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Abstract

This paper surveys some of the work that was inspired by Wagner’s general technique to

prove completeness in the levels of the boolean hierarchy over NP and some related results.

In particular, we show that it is DP-complete to decide whether or not a given graph can be

colored with exactly four colors, where DP is the second level of the boolean hierarchy. This

result solves a question raised by Wagner in 1987, and its proof uses a clever reduction due to

Guruswami and Khanna. Another result covered is due to Cai and Meyer: The graph minimal

uncolorability problem is also DP-complete. Finally, similar results on various versions of the

exact domatic number problem are discussed.
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1 Introduction, Historical Notes, and Definitions

This paper surveys completeness results in the levels of the boolean hierarchy over NP, with a
special focus on Wagner’s work [Wag87]. His general technique for proving completeness in the
boolean hierarchy levels—as well as in other classes such as PNP

|| , the class of problems solvable
via parallel access to NP—inspired much of the recent results in this area. Quoting Papadimitriou,
the boolean hierarchy is “somewhat sparse in natural complete sets” (see p. 434 of [Pap95]). This
statement certainly is true—in particular, if the number of natural problems complete in higher
boolean hierarchy levels is set off against the number of natural NP-complete problems. However,
even the higher levels of the boolean hierarchy do contain very natural, beautiful complete problems,
and since there are only few of them known, we should seek to find more. This line of research has
been intensely pursued since the late 1980s, and much work has been done in a number of recent
papers. The purpose of the present survey is to give an overview of this progress of results.

But first, let us look back a bit further and start with the beginning. In the 1970s, Meyer
and Stockmeyer [MS72, Sto77] noted that the minimum equivalent expression problem for boolean
formulas in disjunctive normal form (DNF, for short), which is defined by

MEE-DNF =







〈ϕ, k〉
ϕ is a boolean formula in DNF, k ≥ 0, and
there exists a boolean formula ψ with at
most k literals such that ψ is equivalent to ϕ







,

is coNP-hard but seems to be not coNP-complete. Motivated by this observation, they introduced
the polynomial hierarchy in order to capture the complexity of problems that appear to be beyond
NP and coNP.

Definition 1 (Polynomial Hierarchy) The polynomial hierarchy is inductively defined by:

• ∆p
0 = Σp

0 = Πp
0 = P,

• for i ≥ 0, ∆p
i+1 = PΣp

i ,Σp
i+1 = NPΣp

i , and Πp
i+1 = coΣp

i+1, and

• PH =
⋃

k≥0 Σp
k.

Meyer and Stockmeyer observed that MEE-DNF is contained in Σp
2 = NPNP, but left open the

question of whether or not it is Σp
2-complete.

In this paper, all hardness and completeness results are with respect to the polynomial-time
many-one reducibility, denoted by ≤p

m : For sets A and B, we write A≤p
mB if and only if there is

a polynomial-time computable function f such that for each x ∈ Σ∗, x ∈ A if and only if f(x) ∈ B.
A set B is said to be C-hard for a complexity class C if and only if A≤p

mB for each A ∈ C. A set B
is said to be C-complete if and only if B is C-hard and B ∈ C.

Figure 1 shows the inclusion structure of the polynomial hierarchy.
Papadimitriou and Zachos [PZ83] introduced PNP[O(log n)], the class of problems solvable by

O(log n) sequential Turing queries to NP. Köbler, Schöning, and Wagner [KSW87] and, indepen-

dently, Hemaspaandra [Hem87] proved that PNP[O(log n)] equals PNP
|| , the class of problems solvable

by parallel (a.k.a. truth-table) access to NP. Wagner [Wag90] provided about half a dozen other char-
acterizations of this class, and he introduced the notation Θp

2 for it. By definition, NP ⊆ Θp
2 ⊆ ∆p

2.
It is known that if NP contains some problem that is hard for Θp

2, then the polynomial hierarchy
collapses to NP, see Meyer and Stockmeyer [MS72, Sto77]. The class Θp

2 is also closely related to
the question of whether NP has sparse Turing-hard sets [Kad89], and to various other topics; see,

e.g., [LS95, Kre88, HW91]. Wagner also introduced the classes Θp
i = PΣp

i−1
[O(log)] for each i ≥ 1, as

a straightforward generalization of Θp
2 to higher levels of the polynomial hierarchy.
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Figure 1: The polynomial hierarchy

In the 1980s, Papadimitriou and Yannakakis [PY84] noted that certain NP-hard and coNP-hard
problems seem to be not complete for NP or coNP:

• Exact problems such as Exact-4-Colorability: Given a graph, is it true that it can be legally
colored with exactly four colors? (See Definition 3 below.)

• Critical Problems such as Minimal-3-Uncolorability: Given a graph, is it true that it is
not 3-colorable, yet deleting any of its vertices makes it 3-colorable? (See Definition 10 in
Section 4.)

• Unique solution problems such as Unique-SAT: Given a boolean formula, is it true that it has
exactly one satisfying assignment?

Motivated by this observation, they introduced the class of differences of NP sets:

DP = {A−B | A,B ∈ NP}.

2



All the above problems are in DP.
The complexity of colorability problems has been studied intensely, see, e.g., [AH77a, AH77b,

Sto73, GJS76, Wag87, KV91, Rot00, GRW01a, GRW01b, Rot03].

