the Eisenberg-Gale or EG Markets.

Definition 2.1 EG Markets An EG Market M with the set of buyers [n] is such that the set
of feasible utilities w € R} for M is captured by a polytope P defined by linear equations of the
form

Vjed, Z aiju; + Z a;jtk < by,
1€[n] keEK
Vi€ [nl,k € K, u;,t >0,



such that it satisfies the following two conditions:

e Free disposal: if u is feasible, then so is any other u' dominated by wu.

e Utility Homogenity: for all j € J, if for some i € [n], a;; > 0 then b; = 0.

The auxiliary variables t; might be used for instance, to give a more efficient representation of
the feasible region, or as a means to provide semantics for the market. An instance of M is given
by the moneys m of the buyers. We say that a feasible utility u is an equilibrium allocation if
there exist witness t € le and prices p € Ri such that

e Vi € [n],m; = rate(i)u;, where rate(i) = >, ai;p;.
e Vje€ J,pj >0 = Zie[n] aiju; + ZkEK a;jtk = bj.

e Vte Kty >0 = 3 cxai;pj =0, and ) ai:p; > 0 otherwise.

Note that the equilibrium conditions are exactly equivalent to the KKT conditions for the following
convex program:

n
maximize E m; log u;
i=1

subject to  Vj € J, Z aiju; + Z a;jte < bj,
1€[n] keK
Vi € [’I’L],k) € K, uj,t > 0.

Such programs were first considered by Eisenberg and Gale [EG59] for the Fisher model of a
market, with linear utilities. In the Fisher model of a market, there are buyers and divisible
goods. An instance of a market is defined by the endowments of money for each of the buyers,
their utilities for the goods, and the supplies of the goods. Prices are at an equilibrium if every
buyer can be assigned a bundle of goods such that

e the bundle maximizes his utility subject to the constraint that it does not cost more than
his endowment.

e the goods clear exactly.

The linear utilities case of the Fisher model are EG markets. The feasible region of utilities in a
Fisher market is defined by

Vi€ n],u <Y uijzgg,
jeJ
VjEJ,Z.’IIZ'ijj,

i€[n]



where J is the set of goods, the z;;’s indicate the amount of good j allocated to buyer 4, and b;
is the supply of good j. Also, at equilibrium, Vi € [n],m; = } .. ;%ijp;. It is easy to see that
the equilibrium conditions for the Fisher model are equivalent to the equilibrium conditions as
defined for Eisenberg Gale markets:

e Vi € [n],m; = oju;, where a; = rate(s).
e Vj€EJpPi >0 = Yicm Tij = bj-
e Vie[n],je Jzy >0 = p; = oyuyj, and p; > oju;j otherwise.

It is already known that a Fisher model with any number of agents and linear utilities is rational.
In fact, there is a strongly polynomial time algorithm for the Fisher model with linear utilities
and 2 buyers [DPS02]. Obtaining a strongly polynomial time algorithm for any number of buyers
is an open problem.

Definition 2.2 EG[k] denotes the class of EG markets with k buyers.

Definition 2.3 Suppose that the inequalities defining the feasible polytope of utilities have rational
co-efficients. If such a market is guaranteed to have rational prices whenever the moneys of the
buyers are rational, then it is called a rational market.

Theorem 2.1 EG/2] markets are rational.

Theorem 2.1 is proved in Section 3.

Consider an LP of the form max{cz : Az < b,z > 0}. A combinatorial LP is one in which
the entries in A have binary encoding length polynomial in the dimension of A. Tardos [Tar86]
gave a strongly polynomial algorithm for solving combinatorial LPs. A strongly polynomial time
algorithm [GLS93] is one in which the running time of the algorithm is polynomial in the dimension
of the input, i.e., the number of data points in the input. Arithmetic operations count as one unit
of time. We extend the definition of a combinatorial LP to also mean a set of inequalities Az < b
such that the entries in A have binary encoding length polynomial in the dimension of A.

Definition 2.4 A market is combinatorial if the LP describing the feasible utilities is combina-
torial.

Theorem 2.2 If an EG[2] market is combinatorial, then the equilibrium prices can be found in
strongly polynomial time.

Theorem 2.2 is proved in Section 4.

Definition 2.5 ([JV]) Suppose that m is the vector of moneys describing an instance of a market
M. Let the equilibrium utility allocation for this instance be u. Define the vector m', as a function
of m,i € [n] and € > 0, as mj = m; + ¢, and m), = my for all ' # i. Let the equilibrium utility
allocation for m' be u'. M is competition monotone if for all m,i € [n], € > 0, and i’ # i,
uly < up.



The following theorem follows from Pareto optimality of the equilibrium allocation.

Theorem 2.3 An EG[2] Market is competition monotone.

Definition 2.6 ([JV]) A Uniform Utility Allocation (UUA) market is one in which the polytope

P is of the form
P= {u:VSQ [n],zuz‘ S’U(S)}-

€S

In general, one need not have a constraint for all the subsets of [n]. A UUA market is defined
by the valuation function v(-). Without loss of generality, one can assume that v satisfies the
covering property: Let S C [n], and let {z1}7c[, be a fractional cover of S. That is, for all i € S,
Yrier @r > 1 and zp > 0 for all T C [n]. Then v(S) < X pcpnyv(T)zr

Definition 2.7 ([JV]) A UUA market is a Submodular Utility Allocation (SUA) market if the
valuation function v is a polymatroid function.

Jain and Vazirani [JV] proved that a SUA market is competition monotone. In this paper, we
prove the converse.

Theorem 2.4 A UUA market is Competition Monotone if and only if it is an SUA market.

This theorem is proved in Section 6.

2.1 Capacity Allocation Markets

In this model of Kelly [Kel97], we are given a directed graph with capacities on the edges, which
are the goods, a set of source-sink pairs, which are the buyers, and the endowment of money for
each source-sink pair. At equilibrium, edges are priced, and feasible flows are allocated between
the source-sink pairs such that

e Every source-sink pair sends flow on the cheapest path.
e Only those edges that are saturated are priced.

e All the moneys of the source-sink pairs are used up.

The set of feasible flows { f;}ier for this market is defined by the following LP:

ViEIa f’L: Z fi(e)a
e=(s;,v)EE
Ve € E, > file) < cle),
i€l
VieLVweV—{st:}, > file)= D_ file).
e=(uv)EE e=(v,w)EFE



Since this LP is combinatorial, it follows from Theorem 2.2 that the equilibrium prices for such
markets with 2 agents can be found in strongly polynomial time. This was one of the questions
left open by [JV].

2.2 The Network Coding Market

A slight generalization of the framework of Kelly given in Section 2.1 is needed for defining the
network coding market; we will now allow resources to be picked fractionally to construct objects.

