
Packing to Angles and Sectors

Piotr Berman Jieun Jeong Shiva P. Kasiviswanathan Bhuvan Urgaonkar

Department of Computer Science and Engineering

The Pennsylvania State University

e-mail: {berman,jijeong,kasivisw,bhuvan}@cse.psu.edu

Abstract

In our problem we are given a set of customers, their positions on the plane and
their demands. Geometrically, directional antenna with parameters α, ρ, R is a set
of points with radial coordinates (θ, r) such that α ≤ θ ≤ α + ρ and r ≤ R. Given
a set of possible directional antennas we want to cover all customers positions so
that the demands of customers assigned to an antenna stay within a bound. We
provide approximation algorithms for three versions of this cover problem.

1 Introduction

During the last decade, we have witnessed a growth in the number and variety of
devices that use the wireless communication technology. Until now most papers on
wireless networks assumed that the communicating devices were equipped with onmi-
directional antennas. However, recently there has been a growing interest in the use
of directional antennas. Unlike omni-directional antennas, which transmit in all di-
rections simultaneously, these directional antennas can transmit along a narrow beam
in a particular direction. These antennas are able to transmit data to a greater dis-
tance by concentrating the radiated power in a narrow angle. Additional benefits that
these directional antennas are reported to yield include higher throughput [1, 3], lower
interference, and better energy-efficiency [4].

In this paper we study some capacity provisioning problems that arise at a base-
station that is using directional antennas to communicate over the wireless network
with users geographically spread around it. The users are wireless devices such as
laptops, PDAs, etc. We assume a simple model for a directiona antenna in which it
transmits over a sector of a circle. The antenna can increase the angle of the sector
by reducing its radius and vice versa - the exact relation between the angle and the
radius does not affect our analysis. Each directional antenna is assumed to have a total
bandwidth (capacity) B. The base-station assigns a directional antenna to each user
u. This involves ensuring the following: (i) the user u lies within the sector covered
by the antenna and (ii) the antenna reserves some bandwidth b(u) (0 ≤ b(u) ≤ B) for
the user u such that the total bandwidth reserved by the antenna does not exceed B.

In the classic bin packing problem (see [2] for a survey) we are given a set of objects
{1, . . . , n}, each with a weight, di, and the goal is to have a partition into as few parts
as possible such that elements of each part can be placed in a single bin, i.e. that have
weights not exceeding some fixed bin capacity.

1

Electronic Colloquium on Computational Complexity, Report No. 30 (2006)

ISSN 1433-8092

Similar problems, but with additional limitations concerning the partition, arise in
many applications. Bansal, Chan et al. considered recently one possible limitation,
defining fragility of objects. Limitations considered in this paper require elements of a
part to fit within a geometrically defined enclosure, like angle, interval or a sector.

The enclosures considered in this paper are related to possible ranges of directional
antennas. In this setting we have a mast that is connected to a satellite or a fiber-optic
cable, and we want to transfer information to and from a number of customers that can
be reached by antennas placed on this mast. The customers may have different demands
on the transmission capacity, e.g. they may subscribe to broad-band connections with
various bandwidth. The customers have fixed positions and we can choose how to
direct our antennas.

In MinAntVar problem we can choose the angular range of an antenna, so when
the range is narrower it can reach further, we have a limit on the total bandwidth
demand that can be assigned to an antenna and we want to minimize the number of
antennas. We show an approximation algorithm for MinAntVar with ratio 3.

If the angular range of antennas are always fixed, the problem becomes basically 1-
dimensional. We minimize the number of antennas, problem MinAnt, and for a fixed
number of antennas we minimize the maximum demand assigned to a single antenna,
problem MinAntLoad. For both problems we present an approximation algorithm
with approximation ratio 1.5.

Our approximation results are provably tight for MinAnt problem, because ap-
proximating it within a ratio better than 1.5 (even asymptotically) would imply solving
Partition problem in polynomial time. We can place a group of customers very close
to each other with demands that form an instance of Partition: covering that group
with 2 antenna sets means finding the positive answer to Partition; we can replicate
this group m times, so that no antenna set contains customers from different groups.
As a result, if for every case that can be solved with 2m antennas we can find a solution
with fewer than 3m antennas we can solve Partition.

Our packing problem has another motivation. Suppose that we are sending some
goods that were ordered, and each order has weight di, arrival time ti and it has to
be shipped at latest at time ti + pi (say that pi is the patience of a customer). Given
a capacity of a single shipment (truckload, container, etc.) we want to minimize the
number of shipment.

If every pi is equal to some p, then we have a problem that is essentially identical
to MinAnt; shipment at time t can be used for customers with t − p ≤ ti ≤ t. The
only difference is that time is not circular, which makes inductive arguments easier. If
the values of pi’s are arbitrary, we can easily adapt our algorithm for MinAntVar to
provide approximate solutions for this problem. As a result, we can approximate this
problem within factor 1.5 in the case of constant patience parameter and within factor
3 in the case of variable patience parameters.

2 Preliminaries

We will deal with points in radial coordinates and with circular orderings, and for the
sake of clarity we introduce several definitions.

