
The Descriptive Complexity of the Reachability Problem

As a Function of Different Graph Parameters

Till Tantau

Universität zu Lübeck
Institut für Theoretische Informatik

23538 Lübeck, Germany
tantau@tcs.uni-luebeck.de

January 26, 2006

Abstract

The reachability problem for graphs cannot be described, in the sense of descriptive
complexity theory, using a single first-order formula. This is true both for directed and
undirected graphs, both in the finite and infinite. However, if we restrict ourselves to graphs
in which a certain graph parameter is fixed to a certain value, first-order formulas often
suffice. A trivial example are graphs whose number of vertices is fixed to n. In such graphs
reachability can be described using a first-order formula with a quantifier nesting depth of
log

2
n, which is both a lower and an upper bound. In this paper we investigate how the

descriptive complexity of the reachability problem varies as a function of graph parameters
such as the size of the graph, the clique number, the matching number, the independence
number or the domination number. The independence number turns out to be the by far
most challenging graph parameter.

1 Introduction

The descriptive complexity of a problem quantifies the complexity of a minimal description of a
problem. The idea is to fix a formalism, typically a logic like first- or second-order logic, and to
then find a simple description of the problem, like a formula that “states” the problem. Which
formulas are considered to be “simple” depends on the kind of descriptive complexity that we
want to study: Important measures include the number of different variables in the formula, the
number of quantifiers, the number of nested quantifiers, the number of quantifier alternations,
and the length of the formula.

To take an example, consider the problem “Is there a path of length at most 2 from s
to t is a directed graph G?” and fix the formalism to “first-order logic.” In this formalism
a graph G = (V,E) is represented as a logical structure G over the signature containing a
binary relational symbol E. The universe of the structure is the vertex set V , the interpretation
EG of the relation symbol E is the edge relation E. In order to model the source and target
vertices s and t, two additional constant symbols s and t can be used. A formula that describes
reachability in two steps is the following: s = t ∨ E(s, t) ∨ ∃z � E(s, z) ∧ E(z, t).

The descriptive complexity of a problem is not only of interest in the context of logic and
model theory. It also tells us a lot about the computational complexity of the problem. For
example, if we can describe a problem using q nested first-order quantifiers, we can decide
the problem using O(logq n) space and O(q) parallel time (for appropriate models of parallel
computation).

1

Electronic Colloquium on Computational Complexity, Report No. 35 (2006)

ISSN 1433-8092




It is well-known that the descriptive complexity of the reachability problem (without any
bound on the distance) with respect to first-order formulas is “infinite”: No first-order formula
is true exactly for those graphs in which there is a path from s to t. The reachability problem is
also known as the s-t-connectivity problem and also as the graph accessibility problem. However,
if we have some additional information about the graphs for which we would like to describe
the reachability problem, it is often possible to give an efficient description. For example, we
might be promised that the graph has at most n vertices for some constant n. In this case, we
can write down a “trivial” formula having n quantifiers that decides the reachability problem.
It is even possible to design the formula in such a way that it uses only three different variables
and has a nesting depth of log2 n and it is known that both these measures (3 and log2 n) are
optimal.

The present paper presents a systematic study of how the descriptive complexity of the
reachability problem varies as a function of different graph parameters. However, only first-
order formulas will be treated and the only formula complexity measure that will be studied
is the quantifier complexity, which is also known as quantifier (nesting) depth or quantifier
rank. The quantifier complexity, abbreviated qc(φ), is zero for atomic formulas φ; negating a
formula does not increase the quantifier complexity; qc(ψ ∧ ρ) = max{qc(ψ), qc(ρ)}; and the
nesting depth of ∃x � ψ is 1 + qc(ψ). Note that the quantifier complexity does not measure
the number of quantifier alternations, but the number of quantifier nestings. For example,
qc

(
(∃x � x = x) ∧ (∀ � y = y)

)
= 1 and qc(∃x∃y � x = y) = 2.

Formally, let p(G) be some graph parameter (like the size of the graph G or the independence
number or the chromatic number). For each number k let reachp=k denote the following
promise problem: We are promised for a given directed graph G that p(G) = k and we wish
to find out whether there is a path from s to t in G. In this paper we are interested in the
following values:

1. qc(reachp=k) denotes the minimal quantifier complexity of first-order formulas φ for
which for every (G, s, t), where G is a finite directed graph with p(G) = k, there is
a path from s to t in G if and only if (G, s, t) |= φ. If no such formula exists, let
qc(reachp=k) = ∞.

2. qc(reach
∞
p=k) denotes the minimal quantifier complexity of first-order formulas φ for

which for every (G, s, t), where G is a finite or infinite directed graph with p(G) = k,
there is a path from s to t in G if and only if (G, s, t) |= φ.

3. qc(ureachp=k) denotes the restriction to finite undirected graphs (graphs with a sym-
metric edge relation).

4. qc(ureach
∞
p=k) denotes the restriction to undirected graphs (finite or infinite).

The results presented in this paper uncover an simple pattern. A promise p(G) = k typically
influences the quantifier complexity of the reachability problem in one of the following ways:

1. The promise does not make describing the reachability problem any easier (has no effect).

2. The promise makes describing the reachability problem trivial.

3. The promise causes the quantifier complexity to become log2 k (possibly plus or minus
some small constant).

There is one graph parameter whose influence does not follow this pattern: the independence
number α(G). It is the largest number of vertices that can be picked from a graph such that
there is no edge between any two picked vertices. While for undirected graphs the promise

2



α(G) = k causes the quantifier complexity of the reachability problem to become log2 k “as
usual,” for finite directed graphs the following two bounds holds:

c log2 k ≤ qc(reachα=k) ≤ k + 3,

where c = 2 log3 2 > 1.26. The upper bound was established in [NT05]. The lower bound is
proved in the present paper and seems challenging to prove.

For most graph parameters, the upper bounds are established using simple observations
on how these graph parameters relate to the maximum distance of vertices in the graph. For
example, if we know that an undirected graph has a vertex cover of size k, then the distance of
s and t cannot be more than 2k, if they are connected at all.

