
Efficient Algorithms for Online Game Playing

and Universal Portfolio Management

Amit Agarwal Elad Hazan∗

Abstract

A natural algorithmic scheme in online game playing is called ‘follow-the-leader’, first pro-
posed by Hannan in the 1950’s. Simply stated, this method advocates the use of past history to
make future predictions, by using the optimal strategy so far as the strategy for the next game
iteration. Randomized variations on this method for the special case of linear payoff functions
have been rigorously analyzed and have found numerous applications in machine learning and
game theory. It was a long standing open problem whether the ‘follow the leader’ method at-
tains any non-trivial regret guarantees for the case of concave regret functions. This question
is significant since ’follow-the-leader’ is a natural deterministic method, easy to implement and
computationally efficient.

We introduce a new analysis technique and show that a deterministic variant of this method
has optimal regret. This result is applicable to a variety of online optimization scenarios, includ-
ing regret minimization for Lipschitz regret functions, universal portfolios management, online
convex optimization and online utility maximization. For the well studied universal portfolio
management problem, our algorithm combines optimal regret with computational efficiency. For
the general setting, our algorithm achieves exponentially lower regret than previous algorithms.

Our analysis shows a surprising connection between interior point methods and online opti-
mization using follow-the-leader.

1 Introduction

We consider the following basic model for online game playing: the player A chooses a probability
distribution p over a set of n possible actions (pure strategies) without knowing the future. Nature
then reveals a payoff x(i) ∈ R for each possible action. The expected payoff of the online player
is f(p>x) (we will abuse notation and denote this by f(px)), where x is the n-dimensional payoff
vector and f is a concave payoff function. This scenario is repeated for T iterations. If we denote
the player’s distribution at time t ∈ [T] by pt, the payoff vector by xt and the payoff function by
ft, then the total payoff achieved by the online player is

∑T
t=1 ft(ptxt). The payoff is compared to

the maximum payoff attainable by a fixed distribution on pure strategies. This is captured by the
notion of regret – the difference between the player’s total payoff and the best payoff he could have
achieved using a fixed distribution on pure strategies. Formally 1:

R(A) , max
p∗∈Sn

T
∑

t=1

ft(p
∗xt) −

T
∑

t=1

ft(ptxt)

The performance of an online game playing algorithm is measured by two parameters: the total
regret and the time for the algorithm to compute the strategy pT for iteration T .

∗Supported by Sanjeev Arora’s NSF grants MSPA-MCS 0528414, CCF 0514993, ITR 0205594
1Sn here denotes the n-dimensional simplex, i.e. the set of points p ∈ R

n
,
�

i
pi = 1, pi ≥ 0

1

Electronic Colloquium on Computational Complexity, Report No. 33 (2006)

ISSN 1433-8092

When the ft’s are linear functions, the regret is lower bounded by Ω(
√

T). This regret has been
achieved by several algorithms. The earliest were discovered in the game-theory and operations
research community, and more efficient algorithms (Hedge and Adaboost by Freund and Schapire
[FS97]) were discovered in machine learning.

A well-studied problem covered by this framework is the problem of universal portfolio manage-
ment, where the concave payoff function applied each iteration is ft(px) = log(px) (see subsection
1.2). For this special case online game playing algorithms that break the Ω(

√
T) regret lower

bound have been devised by Cover [Cov91], who obtains an algorithm with only O(log T) regret.
The caveat of Cover’s algorithm is its running time which is exponential in the dimension, namely
Ω(Tn). The running time was subsequently greatly improved by Kalai and Vempala [KV03] to
O(n7T 8) albeit introducing randomization.

In this paper we propose and analyze an algorithm that combine the benefits of previous ap-
proaches: both computational efficiency and logarithmic regret. The algorithm applies for the more
general case of online game playing, even when every iteration a different concave payoff function
ft is used, and when these functions are unknown till Nature reveals them together with the payoff
for the play iteration.

1.1 Follow the leader

As the name suggests, the basic idea behind the “follow-the-leader” method is to play the strategy
that would have been optimal up to date. The method was initially proposed and analyzed by
Hannan [Han57], and recently revisited by Kalai and Vempala [KV05], who show that adding a
small perturbation to the optimal strategy so far ensures O(

√
T) regret.