Definition 2 (Colorability Problem) For any graph G, χ(G) is the chromatic number of G,
i.e., the smallest number of colors needed to legally color G. For each k, define

k-Colorability = {G |G is a graph with χ(G) ≤ k}.

The problem 2-Colorability is contained in P, yet 3-Colorability is NP-complete, see Stock-
meyer [Sto73]. We now define the exact versions of colorability problems.

Definition 3 (Exact Colorability Problems) Let Mk be a set that consists of k noncontigu-
ous integers, and let t be a positive integer. Define

Exact-Mk-Colorability = {G |G is a graph with χ(G) ∈Mk},

Exact-t-Colorability = {G |G is a graph with χ(G) = t}.

Merging, unifying, and expanding the results that originally were obtained independently by Cai
and Hemaspaandra [CH86] and by Gundermann, Wagner, and Wechsung [Wec85, GW87], Cai et
al. [CGH+88, CGH+89] generalized DP by introducing the boolean hierarchy over NP. To define
this hierarchy, we use the symbols ∧ and ∨, respectively, to denote the complex intersection and the
complex union of set classes:

C ∧ D = {A ∩B | A ∈ C and B ∈ D};

C ∨ D = {A ∪B | A ∈ C and B ∈ D}.

Definition 4 (Boolean Hierarchy over NP) The boolean hierarchy over NP is inductively
defined by:

BH0(NP) = P, BH1(NP) = NP, BH2(NP) = NP ∧ coNP = DP,

BHk(NP) = BHk−2(NP) ∨ BH2(NP) for k ≥ 3, and

BH(NP) =
⋃

k≥1

BHk(NP).

Figure 2 illustrates the inclusion structure of the boolean hierarchy over NP. Note further that
it is BH(NP) ⊆ Θp

2 ⊆ ∆p
2 ⊆ Σp

2 ⊆ PH. Kadin [Kad88] was the first to show that a collapse of the
boolean hierarchy implies a collapse of the polynomial hierarchy.

Theorem 5 (Kadin) If BHk(NP) = coBHk(NP) for some k ≥ 1, then the polynomial hierarchy
collapses down to its third level: PH = Σp

3 ∩ Πp
3.

The collapse consequence of Theorem 5 has been strenghtened later on; see the survey by Hemas-
paandra, Hemaspaandra, and Hempel [HHH98].

2 Some Results Obtained by Wagner’s Technique

Wagner [Wag87] established conditions sufficient to prove hardness for Θp
2 and for the levels of the

boolean hierarchy over NP. We first state his sufficient condition for proving Θp
2-hardness.
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P = BH0(NP)

coNP = coBH1(NP)

coDP = coBH2(NP)

coBH3(NP) BH3(NP)

BH2(NP) = DP

BH1(NP) = NP

...
...

Θp

2 = PNP[O(log)]

BH(NP) = PNP[O(1)]

Figure 2: The boolean hierarchy over NP

Lemma 6 (Wagner) Let A be some NP-complete set, and let B be any set. If for all ϕ1, . . . , ϕk

in Σ∗ with (∀j : 1 ≤ j < k) [ϕj+1 ∈ A =⇒ ϕj ∈ A] there exists a polynomial-time computable
function g such that

||{i | ϕi ∈ A}|| is odd ⇐⇒ g(ϕ1, . . . , ϕk) ∈ B, (2.1)

then B is Θp
2-hard.

Using Lemma 6, Wagner proved dozens of problems Θp
2-complete, including the following variants

of the colorability problem:

Colorodd = {G |G is a graph such that χ(G) is odd},

Colorequ = {〈G,H〉 |G and H are graphs with χ(G) = χ(H)},

Colorleq = {〈G,H〉 |G and H are graphs with χ(G) ≤ χ(H)}.

Wagner’s technique has been applied to prove further natural problems, which arise in a va-
riety of contexts, Θp

2-hard or even Θp
2-complete. For example, Lemma 6 was useful in deter-

mining the complexity of the winner problem for certain voting systems, including Carroll elec-
tions [HHR97a], Young elections [RSV03], and Kemeny elections [HSV05]. For more background on
computational politics, see Hemaspaandra and Hemaspaandra’s excellent survey [HH00] and, e.g.,
[BTT89a, BTT89b, BTT92, CS02a, CS02b, CLS03, HHR05].

Wagner’s technique was also useful for showing that recognizing those graphs for which certain
efficient approximation heuristics for the independent set and the vertex cover problem do well
is Θp

2-complete [HR98, HRS06]; see also the survey [HHR97b]. Moreover, Lemma 6 is the key
lemma for raising the trivial coNP-hardness of MEE-DNF to Θp

2-hardness, see Hemaspaandra and
Wechsung [HW02].1

1Note that Umans [Uma98] proved this problem even Σp

2
-complete using a different technique. On the other hand,

if the restriction to DNF formulas in the definiton of MEE-DNF is being dropped, one obtains the problem MEE, which
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In what follows, we focus on completeness for exact colorability, minimal uncolorability, and
exact domatic number problems in the even levels of the boolean hierarchy. The following lemma,
which is also due to Wagner [Wag87], is the key lemma to establish most of these results.