All lower bounds are established using Ehrenfeucht–Fräıssé games. However, for most graph
parameters it is not necessary to explicitly state how these games are played. Instead, we can
use Hanf’s theorem, which is based on Ehrenfeucht–Fräıssé games.

For the graph parameter “independence number” we cannot use Hanf’s theorem. Hanf’s
theorem states, very roughly, that if the local neighborhoods of the vertices in two different
graphs “look alike,” then the two graphs cannot be distinguished using first-order formulas of
a certain quantifier complexity. However, in graphs with bounded independence number the
“local neighborhood” of any vertex is always the whole graph, rendering Hanf’s theorem useless
in this situation. Because of this it is necessary to devise appropriate Ehrenfeucht–Fräıssé games
from scratch to prove the lower bound of c log2 k for qc(reachα=k).

This paper is organized as follows. In Section 2 basic definitions are given and the math-
ematical tools are presented that will be used in the main proofs. In Section 3 the “simple
cases” are discussed, which refers to all graph parameters except for the independence number.
This latter graph parameter is studied in Section 4, where the lower bound on the quantifier
complexity of qc(reachα=k) is proved.

2 Review of Model Theory Tools

In the present section the basic tools of model theory that will be used in the later sections
are reviewed. We start with fixing some notations and terminology. Next, Ehrenfeucht–Fräıssé
games are defined and Hanf’s theorem is stated.

Throughout this paper we will restrict our attention to directed or undirected graphs with
two distinguished vertices called s and t. Such graphs will just be called “graphs” in the
following. We view graphs to be logical structures G over the relational signature (E2, s0, t0),
where the universe of G is the vertex set of the graph and the binary relation EG is the edge
relation. Given a set A of graphs, we say that a (first-order) formula φ describes A if a tuple
(G, s, t) is in A if and only if (G, s, t) |= φ. The quantifier complexity of a formula φ was defined
in the introduction: It is maximal number of “nested” quantifiers in the formula.

A promise problem is a pair (P,Q) consisting of a promise P and a question Q. In the
present paper, Q and P will always be sets of graphs. A solution to a promise problem (P,Q)
is a set A such that A ∩ P = Q ∩ P . A formula describes a promise problem if it describes a
solution of the promise problem.

The most important tool for proving lower bounds on the quantifier complexity of formulas
that describe a promise problem are Ehrenfeucht–Fräıssé games. For the special case of graphs
with two distinguished vertices these games are played as follows: There are two players, called
player I and player II (there are numerous other names in the literature). The playing field
consists of two graphs G and Ḡ. The game is played in r rounds. In each round, player I starts
by picking up a coloured pebble from a pile of pebbles and placing the pebble on some vertex

3



of either graph. Player II responds by picking up a new pebble of the same color from the pile
and placing this pebble on some vertex of the other graph. Next, it is player I’s turn once more,
who now picks up a new pebble of a new color from the pile and places it on some vertex of
either graph. Player II once more responds by putting a pebble of the same color on the other
structure. The game ends after r rounds. To determine the winner, we remove all vertices from
the graphs that do not have a pebble on them and we also leave the source and the target (as if
there were a pebble on them). If the resulting coloured graphs are isomorphic, player II wins;
otherwise player I wins.

The connection between Ehrenfeucht–Fräıssé games and first-order formulas is given by the
following theorem:

Theorem 2.1 ([Ehr61, Fra54]). Suppose player II has a winning strategy for the r round game

on two graphs G and Ḡ. Then for every first-order formula φ with qc(φ) ≤ r we have G |= φ if

and only if Ḡ |= φ.

Corollary 2.2. Fix a graph parameter p(G) and a number k. Let G and Ḡ be graphs with

p(g) = p(Ḡ) = k and let G ∈ reach and Ḡ /∈ reach. Suppose player II has a winning strategy

for the r round game on G and Ḡ. Then qc(reachp=k) > r.

In the following, whenever we consider pairs of graphs where one graph is an element of
reach while the other is not, the instance that is not an element of reach is indicated by a
bar above it. This is the same notation as the one used in the corollary.

The above corollary is a powerful tool. In order to prove, say, qc(reachα=1) > 3, all we
have to do is to find two finite graphs G and Ḡ with independence number 1 (such graphs are
also known as tournaments or, to be precise, as semicomplete graphs) such that in the first
graph there is a path from s to t and in the other is not and player II has a winning strategy
for three rounds. Since the graphs are finite, such a winning strategy can be tested (at least if
G and Ḡ are reasonably small) using exhaustive search. In other words, if we are able to find
appropriate graphs G and Ḡ we can use a computer to prove lower bounds on the quantifier
complexity.

Unfortunately, finding small graphs G and Ḡ with the desired properties turns out to be a
tricky business. Fortunately, once we have found them, they can often be reused in new proofs.
For example, if player II has a winning strategy on G and Ḡ, player II also has a winning
strategy on the disjoint unions G ∪̇H and Ḡ ∪̇H, where H is some other graph. Several other
operations on graphs also do not destroy player II’s winning strategy: It is often difficult to
construct the winning strategy of player II from scratch. Hanf’s theorem provides us with an
easy-to-check condition on G and Ḡ that, when satisfied, ensures that player II has a winning
strategy.

For a graph H (with two distinguished vertices) we define its isomorphism type as the
equivalence class under graph isomorphism that honour and the source and the target vertices.
For a graph G = (V,E) let GGaifman denote the underlying undirected graph of G (in more
general contexts this graph is known as the Gaifman graph of the logical structure G, hence
the name). For a vertex v and a radius r let S(v, r) := {u ∈ V | dGGaifman

(v, u) ≤ r} denote the
“sphere” around v or radius r. Note that the distance is measured in the undirected version of
G. We can view the sphere as a substructure of G. The r-type of a vertex v is the isomorphism
type of the structure S(v, r).

Theorem 2.3 ([Han65]). Let G and Ḡ be graphs and let r be a number. For each possible

2r-type, that is, for each possible isomorphism type of spheres of radius 2r, let G and Ḡ have

the same number of vertices of this type. Then player II wins an r-round Ehrenfeucht–Fräıssé

games on G and Ḡ.