A point (θ, r) is equivalent to a Cartesian point r × sin θ, r × cos θ. Equality of
angles is understood modulo 2π, i.e. α = β means that for a certain integer i we have

2

define LeftR(i) = Rrev(θi, ri)

define RightR(i) = R(θi, ri)

define DoubleR(i) = LeftR(i) ∪ RightR(i)

V ← {1, . . . , n}

C ← I← ∅
while C 6= V

i← element of V − C with maximum ri

I← I ∪ {i}

C ← C ∪ DoubleR(i)

Figure 1: Phase One of the algorithm for variable antennas

α = β+2iπ. For λ ≤ 2π we define Sector(α, λ) = {(θ, r) : ∃γ 0 ≤ γ ≤ λ and θ = α+γ}.
We also define Disk(r) = {(θ, s) : s ≤ r}. A sequence of angles α1, . . . , αk is

circularly ordered if for a certain β we have 0 ≤ α1 + β ≤ · · · ≤ αk + β < 2π.
In each problem under consideration, our data contains a set of customers U =

{1, . . . , n}, customer i is located at point (θi, ri) and it has demand di > 0. It will be
convenient to use notation L = {i ∈ U : di > 1/2} for the set of customers with large
demands.

3 The Case of Variable Range of Antennas

3.1 Brief Problem Statement

There exists a decreasing function ρ(r) that describes the trade-off between the radius
of the antenna range and its angular width. For a set of customers S we define its
demand as d(S) =

∑
i∈S di. An antenna has a range

R(α, r) = {i : (θi, ri) ∈ Sector(α, ρ) ∩ Disk(r)}

We will also use a shorthand: Rrev(α, r) = R(α − ρ, r); intuitively the sectors of
R(α, r) and Rrev(α, r) both start at α and then they extend in opposite directions. A
valid solution to MinAntVar problem is a partition U = S1 ∪ · · · ∪ Sk such that for
j = 1, . . . , k we have

• d(Sj) ≤ 1;

• Sj is contained in an antenna range R(αj, sj).

We want to minimize k, which is the number of different antennas we deploy to satisfy
demands of all customers.

3.2 Phase 1 of the Algorithm — Independent Set

We start by forming a cover of the set of all customers with antenna ranges, we will
also create an independent set of customers I; more precisely, we will assure that no
two different customers in I may belong to the same antenna range. The method is
described in Fig. 1.

The ranges LeftR(i) and RightR(i) are defined in such a way that if some customer
j has rj ≤ ri and i and j can be together in an antenna range, then j ∈ LeftR(i) ∪

3

RightR(i) = DoubleR(i). Thus it is easy to see that I is indeed an independent set of
customers, so we need at least |I| antenna ranges to cover all customers, while we have
found a cover that uses 2|I| antenna ranges.

It will be convenient to duplicate customers in set I, so for i ∈ cI we create customer
n + i with (θn+i, rn+i, dn+i) = (θi, ri, 0). Then we make a substitution to make V and
I disjoint:

I← {n + i : i ∈ I}

3.3 Phase 2 of the Algorithm — Maximum Flow

We define a network as follows: there are 4 layers of nodes:

layer 0: r, the source,
layer 1: V , the set of Demand Customers,
layer 2: I, the Independent Customers,
layer 3: s, the sink.

Arcs have capacities defined as follows:

(r, i) always exists, ur,i = di,
(i, j) exists iff i ∈ DoubleR(j), ui,j = di

(j, s) always exists, uj,s = 1.

In this network we find a maximum flow f and a cut C with the minimum capacity.
We normalize f and C to assure certain desirable properties that will be used to define
the partition of the customer and to analyze the approximation ratio.

Let Partial be the set of undirected edges {a, b} such that for a network arc (a, b)

we have 0 < fa,b < ua,b. Our first normalization criterion is that Partial is acyclic.

Lemma 1 Given a valid flow f we can in polynomial time find flow f ′ such that (a)
values of f ′ and f are the same, (b) Partial defined by f ′ is acyclic, (c) if fe = 0 or
fe = ue then fe = f ′e.

Proof. If {a, b} ∈ Partial (defined by f) then in the residual network defined by f it
corresponds to two arcs with positive capacity, e.g. (a, b) has capacity ua,b − fa,b and
(b, a) has capacity fa,b. If we have a cycle in Partial, then we also have a directed
cycle in the residual network with positive capacities on arcs, and if the minimum of
these capacities is c, we can augment f by adding c to fa,b if (a, b) is on the directed
cycle, and by subtracting c from fa,b if (b, a) is on the directed cycle. Afterward
any arc on the cycle that had residual capacity c does not correspond to an edge in
Partial anymore. We can repeat the process until Partial is empty. Note that the
augmentations change flow values only in arcs in which the flow is neither 0 nor the
maximum possible. ❑

The process described by Lemma 1 will be called acyclic normalization. We will say
that f is bad if for some small demand g and large demand h and independent customer
j we have 0 < fg,j < dg, fr,h = 0, while arc (g, j) exists. Our second normalization is
that f cannot be bad.

Lemma 2 Given a valid flow f we can in polynomial time find flow f ′ such that (a)
values of f ′ and f are the same, (b) Partial is acyclic, (c) f ′ is not bad.

4

Proof. We will describe possible steps of the normalization process, to estimate their
number we will introduce two quantities, ρ and β, that we will use as counters.