Lemma 7 (Wagner) Let A be some NP-complete set, let B be any set, and let k ≥ 1 be fixed.
If there exists a polynomial-time computable function g such that for all ϕ1, . . . , ϕ2k in Σ∗ with
(∀j : 1 ≤ j < 2k) [ϕj+1 ∈ A =⇒ ϕj ∈ A] it holds that

||{i | ϕi ∈ A}|| is odd ⇐⇒ g(ϕ1, . . . , ϕ2k) ∈ B, (2.2)

then B is BH2k(NP)-hard.

3 Exact Colorability Problems

In this section, we turn to the exact colorability problems defined in Definition 3. Using Lemma 7,
Wagner [Wag87] proved the following result.

Theorem 8 (Wagner) The problem Exact-Mk-Colorability is BH2k(NP)-complete for the
set Mk = {6k + 1, 6k + 3, . . . , 8k − 1}. In particular, for k = 1, it is DP-complete to determine
whether or not χ(G) = 7.

Wagner [Wag87] raised the following questions: How small can the numbers in a k-element setMk

be chosen so as to ensure that Exact-Mk-Colorability still is BH2k(NP)-complete? In particular,
for k = 1, is it DP-complete to determine whether or not χ(G) = 4? That is, for which threshold
t ∈ {4, 5, 6, 7} exactly does Exact-t-Colorability jump from NP to DP-complete?

These questions have been answered recently, see Rothe [Rot03]. Note that Exact-3-Colorability
is in NP and thus cannot be DP-complete, unless the boolean hierarchy over NP (and, by Theorem 5,
the polynomial hierarchy as well) collapses.

Theorem 9 (Rothe) The problem Exact-Mk-Colorability is BH2k(NP)-complete for the
set Mk = {3k + 1, 3k + 3, . . . , 5k − 1}. In particular, for k = 1, it is DP-complete to determine
whether or not χ(G) = 4.

A proof sketch for Theorem 9 is presented in the remainder of this section. Crucially, this proof
uses:

• Wagner’s tool for proving BH2k(NP)-hardness stated as Lemma 7 above,

• the standard reduction f from 3-SAT to 3-Colorability satisfying

ϕ ∈ 3-SAT =⇒ χ(f(ϕ)) = 3, (3.3)

ϕ 6∈ 3-SAT =⇒ χ(f(ϕ)) = 4, (3.4)

• and Guruswami and Khanna’s reduction g from 3-SAT to 3-Colorability satisfying

ϕ ∈ 3-SAT =⇒ χ(g(ϕ)) = 3, (3.5)

ϕ 6∈ 3-SAT =⇒ χ(g(ϕ)) = 5. (3.6)

trivially is in Σp

2
and which is known to be Θp

2
-hard by Hemaspaandra and Wechsung’s result [HW97]. The precise

complexity of MEE is still unknown.
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Among the above three items, the Guruswami–Khanna reduction is the technically most chal-
lenging one. Originally, Guruswami and Khanna’s seminal result is not motivated by the issue of
proving the hardness of exact colorability. Rather, it was motivated by issues related to the hardness
of approximating the chromatic number of 3-colorable graphs. Intuitively, their result says that it
is NP-hard to 4-color a 3-colorable graph. This result had been obtained earlier on by Khanna,
Linial, and Safra [KLS00] using the PCP theorem, which is due to Arora, Lund, Motwani, Sudan,
and Szegedy [ALM+98]. Guruswami and Khanna [GK00] gave a novel proof of this result, which
does not rely on the PCP theorem. Their direct transformation in fact consists of the following two
subsequent reductions:

3-SAT≤p
m IS≤p

m 3-Colorability,

where IS is the independent set problem: Given a graph G and a positive integer k, does G have an
independent set of size at least k, i.e., a subset I of G’s vertex set with ||I|| ≥ k such that there is
no edge between any pair of vertices in I.

y

x

z

z ¬x
¬y x

¬z

y

x z
¬y

Figure 3: Graph G in the reduction 3-SAT≤p
m IS

Figure 3 shows the standard reduction 3-SAT≤p
m IS, for the specific formula

ϕ(x, y, z) = (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z).

Clauses in the formula correspond to triangles in the graph constructed, and corners of two
distinct triangles are connected by an edge if and only if they correspond to some literal and its
negation. Suppose the given formula has m clauses, and denote the corresponding m triangles in G
by T1, T2, . . . , Tm. To each Ti in G, there corresponds a tree-like structure Si as shown in Figure 4:

ti,1

ti,3ti,2

ri

si

Figure 4: Tree-like structure Si in the Guruswami–Khanna reduction

The three “leaves” ti,1, ti,2, and ti,3 in Si correspond to the three corners of the triangle Ti.
Every “vertex” of Si has the form of the basic template, which is a 3× 3 grid such that the vertices
in each row and column induce a 3-clique as shown in Figure 5: The “ground vertices” in the first
column of any such basic template in fact are shared among all basic templates in each of the tree-like
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1

2

3

Figure 5: Basic template in the Guruswami–Khanna reduction

structures. Since these ground vertices form a 3-clique, every legal coloring assigns three distinct
colors to them, say 1, 2, and 3.