4



Parameter p(G) qc(reachp=k) qc(reach
∞
p=k) qc(ureachp=k) qc(ureach

∞
p=k)

κ > 0 (connectivity) 0 0 0 0
d <∞ (diameter) 0 0 0 0
χ = 1 (chromatic number) 0 0 0 0
ω = 1 (clique number) 0 0 0 0
number of components is 1 0 0 0 0
∆ ≤ 1 (maximum degree) 0 0 0 0
n (number of vertices) log2 k ±O(1) log2 k ±O(1) log2 k ±O(1) log2 k ±O(1)
maximum finite distance log2 k ±O(1) log2 k ±O(1) log2 k ±O(1) log2 k ±O(1)
vertex covering number log2 k ±O(1) log2 k ±O(1) log2 k ±O(1) log2 k ±O(1)
matching number log2 k ±O(1) log2 k ±O(1) log2 k ±O(1) log2 k ±O(1)
domination number ∞ ∞ log2 k ±O(1) log2 k ±O(1)
α (independence number) > 1.26 log2 k ∞ log2 k ±O(1) log2 k ±O(1)

≤ k + 3
κ = 0 (connectivity) ∞ ∞ ∞ ∞
d = ∞ (diameter) ∞ ∞ ∞ ∞
χ > 1 (chromatic number) ∞ ∞ ∞ ∞
ω > 1 (clique number) ∞ ∞ ∞ ∞
number of components ≥ 2 ∞ ∞ ∞ ∞
δ (minimum degree) ∞ ∞ ∞ ∞
∆ > 1 (maximum degree) ∞ ∞ ∞ ∞

Table 1: The quantifier complexity of the reachability problem as a function of the different
graph parameters.

3 Graph Parameters: Simple Cases

In the present section the descriptive complexity of the promise problem reachp=k is studied for
different graph parameters p. The presentation of the results is sorted such that the proofs are
as easy as possible; a table summing up the results and sorting them according to the problem
complexity is given on page 5.

The definitions of the different graph parameters are taken from Diestel’s book [Die97],
though the definition may be adapted for directed graphs if the original definition made sense
only for undirected graphs.

3.1 Graph Parameter: Number of Vertices

Perhaps the most basic graph parameter is the number n(G) of vertices. If we are promised
that a given graph has exactly n = k vertices, the problem of finding a first-order description
becomes easy in the following sense: Any graph property that is invariant under isomorphisms
can be described using an appropriate first-order formula when we are promised that the graph
has exactly k vertices. The reason is that using k quantifiers it is possible to fix all vertices of
the graph and to use a big conjunction to list all k-vertex graphs having the given property.

Thus, we can express reachability in k-vertex graphs using k nested quantifiers and k vari-
ables. However, it is well-known that we can do much better: log2 k nested quantifiers suffice
and this is optimal. The proof of this result can be found in standard textbooks, but it is
included below since we will use similar arguments in later proofs.

5



Theorem 3.1. For all positive k we have

qc(reachn=k) = qc(reach
∞
n=k) = qc(ureachn=k) = qc(ureach

∞
n=k) = log2 k ±O(1).

Proof. For the upper bound, let φ1(u, v) ≡ u = v∨E(u, v) describe the graph property “there is
a path of length at most 1 from u to v,” and let φ2n(u, v) ≡ φn(u, v) ∨ ∃z �

(
φn(u, z) ∧ φn(z, v)

)

describe the property “there is a path of length at most 2n from u to v.” Then reachability can
be expressed using the formula φk(s, t). Clearly, the quantifier complexity of φk is log2 k.

For the lower bound, define two graphs G and Ḡ as follows: Let G consist of an undirected
cycle of length 2·2k +4 with s and t at opposite “ends” of the cycle, that is, at maximal distance
from each other. Let Ḡ consist of two undirected cycles, each of length 2k + 2, and let s be
in one of the cycles and t in the other one. Clearly, G is an instance of the (undirected and
also the directed) reachability problem, while Ḡ is not. Both graphs have the same number of
vertices of each 2k-type. By Hanf’s theorem the graphs are indistinguishable.

3.2 Graph Parameter: Number of Components

A component of a graph is a maximal (strongly) connected subgraph of the graph. Suppose we
are promised that the number of components in a graph is k. How does that help us with the
reachability problem? Certainly, if we are promised that k is 1, then the reachability problem
becomes trivial since there is always a path from s to t in this situation. However, knowing that
a graph has, say, 25 components does not really help us with deciding whether there is a path
from s to t. The following theorem formalizes this observation:

Theorem 3.2. Let p(G) denote the number of components in G. For all k > 1 we have

qc(reachp=1) = qc(reach
∞
p=1) = qc(ureachp=1) = qc(ureach

∞
p=1) = 0,

qc(reachp=k) = qc(reach
∞
p=k) = qc(ureachp=k) = qc(ureach

∞
p=k) = ∞.

Proof. We only need to prove the second claim since the first is trivial. To prove the infinite
lower bound, suppose one of these problems could be described using a formula of quantifier
complexity r. Consider the following graphs: let both G and Ḡ consist of k undirected cycles of
length 2 · 2r + 4. In G the vertices s and t are in the same cycle, but at maximal distance from
each other. In Ḡ they are in different cycles. Then G and Ḡ satisfy the promise, but Hanf’s
theorem tells us that they cannot be distinguished using a formula of quantifier depth r.

3.3 Graph Parameter: Connectivity

The connectivity κ of a graph is the minimal number of vertices that we have to remove to make
the graph disconnected. Thus, a disconnected graph has connectivity 0 and a clique of size n
has connectivity n− 1.

It seems quite natural that the connectivity of a graph should have a strong influence on
the complexity of the reachability problem. Indeed, if κ(G) > 0 then the graph is connected
and there is always a path from s to t. Thus, if we are promised κ(G) = k for some k > 0 then
the quantifier complexity of reachκ=k is zero.