ρ(f) = |{i ∈ V : di ≤ 1/2 and fr,i = di}|

β(f) = |{(i, j) : di > 1/2 and 0 < fi,j < di}|

If flow f is bad we can modify it in such a way that ρ(f) − β(f) increases.Suppose that
f is bad because of g, h and j.
Case 1: fg,j = c ≤ dh; we increase fr,h and fh,j from 0 to c, we decrease fr,g by c

and we decrease fg,j to 0. We do not decrease ρ(f) and we decreased β(f). Subsequent
acyclic normalization does not decrease ρ(f) − β(f).
Case 2: fg,j > dh, we increase fr,h and fh,j from 0 to dk (this increases ρ(f)) and we
decrease fr,g and fg,j by dk. ❑

Now we normalize the cut C. If arc (i, j) exists and j 6∈ C, then we insist that i 6∈ C.
Otherwise we remove i from C, arcs of the form (i, j ′) cannot contribute to the capacity
of C anymore, and at least one did, while now (r, i) makes the contribution of di to the
capacity of C, clearly, we can improve our criterion (decrease the number of arcs that
violate it) with no increase to the capacity of C.

3.4 Phase 3 of the algorithm — Assignment of Demands

Rule 1: If fi,j = di, we assign customer i to independent customer j.
To formulate the second rule, we form bipartite graph (U, I,A) where A are arcs

(i, j) such that {i, j} ∈ Partial, i.e. such that 0 < fi,j < di; part one, U ⊆ V consists of
starting points of arcs in A. This graph satisfies

Lemma 3 Bipartite graph (U, I,A) contains a matching of size |U|.

Proof. We will prove that (U, I,A) satisfies the assumption of Hall theorem. For a
set X ⊆ U we define the set of neighbors of X, N(X) = {w : ∃x ∈ X s.t. (x,w) ∈ A}.
The assumption of Hall theorem states that |N(X)| ≥ |X|.

We can break X ∪ N(X) into weakly connected components X1 ∪ N(X1), . . . , Xk ∪

N(Xk), then it suffices to prove the inequality for every X`. Thus we may assume that
(X,N(X), A) is weakly connected.

Now, it suffices to show that X is incident to at least 2|X| − 1 arcs of A; would
it have |X| − 1 neighbors or less we would have a subgraph of Partial with at least
2|X| − 1 edges and at most 2|X| − 1 nodes, a contradiction because this implies a cycle
in Partial.

So suppose that (X,N(X), A) is weakly connected and the number of arcs incident
to X,

∑
x∈X |N({x}| < |X| − 1. Because each term in this summation is at least 1, this

implies that at least 2 of them are 1. Suppose then that for x 6= y, x, y ∈ X we
have i and j such that N({x}) = {i} and N({y}) = {j}. Then fr,x = fx,i < dx and
fr,y = fy,j < dy. Thus arcs of A show one path in Partial from x to y, while we have
another, (x, r, y), and so we have a cycle in Partial, a contradiction. ❑

Let M be the matching that exists according to Lemma 3.
Rule 2: If (i, j) ∈ M we assign customer i to independent customer j.

If fr,i > 0, then customer i is assigned to an independent customer, either by Rule
1 or by Rule 2. Thus it remains to handle cases when fr,i = 0.

5

Rule 3: If fr,i = 0, then customer i is assigned to an arbitrary independent customer
j such that (i, j) ∈ A (equivalently, such that i ∈ DoubleR(j)).

Once a customer is assigned to independent customer j, if θi < θj then j assigns i

to LeftR(j) and otherwise j assigns i to RightR(j).
When the sum of demands assign to a single antenna range exceeds 1 we introduce

more antennas with exactly the same range. At this point we have instances of the
bin-packing problem. In the analysis it is important that we pack demands according
to Rule 1 first, then according to Rule 2 and than according to Rule 3 and we try to
fit them in already open bins (so-called Any Fit rule).

3.5 Assignment of Potentials and the Analysis

Now we will utilize the minimum cut C and its normal property.
Classification of Customers: for i in Layer 1, if i ∈ C we put i into the class of
IntenseRelaxed Customers, and if i 6∈ C, we put i into the class of Intense Customers.
Note that if i is Relaxed, then arc (r, i) contributes to the capacity of C and thus
fr,i = di. A Relaxed customer may have a smaller flow.
Classification of Independents: for j in Layer 2, if j ∈ C we put j into the class
of Intense Independents, and if j 6∈ C we put j into the class of Relaxed Independents.
Again, if j is Intense, then fj,s = 1, and if j is Relaxed, it may have a smaller flow.

Because C is normalized, we have no arcs from Relaxed Customers to Relaxed
Independents. Also, because our flow had the value equal to the capacity of C, each
path flow was crossing exactly one edge contributing to the capacity of C, as a result
we have no assignments (marked by positive flow) of Intense Customers to Intense
Independents.
Initial distribution of potential: a Relaxed Customer i has potential 2di/3, and an
Intense Customer i has potential di/3. Similarly, a Relaxed Independent has potential
2/3 and an Intense Independent has potential 1/3.

The first observation is that if S is a part from a partition that forms a valid solution,
then the sum of potentials of the elements of S does not exceed 1. If S contains no
Independent, then its potential comes only from the demands of Customers that adds
to at most 1 and the respective potentials add to at most 2/3. If S contains an Intense
Independent, we increase this estimate by 1/3, but this is still at most 1. If S contains
a Relaxed Independent, with potential of 2/3, then all of its Customers are Intense,
hence their demands contribute at most 1/3 to the potential of S. This proves that the
size of the optimum partition is at least as large as the sum of all potentials.