Figure 6 shows the connection pattern between the “vertices” ri, ti,1, and si of Si and two
additional triangles. An analogous pattern applies to si, ti,2, and ti,3. Every vertex of the templates
and the triangles is labeled by a triple of colors, and the vertices are connected according to the
following simple rule: Two vertices are adjacent if and only if their labels differ in each coordinate.

(111) (223) (332)

(222) (331) (113)

(333) (112) (221)

(111) (233) (322)

(222) (311) (133)

(333) (122) (211)

(111) (323) (232)

(222) (131) (313)

(333) (212) (121)

(123)

(312) (231) (213) (321)

(132)

ri

siti,1

Figure 6: Connection pattern between the templates of a tree-like structure

A “vertex” in some Si is said to be selected (with respect to some coloring) if and only if at least
one of the three rows in its basic template receives colors that form an even permutation of {1, 2, 3}.
That is, a “vertex” is selected if and only if

• the first row has colors 1, 2, 3 from left to right, or

• the second row has colors 2, 3, 1 from left to right, or

• the third row has colors 3, 1, 2 from left to right.

Clearly, for each legal 4-coloring of Si, every “vertex” is either selected or not selected. Adding
three more edges to each “vertex” ri, the selection of every 3 × 3 root grid is enforced, as is shown
in Figure 7. From the way the grids are connected, it follows that for any legal 4-coloring, selection
of an internal “vertex” is propagated to at least one of its children. Therefore at least one of the
“leaves” ti,1, ti,2, and ti,3 must be selected as well. Additionally, it can be shown that for each
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“leaf” ti,j , 1 ≤ j ≤ 3, in a tree-structure Si, there exists a legal 3-coloring of the vertices of Si,
where ti,j is the only “leaf” selected; see Properties (a) and (b) stated below.

1

2

3

Figure 7: The root grid altered such that selection is enforced

The intuition of how to connect Si and Sj , for distinct i and j, is as follows. For each pair of
“vertices,” ti,k and tj,`, that are adjacent in graphG, appropriate gadgets are inserted to prevent that
both these “leaves” are selected simultaneously. (This is necessary, since otherwise any 4-coloring of
the graph constructed would imply that G has an independent set of size m.)

Figure 8: Gadget connecting two “leaves” of the same row kind

To this end, two kinds of gadgets are used, the “same row” gadget and the “different rows”
gadget. Figure 8 shows the same row gadget, which prevents that ti,k and tj,` are simultaneously
selected because of the same row. Figure 9 shows the different rows gadget, which prevents that ti,k
and tj,` are selected simultaneously because of different rows.

This completes the reduction g that transforms the formula ϕ via graph G to graph H = g(ϕ).
We omit the detailed argument of why this reduction works to prove (3.5) and (3.6), referring to
Guruswami and Khanna [GK00] instead. We merely mention that it can be shown that:

(a) For each i with 1 ≤ i ≤ m, there exists a legal 3-coloring of the vertices in Si such that exactly
one of the three “leaves” ti,1, ti,2, and ti,3 is selected.

(b) Every legal 4-coloring of Si selects at least one of ti,1, ti,2, or ti,3.

The implications (3.5) and (3.6) follow from (a) and (b).
Note that Guruswami and Khanna claimed in their conference paper [GK00] that ϕ 6∈ 3-SAT

implies 5 ≤ χ(H) ≤ 6. However, as has been observed in [Rot03], the Guruswami–Khanna reduction
even yields the stronger implication (3.6), which is needed in order to apply Wagner’s Lemma 7.
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Figure 9: Gadget connecting two “leaves” of the different rows kind

Setting A = 3-SAT, B = Exact-4-Colorability and k = 1, we are now ready to apply Lemma 7.
Given two formulas ϕ1 and ϕ2 satisfying

ϕ2 ∈ 3-SAT =⇒ ϕ1 ∈ 3-SAT, (3.7)

define the graphs H1 = g(ϕ1) and H2 = f(ϕ2), where g is the Guruswami–Khanna reduction, which
satisfies (3.5) and (3.6), and f is the standard reduction from 3-SAT to 3-Colorability, which
satisfies (3.3) and (3.4).

Let D be the disjoint union of H1 and H2. Thus,

χ(D) = max{χ(H1), χ(H2)}.

Consider the following three cases:

• If ϕ1 ∈ 3-SAT and ϕ2 ∈ 3-SAT, then χ(ϕ1) = 3 and χ(ϕ2) = 3, so χ(D) = 3.

• If ϕ1 ∈ 3-SAT and ϕ2 6∈ 3-SAT, then χ(ϕ1) = 3 and χ(ϕ2) = 4, so χ(D) = 4.

• If ϕ1 6∈ 3-SAT and ϕ2 6∈ 3-SAT, then χ(ϕ1) = 5 and χ(ϕ2) = 4, so χ(D) = 5.

By (3.7), the case distinction is complete. It follows that (2.2) is satisfied. By Lemma 7, it holds
that Exact-4-Colorability is DP-hard. Since Exact-4-Colorability is in DP, it is DP-complete.
For the k-element set Mk = {3k + 1, 3k + 3, . . . , 5k − 1}, completeness of Exact-Mk-Colorability
in BH2k(NP) is proven analogously.

