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Abstract. While the 3-dimensional analogue of the Sperner problem in
the plane was known to be PPAD-complete, the complexity of the 2D-

SPERNER itself is not known to be PPAD-complete or not. In this
paper, we settle this open problem proposed by Papadimitriou [7] fifteen
years ago. This also allows us to derive the computational complexity
characterization of a discrete version of the 2-dimensional Brouwer fixed
point problem, improving a recent result of Daskalakis, Goldberg and
Papadimitriou [2]. Those results will be very useful tools to the study of
other related problems.

1 Introduction

The classical Sperner’s Lemma [9], which is the combinatorial characterization
behind Brouwer’s fixed point theorem, states that any admissible 3-coloring of
any triangulation of a triangle has a trichromatic triangle. Naturally, it defines
a search problem 2D-SPERNER of finding a trichromatic triangle in any ad-
missible 3-coloring, which is one of the most typical problems in PPAD, a com-
plexity class introduced by Papadimitriou to characterize a class of mathematical
structures with a particular type of proof techniques [8]. Many important prob-
lems, such as the Brouwer fixed point, the search versions of Smith’s theorem,
as well as Borsuk-Ulam theorem, are found in this class [8].

For the Sperner’s problem, its 3-dimensional analogue 3D-SPERNER is
the first natural problem ever proved to be PPAD-complete [8]. In conclu-
sion of the proof of PPAD-completeness of the 3D-SPERNER, Papadim-
itriou conjectured that the 2-dimensional case may not also be PPAD-complete.
Since then, much progress has been made recently toward the solution of this
problem: In [5], Grigni described a non-oriented version of 3D-SPERNER
and proved that it is PPA-complete. Friedl et al proved in [3, 4] that locally
2-dimensional Sperner’s problem is PPAD-complete. However, the original 2-
dimensional Sperner’s problem remains elusive.

In this paper, we settle this problem by proving that 2D-SPERNER is
PPAD-complete and close the open problem proposed by Papadimitriou [7]
fifteen years ago. Moreover, this result allows us to derive the PPAD-complete
proof of a discrete version of the 2D Brouwer fixed point problem.
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Our study is motivated by the lower bound results in [1] and [6] which dis-
cussed the algorithmic complexity of finding a discrete Brouwer fixed point in
d-dimensional space. The combinatorial structure there is similar to the one
here. It was proved that, for any dimension d ≥ 2, the fixed point problem for
the oracle model always requires exponential number of queries. Although the
computational models are different, we expect that the complexity hierarchy in
the Sperner’s problem may have a similar structure with respect to the dimen-
sion.

In examination into the PPAD-complete proof of 3D-SPERNER, and
those of recent versions of locally 2-dimensional Sperner’s problems, we found
that the main idea is to embed complete graphes in the 3-dimensional space, or
locally 2-dimensional manifolds. In both [8] and [3], the proof of completeness
relies on such an embedding which is obviously impossible in the plane. Our
approach is different, and the proof can be divided clearly into two steps. First,
we define a new search problem called RLEAFD (restricted-LEAFD where
LEAFD is the natural complete problem of PPAD). While the input graph
has the same property as those in problem LEAFD, it is guaranteed to be a
sub-graph of some predefined planar grid graph. The interesting result followed is
that, even with such a strong restriction, RLEAFD is still PPAD-complete. In
the second step, we reduce RLEAFD to 2D-SPERNER and prove the latter
is also complete. The main idea represents a better understanding of PPAD
reductions and can be of general applicability in related problems.

We should in the next section introduce the necessary definitions. We then
define a new search problem called RLEAFD in section 3 and prove that it is
PPAD-complete in section 4. In section 5, we show that RLEAFD is reducible
to 2D-SPERNER and complete the proof that the latter is also complete in
PPAD. In addition, we prove that the 2-dimensional case of a discrete version
of the Brouwer fixed point problem [2], 2D-BROUWER, as a corollary, is
also PPAD-complete. Finally, we conclude with discussion on the significance
of our results and potential applications, in particular, to important problems
in algorithmic game theory such as the bimatrix game Nash Equilibrium.