Now it suffices to show that to every antenna we introduce we can assign at least
potential of 1/3.
Second distribution of potential from Intense Customers An Intense Customer
has assignments to Relaxed Independents only. We give its potential to the Relaxed
Independent to which it was assigned (alway by Rule 1 or Rule 2).
Balance of a Relaxed Independent j If j collects no more than 1/3 of the potential
from the assigned Customers, it does not have to create duplicate antennas, so it has to
justify two antennas only, and for that its own potential of 2/3 is adequate. Otherwise,
it received total demand exceeding 1, and thus an extra 1/3 of potential, enough for
a single duplicate antenna. Note that all assignments according to Rule 1 fit in one
“bin”, and that the single assignment according to Rule 2 has to fit in one “bin” as

6

well, hence one can always pack them in two bins, and thus a Relaxed Independent has
to justify at most 3 antennas.
Second distribution of potential from Relaxed Customers A Relaxed Customer
has assignments to Intense Independents only. If it was assigned according to Rule 1
and Rule 2, we collect its potential to a “central location”; because their sum is at
least equal to the number of Intense Independents, (it suffice to saturate the flow from
the Intense Independents to s), we can assign potential 2/3 from the central location
to each Intense Independent. If a Relaxed Customer i was assigned to j according to
Rule 3, it brings its potential to j.
Balance of an Intense Independent j

Because of the Second Distribution, every Intense Independent has potential 1

before we start applying Rule 3.
Case 1: Rule 2 assigned to j some i with di > 1/2. Independent j has two ranges
that accommodate all demands assigned by Rule 1, and one range to accommodate i,
and potential 1 to justify these three ranges. Because f is not bad, every k that can be
assigned to i by Rule 3 has dk > 1/2, and thus it brings potential of 2dk/3 > 1/3 that
suffices to justify a new antenna.
Case 2: Rule 2 assigned to j some i with di ≤ 1/2 (if it assigned nothing, pretend that
it assigned some j with dj = 0). Without loss of generality, Rule 2 assigns demand a to
LeftR(j), while Rule 1 assigned b to LeftR(j) and c to RightR(j). Note that a ≤ 1/2

and b + c ≤ 1.
Case 2.1: c ≤ 1/2. Independent j creates a copy of LeftR(j) to accommodate a ≤ 1/2

alone. Later, when Rule 3 is applied, Any Fit creates duplicates of LeftR(j), and at
most one can be loaded with less than 1/2 of demand, say with x of demand. In this
case, Any Fit had to increase the load of the copy that accommodated a to 1 − x, thus
by at least 1/2 − x, and thus the copy that got only x can get also 1/2 − x. The same
argument applies to the copies of RightR(j) created by Any Fit, because we start with
a copy loaded with c ≤ 1/2.
Case 2.2: c > 1/2. Note that a + b + c ≤ 3/2. Independent j packs a + b together,
and thus before Rule 3 is applied it has a spare capacity of x in LeftR(j), spare capacity
of y in RightR(j) where x + y ≥ 1/2, plus spare potential of 1/3.

Any Fit creates copies of the LeftR(j) and adds some ε to the load of the copy that
initially had spare capacity x, as a result it creates a number of copies loaded with at
least 1/2 of potential and possibly a copy with only δ. If the latter happens, we use
ε + δ to justify the last copy. Because 1 − x + ε + δ > 1, we have ε + δ > x, and thus
we may have a temporary deficit of potential of the size below 2/3(1/2 − x).

Similar reasoning applied to the activities of Any Fit with copies of RightR(j) shows
that a temporary potential deficit may be created, but no more than 2/3(1/2−y). The
sum of the two deficits is thus at most 2/3(1 − x − y) ≤ 2/3× 1/2 = 1/3, and we have
1/3 of spare potential.

3.6 Conclusion

We have shown an algorithm that runs in polynomial time, its most time consuming
phase is finding the maximum flow. Subsequent normalization amounts to no more
than a standard augmentation process that is a part of a maximum flow algorithm to
begin with. Similarly, finding a maximum matching can be done by finding a maximum
flow in a very similar network.

7

Our potential analysis shows that if the sum of potentials is P, any solution must
use at least P antennas and we use at most 3P. We may conclude with the following

Theorem 4 There exists a polynomial time approximation algorithm for the problem
of capacitated cover with variable antennas with ratio 3.

4 Fixed Range Antennas

4.1 Brief Problem Statements

Our reasoning could be a bit simpler if we could define linear order of all customers
such that allowed antenna ranges are intervals in that order. However, even though we
cannot introduce a consistent global order we can define local ordering which is good
enough for our purposes.

Without loss of generality we assume that θi is different for each i ∈ U. Let
R(i) = {j ∈ U : θj = θi + β and 0 ≤ β ≤ ρ for some β} and Rrev(i) = {j ∈ U : θj =

θi − β and 0 ≤ β ≤ ρ for some β}.
Given that, we can formulate two problems to which a valid solution is a partition

U = S1 ∪ · · · ∪ SK such that Si ⊆ R(ji) for i = 1, . . . , K. In MinAnt problem we
require that d(Si) ≤ 1 and we minimize K. In MinAntLoad problem we fix K and we
minimize maxd(Si) (note that solving the cover problem allows to find out when K is
too small to give any feasible solution).

We will show approximations for both problems with ratio 1.5. We reformulate
MinAntLoad as follows: we are given input describing the set of customers and the
angle ρ, as well as D, the minimum value of the maximum demand of a set in a legal
solution with K sets.

Given that, we have to find a legal solution in which the maximum demand of a set
is at most 1.5D. Because the number of different D’s that result in different runs of
our algorithm is small, we can efficiently obtain a result that is as good as if we would
try all of them.