4 The Graph Minimal Uncolorability Problem

This section presents a well-known and typical example of a critical graph problem. A graph G is
said to be critical if and only if by deleting any one of the vertices of G (respectively, by adding one
vertex to G), the graph gains a certain property that it did not have before the removal (respectively,
before the insertion) of this vertex. Similarly, one can define critical graph problems with respect to
adding or removing edges in such a way that a specific property of the graph is triggered. Critical
problems2 are good candidates for DP-completeness; usually, these problems are easily shown to be
contained in DP. The first example of a critical problem is given below.

2Needless to say that the class of critical problems is not restricted to graph problems but can be defined in a
broader sense. Here, however, we focus on some particularly interesting critical graph problem.
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Definition 10 (Graph Minimal Uncolorability) Minimal-k-Uncolorability is a critical
graph problem defined as follows: Given a graph G with vertex set V (G) and edge set E(G), is
it true that if G /∈ k-Colorability, but for every vertex v ∈ V (G) it holds that G − {v} is in the
set k-Colorability? Here, G−{v} denotes the induced subgraph that is obtained from G by deleting
vertex v from V (G) and all incident edges from E(G).

We are interested in the particular problem Minimal-3-Uncolorability, and we use M-3-UC as a
shorthand for this problem. The following theorem is due to Cai and Meyer [CM87]. To prove DP-
hardness of M-3-UC, they give a reduction from the problem Minimal-3-UNSAT, which was shown to
be DP-complete by Papadimitriou and Wolfe [PW88]. The Minimal-3-UNSAT problem asks, given a
boolean formula ϕ whose clauses contain exactly three literals each, is it true that ϕ is not satisfiable,
but removing any one of its clauses makes ϕ satisfiable?

Theorem 11 (Cai and Meyer) The problem M-3-UC is DP-complete.

To see that M-3-UC is in DP, consider the two sets

A = {G |G is a graph with χ(G− {v}) ≤ 3 for all vertices v ∈ V (G)} and

B = {G |G is a graph with χ(G) > 3}.

Note that A is in NP, B is in coNP, and M-3-UC = A ∩B. The remainder of this section deals with
the reduction from Minimal-3-UNSAT to M-3-UC, which preserves the critical property of the problem
instance and thus proves DP-hardness of M-3-UC.

Let the boolean formula ϕ = (X,C) with variable set X = {x1, x2, . . . , xn} and clause set
C = {c1, c2, . . . , cm} be given. Define the reduction f that maps ϕ to a graph G as follows. First,
create two distinct vertices, vc and vs, and an edge connecting them. For each variable xi, add the
two vertices xi and ¬xi representing its literals to G, and insert edges such that every pair of literal
vertices corresponding to the same variable forms a triangle with the vertex vc.

Suppose there exists a legal 3-coloring of G, and let {T,F,C} be the color set. Without loss of
generality, let vc be colored with C, and let vs be colored with T. Then, only the colors T and F
are available for any pair of literal vertices xi and ¬xi, see Figure 10. Thus, a legal 3-coloring of G
may be regarded as a truth assignment of the variables of ϕ.

FT F T

T

Cvc

vs

x1 ¬x1 xn ¬xn

clause components

Figure 10: A legal 3-coloring of vc, vs, and the literal vertices of graph G

Finally, components for the clauses of ϕ are inserted. If cj = (`j1 ∨ `j2 ∨ `j3) is any clause of C,
create a triangle with vertices tj1, tj2, and tj3. Additionally, for each literal `jk with 1 ≤ k ≤ 3 in cj ,
there are two vertices, ajk and bjk, such that ajk is adjacent to the corresponding literal vertex `jk,
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and bjk is adjacent to the triangle vertex tjk. Figure 11 shows some legally colored component for
the specific clause c1 = (¬x1 ∨ x2 ∨ ¬x3).

T
vs

F T
x1 x3

T F T F

C F F CCF

C

F

T

t12

b11 b13a13a11

t11

t13

¬x1 ¬x3

x2 ¬x2

b12a12

Figure 11: A legal 3-coloring of the clause component for c1 = (¬x1 ∨ x2 ∨ ¬x3)

Note that the triangle with the vertices tj1, tj2, and tj3 for some clause cj is legally 3-colorable if
and only if not all of the so-called “fanout” vertices bj1, bj2, and bj3 are assigned color F. Coloring
one of the fanout vertices of some clause cj with C is possible only if the literal vertices are colored
according to some truth assignment that satisfies the clause cj .

This completes the reduction f mapping the boolean formula ϕ to the graph G = f(ϕ). Figure 12
shows the graph G = f(ϕ) resulting from the specific formula

ϕ(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ x3 ∨ ¬x4).

It can be shown that ϕ is satisfiable if and only if G = f(ϕ) can be legally 3-colored. The proof is
similar to the one proving NP-hardness for 3-Colorability via the standard reduction from 3-SAT;
see, e.g., Stockmeyer, Garey, and Johnson [Sto73, GJS76, GJ79]. It remains to prove that

ϕ ∈ Minimal-3-UNSAT ⇐⇒ G ∈ Minimal-3-Uncolorability.