A natural question, asked by Larson [Lar86], Ordentlich [Ord96] and most recently Kalai and
Vempala [KV05], is: What is the performance of FTL for concave regret functions? Hannan
[Han57], and later Merhav and Feder [MF92], show that Follow-The-Leader has optimal regret
under some very strong assumptions. However, these assumptions do not even hold for the univer-
sal portfolio management problem, even when the price relatives are lower bounded [Fed].

In this paper we analyze a natural variant of follow-the-leader, which we call Smooth Pre-

diction. Before each time period, Smooth Prediction computes the optimum of some convex
program which is a “smoothened” version of the best mixed strategy in hindsight (i.e the “leader”).
The smoothening is achieved by adding a logarithmic barrier function to the convex program for the
best mixed strategy in hindsight. We show that this follow-the-leader variant ensures logarithmic
regret for strictly concave payoff functions, thereby answering the question above. Smooth Pre-

diction is a deterministic algorithm that has running time of O(n3T), a significant improvement
over previous methods.

In order to analyze the performance of Smooth Prediction, we introduce a new potential
function which takes into account the second derivative of the payoff functions. This is necessary,
since the regret for linear payoff functions is bounded from below by Ω(

√
T). This potential function

is motivated by interior point algorithms, in particular the Newton method, and its analysis requires
new algebraic techniques beyond the usual Multiplicative Weights Updates Method [AHK05] (the
algorithmic technique underlying many online algorithms). We believe these techniques may be
useful for other learning and online optimization problems.

1.2 Universal portfolio management

A well-studied problem which is covered by the framework considered in the paper is the problem of
universal portfolio management, where the objective is to devise a dynamic portfolio the difference

2

of whose returns to the best constant rebalanced portfolio (CRP)2 in hindsight over T time periods
is minimized. For a market with n stocks and T days, the regret function becomes

log

(

wealth of best CRP

wealth of A

)

(see [Cov91] for more details). Hence, the logarithm of the wealth fits to the online game playing
model where the concave function applied each iteration is simply ft(px) = log(px).

On-line investment strategies competitive with the best CRP determined in hindsight have been
devised using many different techniques. Cover et al. [OC96, Cov91, CO96, Cov96] proposed an
exponential weighting scheme that attains optimal logarithmic regret. The running time of Cover’s
algorithm (i.e the time it takes to produce the distribution pt given all prior payoffs) is exponential
in the number of stocks - for n stocks and the T th day the running time is Ω(Tn). Kalai and
Vempala [KV03] used general techniques for sampling logconcave functions over the simplex to
devise a randomized polynomial time algorithm with a running time of Ω(n7T 8).

Helmbold et al. [HSSW96] used the general multiplicative updates method to propose an ex-
tremely fast portfolio management algorithm. However, the regret attained by their algorithm is
bounded by O(

√
T) (as opposed to logarithmic regret), and that is assuming the ”bounded vari-

ability” assumption (which states that the changes in commodity value are bounded, see section 2).
The performance analysis of their algorithm is tight as shown by [SL05].

The Smooth Prediction algorithm analyzed hereby applies to the special case of universal
portfolio management. Under the “bounded variability” assumption, it attains optimal O(log T)
regret. The algorithm can be modified using the technique of Helmbold et al, such that the regret
remains sublinear even without the bounded variability assumption.

1.3 Other related work

The online game playing framework we consider is somewhat more restricted than the online convex
optimization framework of Zinkevich [Zin03]. In Zinkevich’s framework, the online player chooses a
point in some convex set, rather then just the simplex. The payoff functions allowed are arbitrary
concave functions over the set. We suspect that the techniques developed hereby can be applied to
the full Zinkevich model 3.

2 Notation and Theorem Statements

The input is denoted by T vectors (x1, ..., xT), xt ∈ R
n where xj(i) is the payoff of the ith pure

strategy during the jth time period. We assume that xj(i) ≤ 1,∀i, j. The xt’s have different
interpretation depending on the specific application, but in general we refer to them as payoff
vectors.

A (mixed) strategy is simply a fractional distribution over the pure strategies. We represent
this distribution by p ∈ R

n where
∑

i pi = 1, pi ≥ 0. So p is an element of the (n − 1)-dimensional
simplex. We assume that the payoff functions mapping distributions to real numbers, denoted by
ft(pxt), are concave functions of the inner product, hence f ′′

t (pxt) < 0. Throughout the paper we
assume the following about these functions:

2A constant rebalanced portfolio is an investment strategy which keeps the same distribution of wealth among
a set of stocks from period to period. That is, the proportion of total wealth in a given stock is the same at the
beginning of each period.