We are given a directed graph G = (V, E); E is the set of resources, with capacitiesc: E — R.
The set V is partitioned into two sets, terminals and Steiner nodes, denoted 7" and R, respectively.
A set S C T is the set of sources with money m,, v € S specified. Sources wish to broadcast
messages to all terminals. Each source will, in general, use network coding to maximize its rate;
however, we do not allow two different sources to jointly use network coding.

For v € S, a generalized branching rooted at v picks a (fractional) subgraph of G; it is specified
via a function b: E — R satisfying:

e Ve € E,b(e) < c(e).

e Yu € T, a flow of one unit is possible in this subgraph from v to w.

We will pick generalized branchings pick fractionally. If generalized branchings by, ..., bk
rooted at v € S are picked with weights w;, 1 < 4 < k, then the utility derived by v, u, =

wy + ... wg. By the theorem of Ahlswede, Cai, Li and Yeung [ACLYO00], u, is the rate at which
v can broadcast messages to the terminals.

Generalized branchings rooted at vertices of S, b1,...,b; picked with weights w;, 1 <17 < k,
are said to form a feasible packing for G if

Ve € E,wibi(e) + ...+ wgbi(e) < c(e).

Edge e is said to be saturated if this inequality holds with equality. Given prices p, for e € E, the
price of generalized branching b is defined to be ),z b(e)pe.

The network coding market asks for a feasible packing of generalized branchings, together
with weights, and prices on edges such that

e The generalized branchings rooted at each source are cheapest possible.
e Only saturated edges have positive prices.

e The money of each source is fully used up.

It can be shown that the feasible utilities of a Network Coding market can also be described by a
combinatorial LP, and hence there exists a strongly polynomial time algorithm for network coding
markets with 2 sources.



2.3 Projection of Polytopes

Suppose we eliminate the auxiliary variables ¢ from the equations to get an equivalent formulation
for the feasible region of utilities as

Pu=qu:VIeL Y ou <p

1€[n]

This should define the same market as before. However, the prices now correspond to the new
constraints, which correspond to the facets of P,, indexed by L. We show that given the prices
on the facets in L, one can find prices for the original constraints in J that form an equilibrium.
Suppose the equilibrium price of facet [ € L is q;. Let u be the equilibrium utility, with ¢ being its
witness. Then rate(i) = ), ajq;. At equilibrium, m; = rate(i)u; and ¢ > 0 = >, ayu; = f.
Now consider the following LP:

maximize E QU
i

subject to V j € J, Z aiju; + Z aijte < bj.
i€[n] kEK
Vi € [n],k € K, uj,tx > 0.

For any [ with ¢; > 0 the optimal value of this LPs has to be ;. In fact, (u,t) is an optimal
solution. For each such [, consider any optimal solution y' to the dual:

minimize Z bjyé-
J
subject to Vi € [n], Zaijy;' > i,
J

VkeK, apy>0,
J
Vijedyh>o0.

(u,t) and y' satisfy the complementary slackness conditions for the above pair of primal-dual
programs:

yé >0 = Z Q;5U; + Z a;jtk < bj.
1€[n] keK
u; >0 — Zaij'yé' = oy
J
g >0 — Za}cjyé- =0.
J



Let pj = >, yé-ql. Using the feasibility and complementary slackness conditions above, one can
show that p; and (u,t) indeed satisfy the equilibrium conditions.

In general, a high dimensional polytope when projected onto the two dimensional plane blows
up in the number of facets [Nem05]. We show that this is also the case when the flow polytope
with 2 source-sink pairs is projected onto the plane spanned by fi; and fo. This result is in
contrast it to the case of two commodity flow in undirected networks where by Hu’s theorem, the
corresponding polytope has at most three facets [Hu63].

Theorem 2.5 There erists a network N whose flow polytope when projected onto the plane
spanned by fi1 and fa, gives a polytope with exponentially many facets.

We provide a proof of this theorem in Section 5.

3 Rationality of EG[2] Markets

The main results of this section are that EG markets with 2 agents are rational. Let the polytope
of feasible utilities be
P={x:Az <b,xz >0},

with w1 = z; and uy = 9 being the utilities of agents 1 and 2 respectively. Let ¢ be a vector
such that ¢; = 1,c9 = o, and ¢; = 0 otherwise. This is defined so that cz = u; + auo. Let
L(a) = max{cr : * € P} = min{by : y € D}, where D is the dual polytope {y : ATy > ¢,y > 0}.
In particular, £(0) = max{u; : z € P} and L(00) = max{usz : z € P}. Let the projection of P on
(ul,uQ) be

Pu = {(u1,u2) : ug < Bo,u1 + oqua < B1,1 <1 <myuy < Bryr}-

Observe that 8 = L(¢g) for all 0 < I < m + 1 if we define ap = o0 and a1 = 0. We may
assume that we only consider facet inducing inequalities: for all 1 <[ < m, u; + qquo = F; is a
facet of P,. Call it facet [. Without loss of generality, assume that the a;’s and f;’s are strictly
decreasing.

Definition 3.1 Let (o, a1, 2, , Qm, 1) with o > oyyq be the profile of P, which com-
pletely describes it.

We recall the definition of a facet, for a polytope in two dimensions.

Definition 3.2 u; + aus = B is a facet of Py iff it is a valid inequality for P, and there exist
two distinct feasible utilities (v1,v2) and (w1, ws) such that v1 + ave = B and w1 + awe = B. In
particular, L(a) = B.

Two adjacent facets intersect at a point.

Definition 3.3 Let the facets | and | + 1 intersect at the point (u,ub).

10



Then the endpoints of the facet I are (u{™',u5™") and (u},u}). Associate subintervals of [0,1] to

the facets as follows.

Definition 3.4

= Ul1
Vi<i<m,I:=
- : ﬁl B
uul
V1<I<m,I = ! ]
- bt [51 " B+
a1
I == 10,1— .
o1 [ B1 ]

Since projection, using say the Fourier-Motzkin elimination, preserves rationality, o’s are rational.

Therefore f8; and the points (ull, ul2) are also rational. Let p; be the price of facet [, with pg being

the price of the facet us < fy. The main idea is that falls in one of the intervals I; or

my
m1+msa
Ij;41, and in any case, the p;’s are rational in m1,ma, oy, ﬁl,ull and ué’s

Lemma 3.1 If
price.

m1+m2 € I;,1 <1 < m, then p; = %lmz (and 0 otherwise) is an equilibrium
Proof: Define utilities

ul = _mifi and uj := Lﬂl (1)
mi1 + mg

It is easy to check that u] + aqqu3 = ;. So the equilibrium conditions are satisfied. Given that

= % lies in I;, it follows that u} € [ull ! ull] Hence (uj,u3) lies on facet I/, and is
feasible. ]

Lemma 3.2 If m1+m2 € I1141,1 <1 < m, then there exists an equilibrium price with only p;41
and p; having no-zero prices.