For the direction from left to right, it is known from the claim above that the reduction f will
transform any unsatisfiable formula ϕ into a graphG that does not have a legal 3-coloring. Analyzing
the various possibilities of removing a vertex from G (for example, some literal vertex xi or ¬xi), a
legal 3-coloring for the graph G− {v} has to be determined.

For the direction from right to left, note that G /∈ 3-Colorability implies ϕ /∈ 3-SAT. Removing
a clause cj from ϕ, the satisfiability of the resulting formula can be deduced from the 3-colorable
graph G−{tj1}. For the details of the proofs of the two claims above, we refer to the original paper
by Cai and Meyer [CM87].

The DP-completeness of Minimal-k-Uncolorability for k = 3 can easily be extended to all
values of k ≥ 3. Notice that Minimal-2-Uncolorability is in P, and thus cannot be DP-complete
unless the boolean hierarchy collapses. Cai and Meyer also showed DP-completeness of the critical
problem Minimal-3-Uncolorability when the input is restricted to planar graphs, or to graphs
with a maximum degree of five.
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Figure 12: Graph G in the reduction Minimal-3-UNSAT≤p
m M-3-UC

5 Exact Domatic Number Problems

The domatic number problem is the problem of partitioning the vertex set V (G) into a maximum
number of disjoint dominating sets. This number, denoted by δ(G), is called the domatic number
of G. The domatic number problem arises in various real-world scenarios. For example, it is
related to the tasks of distributing resources in a computer network or of locating facilities in
a communication network; see, e.g., [FHK00, RR04a] for details. The domatic number problem
and the closely related problem of finding a minimum dominating set in a given graph have been
thoroughly studied. To name just a few papers, see, e.g., [CH77, Far84, Bon85, KS94, HT98, FHK00,
RR04a, RR05, RRSY06].

Definition 12 (Domatic Number Problem) For any graph G, a dominating set of G is a
subset D ⊆ V (G) such that each vertex u ∈ V (G) −D is adjacent to some vertex v ∈ D. Let δ(G)
denote the domatic number of G, i.e., the maximum number of disjoint dominating sets. For each k,
define the problem

k-DNP = {G |G is a graph with δ(G) ≥ k}.

It is known that 3-DNP is NP-complete, whereas 2-DNP is in P; see Garey and Johnson [GJ79].
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We now define the exact versions of domatic number problems.

Definition 13 (Exact Domatic Number Problems) Let Mk be a set that consists of k non-
contiguous integers, and let t be a positive integer. Define

Exact-Mk-DNP = {G |G is a graph with δ(G) ∈Mk},

Exact-t-DNP = {G |G is a graph with δ(G) = t}.

5.1 A General Framework for Dominating Set Problems

In order to investigate exact domatic number problems, we adopt Heggernes and Telle’s general,
uniform approach to define graph problems by partitioning the vertex set of a graph into generalized
dominating sets [HT98]. These are subsets of the vertex set of a given graph, parameterized by two
sets of nonnegative integers, σ and ρ, which restrict the number of neighbors for each vertex in the
partition. Let N = {0, 1, 2, . . .} denote the set of nonnegative integers, and let N

+ = {1, 2, 3, . . .}
denote the set of positive integers.

Definition 14 (Heggernes and Telle) Let G be a given graph, let σ ⊆ N and ρ ⊆ N be given
sets, and let k ∈ N

+. Let N(v) = {w ∈ V (G) | {v, w} ∈ E(G)} be the neighborhood of any vertex v
in G.

1. A subset U ⊆ V (G) of the vertices of G is said to be a (σ, ρ)-set if and only if

• for each u ∈ U , ||N(u) ∩ U || ∈ σ, and

• for each u 6∈ U , ||N(u) ∩ U || ∈ ρ.

2. A (k, σ, ρ)-partition of G is a partition of V (G) into k pairwise disjoint subsets V1, V2, . . . , Vk

such that Vi is a (σ, ρ)-set for each i, 1 ≤ i ≤ k.

3. Define the problem

(k, σ, ρ)-Partition = {G |G is a graph that has a (k, σ, ρ)-partition}.

Note that (k, {0},N)-Partition is nothing other than k-Colorability, and (k,N,N+)-Partition
is nothing other than k-DNP. This observation is illustrated by the following example. Note further
that (k, {0},N)-Partition is a minimum problem, whereas (k,N,N+)-Partition is a maximum
problem.

Example 15 (Generalized Dominating Sets) Figure 13 shows two copies of some graph G
with five vertices. Vertices labeled by the same number belong to the same (σ, ρ)-set, where either it
is σ = {0} and ρ = N (i.e., k-Colorability), or it is σ = N and ρ = N

+ (i.e., k-DNP).
According to the partition into (σ, ρ)-sets shown on the left-hand side of Figure 13, G is in the

set (4, {0},N)-Partition. That is, G is a 4-colorable graph and the partition indicated corresponds
to the four color classes of G.