In that formulation we can rescale the customer demands so we get D = 1. In this
preliminary version, we can omit the case when ρ ≥ π. This case is very close to bin
packing and it does not pose any challenge, but it requires a tedious case analysis.

4.2 Relaxed Solutions, Normalization

We define graph (U,Succ) where (i, j) ∈ Succ ≡ R(i) ∩ Rrev(j) = {i, j}. Note that if
i and j are in distinct weakly connected components of (U,Succ) then they connot
belong to the same R(i); as a result we can connect components into a single path and
it is still the case that every R(i) forms a path in (U,Succ). Therefore we can assume
that (U,Succ) forms simple cycle.

We can remove L or U − L from the cycle of (U,Succ) to obtain graphs (L, SuccL)

and (U − L, Succs). If (i, j) ∈ Succ (respectively, SuccL, Succs), we will use notation
j = Succ(i) (respectively, j = SuccL(i), j = Succs(i)).

A relaxed set S is defined by variables xS,i for each i ∈ U that describe to what
degree i belongs to S. A normal set T can be viewed as a special case of a relaxed set,
such that xT,i ∈ {0, 1}. We will use this notation for L and U − L.

8

We define

Ŝ = {i ∈ U : xS,i > 0}

Segment(S) = R(i) ∩ Rrev(j) if i, j ∈ Ŝ and Ŝ ⊂ R(i) ∩ Rrev(j)

segment(S) = Segment(S − L)

We extend notation S − L and S ∩ L to relaxed sets with this formula:

xS−L,i = xU−L,ixS,i, xS∩L,i = xLxS,i

A collection F of relaxed sets forms a relaxed solution to MinAnt or MinAntLoad

if

Segment(S) is defined for each S ∈ F (1)
∑

S∈F

xS,i = 1 for each i ∈ U (2)

d(S) =
∑

i∈U

dixS,i ≤ 1 for each S ∈ F (3)

A relaxed set S is good if 0 < xS,i < 1 implies that segment(S) = R(j) ∩ Rrev(k)

and i ∈ {j, k}. Note that if S is a good relaxed set, xS,i > 0 may be true for at most
one i ∈ L, and if it is true, xS,i = 1. In this case we use notation i = L(S).

Lemma 5 Any solution F to an instance of MinAnt can be replaced with a relaxed
solution F in which each S ∈ F is replaced with a good relaxed set S ′ ∈ F such that (i)
S ′ ∩ L = S ∩ L, (ii) d(S ′ − L) = d(S − L), and (iii) segment(S ′) ⊂ segment(S).

Proof. Consider S ∈ F, if S ⊂ L then we set S ′ = S. Let F0 be the family of the re-
maining sets of F. For S ∈ F0 we define first small(S) as such j that for some k we have
segment(S) = R(j) ∩ Rrev(k). We order F0 as S1, S2, . . . , Sm so that in (U,Succ) has a
simple path with subsequence first small(S1), first small(S2), . . . , first small(Sm).
The process of replacing each Si with S ′

i can be described as an algorithm in Fig. 2.
Properties (i) and (ii) follow straightforwardly from the algorithm, and so are the prop-
erties (2) and (3) of a valid relaxed solution. It remains to show that for some initial
value of D we assure property (iii) and thus property (1) of a valid relaxed solution.

For S ∈ F define

Debt(S, T) =

{
∅ if first small(S) 6∈ segment(T)

segment(S) ∩ T ∩ (U − L) otherwise

Debt(S) =
⋃

T∈F

Debt(S, T)

debt(S) = d(Debt(S))

With respect to a run of our algorithm, we also define offset(Sk): let (i1, . . . , i`) be the
path in (U−L, Succs) that connects elements of segment(Sk)−L, and assume that when
the algorithm sets j to k we have i = ia and r = r0; then offset(Sk) = r0 +

∑a−1
h=1 dh.

It is easy to show that offset(Sj) = debt(Sj) implies offset(Sj+1) = debt(Sj+1).
Thus if we set the initial value of D to debt(S1) then we have debt(Sj) = offset(Sj)

for j = 1, . . . ,m.

9

j← 0

i← first small(S1)

r← di

do forever
if D > r

xSj,i← r/di

D← D − r

i← Succs(i)

r← di

else

xSj,i← D/di

if j = m

terminate
r← r − D

j← j + 1

D← d(Sj − L)

Figure 2: Algorithm converting sets S1, . . . , Sm in a solution to good relaxed sets. The
initial value of D is described in the proof, variables xS0,i do not correspond to any of
the constructed relaxed sets.

One can also see that if offset(Sj) ≥ 0 and offset(Sj)+d(Sj−L) ≤ d(segment(Sj)−

L) then segment(S ′) ⊂ segment(S).
Finally, debt(Sj) + d(Sj − L) ≤ d(segment(Sj) − L) because Debt(Sj) and Sj − L

are two disjoints subsets of segment(Sj). ❑

Below we will use term good solution to describe a relaxed solution that contains
only good relaxed sets. Note that if Segment(S) = {i} we can set xS,i = 1, and set
xT,i = 0 for T 6= S and we still have a good solution.