If we are promised that κ(G) = 0, we just know that the graph is disconnected. This does
not really help us with the question whether there is a path from s to t since we do not know
whether s and t are in the some component or not. Formally, the graphs from Theorem 3.2
have κ(G) = 0 and show that no first-order formula can describe reachability in all of them.

Theorem 3.3. For all k > 0 we have

qc(reachκ=0) = qc(reach
∞
κ=0) = qc(ureachκ=0) = qc(ureach

∞
κ=0) = ∞,

qc(reachκ=k) = qc(reach
∞
κ=k) = qc(ureachκ=k) = qc(ureach

∞
κ=k) = 0.

6



3.4 Graph Parameter: Diameter and Maximum Finite Distance

The diameter of a graph is the maximum distance between any two vertices. It is infinite if the
graph is not connected. The maximum finite distance in a graph is maximum distance taken
over all pairs of connected vertices.

If the diameter of a graph is finite then, clearly, there is a path from s to t and the reachability
problem becomes trivial. On the other hand, if the distance is infinite, this does not tell us
anything about the question of whether s and t are in the same component. Formally, the
graphs of Theorem 3.2 have infinite distance. This proves the following theorem: observation:

Theorem 3.4. Let p(G) denote the diameter of G. For all k <∞ we have

qc(reachp=k) = qc(reach
∞
p=k) = qc(ureachp=k) = qc(ureach

∞
p=k) = 0,

qc(reachp=∞) = qc(reach
∞
p=∞) = qc(ureachp=∞) = qc(ureach

∞
p=∞) = ∞.

For the maximum finite distance the following holds:

Theorem 3.5. Let p(G) denote the maximum finite distance in G. Then for all k we have

qc(reachp=k) = qc(reach
∞
p=k) = qc(ureachp=k) = qc(ureach

∞
p=k) = log2 k ±O(1).

Proof. Both for the upper bound and lower bound, just observe that the argument from Theo-
rem 3.1 holds also for the maximum finite distance.

3.5 Graph Parameter: Chromatic Number and Clique Number

The chromatic number of a graph is the number of colors that are needed to color the graph such
that no edge is between vertices of the same color. The clique number is the size of the largest
complete subgraph in a graph. Both the numbers have no effect on the reachability problem if
they are at least 2. To see this, consider the graphs from Theorem 3.2, where player II had a
winning strategy for higher and higher r. If we add a large clique to these graphs, the chromatic
and clique numbers can be raised to an arbitrary level, without changing the fact that player II
has a winning strategy. For a chromatic or clique number of 1 the graph must be discrete and
reachability becomes trivial.

Theorem 3.6. Let p(G) denote the clique number or the chromatic number of G. For all k > 1
we have

qc(reachp=1) = qc(reach
∞
p=1) = qc(ureachp=1) = qc(ureach

∞
p=1) = 0,

qc(reachp=k) = qc(reach
∞
p=k) = qc(ureachp=k) = qc(ureach

∞
p=k) = ∞.

3.6 Graph Parameter: Minimum and Maximum Degree

If for some graph G the maximum degree of the underlying undirected graph is 0 or 1, reach-
ability becomes trivial. However, the graphs from Theorem 3.2, possibly with cliques added to
increase the maximum degree, show that for larger k a maximum degree of k has no influence
on the reachability problem.

The minimum degree of vertices in the graph has no influence on the reachability problem
at all. However, to prove this, we cannot simply use the graphs from Theorem 3.2 nor graphs
in which we add cliques since this does not raise the minimum degree. Fortunately, this is easy
to fix: We can raise the minimum degree in the graphs from Theorem 3.2 by replacing each
vertex by a clique of appropriate size. This will not change the fact that player II has a winning
strategy.

7



Theorem 3.7. Let p(G) denote the minimum degree of G. The for all k we have

qc(reachp=k) = qc(reach
∞
p=k) = qc(ureachp=k) = qc(ureach

∞
p=k) = ∞.

Let p(G) denote the maximum degree of the underlying undirected graph of G. The for all k > 1
we have

qc(reachp=0) = qc(reach
∞
p=0) = qc(ureachp=0) = qc(ureach

∞
p=0) = 0

qc(reachp=1) = qc(reach
∞
p=1) = qc(ureachp=1) = qc(ureach

∞
p=1) = 0

qc(reachp=k) = qc(reach
∞
p=k) = qc(ureachp=k) = qc(ureach

∞
p=k) = ∞.

3.7 Graph Parameter: Vertex Covering Number

A vertex cover of a graph is a set of vertices such that for every edge (u, v) of the graph either
u or v or both are in the vertex cover. The vertex covering number is the size of the smallest
vertex cover of a graph.

Theorem 3.8. Let p(G) denote the vertex covering number of the graph G. Then

qc(reachp=k) = qc(reach
∞
p=k) = qc(ureachp=k) = qc(ureach

∞
p=k) = log2 k ±O(1).

Proof. For the lower bound note that the graphs constructed in the proof of Theorem 3.1 have
a vertex covering number of log2 k −O(1).

For the upper bound note that if a graph has a vertex covering number of k, then the
shortest path from s to t can have length at most 2k.

3.8 Graph Parameter: Matching Number

The matching number of a graph is the size of a maximum matching in the graph. For directed
graph, we define this number to be the maximum size of a matching in the underlying undirected
graph.

Theorem 3.9. Let p(G) denote the matching number number of the graph G. Then

qc(reachp=k) = qc(reach
∞
p=k) = qc(ureachp=k) = qc(ureach

∞
p=k) = log2 k ±O(1).

Proof. For the lower bound note that the graphs constructed in the proof of Theorem 3.1 have
a matching of log2 k −O(1).

For the upper bound note that if a graph has a matching number of k, then the shortest
path from s to t can have length at most 2k.

3.9 Graph Parameter: Domination Number

A dominating set of graph G = (V,E) is a set D of vertices such that for every vertex v ∈ V
either v ∈ D or there is a u ∈ D such that (u, v) ∈ E. The domination number of a graph is
the size of the smallest dominating set of the graph.

Theorem 3.10. Let p(G) denote the domination number of the graph G. Then

qc(reachp=k) = qc(reach
∞
p=k) = ∞,

qc(ureachp=k) = qc(ureach
∞
p=k) = log2 k ±O(1).