In contrast, the partition into (σ, ρ)-sets on the right-hand side of Figure 13 shows that G is in
the set (3,N,N+)-Partition. That is, G has a domatic number of 3.
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Figure 13: (4, {0},N)-Partition (left) and (3,N,N+)-Partition (right)

5.2 Summary of Results and Proof Ideas

Heggernes and Telle [HT98] obtained the NP-completeness results for (k, σ, ρ)-Partition that are
shown in Table 1. Here is the key: Table 1 gives the smallest value of k for which (k, σ, ρ)-Partition
is NP-complete, where

• “∞” means that this problem is efficiently solvable for all values of k;

• a superscript “+” indicates a maximum problem: For all k ≥ 1,

(k + 1, σ, ρ)-Partition ⊆ (k, σ, ρ)-Partition;

and

• a superscript “−” indicates a minimum problem: For all k ≥ 1,

(k, σ, ρ)-Partition ⊆ (k + 1, σ, ρ)-Partition.

ρ N N
+ {1} {0, 1}

σ
N ∞− 3+ 2 ∞−

N
+ ∞− 2+ 2 ∞−

{1} 2− 2 3 3−

{0, 1} 2− 2 3 3−

{0} 3− 3 4 4−

Table 1: NP-completeness for the problems (k, σ, ρ)-Partition

We now define the exact versions of generalized dominating set problems.

Definition 16 (Exact Partition Problems) Define Exact-(k, σ, ρ)-Partition, the exact version
of the problem (k, σ, ρ)-Partition, to be either

• (k, σ, ρ)-Partition ∩ (k − 1, σ, ρ)-Partition if (k, σ, ρ)-Partition is a minimum problem
and k ≥ 2, or
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• (k, σ, ρ)-Partition ∩ (k + 1, σ, ρ)-Partition if (k, σ, ρ)-Partition is a maximum problem
and k ≥ 1.

Note that all Exact-(k, σ, ρ)-Partition problems are contained in DP. Note further that the
specific problem Exact-(k, {0},N)-Partition is nothing other than Exact-k-Colorability, and
Exact-(k,N,N+)-Partition is nothing other than Exact-k-DNP.

Table 2 gives the best values of “j | k” for which it is known that the set Exact-(k, σ, ρ)-Partition
is “(NP-complete or coNP-complete) | DP-complete.” Again, “∞” means that this problem is
efficiently solvable for all values of k. Here, a dash “—” indicates that this problem is neither a
maximum nor a minimum problem and thus is not considered.

Except the DP-completeness of Exact-(k, {0},N)-Partition, which is presented here—using
different notation—as Theorem 9 in Section 3 (see [Rot03]), all DP-completeness results in Table 2
are due to Riege and Rothe [RR04a]. We state the results from Table 2 in Theorem 17 below and
provide the proof ideas. We do not attempt to give full, detailed proofs, though, referring to the
original source [RR04a] instead.

ρ N N
+ {0, 1}

σ
N ∞ 2 | 5 ∞

N
+ ∞ 1 | 3 ∞

{1} 2 | 5 — 3 | ?
{0, 1} 2 | 5 — 3 | ?
{0} 3 | 4 — 4 | ?

Table 2: DP-completeness for the problems Exact-(k, σ, ρ)-Partition

Theorem 17 (Riege and Rothe)

1. For each i ≥ 5, Exact-i-DNP = Exact-(i,N,N+)-Partition is DP-complete.
In contrast, Exact-2-DNP = Exact-(2,N,N+)-Partition is coNP-complete.

2. For each i ≥ 3, Exact-(i,N+,N+)-Partition is DP-complete.
In contrast, Exact-(1,N+,N+)-Partition is coNP-complete.

3. For each i ≥ 5, Exact-(i, {0, 1},N)-Partition is DP-complete.
In contrast, Exact-(2, {0, 1},N)-Partition is NP-complete.

4. For each i ≥ 5, Exact-(i, {1},N)-Partition is DP-complete.
In contrast, Exact-(2, {1},N)-Partition is NP-complete.

The proof of the first part of Theorem 17 uses the gadget shown in Figure 14 to provide a
reduction from 3-Colorability that satisfies the hypothesis (2.2) of Wagner’s Lemma 7. The
construction in Figure 14 extends Kaplan and Shamir’s reduction from 3-Colorability to 3-DNP
with useful properties [KS94], see also [RR04a].

The proof of the second part of Theorem 17 uses the gadget shown in Figure 15 to provide a
reduction from NAE-3-SAT that satisfies the hypothesis (2.2) of Wagner’s Lemma 7. The problem
NAE-3-SAT (“not-all-equal satisfiability for boolean formulas with three literals per clause”) asks
whether a given boolean formula ϕ can be satisfied such that in none of the clauses of ϕ all literals
are true. Schaefer proved that NAE-3-SAT is NP-complete [Sch78]. The construction in Figure 15 is
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Figure 14: Gadget for proving Exact-5-DNP DP-complete

Figure 15: Gadget for proving Exact-(3,N+,N+)-Partition DP-complete

inspired by Heggernes and Telle’s reduction from NAE-3-SAT to (2,N+,N+)-Partition, see [HT98]
and also [RR04a].

The proof of the third part of Theorem 17 uses a reduction from 1-3-SAT that satisfies the
hypothesis (2.2) of Wagner’s Lemma 7. The problem 1-3-SAT (“one-in-three satisfiability”) asks
whether, given a boolean formula ϕ, there exists a subset T of the literals of ϕ with ||T ∩Ci|| = 1 for
each clause Ci. Schaefer proved that 1-3-SAT is NP-complete, even if all literals in the given boolean
formula are positive [Sch78].