2 Preliminaries

2.1 TFNP and PPAD

First, we review the complexity classes FNP and TFNP of search problems.
We also formalize the notion of polynomial-time reductions between problems
in TFNP [7].

Definition 1 (FNP and TFNP) Let R ⊂ Σ∗×Σ∗ be a polynomial-time com-

putable, polynomially balanced relation ( that is, there exists a polynomial p(n)
such that for every pair (x, y) ∈ R, we have |y| ≤ p(|x|)). The NP search prob-

lem QR specified by R is this: given input x ∈ Σ∗, return a y ∈ Σ∗ such that

(x, y) ∈ R, if such a y exists, and return the string “no” otherwise. We use

FNP to denote the class of NP search problems. An NP search problem QR



is said to be total if for every x, there exists a y such that (x, y) ∈ R. We use

TFNP to denote the class of total NP search problems.

Definition 2 (Polynomial Reduction) A search problem QR1
∈ TFNP is

polynomial-time reducible to another QR2
∈ TFNP if there exists a pair of

polynomial-time computable functions (f, g) such that, for every input x of R1,

if y satisfies (f(x), y) ∈ R2, then (x, g(y)) ∈ R1.

We then define a total NP search problem called LEAFD [8].

Definition 3 (LEAFD) The input of the problem is a pair (M, 0k) where M
is the description of a polynomial-time Turing machine which satisfies

1. for every v ∈ {0, 1}k, M(v) is an ordered pair (u1, u2) where

u1, u2 ∈ {0, 1}k ∪ {no};

2. M(0k) = {no, 1k} and the first component of M(1k) is 0k.

M generates a directed graph G = (V, E) where V = {0, 1}k in the following

way. An edge uv appears in E iff v is the second component of M(u) and u is

the first component of M(v).
The output is a directed leaf (with in-degree + out-degree = 1) of graph G

which is different from 0k.

PPAD [7] is the set of total NP search problems that are polynomial-time
reducible to LEAFD. From its definition, LEAFD is complete for PPAD.

2.2 2D-SPERNER

One of the most interesting problems in PPAD is 2D-SPERNER whose to-
tality is based on the Sperner’s Lemma [9].

Lemma 1 (Sperner’s Lemma) Any admissible 3-coloring of any triangula-

tion of a triangle has a trichromatic triangle.

In problem 2D-SPERNER, we consider the standard n × n triangulation
of a triangle which is illustrated in figure 1. Every vertex in the triangulation
corresponds to a point in Z

2. Here A0 = (0, 0), A1 = (0, n) and A2 = (n, 0) are
three vertices of the original triangle. The vertex set Tn of the standard n × n
triangulation is defined as

Tn =
{

p = (p1, p2) ∈ Z
2

∣

∣

∣
p1 ≥ 0, p2 ≥ 0 and p1 + p2 ≤ n

}

.

A 3-coloring of the n × n triangulation is a function f from vertex set Tn to
{ 0, 1, 2 }. It is said to be admissible if

1. f(Ai) = i for every i : 0 ≤ i ≤ 2;
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Fig. 1. The standard 7 × 7 triangulation of a triangle

2. for every p ∈ Tn on segment AiAj , f(p) 6= 3 − i − j.

A unit size well-oriented triangle is a triple ∆ = (p0,p1,p2) where pi ∈ Z
d for

every 0 ≤ i ≤ 2. It satisfies either p1 = p0 + e1, p2 = p0 + e2 or p1 = p0 − e1,
p1 = p0 − e2. In other words, the triangle has a northwest oriented hypotenuse.
We use S to denote the set of all such triangles.

Sperner’s Lemma guarantees that every admissible 3-coloring f has a trich-
romatic triangle ∆ = (p0,p1,p2) ∈ S, that is, it has all the three colors.