8



Proof. For the directed case, to prove the infinite lower bound consider the graphs from Theo-
rem 3.2. If we add a single vertex to the each of these graphs and add edges from this vertex to
every other vertex, the graphs have domination number 1. However, adding the vertices has no
effect on the question of whether there is a path from s to t and it does not change the fact the
player II has a winning strategy. By adding not one, but several new vertices and connecting
them to all original vertices we can also increase the domination number to any given k.

For the undirected case, for the lower bound note that the graphs constructed in the proof
of Theorem 3.1 have a dominating set of size log2 k −O(1) (just take every second vertex).

For the upper bound in the undirected case observe that if an undirected graph has a
dominating set of size k, then the shortest path from s to t can have length at most 2k. To
see this, note that a vertex in the dominating set can be adjacent to at most two vertices on
the path; for if it were adjacent to three vertices on the path, then path could be shortened by
going through the vertex in the dominating set.

4 Graph Parameter: The Independence Number

For the graph parameters studied in the previous section we saw that the promise that a graph
parameter p has a certain value k has one of the following three different kinds of effect:

1. The promise does not help us at all. For example, knowing that the chromatic number
of a graph is exactly 1000 does not reduce the quantifier complexity of the reachability
problem—neither for directed nor for undirected graphs.

2. The promise makes the reachability problem trivial. For example, if a graph has a chro-
matic number of 1, then the graph is discrete and there is a path between any two vertices
if and only if they are identical.

3. The promise changes the quantifier complexity to log2 k plus or minus some constant. For
example, knowing the an undirected graph has a dominating set of size k allows us to
describe reachability using log2 k ±O(1) quantifiers and this bound is tight.

In the present section we study a graph parameter that does not follow this pattern: the
independence number α(G). An independent set in a graph is a set of vertices such that there
is no edge between them (note that this definition also makes sense for directed graphs). The
independence number of a graph is the size of its smallest independent set.

For undirected graphs, the influence of the independence number follows the familiar pattern:

Theorem 4.1.

qc(ureachα=k) = qc(ureach
∞
α=k) = log2 k ±O(1).

Proof. For the lower bound, note that the graphs from Theorem 3.1 have independence number
log2 k−O(1) (just take every second vertex). For the upper bound, note that in a graph having
independence number α the distance from s to t can be at most 2α since taking every second
vertex on a shortest path yields an independent set.

However, for directed graphs the situation is different as the next theorem shows. The upper
bound in the theorem is proved in [NT05]. The new part is the lower bound.

Theorem 4.2.

2 log3 2
︸ ︷︷ ︸

>1.26

log2 k ≤ qc(reachα=k) ≤ k + 3.

9



The theorem shows that qc(reachα=k) is neither infinity nor is it log2 k+O(1). In the rest
of the present section the lower bound from this theorem is proved.

4.1 Outline of the Proof of the Lower Bound

Our aim for the rest of this section is to show

qc(reachα=k) ≥ 4 + 2 log3 2 log2 k = 4 + 2 log3 k

for k = 3x. The proof is based on an induction on k (more precisely on x).

1. We first prove the claim for k = 1. For this we construct two directed graphs G1 and Ḡ1

such that

(a) There is a path from s to t in G1.

(b) There is no path from s to t in Ḡ1.

(c) Both graphs have independence number 1.

(d) Player II has a 3-round winning strategy for these graphs.

Once we have constructed graphs with these properties, we know qc(reachα=1) > 3. For
k = 1 this is exactly the claim.

2. In the inductive step from k = 3x to k′ = 3k = 3x+1 we construct two new graphs G3k

and Ḡ3k based the graphs Gk and Ḡk. The new graphs will have the following properties:

(a) There is a path from s to t in G3k.

(b) There is no path from s to t in Ḡ3k.

(c) Both graphs have independence number 3k.

(d) Player II has a winning strategy for these graphs that lasts two rounds longer than
the winning strategy for the graphs Gk and Ḡk.

4.2 Start of the Induction: The Special Case of Tournaments

Our first task is to prove the claim for α = 1. As stated before, we must construct two graphs G1

and Ḡ1 such that player II has a 3-round winning strategy. Graphs with independence number 1
are also known as tournaments. (To be precise, directed graphs with α(G) = 1 are called
semicomplete. A tournament is a semicomplete graph whose edge relation is antisymmetric and
antireflexive.)

The main problem with the construction of the two tournaments is that we cannot use Hanf’s
theorem to show that player II has a winning strategy: For a 3-round game, Hanf’s theorem
asks us to count the number of isomorphism types of spheres of radius 8 in the Gaifman graph of
these tournaments. However, the Gaifman graph of a tournament is a clique and, hence, spheres
even of radius 1 always encompass the whole tournament. Thus, Hanf’s theorem essentially asks
us to compare the isomorphism types of the whole tournaments—and these isomorphism types
must be different since in one tournament there is a path from s to t and in the other one
there is none. Thus, we cannot apply Hanf’s theorem, even if we try to make the tournaments

arbitrarily large.
This leaves us with the challenge of constructing two (preferably small) tournaments G and

Ḡ and directly proving that player II has a 3-round winning strategy. The tournaments cannot
be arbitrarily small since we can express reachability in 8 steps using 3 nested quantifiers, which
shows that the minimum size of the tournaments must be 10.

10



G1 : s 1 2 3 4 15 16 17 18 t
5

6

7

8

9 10

11

12

13

14

Ḡ1 : s 1 2 3 4 15 16 17 18 t
5

6

7

8

9 10

11

12

13

14

Figure 1: The tournaments G1 and Ḡ1. For clarity, most edges are not shown. For any vertices
that are not connected by an edge in the figure, the missing edge “points left.” For example,
there is an edge from vertex 8 to vertex 4 in both graphs since vertex 4 is more to the left than
vertex 8. In the upper tournament there is a path from s to t, but in the lower there is not.
Player II wins a depth 3 Ehrenfeucht–Fräıssé game on these tournaments.