Figure 16 shows this construction, which is based on Heggernes and Telle’s reduction from 1-3-SAT
to (2, {0, 1},N)-Partition, see [HT98]. The symbol ⊕ in Figure 16 denotes the join operation on
graphs, i.e., for any two graphs G1 and G2, G1 ⊕G2 is the graph with vertex set

V (G1 ⊕G2) = V (G1) ∪ V (G2)

16



and edge set

E(G1 ⊕G2) = E(G1) ∪ E(G2) ∪ {{a, b} | a ∈ V (G1) and b ∈ V (G2)}.

The proof of the fourth part of Theorem 17 is obtained by suitably modifying the proof of the
third part of Theorem 17.

G1,1 G1 G1,2

⊕

G2,1 G2 G2,2

Figure 16: Reduction to prove Exact-(5, {0, 1},N)-Partition DP-complete

Generalizing the results on exact generalized dominating set problems from Theorem 17, we
obtain completeness results in the higher levels of the boolean hierarchy. In Theorem 18 below, we
state this generalization for the problem Exact-Mk-DNP only, where Mk = {4k+1, 4k+3, . . . , 6k−1}.
Analogously, the completeness results for Exact-(k, σ, ρ)-Partition given in the second, third, and
fourth part of Theorem 17 can be lifted to the higher levels of the boolean hierarchy over NP.

Theorem 18 (Riege and Rothe) For Mk = {4k + 1, 4k + 3, . . . , 6k − 1}, Exact-Mk-DNP is
BH2k(NP)-complete.

Finally, define the following variants of the domatic number problem:

DNPodd = {G |G is a graph such that δ(G) is odd},

DNPequ = {〈G,H〉 |G and H are graphs with δ(G) = δ(H)},

DNPleq = {〈G,H〉 |G and H are graphs with δ(G) ≤ δ(H)}.

Theorem 19 (Riege and Rothe) DNPodd, DNPequ, and DNPleq each are Θp
2-complete.

6 Conclusions and Open Questions

This survey paper has presented some of the results that were inspired by Wagner’s general tech-
nique [Wag87] to prove completeness in the levels of the boolean hierarchy over NP and in Θp

2,
the class of problems solvable via parallel access to NP. In particular, Θp

2-completeness results
were obtained for a variety of natural problems arising in computational politics [HHR97a, RSV03,
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HH00, HSV05] and for problems related to certain approximation heuristics for hard graph prob-
lems [HR98, HRS06, HHR97b]. In addition, Wagner’s technique was useful to prove Θp

2-hardness of
MEE-DNF, the minimum equivalent expression problem, see Hemaspaandra and Wechsung [HW02]
and also Umans [Uma98].

Turning to completeness in the levels of the boolean hierarchy, Theorem 9 in Section 3 answered
a question raised by Wagner in [Wag87]: It is DP-complete to decide whether or not a given graph
can be colored with exactly four colors. We have sketched Guruswami and Khanna’s clever reduc-
tion [GK00] that is central to this proof, and we have shown how this reduction can be employed
by Wagner’s technique to prove Theorem 9.

In Section 4, we presented Cai and Meyer’s beautiful result that Minimal-3-Uncolorability is
DP-complete [CM87]. It should be stressed here that it is usually very difficult to transfer known
NP-completeness results to DP-completeness results for the corresponding critical problems. Pa-
padimitriou and Yannakakis [PY84] note: “We have not been able to show that [. . . ] any of the
critical problems is DP-complete. This difficulty seems to reflect the extremely delicate and deep
structure of critical problems—too delicate to sustain any of the known reduction methods. One way
to understand this is that critical graphs is usually the object of hard theorems.” The crucial point is
that polynomial-time many-one reductions from one problem to another do not preserve criticality
in general. For this reason, only very few critical problems are known to be DP-complete up to date.

Finally, Section 5 studied various versions of the exact domatic number problem. In particular,
Theorem 17 says that Exact-5-DNP is DP-complete. In contrast, Exact-2-DNP is coNP-complete, and
thus this problem cannot be DP-complete unless the boolean hierarchy collapses. For i ∈ {3, 4}, the
question of whether or not the problems Exact-i-DNP are DP-complete remains open. To close this
gap, it would be enough to find a reduction from some suitable NP-complete problem to the exact
domatic number problem that yields graphs having never a domatic number of three.

In addition, we have studied the exact versions of Heggernes and Telle’s generalized dominating
set problems [HT98], denoted by Exact-(k, σ, ρ)-Partition, where the parameters σ and ρ specify
the number of neighbors that are allowed for each vertex in the partition. Theorem 17 presented
DP-completeness results for a number of such problems that are summarized in Table 2, which
gives the best values of k for which the problems Exact-(k, σ, ρ)-Partition are known to be DP-
complete. This value of k is not yet optimal in some cases. For example, as stated in Theorem 17,
Exact-(5, {0, 1},N)-Partition is DP-complete and Exact-(2, {0, 1},N)-Partition is NP-complete.
What about the complexity of Exact-(i, {0, 1},N)-Partition for i ∈ {3, 4}? It would also be
interesting to obtain DP-completeness results for those cases in Table 2 that currently have only
question marks.
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