The search problem 2D-SPERNER is defined as follow.

Definition 4 (2D-SPERNER [7]) The input instance is a pair (F, 0k) where

F is the description of a polynomial-time Turing machine which generates an

admissible 3-coloring f on T2k . Here f(p) = F (p) ∈ {0, 1, 2}, for every p ∈ T2k .

The output is a trichromatic triangle ∆ ∈ S of f .

[7] showed that 2D-SPERNER belongs to PPAD. They also defined a 3-
dimensional analogue 3D-SPERNER of 2D-SPERNER and proved that it
is PPAD-complete. The two dimensional case was left as an open problem.

3 Definition of Search Problem RLEAFD

Before the definition of problem RLEAFD, we describe a class of planar grid
graphs G1, G2,... where Gi = (Vi, Ei) is derived from the complete graph Ki of
order i.

For every integer n ≥ 1, we let

Vn =
{

u = (u1, u2) ∈ Z
2

∣

∣

∣
0 ≤ u1 ≤ 3(n2 − 2) and 0 ≤ u2 ≤ 3(2n − 1)

}

.

Informally speaking, Gn can be viewed as a planar embedding of the complete
graph Kn with vertex set { 0, 1, ... n − 1 }. Every vertex i of Kn corresponds to
the vertex (0, 6i) of Gn. To describe the edge set En, we start with En = ∅. For
every edge ij ∈ Kn, we define a path Eij in Gn from vertex (0, 6i) to (0, 6j), and



add all the edges in Eij into En. As Kn is not a planar graph when n ≥ 5, there
are many vertices of Gn which are at the intersection of two paths Eij , Ei′j′

added previously. For each of them, we add 4 more edges around it into En.
We define En formally as follows. En can be divided into two parts: E1

n and
E2

n, such that En = E1
n ∪ E2

n and E1
n ∩ E2

n = ∅. The first part E1
n = ∪ij∈Kn

Eij

where path Eij is defined as follows.

Definition 5 Let p1,p2 ∈ Z
2 be two points with the same x-coordinate or the

same y-coordinate. Let u1,u2 ... um ∈ Z
2 be all the integral points on segment

p1p2 which are labelled along the direction of p1p2. We use E(p1p2) to denote

the path which consists of m − 1 directed edges : u1u2, u2u3, ... um−1um.

Definition 6 For every edge ij in the complete graph Kn where 0 ≤ i 6= j < n,

we define a path Eij in Gn as

Eij = E(p1p2) ∪ E(p2p3) ∪ E(p3p4) ∪ E(p4p5),

where p1 = (0, 6i), p2 = (3(ni+j), 6i), p3 = (3(ni+j), 6j+3), p4 = (0, 6j+3)
and p5 = (0, 6j).

One can show that, every vertex in Gn has at most 4 edges ( including both
incoming and outgoing edges) in E1

n. Moreover, if u has 4 edges, then 3 |u1 and
3 |u2. We now use {ui}1≤i≤8 to denote the eight vertices around u. For every
i : 1 ≤ i ≤ 8, ui = u + xi where

x1 = (−1, 1) , x2 = (0, 1) , x3 = (1, 1) , x4 = (1, 0) ,

x5 = (1,−1) , x6 = (0,−1) , x7 = (−1,−1) and x8 = (−1, 0) .

Every u ∈ Vn which has 4 edges in E1
n must have the following two properties :

1. either edges u4u,uu8 ∈ E1
n or u8u,uu4 ∈ E1

n;

2. either edges u2u,uu6 ∈ E1
n or u6u,uu2 ∈ E1

n.

For every vertex u ∈ Vn which has 4 edges in E1
n, there are 4 more edges in

E2
n around it. For example, if u4u,uu8,u2u,uu6 ∈ E1

n (that is, the last case
in figure 2), then u4u5,u5u6,u2u1,u1u8 ∈ E2

n. All the four possible cases are
summarized clearly in figure 2.