3this indeed was achieved in subsequent work [HKKA06]

3

1. ∀t, the payoffs are bounded by 0 ≤ ft(pxt) ≤ ω (positivity is w.l.o.g, as the shifting the payoff
functions doesn’t change the regret nor the following assumptions).

2. The {ft}’s have bounded derivative ∀t, p , |f ′
t(pxt)| ≤ G.

3. The functions {ft} are concave with second derivative bounded from above by f ′′
t (pxt) ≤

−H < 0,∀t.

For a given set of T payoff vectors, (x1, ..., xT), xt ∈ R
n
+, we denote by p∗(x1, ..., xT) = p∗ the

best distribution in hindsight, i.e.

p∗ = argmaxp{
T
∑

t=1

ft(pxt)}

The Universal Portfolio Management problem can be phrased in the online game playing frame-
work as follows (see [KV03] for more details). The payoff at iteration t is log(ptxt), where pt is the
distribution of wealth on trading day t, and xt is the vector of price relatives, i.e. the i’th entry is
the ratio between the price of commodity i in day t and t − 1.

Note that since log(c·ptxt) = log(c)+log(ptxt), scaling the payoffs will only change the objective
function by an additive constant making the objective invariant to scaling. Thus we can assume
w.l.o.g that ∀t . maxi∈[n] xt(i) = 1 and ft(ptxt) ≤ 1. The “bounded variability” assumption states
∀t, i xt(i) ≥ r, which translates to a bound on the price relatives - i.e the change in price for every
commodity and trading day is bounded. This implies that the derivative of the payoff functions is
bounded by f ′

t(ptxt) = 1
ptxt

∈ [1, 1
r], and similarly f ′′

t (ptxt) = − 1
(ptxt)2

∈ [− 1
r2 ,−1].

We denote for matrices A ≥ B if and only if A − B � 0, i.e the matrix A − B is positive
semi-definite (has only non-negative eigenvalues). AB denotes the usual matrix product, and
A • B = Tr(AB).

2.1 Smooth Prediction

A formal definition of Smooth Prediction is as follows, where ei ∈ R
n is the i’th standard basis

vector (i.e. the vector that has zero in all coordinates but for the i’th, in which it is one)

Smooth Prediction

1. Let {f1, ..., ft−1} be the concave payoff functions up to day t

Solve the following convex program using interior point methods

max
p∈Rn

(

t−1
∑

i=1

fi(pxi) +
∑

i∈n

log(pei)

)

(1)

n
∑

i=1

pi = 1

∀i ∈ [n] . pi ≥ 0

2. Play according to the computed distribution

We note the strategy of Smooth Prediction at time t by pt−1. The performance guarantee
for this algorithm is

4

Theorem 1 (main) For any set of payoff vectors (x1, ..., xT)

R(Smooth Prediction) ≤ 4n
G2

H
log(ωnT)

Corollary 2 For the universal portfolio management problem, assuming the price relatives are
lower bounded by r, for any set of price relative vectors (x1, ..., xT)

R(Smooth Prediction) ≤ 4n
1

r2
log(nT)

In section 4 we show that even without assuming the “bounded variability” assumption, a
modified version of Smooth Prediction has sublinear regret. This modification predicts distri-
butions which are a convex combination of Smooth Prediction’s distribution and the uniform
distribution (see section 4 for more detail).

2.2 Running Time

Interior point methods [NN94] allow maximization of a n-dimensional concave function over a
convex domain in time Õ(n3.5). The most time consuming operations carried out by basic versions
of these algorithms require computing the gradient and inverse Hessian of the function at various
points of the domain. These operations require O(n3) time.

To generate the pT at time T , Smooth Prediction maximizes a sum of O(T) concave func-
tions. Computing the gradient and inverse Hessian of such sum of functions can naturally be
carried out in time O(T · n3). All other operations are elementary and can be carried out in time
independent of T . Hence, Smooth Prediction can be implemented to run in time Õ(Tn3.5).

We note that in practice, many times approximations to pT are sufficient, such as the efficient
polynomial time approximation scheme of Halperin and Hazan [HH05].