Proof: The equilibrium utility allocation is (u!,u}). We want p; and p;,; that satisfy the
following two equations. m; = u! (p; +pi41), and ma = ub(oyp; + g1 1p141). Note that this system
of two equations in two unknowns has a unique solution since they are linearly independent:

P ullmg - al+1ul2m1
0= "0
ujug (g — ay1)

l l
. aju2m1 — Uuyma
Pi+1 = ——
ujus(y — 1)

1
T u—] which happens when

oquy’ appqu m1+m2
in the interval Ij ;. "

However the prices are positive exactly when % € [

is

11



I < I' means interval I ends where I’ begins. I < I' means interval I ends before I’ begins. I < z
means interval I ends before or at x. x < I means interval I starts after or at xz. We note the
following for future reference.

Observation 3.1
L <Ijyp <Ly

Proof of Theorem 2.1 Proof follows from noting that the intervals I;, for 1 <! <m, and I; ;;,
for 0 <1 < M, cover the entire unit interval (Observation 3.1).

We did not say how to price the facet 0, which we need to do when ml"fm falls in Ip ;. But

by symmetry of choice between u; and us it follows that we can price it accordingly. "

Rationality implies that solving the Eisenberg-Gale-type convex program using, say, the ellip-
soid or interior point algorithms with a suitably good precision would give the exact equilibrium.
But since the equilibrium utilities depend on m; and my (see Equation (1) from the proof of
Lemma 3.1), the precision required for such an algorithm would depend on m; and ms. In the
next section, we show an algorithm whose running time is independent of my,mo. We further
show that when applied to combinatorial markets, this algorithm runs in strongly polynomial
time.

4 Algorithms for combinatorial EG[2] markets

4.1 Binary Search Algorithm

In this section we give a binary search algorithm for finding equilibrium prices. We also give a
strongly polynomial time algorithm for finding the equilibrium prices in EG[2] markets that are
combinatorial. The algorithm takes as input, the moneys of the buyers, m; and ms, a description
of the polytope P, and two parameters, M and € such that we are guaranteed that M > a1, and
oy — o1 > 2¢ for all {.

We now describe the algorithm at a high level. The algorithm does a binary search on «. First,
it finds the facets adjacent to «, say [ and [ + 1 such that a € [oq, @;41], and their endpoints.
Now, it checks if the equilibrium can be attained by pricing these two facets, using Lemmas 3.1
and 3.2. If yes, the algorithm outputs those prices and halts. Otherwise, the monotonicity of the
intervals (Observation 3.1) allows us to restrict our attention to a smaller range.

12



input :mq,mg9, P, M,e.
U+ M;
L+ 0;

mi .
P mi1+ma’?
1 repeat

a+— (U+L)/2
Find [ such that « € [oq, a41];
Find the endpoints of the facets [ and [ + 1 ;
if pe U Il,l—l—l U4 then
‘ Assign prices to the facets [ and [ 4+ 1 as in Lemmas 3.1 and 3.2, and halt;

else if p < I; then
‘ L+ qp

else

‘ U + Qp11;
end
until U — L < ¢

Algorithm 1: The Binary Search Algorithm

The rest of the section describes how to implement Lines 2 and 3 in Algorithm 1. Let the entries
of the matrix A be A; ;) = a;j. Recallthat P = {z: Az < b,z > 0}and D = {y : ATy > ¢,y > 0}.
Given any z € P, define the polytope Q(z) as the set of all vectors (y, ) that satisfy

Vi, aiy; < i,
J

Vi:x; > O,Zaijyj = ¢4,
J

Vi Z(I,Z’jxi < bj,yj = 0.
i

Note that the first two constraints imply that y € D. The last two constraints imply that z and
y satisfy the complementary slackness conditions. However, in Q(z), « is treated as a variable.

The algorithm to find the facets adjacent to any given o makes use of Lemmas 4.1 and 4.2.
Lemma 4.1 Let = be any feasible extension of (ul,ub), that is x € P, 1, = vl and zo = ub.

Then oy = min{a : (y,a) € Q(z)}, and oy = max{a : (y,a) € Q(x)}.
Lemma 4.2 L(a) = v} + aub if and only if a € [y, g1
Proof: Suppose a € [oy, aq41]- Say @ = poy + (1 — p)ogyq, for some 0 < p < 1. Let g =

B+ (1—p)Br41- For all (u1,uz) € P,ui+oqus < f and ui+oy1us < fi41. By adding p times the
first equation to 1— times the second one, we get u; +auz < 8. Hence 8 > L(«a) > ull +aul2 = f.

13




Suppose a € [ay, agy1], for some k # 1. Let (v¥,v5) be the intersection of facets k and k + 1.
Then by the first part, £(a) = v} + avh. If L(a) = u! + aul, then there are two distinct points
maximizing £(a) and by Definition 3.2, we get that u; + aus < L(«) itself is a facet. In that
case, either @ = o = ag41 or @ = o = a1 and we are done. "
Lemma 4.3 Let x be any feasible extension of (ul,ul), that is x € P, 1 = u} and zo = ul.
Then (y,a) € Q(z) if and only if o € [0y, y11].

Proof: Suppose (y,a) € Q(z). Then L(a) > ul + aub = Y. cizi = Y,z Zj aijy; =
> Yi 23 i = )5 y;b; > L(@). So by Lemma 4.2, « € [y, 1]

Suppose a € [ag,a;41]. Then by Lemma 4.2, £(a) = u! + aub. So z is an optimal primal

solution satisfying Az > b,z > 0, and cx = L(«), Consider an optimal dual solution y such that
ATy > ¢,y > 0and by = L(«). Apply complementary slackness conditions to z and y to conclude
that (y,a) € Q(z). .

Lemma 4.1 is an immediate corollary of this lemma. Now given «, one can find the facets adjacent
to it, that is, [ such that a € [o;, a;y1]. First find z that maximizes cx = u1 + aug such that
z € P. Then find ¢ = min{a : (y, @) € Q(z)}, and ;1 = max{a: (y,a) € Q(z)}. We now give
a lemma that enables us to find the endpoints of a facet.

Lemma 4.4 L(og+¢€) = v\t 4 (o + €)ul ™ and Lo — €) = ul + (o — €)ub.

Proof: (ulfl,ul{l) is the intersection of facets [ —1 and [. Since oy_1 —a; > 2¢, oy +€ € [y, 041]

and by Lemma 4.2, £(a; + €) = u"! + oqul . The other part is identical. .