Now we have finished the construction of directed graph Gn. An example
(graph G3 ) is showed in figure 6 in appendix. We can draw it in two steps.
In the first step, for every edge ij ∈ Kn, we insert the path Eij into the empty
graph. In the second step, we search for vertices of degree 4. For each of them,
4 edges are added according to figure 2. The following lemma concerning the
computability of graph Gn is easy to prove.

Lemma 2 Every vertex in Gn has at most 4 edges. There is a polynomial-time

Turing machine M∗ such that, for every input instance (n,u) where in Vn, it

outputs all the predecessors and successors of u in graph Gn.
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Fig. 2. Summary of cases in the construction of E2

n

Definition 7 We use Cn to denote the set of directed graphs G = (Vn, E) such

that E ⊂ En and for every vertex u ∈ Vn, both of its in-degree and out-degree

are no more than one.

The new problem RLEAFD is similar to LEAFD. The input is a also pair
(K, 0k) where K is the description of a polynomial-time Turing machine that
generates a directed graph G of exponential size. The key difference is that, the
graph G generated by (K, 0k) in RLEAFD always belongs to C2k .

Definition 8 (RLEAFD) The input instance is a pair (K, 0k) where K is the

description of a polynomial-time Turing machine which satisfies:

1. for every u ∈ V2k , K(u) is an ordered pair (u1,u2) where

u1,u2 ∈ V2k ∪ {no};

2. K((0, 0)) = (no, (1, 0)) and the first component of K((1, 0)) is (0, 0).

K generates a directed graph G = (V2k , E) ∈ C2k in the following way. An edge

uv appears in E iff v is the second component of K(u), u is the first component

of K(v) and edge uv ∈ E2k .

The output is a directed leaf (with in-degree + out-degree = 1) of graph G
which is different from the origin (0, 0).

By Lemma 2, one can show that RLEAFD ∈ PPAD.

4 RLEAFD is PPAD-Complete

In this section, we will describe a polynomial-time reduction from LEAFD to
RLEAFD and prove that RLEAFD is complete in PPAD.

Let G be a directed graph with vertex set {0, 1...n− 1} which satisfies that
the in-degree and out-degree of every vertex are at most one. We now construct
a graph C(G) ∈ Cn in two steps. An important observation here is that C(G)
is not a planar embedding of G, as the structure of G is mutated dramatically
in C(G). However, it preserves the leaf nodes of G and does not create any new
leaf node. This property plays a vital role in the reduction from LEAFD to
RLEAFD.



Step 1: Starting with an empty graph (Vn, ∅), for every edge ij ∈ G, we add
all the edges in path Eij into it.

Step 2: For every u ∈ Vn which has 4 edges at this moment, we remove all the
4 edges which have u as an endpoint and add 4 edges around u using figure 2.

One can check that the in-degree and out-degree of every vertex in C(G)
are no more than 1 and thus, C(G) ∈ Cn. For example, figure 7 in appendix
shows graph C(G) where G = ({0, 1, 2}, {02, 21}). The following lemma is easy
to check.

Lemma 3 For every vertex 0 ≤ k ≤ n − 1 of G, it is a directed leaf of G iff

u = (0, 6k) ∈ Vn is a directed leaf of C(G).

Finally, we prove that RLEAFD is PPAD-complete.

Lemma 4 Search problem RLEAFD is PPAD-complete.

Proof. Let (M, 0k) be an input instance of problem LEAFD and G be the
directed graph generated. A Turing machine K is described by the algorithm
in figure 10, which satisfies the two conditions in Definition 8. It’s tedious, but
not hard to check that, pair (K, 0k), as an input of RLEAFD, generates graph
C(G) ∈ C2k . Furthermore, as M is polynomial-time, K is also a polynomial-
time Turing machine whose representation can be constructed from (M, 0k) in
polynomial time. On the other hand, Lemma 3 shows that, given a directed leaf
of C(G), we can locate a directed leaf of G efficiently.