3 Proof of Main Theorem

In this section we prove Theorem 1. The proof contains two parts: first, we compare Smooth

Prediction to the algorithm Offline Prediction. The Offline Prediction algorithm is
the same as Smooth Prediction, except that it knows the payoff vector for the coming day
in advance, i.e. on day t it plays according to pt - the solution to convex program (1) with the
payoff vectors (x1, . . . , xt). This part of the proof stated as Lemma 6 is similar in concept to the
Kalai-Vempala result, and proved in subsection 3.1 henceforth.

The second part of the proof, constituting the main technical contribution of this paper, shows
that Smooth Prediction is not much worse than Offline Prediction.

Lemma 3
T
∑

t=1

[ft(ptxt) − ft(pt−1xt)] ≤ 4n
G2

H
· log(nT)

Proof: Since pt and pt−1 are the optimum distributions for period t and t − 1, respectively, by
Taylor expansion we have

ft(ptxt) − ft(pt−1xt) = f ′
t(pt−1xt)(ptxt − pt−1xt) +

1

2
f ′′(ζ)(ptxt − pt−1xt)

2

≤ f ′
t(pt−1xt)(ptxt − pt−1xt) = f ′

t(pt−1xt)x
>
t (pt − pt−1) (2)

5

for some ζ between pt−1xt and ptxt. The inequality follows from the fact that ft is concave
and thus f ′′

t (ζ) < 0. We proceed to bound the last expression by deriving an expression for
Nt , pt − pt−1.

We claim that for any t ≥ 1, pt lies strictly inside the simplex. Otherwise, if for some i ∈ [n] we
have pt(i) = 0, then ptei = 0 and therefore the log-barrier term f0(pt) =

∑

i log(ptei) approaches
−∞, whereas the return of the uniform distribution is positive which is a contradiction. We conclude
that ∀i ∈ [n] . pt(i) > 0 and therefore, pt is strictly contained in the simplex. Hence according to
convex program (1)

∇ log(pP) |p=pT
+

T
∑

t=1

∇ft(pxt) |p=pT
= ~0

Applying the same considerations for pt−1 we obtain ∇ log(pP) |p=pT−1
+
∑T−1

t=1 ∇ft(pxt)|p=pT−1
=

~0. For notational convenience, denote log(pP) =
∑n

i=1 log(pei) ,
∑0

t=−(n−1) ft(pxt). Also note

that ∇ft(pxt) = f ′
t(pxt)xt. From both observations we have

T
∑

t=−n+1

[

f ′
t(pT xt)xt − f ′

t(pT−1xt)xt

]

= −f ′
T (pT−1xT)xT (3)

By Taylor series, we have (for some ζt
T between pt−1xt and ptxt)

T
∑

t=−n+1

f ′
t(pT xt) =

T
∑

t=−n+1

f ′
t(pT−1xt) +

T
∑

t=−n+1

1

2
f ′′

t (ζt
T)(pT xt − pT−1xt)

Plugging it back into equation (3) we get

1

2

T
∑

t=−n+1

f ′′
t (ζt

T)xtx
>
t Nt =

T
∑

t=−n+1

[f ′
t(pT xt) − f ′

t(pT−1xt)]xt = −f ′
T (pT−1xT)xT (4)

This gives us a system of equations with the vector NT as variables from which

NT = 2

(

−
T
∑

t=−n+1

f ′′
t (ζt

T)xtx
>
t

)−1

· xT f ′
T (pT−1xT) (5)

Let At = −∑t
i=−n+1 f ′′

i (ζi
t)xtx

>
t .

Now the regret can be bounded by (using equation (2)):

T
∑

t=1

[ft(ptxt) − ft(pt−1xt)] ≤
T
∑

t=1

f ′
t(pt−1xt)x

>
t Nt

by previous bound on Nt

= 2
T
∑

t=1

(f ′
t(pt−1xt))

2 · x>
t

(

−
t
∑

i=−n+1

f ′′
i (ζi

t)xtx
>
t

)−1

xt

≤ 2G2
T
∑

t=1

x>
t A−1

t xt

The following lemma is proved in Appendix B.