We remove from consideration every S such that Segment(S) = {L(S)}. To describe
how to convert a good solution onto an approximate solution we first define succession
of sets that have non-empty S − L. For i ∈ U − L let F ′

i = {S ∈ F : segment(S) = {i}}.
If |Fi| = 1 then the question of ordering Fi is moot. Otherwise 0 < xS,i < 1 for
each S ∈ Fi and hence L(S) is defined. There exists a path (that is not a cycle) in
(U,Succ) that contains every such L(S) and we determine the succession according
to the precedence of L(S)’s on this path. Now let assume that (i, j, k) is a path in
(U − L, Succs) and let Fj = {S ∈ F : xS,j > 0}. Note that xS,i > 0 is true for at most
one S in Fj, if such a set exists, it starts the ordering of Fj; similarly if xS,k > then S

ends the ordering of Fj, the rest of this ordering is the ordering of F ′
j . Finally, if Fi

and Fj are disjoint, we have a succession from the last set of Fi to the first set of Fj.
To round F we split it into paths of the succession order where successive sets

S, T are connected if segment(S) ∩ segment(T) = {i} for some i, denote i as junction
J(S, T). A path has k+ 1 sets and k junctions. To get a solution of MinAnt, we create
sets that contain consecutive pairs of junctions. If we have 2` + 1 good sets, add ` new
sets, and if we have 2` good sets, we add ` − 1 sets with two junctions each and 1 set
with just one junction. If our path of sets forms a full cycle, we first add each junction

10

to the preceding set, and at least one set will still have d(S) ≤ 1; we remove this set
from consideration and we handle the remaining sets.

It is simpler to obtain a solution of MinAntLoad in which every d(S) is at most
1.5: we allocate each junction to its preceding set. To find a minimum size good
solution we will use dynamic programming. However, to assure that we do not have to
consider more than a polynomial number of possibilities we have to limit the allowed
solution even further.

We will define a symmetric relation on good sets “S crosses T”. This relation holds
only if Segment(S) ∩ Segment(T) 6= ∅. In that case, we use notation path(S, T) =

(i1, . . . , i`) for the path in (U,Succ) that connects all elements of Segment(S) ∪

Segment(T) (we may also use notation path(S)). S does cross T if Segment(S) ⊂

Segment(T). Moreover, S crosses T if for some a < b and c < d we have L(S) = ia,
L(T) = ib, ic ∈ segment(T) and id ∈ segment(S). Lastly, if S crosses T and
{i1, i`} 6⊂ U − L we say that S strongly crosses T .

Given a family F of relaxed sets, we consider the graph (F , crosses). Our goal is
to limit the connected components of this graph to a very special form.

Lemma 6 If relaxed set S ∈ F strongly crosses T ∈ F then either segment(S) ⊂

Segment(T) or segment(T) ⊂ Segment(S).

Proof. Using the above notation, we can assume that i` = L(T). If Segment(S) ⊂

Segment(T) then clearly segment(S) ⊂ Segment(T) and the claim is true. Otherwise,
L(S) = ia for some a < ` and therefore for some c, d we have c < d, ic ∈ segment(T)

and id ∈ segment(S). Because S is a good set, segment(S) ⊂ {ic, ic+1, . . . , i`} ⊂

Segment(T). ❑

Remark. In the above proof we had the implication: if S crosses T and the first or
the last element on path(S, L) equals L(T), then segment(S) ⊂ Segment(T).

Lemma 7 Assume that R, S, T ∈ F , S strongly crosses T , path(S, T) = (i1, . . . , i`) and
that for some a, b, c we have 1 ≤ a < b < c ≤ `, ia ∈ segment(S), ib ∈ segment(R),
ic ∈ segment(T). Then R strongly crosses S or T .

Proof. Because of symmetry, and by Lemma 6, we can assume that segment(S)

⊂ Segment(T). This implies that L(T) = i1 and because R is a good relaxed set,
segment(R) ⊂ Segment(T). If Segment(R) ⊂ Segment(T) then R strongly crosses T ,
so we can assume that L(R) 6∈ Segment(T). We can now consider a path in (U,Succ)

that connects all elements of Segment(S) ∪ Segment(T) ∪ {L(R)}. If L(R) follows i1
on that path then again R strongly crosses T . If L(R) precedes i1, then segment(S) ⊂

Segment(R); if Segment(S) ⊂ Segment(R) then S strongly crosses R, otherwise L(S)

follows L(S) while ia ∈ segment(S) precedes ib ∈ segment(R), so once more, R

strongly crosses S. ❑

Lemma 8 A good solution F to MinAnt can be replaced with another solution that
has the same number of relaxed sets and in which no set strongly crosses another set.

Proof. For a relaxed set S we define length(S) as follows: if Segment(S) = {i} then
length(S) = xS,i; if |Segment(S)| ≥ 2, we can assume that Segment(S) is connected
in (U,Succ) with a path (i, . . . , j), and we define length(S) = |Segment(S) − {i, j}| +

xS,i + xS,j. We will use the following characteristic of a relaxed solution: we place

11

L(Q)

L(S) S T Q

L(T)

Figure 3: Illustration for the proof of Lemma 9.

length(S) for S ∈ F in non-increasing order that we call ordered length vector. We will
show that if F contains some S, T that strongly cross each other then we can modify
F in such a way that the new ordered length vector will lexicographically preceded the
former one.

Suppose that S, T ∈ F and S strongly crosses T and path(S, T) = (i1, . . . , i`). If
there exist R ∈ F − {S, T } and a < b < c such that {ia, ic} ⊂ segment(S)∪segment(T)

while ib ∈ segment(R) we replace S, T with a strongly intersecting pair R, S or R, T .
We repeat it until something like that does not happen. Define relaxed set Q =

(S − L) + (T − L), i.e. xQ,i = xS−L,i + xT−L,i. In (U − L, Succs) set Q̂ is connected with
a path (j1, . . . , jm) where m > 1 (otherwise S would not cross T), and because of our
choice of S and T , we have xQ,ja = 1 for a = 2, . . . ,m − 1.