Theorem 4.3. Player II has a depth 3 winning strategy for the tournaments G1 and Ḡ1 from

Figure 1.

Proof. The strategy of player II for the tournaments G1 and Ḡ1 is hard to describe verbally.
Most of the time, player II either duplicates the moves of player I identically or player II
“mirrors” the two pentagons. However, there are many (hundreds) of cases when player II has
to do an unintuitive special move at the end to ensure that the induced graphs are isomorphic.

Because of this, a computer program was used to verify that player II does, indeed, have
a winning strategy for the first three rounds. The program did an exhaustive search over all
possibly strategies of player I and verified that player II always wins.

Corollary 4.4. qc(reachα=1) > 3.

Corollary 4.5. qc(reachα=1) = 4 = α+ 3.

4.3 The Inductive Step

Our next task is to prove the inductive step. Recall from the proof outline that our aim is to
prove the following theorem:

Theorem 4.6. Let Gk and Ḡk be graphs with independence number k. Let Gk ∈ reach and

Ḡk /∈ reach and let player II have a winning strategy for an r-round Ehrenfeucht–Fräıssé game

on these graphs. Then there exist graphs G3k and Ḡ3k such that

1. There is a path from s to t in G3k.

2. There is no path from s to t in Ḡ3k.

3. Both graphs have independence number 3k.

4. Player II has a winning strategy for an (r + 2)-round Ehrenfeucht–Fräıssé game on these

graphs.

11



R : Gk Gk Gk
. . . Gk Gk Gk

. . . Gk Gk Gk

R̄ : Gk Gk Gk
. . . Gk Ḡk Gk

. . . Gk Gk Gk

Figure 2: The row gadgets R and R̄. There are l copies of Gk in each of the graphs, referred

to as G1
k to Gl

k, except that the middle copy G
l/2
k in R̄ is replaced by Ḡk. The edges from one

copy to the next represent a single edge from the target of one copy to the source of the next
copy. Between any two different copies all vertices are connected by edges pointing left.

Once we have proved this theorem, we can conclude that for k = 3x we have

qc(reachα=k) ≥ 4 + 2x = 4 + 2 log3 k.

Proof. The graphs G3k and Ḡ3k are made up from a number of gadgets, whose construction is
described in the following. For each gadget we first describe its construction and then prove
some basic properties about it.

The Basic Row Gadget. The first gadget, called the row gadget R, is a long row of copies
of Gk. In detail, the row gadget R is a graph with a source vertex s and a target vertex t that
contains a large number G1

k, G
2
k, . . . , Gl

k of copies of Gk. The exact number l of copies is not
important as long as there are “enough” copies, but at the end of the proof we will see that
l = 2r+4 suffices. In particular, this choice ensures that the condition r < log2 l − 3 holds.

The copies are connected as follows: We add a directed edge from the target of G1
k to the

source of G2
k. Next, there is an edge from the target of G2

k to the source of G3
k; and so on.

The source s of R is the source of G1
k, the target t of R is the target of Gl

k. In addition to all
these edges we add “backward edges” from all copies to all previous copies. Thus, for any two
vertices u in Gi

k and v in Gj
k, where i < j, we add an edge from v to u.

We make the following claims about R:

1. There is a path from s to t in R.

2. The independence number of R is at most k.

The first claim is easy to prove: The path from s to t simply passes through all Gi
k, each of

which is an element of reach be assumption and each of which is connected to the next copy.
For the second claim, just note that an independent set in R cannot contain vertices from two
different copies since any two such vertices are connected by an edge. Thus, the independence
number of R is the same as the independence number of Gk.

The Distance Hiding Strategy. For our next claim, consider an Ehrenfeucht–Fräıssé games
played on two copies of R. Player II trivially has a winning strategy for this game, no matter
how long we play. Now consider the same situation, but assume that one pebble pair has already
been placed: In the first R there is a pebble on some vertex v of Gk in copy number l/2 of Gk.
In the second R there is a pebble of the same color on the same vertex v of Gk but in copy
number l/2 + 1. In this situation player I must have a winning strategy for a sufficiently large
number of rounds since the two pebbles are at different distances from both s and t. However,
we claim that player II can cheat about the distance for a certain number of rounds:

3. Suppose there is a pebble in the first R on some vertex v of Gk in copy number l/2 of Gk

and in the second R there is a pebble of the same color on the same vertex v of Gk but in

12



copy number l/2+1. Then player II has a winning strategy for a game played for log2 l−2
rounds on these prepebbled graphs.

The strategy of player II might be called the “distance hiding strategy.” It is a slight general-
ization of a well-known strategy that is used to show that reachability in 2r steps really needs
r quantifiers: The basic observation is that when we have r pebbles available, distances greater
than 2r are indistinguishable from infinity.

In detail, the distance hiding strategy works as follows: In round s, let p−1, p0, p1, . . . ,
ps be the vertices of the pebbles placed on the first R and let q−1, q0, q1, . . . , qs denote the
corresponding vertices of the pebbles placed in the other R. The pebbles p−1 and q−1 are
special; they are fixed to lie on the sources of the two R. Similarly, the pebbles p0 and q0 are
fixed to lie on the targets. The pebbles p1 and q1 are the two pebbles for which we know that
one lies in the “middle” copy of Gk and the copy next to this copy.

Each pebble lies in some copy of Gk. Let pi lie in copy p̂i and, likewise, let qi lie in q̂i.
The objective of player II is to maintain the following invariants: First, a pebble pi and the
corresponding pebble qi may lie in different copies of Gk, but inside the two copies they lie on
the same vertex of Gk. Second, for all pebble pairs (pi, pj) in the first R and the corresponding
pair (qi, qj) in the second R, the differences p̂i − p̂j and q̂i − q̂j are

• the same or

• their absolute values are both larger than 2(log2 l−2)−s.

In order to maintain the invariant, player II plays as follows: Whenever player I places a
pebble in the first R (the other case is symmetric) on some vertex ps+1 in copy p̂s+1 of Gk,
player II places qs+1 on the same vertex inside copy number q̂s+1 of Gk. It remains to explain
how q̂s+1 is chosen. To determine this number, player II finds the number p̂i that is closest to
p̂s+1 and chooses q̂s+1 such that it has the same distance to q̂i. Formally, q̂s+1 = q̂i + p̂s+1 − p̂i.