6

Lemma 4 For any set of rank 1 PSD matrices Y1, ..., Yt and constants β1, ..., βt ≥ 1 we have:

(
t
∑

i=1

βiYi)
−1 ≤ (

t
∑

i=1

Yi)
−1

Let the matrix CT =
∑T−1

t=−n+1 xtx
>
t . Applying Lemma 4 with βi = −f ′′

i (ζi
t) · 1

H and Yi = Ct ·H
implies that ∀t . A−1

t ≤ 1
H C−1

t .
Now back to bounding the regret, we have:

T
∑

t=1

[ft(ptxt) − ft(pt−1xt)] ≤ 2G2

H

T
∑

t=1

x>
t C−1

t xt =
2G2

H

T
∑

t=1

C−1
t • xtx

>
t

To continue, we use the following lemma, which is proved in Appendix A

Lemma 5 For any set of rank 1 PSD matrices Y1, ..., YT ∈ Rn×n such that
∑k−1

i=1 Yi is invertible,
we have

T
∑

t=k

(
t
∑

i=1

Yi)
−1 • Yt ≤ log

|∑T
t=1 Yt|

|∑k−1
t=1 Yt|

Since Ct =
∑t−1

i=−n+1 xix
T
i , by the Lemma above

T
∑

t=n+1

[ft(ptxt) − ft(pt−1xt)] ≤ 2
G2

H
log

|∑T
t=−n+1 xtx

>
t |

|∑0
t=−n+1 xtx>

t |

Recall that by the definition of Smooth Prediction and {ft|t ∈ [−n + 1, 0]}, we have that
∑0

t=−n+1 xtx
>
t = In, where In is the n-dimensional identity matrix. In addition, since every entry

xt(i) is bounded in absolute value by 1, we have that |(∑T
t=−n+1 xtx

>
t)(i, j)| ≤ T +1, and therefore

|
∑T

t=−n+1 xtx
>
t | ≤ n!(T + 1)n. Plugging that into the previous expression we obtain

T
∑

t=1

[ft(ptxt) − ft(pt−1xt)] ≤ 4
G2

H
log(n!Tn) ≤ 4

G2

H
(n log T + n log n)

This completes the proof of Lemma 3. 2

Theorem 1 now follows from Lemma 6 and Lemma 3.

3.1 Proof of Lemma 6

Lemma 6
T
∑

t=1

[ft(p
∗xt) − ft(ptxt)] ≤ 2n log(nTω)

In what follows we denote ft(p) = ft(pxt), and let f0(p) =
∑n

i=1 log(pei) denote the log-barrier
function. Lemma 6 follows from the following two claims.

Claim 1
T
∑

t=0

ft(pt) ≥
T
∑

t=0

ft(pT)

7

Proof: By induction on t. For t = 1 this is obvious, we have equality. The induction step is as
follows:

T
∑

t=0

ft(pt) =
T−1
∑

t=0

ft(pt) + fT (pT)

by the induction hypothesis

≥
T−1
∑

t=0

ft(pT−1) + fT (pT)

by definition of pT

≥
T−1
∑

t=1

ft(pT) + fT (pT)

=
T
∑

t=0

ft(pT)

2

Claim 2
T
∑

t=1

[ft(p
∗) − ft(pT)] ≤ 2n log(Tω) + f0(p

∗)

Proof: By the definition of pT , we have:

∀p̂ .
T
∑

t=0

ft(pT) ≥
T
∑

t=0

ft(p̂)

In particular, take p̂ = (1 − α)p∗ + α
n
~1 and we have

T
∑

t=0

ft(pT) −
T
∑

t=0

ft(p
∗) ≥

T
∑

t=0

ft((1 − α)p∗T +
α

n
~1) −

T
∑

t=0

ft(p
∗)

since ft are concave and f0 is monotone

≥ (1 − α)
T
∑

t=1

ft(p
∗) +

α

n

T
∑

t=1

ft(~1) + f0(
α

n
) −

T
∑

t=0

ft(p
∗)

the functions ft are positive

≥ −αTω + n log
α

n
− f0(p

∗) ≥ −2n log(Tω) − f0(p
∗)

Where the last inequality follows by taking α = n log(Tω)
Tω . 2

Lemma 6 now follows as a corollary:
Proof:[Lemma 6] Combining the previous two claims:

T
∑

t=1

[ft(p
∗) − ft(pt)] =

T
∑

t=0

[ft(p
∗) − ft(pt)] − f0(p

∗) + f0(p0)