By symmetry, we can assume that {i1} = T∩L and thus, by Lemma 6, segment(S) ⊂

Segment(T). This means that for some a we have segment(S) = {j1, . . . , ja} and
segment(T) ⊆ {ja, . . . , jm}. We will alter S and T using the algorithm from Fig. 2
with: S1 = T , S2 = S, i initialized to j1 and D initialized to xQ,j1dj1 . In other words,
the initial part of Q was in S and the final part of Q was in T and now we reverse that
order, while leaving d(S − L) and d(T − L) unchanged.

One can see that new Segment(T) is a subset of the former, and that length(T)

decreased: either new xT,jm is zero, or it gets decreased by d(S − L).
Now we need to compare new S with the former. If we had Segment(S) ⊂

Segment(T), then new Segment(S) is also the subset of the former Segment(T),
so the new S is still a good set, within the range R(i1). Moreover, new length(S) is at
most the former length(T) − 1, as i1 is not in Segment(S). Therefore the decrease of
the ordered length vector in the lexicographic order is determined by the decrease in
length(T).

Now assume Segment(S) 6⊂ Segment(T). Because segment(S) ⊂ Segment(T), we
must have i` = L(S), and thus segment(T) ⊂ Segment(S). Now the same arguments
that we used to compare new T with the former T apply to the comparison of new S to
former S: new Segment(S) is contained in the former Segment(S), implying that new
Segment(S) is contained in Rrev(i`), and length(S) is decreased by at least d(T − L).

It is easy to see that only a finite number of such decreases is possible, therefore
eventually we will obtain a good solution without any strong crossings. ❑

Now we can assume that no two elements of our good solution strongly cross each
other and we want to characterize connected components of the graph (F ,crosses). We
will ignore sets with empty S − L, and the remaining ones we classify as follows: L(S)

does not exists — S is small, L(S) starts path(S) — S is left, L(S) ends path(S) — S

is right, L(S) ∈ segment(S) — S is straight.

Lemma 9 Suppose that we have a pair of sets, S, T where T is a successor of S, S is
not right and T is not left, and let i be the end of path(S). Then there exists no Q ∈ F

such that i is in the interior of path(Q).

12

Proof. Neither S nor T may have i in the interior of its path: otherwise S would be
a right set, or T would be a left set. Suppose that this is true for some other Q ∈ F .
Assume w.l.o.g. that path(Q) starts with L(Q); then the entire segment(T) is on
path(Q) on which it is followed by segment(Q), and this implies a crossing of Q with
T ; because path(Q, T) starts with L(Q), this is a strong crossing, a contradiction. ❑

Lemma 10 Assume that no pair of successive sets in F satisfies the assumptions of
Lemma 9. Then either all sets in F are left or all of them are right.

Proof. It follows immediately from the definitions. ❑

We use Lemma 9 to break the cycle of U − L into a path that ends at i; if i ∈

segment(T), then we suitably split i into two elements, i ′ and i ′′, with di = di′ +

di′′ . As a result, (U,Succ) now becomes a path, and for every crossing pair P,Q the
path(P,Q) is (essentially) not altered.

We keep breaking the path of (U,Succ) as long as we have a successor pair satisfying
Lemma 9; as a result, in a successor pair (S, T) either S is right, or T is left. A path
of successor pairs may have some number of left sets, followed by a straight or small
set (if any), followed by a number of right sets. Every crossing occurs within a single
path.

Another observation is that a crossing between two right (left) sets is a strong
crossing. Thus a right set may cross left sets only and possibly the straight set in the
middle of the path. Note that if it crosses any of the left sets, it crosses all left sets that
are before it. Therefore left sets that participate in crossings form the initial portion
of their sub path, while the right sets that participate in crossings form the final part.
As a result, the sets participating in crossings form a contiguous sub path, with the
only possible exception for the separating set, if the latter exists. In turn, L(S)’s of the
sets in a path that participate in crossings form a contiguous path P in (L, SuccL).

Finally, if we take sets S from a contiguous sub-path of P, say P ′, and we take the
union (or sum) or the respective segment(S)’s, we obtain at most three contiguous
intervals: that of left sets with L(S) on P ′, that of right set, and that of the straight
set.

4.3 Conclusion

We briefly sketch the idea behind the algorithm for finding a solution to MinAntLoad

That is a rounding of a good solution with no strong crossing, while such a solution is
within factor 1.5 from the optimum. The algorithm for MinAnt is similar.

Assume first that Lemma 9 cannot be applied. By Lemma 10 we know the ex-
istence of such linear ordering unless all the normalized sets are entirely of the left
or right type and therefore no crossing exists. In the latter case we can separately
break the circular order of L to get (i1, . . . , ik) and the circular order of U − L to get
(j1, . . . , jm) and then we can find a solution with greedy packing. Set Sa will have
L(Sa) = ia; first small(S1) = j1, and given first small(Sa) we find the longest pos-
sible segment(Sa) such that d(Sa) ≤ 1.5 and Sa ⊂ R(ia) or Sa ⊂ R(first small(Sa)).
If a 6= k, we define first small(Sa+1 as the first element of U − L that follows
segment(Sa). We can run this greedy algorithm for every possible pair i1, j1.