It is now easy to see, see for example [Imm98, page 97] or [EF91, page 23] for a detailed
proofs, that player II can maintain the invariants for log2 l − 2 rounds.

The Row Gadget Pair. Based on the construction of the gadget R, we can define a new
gadget R̄ as follows: the gadget R̄ is identical to the gadget R, except that the middle copy

G
l/2
k of Gk in R is replaced by a copy of Ḡk in R̄. The following claims concerning R̄ follow

easily from the definitions:

4. There is no path from s to t in R̄.

5. The independence number of R̄ is at most k.

We can now ask how many rounds player II will win an Ehrenfeucht–Fräıssé games played
on R and R̄. A simple strategy for player II is to play as follows: Whenever player I places
a pebble pi on any of the copies of Gk except for the middle one, place the pebble qi at the
exact same position in R̄; and vice versa. However, when player I places a pebble on the middle
copy of R or R̄, answer with a pebble in the middle copy of Gk in R̄ or R chosen according to

player II’s winning strategy for the graphs Gk and Ḡk. Clearly, this ensures that player II has
an r-round winning strategy for R and R̄:

6. Player II has an r-round winning strategy for R and R̄.

13



A Strategy for the Row Gadget Pair. For our next claim, we once more consider the
“prepebbled game” played on R and R̄.

7. Suppose there is a pebble in the middle copy G
l/2
k of R and a pebble of the same color

in R̄ at the same position inside Gk, but not in the middle copy of Gk (which has been

replaced by Ḡk), but rather in the copy G
l/2+1
k . Then player II has a winning strategy for

a game of r rounds played on these prepebbled graphs, provided r < log2 l − 2.

The claim is shown by combining the distance hiding strategy and the winning strategy for Gk

and Ḡk: Whenever player I has placed a new pebble, player II uses the distance hiding strategy
to determine the copy Gk into which she should place her pebble in answer. This results in the
numbers p̂s+1 and q̂s+1 of copies of Gk or, possibly, Ḡk. One is the number of the copy where
player I has placed his pebble, the other is the number where player II will place her pebble in
answer. Player II must now decide where to place her pebble inside the copy of Gk or Ḡk. If
the copies number p̂s+1 and q̂s+1 are both “normal” copies, then player II just places her pebble
in the same way as player I did. However, if q̂s+1 happens to be the number of the copy that
was replaced by Ḡk, then player II places her pebble according to the winning strategy for Gk

and Ḡk.

The Fork Gadget Pair. We are now ready to introduce a new pair F and F̄ of gadgets.
These fork gadgets are defined as follows: F consists of two disjoint copies of R̄ and a copy of
R. Let us call the first two copies the first two rows, the third, different, copy is the third row.
The sources of all three copies are merged and the targets are also merged. No other edges are
added. The gadget F̄ is constructed in a similar way, only this time three copies of R̄ are used
instead of two copies of R̄ and a single copy of R. We also call these copies the three rows of
R̄. We make the following claims about the gadget pair:

8. There is a path from s to t in F , but no path in F̄ .

9. The independence numbers of F and of F̄ are 3k.

To see that these claims hold, first note that there is, indeed, a path from s to t in F : We just
go through the copy of R inside F . On the other hand, there is not path in F̄ since there is
no path from s to t in any of the R̄. The independence number of both F and F̄ are 3k since
picking any 3k + 1 vertices from F or F̄ will cause k + 1 vertices to be picked from the same
copy of R or R̄. Since the independence numbers of these graphs are k, neither they nor the
original 3k + 1 vertices can be independent.

Strategies for the Fork Gadget Pair. As before, we show that player II has a winning
strategy in a certain prepebbled game:

10. Suppose there is a pebble in F ’s first row and a pebble of the same color at the same
position in F̄ . Then player II has a winning strategy for a game of r + 1 rounds played
on these prepebbled graphs, provided r < log2 l − 2.

To prove this claim, we consider the different places where player I can place his pebble in the
first of the r + 1 rounds. We go over them one-by-one:

• Player I places the first pebble (of the r + 1 pebbles) on a vertex anywhere in the first

two rows of F or F̄ or in the third row of F or F̄ , but not in the critical middle copy G
l/2
k

of Gk. Player II responds by placing her on the same vertex in the other graph.

14



F : s

R̄

R̄

R

t

F̄ : s

R̄

R̄

R̄

t

Figure 3: The fork gadgets F and F̄ . The sources of the row gadgets have been merged into
the single vertex s and the targets are also merged into the single vertex t.

The situation we now face is that the graphs F and F̄ are pebbled identically and there
are no pebbles in the critical copy of Gk where F and F̄ differ.

The winning strategy of player II for the remaining r rounds can now be assembled from
individual the winning strategies for each row. For the first two rows player II’s winning
strategy is the trivial duplication strategy since these rows are identical in both graphs.
For the third rows of F and F̄ , player II also plays a trivial duplication strategy, except

when some (or all) of the r pebbles are placed in the middle copy G
l/2
k of Gk. Here we do

the same as we did in the strategy from claim 6: We play according to player II’s winning
strategy on Gk and Ḡk.

• Player I places his first pebble (of the r + 1 pebbles) on a vertex in critical copy of Ḡk in
the third row of F̄ . In this case, player II mentally changes what she considers to be the
“second” row and what is the “third” row of F̄ . This change is, indeed, just a “mental”
change since all rows of F̄ are identical and we can label them in whatever way we like.
After the change, player II faces the same situation as above, namely where player I has
just placed a pebble in the second row, and player II can answer as above.

• Player I places his first pebble on a vertex of the critical copy G
l/2
k of Gk in the third row

of F . Player II responds by placing a pebble on the following vertex of F̄ : This vertex is

located in the third row in copy G
l/2+1
k of Gk (and not in copy G

l/2
k since this has been

replaced by Ḡk). The position inside G
l/2+1
k chosen by player II is the same as the position

of player I’s pebble inside G
l/2
k .