≤
T
∑

t=0

[ft(p
∗) − ft(pT)] − f0(p

∗) + f0(p0)

≤ 2n log T + f0(p0)

To complete the proof, note that p0 = 1
n
~1, and hence f0(p0) = n log 1

n . 2

8

4 Application to Universal Portfolio Management

In many cases, if an algorithm is universal (has sublinear regret) under the “bounded variability”
assumption, then it is universal without this assumption . The reduction, due to Helmbold et al
[HSSW96], consists of adding a small multiple of the uniform portfolio to the portfolios generated
by the algorithm at hand. This has the effect that the return of the portfolio chosen is bounded
from below, which suffices for proving universality for many algorithms.

In this section we prove that the same modification to Smooth Prediction is universal in the
general case, using similar techniques as [HSSW96].

Theorem 7 For the universal portfolio management problem, for any set of price relative vectors
(x1, ..., xT)

R(Modified Smooth Prediction) ≤ 5nT 2/3

Proof:

For some α > 0 to be fixed later, define the portfolio p̄t , (1−α)pt+α· 1
n
~1, i.e the portfolio which

is a convex combination of Smooth Prediction’s strategy at time t and the uniform portfolio.
Similarly, let x̄t = (1 − α

n)xt + α
n
~1 be a ”smoothened” price relative vector.

Then we have

log(
p̄txt

ptx̄t
) = log

(1−α)ptxt+
α

n
xt·~1

(1−α

n
)ptxt+

α

n
pt·~1

≥ log
(1−α)ptxt+

α

n

(1−α

n
)ptxt+

α

n

since maxj xt(j) = 1

≥ log((1 − α) + α
n)

≥ −2α for α ∈ (0, 1
2)

Note that for every p and xt we have px̄t = (1 − α
n)pxt + α

n ≥ α
n . Hence, by Corollary 2

T
∑

t=1

log(
p∗x̄t

ptx̄t
) ≤ 4n

(α/n)2
log(nT)

Note that for every p, and in particular for p∗, it holds that px̄t = (1 − α
n)pxt + α

n ≥ pxt.
Combining all previous observations

T
∑

t=1

log
p∗xt

p̄txt
≤

T
∑

t=1

log
p∗x̄t

p̄txt
=

T
∑

t=1

log(
p∗x̄t

ptx̄t
· ptx̄t

p̄txt
) ≤ 4n3α−2log(nT) + 2Tα

Choosing α = nT−1/3 yields the result. 2

We remark that similar results can be obtained for general concave regret functions in addition
to the logarithmic function of the universal portfolio management problem. A general result of this
nature will be added in the full version of the paper.

9

5 Conclusions

In subsequent work with Adam Kalai and Satyen Kale [HKKA06] we extend the techniques in
this paper to obtain variants of follow-the-leader which attain logarithmic regret in the general
Zinkevich online optimization framework. The running time can be further improved to O(n2) per
iteration. Other extensions include a variant that attains logarithmic internal regret (a stronger
notion of regret, see [SL05]).

6 Acknowledgements

We thank Sanjeev Arora and Rob Schapire for their insightful comments and advice. We thank
Satyen Kale for proofreading an earlier version of this manuscript and providing a much simplified
proof of Lemma 5, which is included hereby with his permission. The second author would like to
thank Meir Feder for helpful correspondence.

References

[AHK05] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta
algorithm and applications. Manuscript, 2005.

[Bro05] M. Brookes. The matrix reference manual. [online]
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html, 2005.

[CO96] T.M. Cover and E. Ordentlich. Universal portfolios with side information. 42:348–363,
1996.

[Cov91] T. Cover. Universal portfolios. Math. Finance, 1:1–19, 1991.

[Cov96] T. M. Cover. Universal data compression and portfolio selection. In FOCS ’96: Pro-
ceedings of the 37th Annual Symposium on Foundations of Computer Science, page 534,
Washington, DC, USA, 1996. IEEE Computer Society.

[Fed] Meir Feder. personal communications, june 2005.

[FS97] Yoav Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119–
139, August 1997.

[Han57] James Hannan. Approximation to bayes risk in repeated play. In M. Dresher, A. W.
Tucker, and P. Wolfe, editors, Contributions to the Theory of Games, volume III, pages
97–139, 1957.