Let T be the time required to optimize any linear objective function over the polytopes P and
Q(z).
Theorem 4.5 The running time of the algorithm is O (T log (%))
Proof: The number of iterations of the repeat loop in Line 1 is bounded by O (log (%)) Line 2
can be done in O(T') time as follows: first find = that maximizes cxz = u1 + aug such that z € P.
Then find oy = min{e : (y,a) € Q(z)}, and og11 = max{a : (y,a) € Q(z)} (Lemma 4.1). Each

of this takes time 7. From Lemma 4.4, Line 3 can be done in O(T') time too. Hence we are
done. .

Theorem 4.6 The algorithm always outputs the equilibrium prices.

Proof: Suppose mleQ € Iy Uly_1 k. Then L < o < U throughout the algorithm. This is
true initially, since M > a4 > 0. Suppose this is true at the beginning of an iteration. If in the
iteration, p < Ij, then from Observation 3.1, o < ¢y. Similarly, if p > I, then o > a41.

Hence the assertion is true at the end of the iteration too.

Suppose that at the end of an iteration, U — L < e. Note that after each iteration, either both
U and L have a value equal to one of the o;’s, or one of them is 0 or M and the other has a value
equal to an ¢q. In either case, U — L < ¢ = U = L, which should equal oy by the first part.
Hence we must have found the equilibrium prices in this iteration. "
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4.2 Combinatorial Markets

In this section, we show that for combinatorial EG[2] markets, the equilibrium price can be found
in strongly polynomial time. Let v(-) denote the binary encoding length.

Lemma 4.7 V [,v(oy) = v(A)°W.

Proof: Note that Q(x) is described by the a;;’s. Theorem follows from Lemma 4.1 and standard
application of Cramer’s rule. "

Lemma 4.8 One can find M and € such that log (%) = v(A4)°W,

Proof: Let ¢ be the constant in the O(1) in Lemma 4.7. M can be chosen to be the largest
integer with a binary encoding length v(A)¢. Clearly a; < M. e can then be chosen to be 1/(2M).
ay’s have their denominators at most M and hence oy — o1 > 1/M = 2e. "

Theorem 2.2 follows from this lemma and Theorem 4.5. As a corollary, we get that there is
a strongly polynomial time algorithm for the capacity allocation market in directed graphs with
two source-sink pairs and the network coding market in a directed network with two sources.

5 An EG[2] market with exponentially many facets

In this section, we construct an EG[2] market defined by P such that the number of facets of the
projection P, is exponential in the number of constraints in P. This proves Theorem 2.5. Consider
a directed network N(V, E,c) with two source-sink pairs (s1,¢1) and (s2,2). The polytope P(N)
defining the feasible flows is

Vi=1,2, fi= Y file),

e=(si,v)EE
Ve€ E, file) + fa(e) < c(e),
Vi=1L2VoeV —{s,ti}, > file)= D file),
e=(u,v)EE e=(v,w)EE

where f1(e), f2(e) correspond to the s1—t; and so—to flow on edge e. f1 and fo correspond to the
total flow of each kind. Py(IV) is the projection of P(N) on the variables fi, fo. Since P(N) can
be described in polynomially (in say the number of edges) many inequalities, it has at most a
polynomial number of facets. Recall that in general, Pf(IN) has the following form

Pr(N)={(fi,f2) : itaife <Bi  Viel}

where 12 is the set of facet inducing inequalities of P;(N) and each equality f+a; fo = SB; induces
a facet. We may further assume that co > a3 > ag > -+ > ap > 0. a1 = oo implies that the
facet is of the form fo < 8. (a1, a9, -+ , o) is called the profile of Pr(IN).

2In this section, the facets are indexed by ¢ and range from 1 to k.
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Proof of Theorem 2.5 The construction involves two operations called doubling and shifting.
Given any (s1,t1), (s2,t2) network N with profile (a1, a9, - ,ar) with ax > 1, the doubling
operation constructs a new network N’ which has a constant number of edges more than N and
has a profile (a1, a9, -, ak, Ck, Ck—1, -+ ,(1,0). Thus it doubles the number of facets.

Given a network N with profile (ay, a9, -, k), the shifting operation constructs a new
network N’/ with a constant number more edges with profile (a1 + 1,0+ 1,-++ ,ax +1). Thus we
see that given any network with oy > 1, we can perform the doubling and the shifting operation
to get a network with a constant number more edges, with least a greater than 1, and having
double the number of facets. Thus performing this operation m times, starting on a seed network
which had least o > 1, we will get a network with O(m) edges and 2™ facets, thus proving the
theorem. .

We now describe the two operations.

Doubling Operation:
Given a network N, Figure 1 shows how the network N’ is constructed.

sl

Figure 1: THE NETWORK N’ OBTAINED FROM N. THE EDGES e; HAVE A CAPACITY ¢, WHERE ¢ IS THE
MAXIMUM f; FLOW THAT IS FEASIBLE IN N.

Lemma 5.1 Suppose the profile of N was (a1,--- ,ar) with o > 1. Then the profile of N' is
(0l1, e 7ak,Cka tee ,Clao) where CZ = 2_%

Proof: We first sketch a reason why the number of facets double. Let us move from ‘left to
right’ on the facets of N'. Initially suppose there was only sg,ts flowing in N'. This flow would
saturate edges eq, eo and the edges in network N. Now the first facet of N’ would correspond to
the ‘best way’ we can increase f; while decreasing fo, that is, we would decrease f7 in such a way
that we can send maximum amount of f;. For example, if we decrease f2 along edge e; by ¢, then
we can send € of f; flow through the path e, es. This would give us a tradeoff of 1. But this may
not be the best. Indeed, decreasing ¢ amount of fo flow through N, would allow us to increase
the f; flow by aie. Thus we would send flow this way, until we cannot do so any more. Then we
shall get a new facet. At this point again, decreasing fo flow through N and increasing f; flow
through N would give us a tradeoff of az > 1. Thus we shall keep on doing this until we have no
more fo flow through N, that is, we send maximum f; flow through N of value 8y = ¢. Note that
this flow saturates ez and e4 and at this point we cannot send any more f; flow through these.
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The next facet of Py(N') will be obtained as follows. We decrease fy flow on both e; and
ea, say by e. We also decrease the f; flow through N by e. Since this frees es, e4, we can send
2¢ f1 flow through eq,es4 and eg, es. Moreover, since we decreased the f; flow in N by e, we can
increase the fo flow in N by al—ke. Thus, we decrease the total fo flow by (2 — al—k)e and increase

f1 flow by e. Thus the tradeoff is QJL = (. We keep on doing this till at the end we send 20,

ag
f1 flow through the paths e, es and ez, es, and we send (1, fo flow through N. The last facet
corresponds to just decreasing the fo flow through N to zero without changing the f; flow.

Thus as we move from left to right on the profile of N’, we moved from left to right and then
again right to left on that of N. Hence the number of facets of N’ is twice that of N.