In conclusion, we reduced LEAFD to RLEAFD and thus, the latter is also
PPAD-complete.

5 2D-SPERNER is PPAD-Complete

In this section, we reduce RLEAFD to 2D-SPERNER and finish the PPAD-
complete proof of 2D-SPERNER.

Let (K, 0k) be an input instance of RLEAFD and G ∈ C2k be the directed
graph generated by K. We will build a polynomial-time Turing machine F that
generates an admissible 3-coloring on T22k+5 . Given a trichromatic triangle ∆ ∈
S, a directed leaf of G can be computed efficiently. To clarify the presentation
here, we will only use u, v, w to denote vertices in V2k , and p, q, r to denote
vertices in T22k+5 .

To construct F , we will define a mapping F from V2k to T22k+5 . Since G ∈
C2k , its edge set can be uniquely decomposed into a collection of paths and
cycles P1, P2, ... Pm. By the mapping F , every Pi corresponds to a vertex set
I(Pi) ⊂ T22k+5 . Only vertices in I(Pi) have color 0 (with several exceptions
around A0 ). All the other vertices are colored carefully in either 1 or 2. Let
∆ = (p0,p1,p2) ∈ S be a trichromatic triangle and F (pi) = 0 where 0 ≤ i ≤ 2,



then we will prove that F−1(pi) must be a directed leaf of G, which is different
from (0, 0).

Firstly, the mapping F from V2k to T22k+5 is defined as F(u) = p where
p1 = 3u1 + 3 and p2 = 3u2 + 3. For every uv ∈ E2k , we use I(uv) to denote the
set of four vertices in T22k+5 which lie on the segment between F(u) and F(v).
Let P = u1... ut be a simple path or cycle in G2k where t > 1 ( if P is a cycle,
then u1 = ut ), then we define I(P ) ⊂ T22k+5 as

I(P ) = ∪t−1
i=1 I(uiui+1)

and vertex set O(P ) ⊂ T22k+5 as

O(P ) =
{

p ∈ T22k+5 and p /∈ I(P )
∣

∣

∣
∃ p′ ∈ I(P ), |p − p′ |∞ = 1

}

.

If P is a simple path, then we decompose O(P ) into {sP , eP } ∪ L(P ) ∪ R(P ).

sP = F(u1) + (u1 − u2) and eP = F(ut) + (ut − ut−1) .

Starting at sP , we enumerate all the vertices in O(P ) clockwise as sP ,q1... qn1 ,
eP , r1... rn2 and

L(P ) = {q1,q2... qn1 } and R(P ) = { r1, r2... rn2 } .

If P is a simple cycle, then we decompose O(P ) into L(P ) ∪ R(P ) where

L(P ) =
{

p ∈ O(P )
∣

∣

∣
p lies on the left side of cycle P

}

and

R(P ) =
{

p ∈ O(P )
∣

∣

∣
p lies on the right side of cycle P

}

.

As the graph G which is specified by (K, 0k) belongs to C2k , we can uniquely
decompose its edge set into P1, P2, ... Pm. For every 1 ≤ i ≤ m, Pi is either a
maximal path, that is, no path in G contains Pi, which contains at least two
vertices, or a cycle in graph G. One can prove the following two lemmas.

Lemma 5 For every 1 ≤ i 6= j ≤ m, we have

(

I (Pi) ∪ O (Pi)
)

⋂

(

I (Pj) ∪ O (Pj)
)

= ∅.

Lemma 6 Let (K, 0k) be an input instance of RLEAFD and G ∈ C2k be the

directed graph specified, we can compute the presentation of a polynomial-time

Turing machine MK in polynomial time. Given an vertex p ∈ T22k+5 , it outputs

an integer 0 ≤ t ≤ 4 which has the following property: Let the decomposition of

G be P1, P2, ... Pm, then

∃ i, p ∈ I(Pi) ⇒ t = 1 ; ∃ i, p ∈ L(Pi) ⇒ t = 2 ;

∃ i, p ∈ R(Pi) ⇒ t = 3; ∃ i, p = sPi
⇒ t = 4 ;

∃ i, p = ePi
⇒ t = 5 ; otherwise, t = 0 .