Solutions that exist when Lemma 9 can be applied can be found using dynamic pro-
gramming in we find all possible paths that can be obtained by successive applications
of that lemma.

13

Suppose that we want to check if a path (i1, . . . , ik) may form such a path. The first
case is that this path is covered with a single set; obviously we can quickly verify if this
is possible. The second case is that the path can be covered with a number of right sets,
followed by a straight or a small set, followed by a number of left sets (each of the three
groups may be missing but there have to be at least two groups). Let (j1, . . . , j`) be the
subsequence of the path that consists of elements of L, and let (i1, . . . , ik) represent the
subsequence that consists of elements of U − L. We can ask two questions: can these
two sequences be covered by ` sets and can these two sequences be covered by ` + 1

sets.
The first case is that the set S1 that is used in such a cover and such that L(S1) = j1

does not cross any other set. We form set S1 = {j1, i1, i2, . . . , ia} such that S1 ⊂ R(j1)

and S1 ⊂ R(i1) and d(S1) ≤ 1.5 and a is maximal, and then we ask a question about
covering of (j2, . . . , jk) and (ia+1, . . . , i`). The case when the set that contains jk does
not cross any other set is symmetric.

Now we consider the case in which the desired cover exists only if all right sets and
left sets included in the cover participate in set crossings. There are three subcases:
the central set exists and it is a straight set, it exists and it is a small set and it does
not exists. We will describe the dynamic programming for the first subcase, the other
two are similar and simpler.

First in every possible way we guess the central set Sc: we assume a certain L(Sc)

= jc and first small(Sc) = id. We find the maximal segment(Sc) that is consistent
with our assumptions, and we abandon this assumption if jc 6∈ segment(Sc). Otherwise
from the assumption jc, id we compute the last element of segment(Sc), f1(jc, id).

Now we consider a prefix of (j1, . . .), say (j1, . . . , ja), and possible unions of segments
of sets S1, . . . , Sa and Sc. One can see that in (U − L, Succs) this union forms two
contiguous path, one that starts at i1 and ends at some ib (Part 1) the other starts
at id and ends at f2(jc, id, j1, ja, i1, ib) (Part 2). We assume that impossible is one of
the values of f2. We need a recursive formula for f2 and this will be the essence of our
dynamic programming solution.

The basic case is when a = 1; if i1 6= SuccS(ib), then f2 = impossible (this means
that Part 1 has to be empty). For i1 = SuccS(ib), we find the longest segment that
we can associate with j1 and that starts at i = SuccS(f1(jc, id)), and ends at f1(j1, i).
(If S1 is a right set, with Segment(S1) starting at i1, then we actually have the first
case.)

Now we compute f2(jc, id, j1, ja, i1, ib) for a > 1. We consider two cases, and take
the larger of the two solutions (or the only possible one). Either (i) segment(Sa) ends
Part 1, or (2) segment(Sa) ends Part 2. For case (i), we find the smallest possible
first small(Sa) that satisfies these conditions: segment(Sa) ends at ib, L(Sa) = ja;
d(Sa) ≤ 1.5, ja ∈ R(first small(Sa)), so it can be computed as first small(Sa) =

f3(ja, ib); this implies this possibility:

f2(jc, id, j1, ja, i1, ib) = f2(jc, id, j1, ja−1, i1, f3(ja, ib))

For case (ii) we start segment(Sa) at f2(jc, id, j1, ja−1, i1, ib) and this implies this
possibility:

f2(jc, id, j1, ja, i1, ib) = f1(ja, f2(jc, id, j1, ja−1, i1, ib))

Clearly, we can tabulate f1 and f3, so the recursive formula for f2 can be computed in
constant time, and a dynamic programming that computes f2 fills a table with O(n6)

entries.

14

We can use f2 as follows: we can cover (j1, . . . , jk) and (i1, . . . , i`) with k sets if for
some jc, id we have

f2(jc, id, j1, jk, i1, id−1) = i`

One can see that in time O(n6) we can find all tuples (j1, jk, i1, i`,m) such that
(j1, . . . , jk) together with (i1, . . . , i`) can be covered with m sets from a family that
forms a rounding of a good solution. This proves

Theorem 11 There exists a polynomial time approximation algorithm for the problems
of MinAnt and MinAntLoad with ratio 3/2.

5 Acknowledgments

We thank Sudarshan Vasudevan for suggesting the problem and initial discussions. We
also thank Webb Miller for supporting Jieun Jeong through NIH grant HG02238 and
Martin Fürer for supporting Shiva Kasiviswanathan through NSF Grant CCR-0209099.

References

[1] L. Bao and J.J. Garcia-Luna-Aceves. Transmission scheduling in ad hoc networks
with directional antennas. In Proceedings of MOBICOM’2002, September 2002.

[2] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: a survey. In D. S. Hochbaum, editor, Approximation Algorithms for
NP-hard problems, pages 46–93. PWS Publishing, Boston, 1997.

[3] A. Nasipuri, S. Ye, J. You, and R. Hiromoto. A MAC protovol for modile ad hoc
networks using directional antennas. In Proceedings of the IEEE Wireless Commu-
nications and Networking Conference (WCNC’2000), 2000.

[4] A. Spyropoulos and C. S. Raghavendra. Energy efficient communication in ad hoc
networks using directional antennas. In Proceedings of IEEE INFOCOM’2002, June
2002.

15

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