Recall that Ly («) is the optimum value of the following LP. For i = 1,2, letting P; denote
the set of paths from s; to ¢;.

maximize f1 + afs

subject to  f1 = Z flp

PePq
o= > 15
PePo
Yo +1 <cle) Vec B
P:ecP
fbf?aflPanPZO VP € P1 UP>

Let Dy () denote the dual of this LP:

minimize Z c(e)ze

ecE

subject to er >1 VP e P,
ecP
Z Te > VP € Py
ecP
Te >0 Ve e F

Further recall that by Definition 3.2, fi +afs = (3 is a facet of P¢(IV) iff it is a valid inequality for
P(N) and there exist two distinct feasible flows (g1, g2) and (h1, ho) such that g; + gy = 8 and
h1+ ahy = B. Also recall that Ly (a;) = B;. We now formally prove the lemma by giving for each
a; (and (;) two feasible flows on the facet and a cut of value Ly'(o;) (and Ln7({;)). Moreover
we shall see that last feasible fi; flow for the last facet is the maximum f; flow, and hence these
will be the only facets.

Since (@1,--- , ) is the profile of N, there are feasible flows (f?, f3) for each i = 1..k, such
that both (ff, f&) and (fi™, fit1) satisfy fi + o fo = Ln(;). Moreover there exists a solution
7t to Dn(a;) of value Ly(c;). We shall now describe the feasible flows (g¢,g3) in N’ and also
dual solutions y¢ which account for all the facets of N'.
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Let ¢ be the maximum f; flow that can be sent in N. Note that ¢ = Ly (o) Fori=1,..,k+1,
that is the first half of the facets, we have

gi=1fi

go=fa+2

YL =1z Ve € E[N]
yil :"Jf;z = Q;

Y, =vi, =0

Claim 1 ¢, g} is realizable in N' for alli=1,...,k + 1.

Proof: Realization of g¢: Send f¢ flow through the path es, N, e,.
Realization of gi: Send f flow through the path N and c¢ through both e; and es.
The realization is feasible because (f{, f5) is feasible in N. .

Claim 2 For i = 1,..,k, {yi}eeE[N,] forms a feasible solution to the dual program Dy:(cy). In

fact, this is the optimum solution, since (gt,gt) and (gi“,gé“) both satisfy g1 +a;jgo = Ly (ey) =

ne(e)yt. Thus o; is in the profile of N' for alli=1,.. k.
ecE[N'] e

Proof: Every si,t; path P passes through N or uses the edge e; or e;. In the first case,
> ecp Yl > 1 because >, PEPL(N) z! > 1. In the second case, feasibility is ensured by the fact
that 4%, =92, = ; > ap > 1.

Every sg,t9 path also either passes through NV or uses e; or ez and so Zee pYe > oy for all
such paths. Hence {y¢}ccpn) is feasible for all i =1, .., k.
Cost of this solution

Z cle)yl = Z cle)zt + 2co; = L (i) + 2cey

ecE[N’] ecE[N]
Moreover
gl + cugh = f1 + o (f5 + 20)

= (f1 + aif3) + 2cy
=Ly () + 2ca;

= ) cle)yt

ecE[N']
Similarly g™ + aigst™ = (fi™ + i fath) + 2cci = Ly (). .

We describe the next half of the facets. For 1 =k + 2,..,2k 4+ 1, let j = 2k — ¢ 4+ 2. The flows are
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gi=2c— f

gy=2f1+ 1}

Ye =(2¢; — 1)zl Ve € E[N]
Yo, = Yoy = Gj

Yoy = Yoy = 1=

In subsequent claims, we show that for each i we get a facet g1 + (jg92 < Ln/((;) by showing that
(g8, 9%) and (g:7%,gb!) lie on it and exhibiting a feasible solution of Dy+(¢;) of value Ly:(¢;)-
Note that g%k"'l = 2c¢ which is the maximum s1,¢; flow since {e1, e3} form a minimum cut of value
2c. This shows that the next facet has to be the 0-facet since we cannot increase f; any more.
Thus the profile of N’ is as claimed and lemma, 5.1 is proved. .

Claim 3 ¢, g} is realizable in N’ for alli =k +2,..,2k + 1.

Proof: Realization of gi: Send ff through e3, N,e4 and ¢ — ff through the paths e;,e4 and

€3, €2- . .
Realization of gi: Send fJ through N, f{ through both e; and e;.

Realization is feasible because f7, fJ is feasible through N, and the edges e;,i = 1,2,3,4 carry
total flow ¢ and is also feasible. .

Claim 4 Fori=k+2,..,2k+1, {yé}eeE[N/] forms a feasible solution to the dual program Dy ((j).
In fact, this is the optimum solution, since (gt,gt) and (gi_l,gé_l) both satisfy g1 + (jg2 =
Ly(¢) = ZeEE[N’] c(e)yt. Thus ¢; is in the profile of N' for all i = k + 2,..,2k + 1, that is
j=kK,.,1.

Proof: Every si,t; path passes through N and e3, eq or uses the pairs of edges e1,eq or es, es.
In the first case, ) ,cpy. > 1 because

D ove=te Tyt Y (21l

eeP e€PcP1(N)
>2(1 — () +2¢ - 1

In the second case, Z yi =¢+1-¢=1.

ec{e1,eq} or {es,e2}
Every sg,ty path passes through N,e; or e;. In the latter two cases we have by definition

> ecp Ui = ¢;. For every path passing through N we have
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doyi= Y (2 -14d

eeP e€PcP2(N)
>(2¢; — Doy
1
=(2 — 1«
(2 )a

Thus this forms a feasible solution to Dy ((;). Cost of this solution

Z cle)y! = Z (2¢; — De(e)zd + 2¢(1 — ¢j) +2c¢; = (2¢; — 1)L(ej) + 2¢

e€E[N'] e€E[N]
Now
g + ¢ gb=(2c - ff) + CJ(2fl ‘|‘f2)
=(2¢; — 1)f1 + CJfQ + 2¢
=(2¢ — D +(2¢ — Doy f] +2c G =(2¢ — Dy
=(2¢; - 1)( +ajf2)+2c
= cle)y.
e€E[N']
Similarly
G = Qe — [T+ GRAT T

¢ — DT + oy fih) + 2¢ as before
(2¢; — DLy (aj) + 2¢

Note that we need to treat the case i = k + 2 separately. But gF™' = fFtl = 9¢ — f2h-(k+1)+2
since ¢ = f“ and ng 4”'1 +2c = 2% (k+1)+2 + 2f12k (k+1)+2  Thus the two definitions are

consistent and hence the above is true for ¢ = k 4+ 2 as well. This proves the claim. n
Shifting Operation:
Given a network N, Figure 2 shows how to construct the stretched network N'.