[HH05] Eran Halperin and Elad Hazan. Haplofreq: efficient algorithms for online decision
problems. In RECOMB, pages 1–1, 2005.

[HKKA06] Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. Logarithmic regret algo-
rithms for online convex optimization. manuscript, 2006.

[HSSW96] D. Helmbold, R. Schapire, Y. Singer, and M. Warmuth. On-line portfolio selection
using multiplicative updates. In Machine Learning: Proceedings of the Thirteenth In-
ternational Conference, 1996.

10

[KV03] Adam Kalai and Santosh Vempala. Efficient algorithms for universal portfolios. J.
Mach. Learn. Res., 3:423–440, 2003.

[KV05] Adam Kalai and Santosh Vempala. Efficient algorithms for on-line optimization. Jour-
nal of Computer and System Sciences, 71(3):291–307, 2005.

[Lar86] David C. Larson. Growth optimal trading strategies. Ph.D. dissertation, Stanford
Univ., Stanford, CA, 1986.

[MF92] Neri Merhav and Meir Feder. Universal sequential learning and decision from individual
data sequences. In COLT ’92: Proceedings of the fifth annual workshop on Computa-
tional learning theory, pages 413–427, New York, NY, USA, 1992. ACM Press.

[NN94] Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Methods in Convex Pro-
gramming: Theory and Applications. Society for Industrial and Applied Mathematics,
Philadelphia, 1994.

[OC96] Erik Ordentlich and Thomas M. Cover. On-line portfolio selection. In COLT ’96:
Proceedings of the ninth annual conference on Computational learning theory, pages
310–313, New York, NY, USA, 1996. ACM Press.

[Ord96] Erik Ordentlich. Universal investment and universal data compression. Ph.D. disser-
tation, Stanford Univ., Stanford, CA, 1996.

[SL05] G. Stoltz and G. Lugosi. Internal regret in on-line portfolio selection. Machine Learning,
59:125–159, 2005.

[Zin03] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the Twentieth International Conference (ICML), pages 928–
936, 2003.

A Proof of Lemma 5

First we require the following claim.

Claim 3 For any PSD matrices A, B we have

B−1 • A ≤ log
|B|

|B − A|

11

Proof:

B−1 • A = Tr(B−1A) ∵ A • B = Tr(AB)

= Tr(B−1(B − (B − A)))

= Tr(B−1/2(B − (B − A))B−1/2) ∵ Tr(AB) = Tr(A−1/2BA−1/2)

= Tr(I − B−1/2(B − A)B−1/2)

=
∑n

i=1

[

1 − λi(B
−1/2(B − A)B−1/2)

]

∵ Tr(A) =

n
∑

i=1

λi(A)

≤∑n
i=1 log

[

λi(B
−1/2(B − A)B−1/2)

]

∵ 1 − x ≤ − log(x)

= − log
[
∏n

i=1 λi(B
−1/2(B − A)B−1/2)

]

= − log |B−1/2(B − A)B−1/2| = log |B|
|B−A| ∵

n
∏

i=1

λi(A) = |A|

2

Lemma 5 now follows as a corollary:
Proof:[Lemma 5] By the previous claim, we have

T
∑

t=k

(
t
∑

i=1

Yi)
−1 • Yt ≤

T
∑

t=k

log
|∑t

i=1 Yi|
|∑t

t=1 Yi − Yt|

= log
|∑T

t=1 Yt|
|∑k−1

t=1 Yt|
2

B Proof of Lemma 4

Claim 4 For any constant c ≥ 1 and psd matrices A, B ≥ 0, such that B is rank 1, it holds that

(A + cB)−1 ≤ (A + B)−1

Proof: By the Matrix Inversion Lemma [Bro05], we have that

(A + B)−1 = A−1 − A−1BA−1

1 + A−1 • B

(A + cB)−1 = A−1 − cA−1BA−1

1 + cA−1 • B

Hence, it suffices to prove:
cA−1BA−1

1 + cA−1 • B
≥ A−1BA−1

1 + A−1 • B

Which is equivalent to (since A is psd, and all numbers are positive):

(1 + A−1 • B)(cA−1BA−1) ≥ (1 + cA−1 • B)(A−1BA−1)

And this reduces to:
(c − 1)A−1BA−1 ≥ 0

which is of course true. 2

Lemma 4 follows as a corollary of this claim.

12

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