Player II’s winning strategy can now be assembled as follows: For the first two rows player
II can uses the trivial duplication strategy. For the third row player II uses the strategy
from claim 7.

A useful corollary of claim 11 is the following observation:

11. Player II has a winning strategy for a game of r+ 1 rounds played on F and F̄ , provided
r < log2 l − 2.

The Final Graphs. We now have all the basic building blocks to assemble the final graphs
G3k and Ḡ3k. They are constructed similarly to the row gadgets, only we now use F and F̄

15



G3k : F F F . . . F F F . . . F F F

Ḡ3k : F F F . . . F F̄ F . . . F F F

Figure 4: The final graphs G3k and Ḡ3k. The situation is the same as in Figure 2, only Gk is
replaced by F .

as building blocks instead of Gk and Ḡk. In detail, G3k consists of l copies F 1, F 2, . . . , F l

of F . The target of each F i is connected to the next F i+1 and we add “backward edges,” which
leading from every vertex in every F i to every vertex in every F j with j < i. The graph Ḡ3k is
constructed in the same way, only for the middle copy F l/2 of F we use F̄ instead of F .

It remains to prove three claims to complete the proof of the theorem.

12. There is path from s to t in G3k, but there is no such path in Ḡ3k.

Inside G3k we can get from s to t by following the paths through each F . Such a path exists
in each F by claim 8. However, there is no way “to get through” the middle copy of F̄ inside
Ḡ3k, see claim 8 once more.

13. The graphs G3k and Ḡ3k have independence number 3k.

Consider an independent set. All vertices of this set must have been chosen from the same copy
of F or F̄ since vertices from different copies are always connected by an edge. However, since
both F and F̄ have independence number 3k by claim 9, the independent set can have size at
most 3k.

14. Player II has an (r+ 2)-round winning strategy for G3k and Ḡ3k, provided r < log2 l− 3.

To prove this final claim, we consider what player I might do with his first pebble:

• Player I places the first pebble anywhere inside G3k or Ḡ3k, but not in the critical middle
copies. Player II answers by placing a pebble on the same vertex in the other graph.

The winning strategy for player II for the remaining r+1 rounds works as follows: Pebbles
placed anywhere but on the critical copies of F and F̄ are answered identically in the other
graph. For pebbles placed on the two critical copies of F and F̄ , we use the strategy of
claim 11.

• Player I places the first pebble inside G3k and, there, inside the critical copy F l/2 of F .
Player II responds by placing her pebble on the vertex of Ḡ3k that is at the same position
inside F , but in copy F l/2+1, not in the (replaced) copy F l/2.

For the remaining r+ 1 rounds player II plays according to a combination of the distance
hiding strategy and the strategy from claim 11. More precisely, the argument is now
exactly the same as the one we used in the proof of claim 7, only Gk is replaced by F
and Ḡk is replaced by F̄ and player II plays the distance hiding strategy for r+ 1 rounds
instead of r rounds. Since r + 1 < log2 k − 2 by assumption, player II will succeed in
hiding the distance to the source and target for r + 1 rounds.

• Player I places the first pebble inside the critical middle copy of F̄ inside Ḡ3k. If the
pebble has not been placed in the first row of F̄ , as in the proof of claim 10 player II
exchanges the roles of the row the pebble is in and the first row. Thus, we may assume
that the pebble has been placed in the first row of F̄ . Player II then places her pebble on
the same vertex in G3k, that is, in the first row of the middle copy of F .

16



The winning strategy for player II for the remaining r+1 rounds works as follows: When-
ever player I places pebbles outside of the critical copies, player II uses the trivial dupli-
cation strategy. When player I places a pebble inside the critical copies, player II uses the
strategy from claim 10.

To get the claim of the theorem, we invoke claim 14 for l = 2r+4.

5 Conclusion

The first-order quantifier complexity of the reachability problems for graphs is related to many
natural graph parameters. Typically, the first-order quantifier complexity of the reachability
problem restricted to the class of graphs for which some graph parameter has a certain value k
is either 0 or log2 k ±O(1) or ∞. This is true both in the finite and in the infinite, both in the
directed and in the undirected case.

In the present paper one exception to this rule was presented: the graph parameter α. For
finite directed graphs we showed that the first-order quantifier complexity of the reachability
problem is somewhere between 1.26 log2 k and k+3 and, thus, neither of the form log2 k+O(1)
nor ∞.

An obvious remaining open problem is finding a way to narrow this gap. We can both try
to raise the lower bound and also to lower the upper bound. For α = 1, 2, 3 the lower and upper
bounds do already match, which suggests that the following conjecture is true:

Conjecture 5.1. qc(reachα=k) = k + 3.

Another open problem is finding another “interesting” graph parameter. A candidate for
such a parameter is the spectral gap of a graph. This parameter is related to the distance in a
non-trivial way and it is possible to prove non-trivial upper bounds on the first-order quantifier
complexity of the reachability problem as a function of the spectral gap. Finding a matching
lower bound appears to be a challenging problem.

References

[Die97] Reinhard Diestel. Graph Theory. Springer-Verlag, 1997.

[EF91] Heinz-Dieter Ebbeinhaus and Jörg Flum. Finite Model Theory. Springer-Verlag, 1991.

[Ehr61] Andrzej Ehrenfeucht. An application of games to the completeness problem for for-
malized theories. Fundamenta Mathematicae, 49:129–141, 1961.

[Fra54] R. Fräıssé. Sur quelques classifications des systèmes de relations. Publ. Sci. Univ.

Alger. Sér. A, 1:35–182, 1954.

[Han65] W. Hanf. Model-theoretic methods in the study of elementary logic. In J. Addi-
son, L. Henkin, and A. Tarski, editors, The Theory of Models, pages 132–145. North
Holland, 1965.

[Imm98] Neil Immerman. Descriptive Complexity. Springer-Verlag, 1998.

[NT05] Arfst Nickelsen and Till Tantau. The complexity of finding paths in graphs with
bounded independence number. SIAM Journal on Computing, 34(5):1176–1195, 2005.

17

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