Suppose the profile of N was (aq,--- , ak).
Lemma 5.2 The profile for N' is (a1 +1,--- , a5 + 1).

Proof: We sketch a proof as in Lemma 5.1. When we move from left to right on the profile of
N’, and we decrease € so,ty flow, then we can increase aie s1,%; flow in the network N, and e
flow on the edge e. Thus the net tradeoff is a; + 1. Hence we get the profile as claimed.

Once again, for each i = 1,..., k, let there be feasible flows (f¢, f3), and feasible dual solutions
{2%}ee ) of value L (oy). Moreover (f1, f3) and (fi, fot) lie on the facet f1+aifa = Ly (cy).
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sl

sl t1
s2 t2
t1
Figure 2: THE NETWORK N’ OBTAINED FROM N. THE EDGE e HAS A CAPACITY ¢, WHERE ¢ IS THE

MAXIMUM f2 FLOW THAT IS FEASIBLE IN N.

To prove the lemma we need to show feasible (g%,g) and feasible duals {yt}.c g[n7] of value
Ly(a; +1).
Let ¢ be the max fo flow feasible in N. Note ¢ = Ly(aq)

gi=fi+c—fs

%=1
Yo =T, Ve € E[N]
ye=1

Claim 5 g, g} is realizable in N' for all i. {y(ia}eEE[N’] form a feasible solution of value Ly (c; +
1), and (g, g5) and gi™t, gith) lie on the facet g1 + (o +1)go = Ly (o +1).

Proof: To realize g¢ send f! through N and c — f through e. Realize g} by sending f3 through
N and e.

The shortest s1,t; paths P are either paths in N or the path {e}. Inany case ), p yl > 1. Any
s2,t2 path has to be a path in NV concatenated with e. Thus }_ ¢ pep, (v Yyl = 2 ecPEP,(N) Tt +
1>a;+1.

Thus the 3¢ form a feasible solution of value

Z cle)y = Z cle)zt +c= Ly(a;) +¢

e€E[N] e€E[N]

The claim is proved by noticing that g+ (i +1)gs = fotc— fi+ fo+aifs = Ly(og) +c. The
same is true for gttt + (q; + 1)git? ]

To finish the proof of the lemma, note that g§ = f¥ = 0. Hence we have enumerated all the
facets. .

6 Competition Monotonicity and Submodularity

In this section we prove Theorem 2.4, by showing that a UUA market that is competition monotone
is an SUA market. Suppose that the valuation function of a UUA market is not submodular. Then
we give two instances of moneys of players, such that in the second instance, moneys of no player
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decreases and there is a particular player j whose equilibrium utility allocation increases although
his money remains the same. This implies that one can construct a sequence of instances such
that

e each subsequent instance has the same moneys as the previous one for all except one player,
e the money of the exceptional player (not j) increases,

e for some consecutive pair of instances, the utility of j increases.

This contradicts competition monotonicity, and so the theorem follows.

Let S be the smallest set which contradicts submodularity, in the sense, there exists an element
j ¢ SandT C S such that v(SUj)—v(S) > v(TUj)—v(T). Choose T' C S such that v(T'Uj)—v(T)
is minimum over all subsets of S.

Observation 6.1 We may assume |T| = |S|—1. By minimality of S we have for allT CT' C S,
v(T'Uj) —v(T) > v(T'"Uj) —v(T"). Thus a superset of T which is a strict subset of S only has
smaller marginal for j. Let S =T Uj.

Observation 6.2 By minimality of S, we have that any set of cardinality at most |S| is submod-
ular3. Thus S =T Ui and T U j are submodular sets.

Observation 6.3 If v satisfies the covering property, then for any set T, there is a feasible
allocation vector w that tightens T, i.e., u(T) = v(T).

PROOF SKETCH: In order to prove Theorem 2.4, we need to construct two instances of moneys
so that in the second instance moneys of each player is at least their moneys in the first instance.
Moreover there is a player whose money remains the same but his equilibrium utility strictly
increases. This player will be the player j described above. The other players who have moneys
will be those in the set S.

Since v satisfies the covering property, we know there exists a feasible allocation vector u
which tightens 7. Given any such u we can define the family of tight subsets of 7" as F = {Z C
T :u(Z) = v(Z)}. Note that F is nonempty since T € F. Choose u so that |F| is as small as
possible. We shall now sketch the two instances.

In the first instance, w(7") will be the utility function described above, and u(j) = v(T'Uj) —
v(T). We prove that this is feasible. Moreover, we shall arrange the moneys in such a way that
when we price the tight set 7'U j, we utilize all the money.

Let u(i) = v(T'U14) — v(T). Note that now the set S = T Ui is tight. Indeed we prove
this utility allocation is feasible. Moreover, the tight sets have the following properties. No set
containing both ¢ and j are tight. There is an element w which is in all the tight sets which
contain either ¢ or j. This property allows us to increase the utilities of 4 and j by suitably small
amount, and decrease the utility of w by the same amount and still retain feasibility. These shall
be the utilities in the second instance.

3 Actually we should say that the valuation function restricted to S is submodular, but we shall abuse notation
and call a set submodular to mean the same.
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Note that the set T'U j remains tight. Also note that the set S is also tight. These are the
sets that are priced. Thus every element other than j is priced by two sets while 5 is priced by
one. This allows us to increase the moneys of all other players keeping that of j the same and
finding suitable prices so as to make this allocation the equilibrium allocation. But the utility of
7 increases, and this shall contradict competition monotonicity.

We now state lemmas which claim the feasibility of the utility functions described above.
Subsequently we describe the instances in greater detail.

Lemma 6.1 Let u be the utility allocation which tightens T and keeps the number of tight subsets
of T to a minimum. Extend it to u(i) = v(T'U1) —v(T),u(j) = v(T' Uj) —v(T). u still remains

feasible. Moreover, no set containing both i and j becomes tight.

Lemma 6.2 Given the u described above, any tight set which contains either i or j also contains
an element w so that u(w) > 0.

Proof of Theorem 2.4

Define
= ZgT:ZIL%lilot tight(U(Z U Z) - U(Z U ,L))
O o Z S Z )
7 220 not tight(v( Uj) —u(ZUj))
. (ZUiUg) —u(ZUiUg)
€;j -= 1min

ZCT 2

Note €;,€; > 0, and by Lemma 6.1, ¢;; > 0. Choose € := min(e;, €5, €5, u(w)/2). Again € > 0 by
Lemma 6.2. Let ' be a utility function defined as follows:
u'(i) = u(i) + 6 u'(j) =u(j) + ¢ u'(w) =u(w) — e and u'(k) = u(k) otherwise.

Claim 6 u' is a feasible allocation. Moreover, S and T U j are tight under this allocation.

Proof: Any subset of T is feasible since the utility of no player in T' increases. By choice of e,
no set containing 7 or j becomes infeasible. Similarly no set of the form Z Ui or Z U j which was
not tight under u becomes infeasible. If a set containing 7 or j was tight, then it must contain w
by Lemma 6.2, and since we decrease the utility of w, the set remains tight. Thus, in particular,
S and T'U j remain tight. u

We shall now construct the two instances. mq, mo will be the moneys of players in the two
instances.
Instance 1
mi(k) =u(k) forall k € T.
mi(j) = u(j)-
m1(k) = 0 for all players not in T'U j.
u restricted to T'U j is the feasible utility allocation. 7'U j is a tight set.
p(T U j) = 1. Its easy to see that this is the equilibrium utility allocation.
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Instance 2

Let p' := ::,((Jj)). The moneys in this instance are as follows:

ma(j) = mi(j).

ma(k) = (2+ p)u'(k) for all k € T.

me (i) = 2u' (7).

The feasible utility allocation is u’. By the above claim, S and T U j are tight. We price these
sets as follows: p(S) =2, p(TUj) =p'.

Claim 7 v’ is an equilibrium utility allocation for Instance 2.

Proof: We need to show ma(k) = rate(k)-u'(k) for all k € TUiUj. rate(j) =p' = u(j)). Thus

u(j
rate(j) - w'(j) = u(j) = m1(j) = ma(j).
rate(k) =2+ p' for all k € T, and thus rate(k) - u'(k) = ma(k).
rate(i) = 2 and thus rate(i) - u'(7) = ma(4). .

Claim 8 mq(k) > my(k) for all k.

Proof: Note that ma(j) = m1(j). For all players k € T — w, mo(k) = (2 + p')u'(k) > 2u(k) >

For player w we have, ma(w) = (2 + p/)u'(w) > 2(u(w) — €) > 2u(w)/2 = m1(w), where the last
inequality is because € < u(w)/2. .

This proves Theorem 2.4.

6.1 Proof of lemma 6.1

Recall u is a feasible utility allocation which tightens . F = {Z C T : u(Z) = v(2)}. u
is chosen so as to minimize |F|. wu is extended to a utility allocation for T"U 4 U j by defining
u(i) =v(T Ui) —v(T) and u(j) = v(T Uj) — v(T).

Lemma 6.3 u is feasible over T Ut and T U j. Moreover, if Z U4 or Z U j is tight then Z is
tight.

Proof: Let Z C T be such that u(Z U+4) > v(Z Ui). That is, u(Z) + v(T' Ui) —v(T) >
v(Z U1). Since u is feasible over T, we have u(Z) < v(Z), with equality iff Z € F. Thus we get,
v(T Ui) —v(T) > v(Z U1) —v(Z) with the inequality being strict if either w(Z U 1) > v(Z U1),
or Z ¢ F. Since that cannot be by submodularity of T'U 4, we have that w(Z U:) = v(Z U1) and
Z € F. The same result holds even for j. "

Define F; := {Z C T : w(ZUi) =v(ZU4)} and Fj:={Z CT:u(ZUj)=v(ZUj)}. Note
that F; and F; are nonempty as they contain 7'. Moreover, by Lemma 6.3, F;, F; C F. Also let
Fij ={ZCT:u(ZUiUj)>v(ZUiUj)}. Note that Lemma 6.1 is equivalent to showing that
Fi; is empty, which is done in Lemma 6.6. But before that we need to prove a few structural
facts about F, F; and F;.
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Lemma 6.4 F,F; and F; are closed under union and intersection.

Proof: Let Z1,Zy € F. Thus u(Z;) = v(Z;) and u(Zs2) = v(Z2). Now since the utility function
of a set is just the sum over its elements, we have

'u,(Z1 U ZQ) + U(Z1 N Z2) = u(Zl) + u(Zg)

Since wu is feasible we have v(Z; U Z3) + v(Z1 N Z3) > u(Z1 U Zs) + u(Z1 N Z3) with equality
occuring only if Z; U Zs, Z1 N Zy are in F. Moreover since T is submodular we get,

’U(Zl) + ’U(ZQ) > ’U(Z1 U ZQ) + ’U(Z1 N Zg)

Thus we have
’U(Zl) + ’U(ZQ) > u(Z1) + 'LL(ZQ) = ’U(Zl) + U(ZQ)
Thus all inequalities should be equality, and thus Z; U Z3, Z1 N Zy € F

We now give a similar proof for F;; we skip the proof for F;. Let Z;, Z3 € F;. Thus we get
v(Z1U1) —v(Z1) =v(Ze Ut) —v(Zy) =v(T Ui) —v(T)

Note that w(Z; U Zo Ui) +u((Z1 N Z2) Ni) = w(Z; Ui) + u(Z2 U4) as in the proof for F. Thus
we have by feasibility of 4 on T'U 4 and the fact that 71, Zs € F;,

’U(Z1 U Zs U Z) + U((Z1 N ZQ) N ’L) > ’U(Z1 U Z) + U(ZQ U ’L)

with equality holding iff Zy U Z5, Z1 N Zy € F;. But then if the above inequality doesn’t hold with
equality we shall contradict the submodularity of T U s. "

Lemma 6.5 F is closed under complementation.

Proof: Choose Z € F. If T'\ Z ¢ F, then we shall modify the utility allocation so as Z ¢ F and
no new set comes in F thus contradicting minimality of F. Note that, u(T \ Z) = v(T') — v(Z).
If v(Z) = 0, then we shall have v(T'\ Z) > w(T'\ Z) =v(T) > v(T'\ Z), and thus T'\ Z € F.

If an element of 7'\ Z were to be in no tight set (apart from 7'), then we could increase its
utility by a small enough amount so that no new set becomes tight. Decreasing the utility of
any element in Z (note that there are elements in Z having positive utility) by the same amount
would slacken Z and still keep T" tight. Thus we may assume all elements of 7'\ Z lie in tight sets
which are strict subsets of T'.

We shall now show that 7"\ Z is a union of tight sets and is hence tight by the previous
fact. This is obviously true if the tight sets containing the elements of T'\ Z are subsets of
T\ Z. We may assume that is not the case. Thus there is an element z € T'\ Z, such that the
smallest tight set A containing z intersects Z. Let z € AN Z. Once again, if u(AN Z) = 0, then
v(ANT\Z) >u(ANT\ Z)=v(4) >v(ANT\ Z) implying ANT'\ Z is tight contradicting the
minimality of A. Thus we may assume u(z) > 0.

Note that all tight sets containing = must be supersets of A, otherwise we would have a smaller
tight set by intersecting that set with A. Now as above, increase the utility of z by a suitably
small amount that the only sets which become infeasible are the tight sets containing z (and thus
A t00), and no new set becomes tight. Since A intersects Z, decrease the utility z by the same
amount. Under the new utility, T remains tight, no new set became tight, and Z became untight.
Hence we have a contradiction by minimality of |F]|. .
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Lemma 6.6 F;; is empty, that is no set containing both 1,3 becomes tight.

Proof: The idea is this. Suppose a set Z Ui U j became tight. Think of the marginal of {45}
on Z as adding marginal of ¢ on Z and then 7 on Z U+4. Since Z C T and T is submodular, the
marginal of ¢ on Z is greater than that of ¢ on T. Moreover the marginal of adding j7 on Z U1 is
greater than the marginal of adding j on T, by choice of T'. Thus marginal of adding 7,7 on Z is
greater than w(i) + u(j). Thus, Z U7 U j cannot be infeasible. In fact, if Z weren’t tight to start
with, ZU4Uj cannot be tight. If Z were tight, T'\ Z is tight, and then we show that v(Z Ui U j)
is large by noting that SUj = (ZUiUj)UT \ Z, and v(S U j) is large by definition. We now
write the above more carefully.

Suppose Z € F;j. Thus we have
v(ZUiUj) <u(ZUiU j) =u(Z)+v(TUi) —v(T)+v(T Uj) —o(T)

We have two cases. Suppose Z € F. Then we have v(Z) + v(T \ Z) = v(T'). Moreover, we have
TUiUj=(ZUiUj)U(T\ Z). Thus we get

v(TUiUj) <v(ZUiUj)+o(T) —v(Z)
The two equations above imply
v(TUiUj) <o(TUi)+v(TUj) —v(T)

But this is false since we know v(T' Ui U j) —v(T Ui) > v(T U j) — v(T) by definition.
Thus assume Z ¢ F. Then we have u(Z) < v(Z) implying

v(ZUiUj)<v(Z)+v(TUi) —o(T)+v(T Uj) —v(T)
v(ZUiUj) —v(Z) <v(TUi) —v(T)+v(TUj) —ov(T)
v(ZUiUj) —v(ZUd)+v(ZUi) —v(Z) <v(TUi) —v(T) +v(TUj) —v(T)

Now we know v(Z U4) —v(Z) > v(T Ui) — v(T) by submodularity of 7'U 4. Thus we get
v(ZUiUj) —v(ZUid) <v(TUj)—o(T)

which contradicts the choice of T as the set minimizing v(T' U j) — v(T') among all subsets of
S. .

6.2 Proof of Lemma 6.2

In Lemma, 6.7, we show there exist tight sets T; which is in every set of F;, and T; which is in
every set of F;. In Lemma 6.8, we show v(T; NT;) > 0. Thus the intersection, which is also a
tight set, is nonempty and there is an element w € T; N T; with w(w) > 0. This proves Lemma
6.2.
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Lemma 6.7 There exists sets T;,T; € F such that T; is a subset of all sets in F; and T} is a
subset of all sets in Fj.

Proof: We prove for Fj, the proof for F; is similar. Since F; is closed under intersection by
Lemma 6.4, it suffices to show that F; contains no two disjoint sets. If F; doesn’t have any
disjoint sets, then the minimal set of F; would be T}. For if not, then there is a set which doesn’t
contain T} but intersects it, implying that the intersection is smaller than T7.

Suppose A and B are disjoint sets in F;. But then since AU j and B U j are tight, their
intersection j would also be tight from Fact 1. Thus u tightens both S and j implying it tightens
S U j because v(SUj) > u(SUJ) = u(S) + u(j) = v(S) +v(j) > v(SUJ). But v(SUj) >
v(S) +v(T'Uj) —v(T) = u(S) + u(j) by definition, and thus we have a contradiction. .

Lemma 6.8 T; and T; cannot be disjoint. In fact, v(T; NTj) >0

Proof: The idea is similar to the proof of last lemma. If T; and T}; were disjoint, then T; U4 and
T;Uj are disjoint tight sets. Moreover, since T;, T} are tight sets, the set 7'\ (T;UT}) is also a tight
set via Lemma 6.5. Since S'U j is a disjoint union of the tight sets (T7; U ), (T; U j), T \ (T; U T}),
S U j also should be tight as in the last proof. This is a contradiction as above. We now write
this carefully.

Since T; and T} are in F, we have v(T; UTj) = v(T;) + v(Tj) — v(T; N Tj). Thus if v(T; N T;) = 0,
then we have
W(T,UTy) = o(T3) +o(T))

Also, since T; UT; € F, we have by Lemma 6.5, that T\ (T; UT};) € F. Thus we get
o(T) +v(Ty) +o(T'\ (T; UT)) = o(T)
Now using the fact that T; € F; and T; € Fj, we get

o(T; Ui) +o(T; U 5) =v(Ti) + o(T U1) —o(T) +v(T;) +v(T U j) —v(T)
o(T Ui) +0(TUj) —o(T) —o(T\ (T; UT)))

Thus we get
o(Ty Ui) + (T Uj) +o(T \ (T; UTy)) = o(T Ui) + v(T U ) — o(T)
Note that (7; U7) U(T; Uj)UT \ (T; UT;) = TUiUj. Thus by covering property we have LHS of

the last equation is at least v(7T'U4 U j). But the RHS is strictly less than v(T" U4 U j), for that’s
the way T'U 7 U j is defined. "
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EG Markets

Rational

SUA Markets

Combinatorial EG[2]
Markets

Figure 3: VENN DIAGRAM OF MARKETS. SETS IN BOLD ARE INTRODUCED IN CURRENT PAPER.

7 Discussion

Figure 3 gives a Venn diagram of markets defined by [JV], together with the two classes identified
in this paper shown in bold. The latter two classes are EG[2] and Combinatorial EG[2] markets.

Our resolution of three open problems from [JV] raises the following new questions:

1. We have shown in this paper that competition monotonicity characterizes SUA markets
within the class of UUA markets and that all EG[2] markets satisfy competition monotonic-
ity. Is it possible to characterize the set of markets satisfying competition monotonicity
within the class of EG markets? Perhaps a suitable generalization of the notion of a poly-
matroid function may be useful for this.

2. We have shown that for an EG[2] market, whenever the polytope containing the set of
feasible utilities of the two agents can be described via a combinatorial LP, the market
admits a strongly polynomial algorithm. The restriction of Fisher’s linear utilities market
to two agents is an EG[2] market which does not admit a combinatorial LP; however it
does admit a strongly polynomial algorithm, since Deng, Papadimitriou and Safra [DPS02]
have shown that Fisher’s linear utilities market on a bounded number of agents always
has a strongly polynomial algorithm. Do all markets in EG[2] admit strongly polynomial
algorithms? Alternatively, can some evidence be given to establish the contrary?
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