Turing Machine F with input p = (p1, p2) ∈ T22k+5

1: if p1 = 0 then

2: case p2 ≤ 3, output 0 ; case p2 > 3, output 1

3: else if p1 = 1 then

4: case p2 = 3, output 0 ; case p2 = 4, output 1 ; otherwise, output 2

6: else if p1 = 2 and p2 = 3 then

7: output 0

8: let t = MK(p)

9: case t = 1, output 0 ; case t = 2, output 1 ; otherwise, output 2

Fig. 3. Behavior of Turing Machine F

Turing machine F is described by the algorithm in figure 3 below. As MK is
polynomial-time, F is also a polynomial-time Turing machine whose representa-
tion can be computed from pair (K, 0k) in polynomial time.

For example, let G ∈ C2 be the directed graph generated by pair (K, 01),
which is illustrated in figure 8. Figure 9 in appendix shows the 3-coloring F on
T128, which is constructed from (K, 01). As T128 contains so many vertices, not
all of them are drawn in figure 9. For every omitted vertex p ∈ T128, if p1 = 0,
then F (p) = 1, otherwise, F (p) = 2.

One can check the following two properties:

1. the 3-coloring specified by F is admissible;

2. let ∆ = (p0,p1,p2) ∈ S be a trichromatic triangle of F and F (pi) = 0,
where 0 ≤ i ≤ 2, then vertex u = F−1(pi) must be a directed leaf of G,
which is different from (0, 0).

By these two properties, we get the following theorem.

Theorem 1 Search problem 2D-SPERNER is PPAD-complete.

6 2D-BROUWER is PPAD-Complete

Recently, Daskalakis, Goldberg and Papadimitriou [2] proved that the problem
of computing Nash equilibria in games with four players is PPAD-complete. In
the proof, they define a 3-dimensional Brouwer fixed point problem and proved
that it is PPAD-complete. By reducing it to 4-Nash, they show that the latter
is also complete in PPAD.

We now define a new problem 2D-BROUWER which is the 2-dimensional
analogue of the 3-dimensional Brouwer fixed point problem in [2].

For every n > 1, we let

Bn =
{

p = (p1, p2) ∈ Z
2

∣

∣

∣
0 ≤ p1 < n − 1 and 0 ≤ p2 < n − 1

}

.



The boundary of Bn is then the set of points p ∈ Bn with pi ∈ {0, ri − 1} for
some i = 1 or 2. For every p ∈ Z

2, we let

Kp =
{

q = (q1, q2) ∈ Z
2

∣

∣

∣
q1 = p1 or p1 + 1 and q2 = p2 or p2 + 1

}

.

A 3-coloring of Bn is a function g from Bn to {0, 1, 2}. It is said to be valid if
for every p on the boundary of Bn,

1. if p2 = 0, then g(p) = 2;

2. if p2 6= 0 and p1 = 0, then g(p) = 0;

3. otherwise, g(p) = 1.

The search problem 2D-BROUWER is then defined as follows.

Definition 9 (2D-BROUWER) The input of the problem 2D-BROUWER
is a pair (F, 0k) where F is the description of a polynomial-time Turing machine

which generates a valid 3-coloring g on B2k . Here g(p) = F (p) ∈ {0, 1, 2} for

every p ∈ B2k .

The output is a point p ∈ B2k such that Kp is trichromatic, that is, Kp has

all the three colors.

Notice that the output of 2D-BROUWER is a set Kp of 4 points which
have all the three colors. Of course, one can pick three vertices in Kp to form
a trichromatic triangle ∆, but it’s possible that ∆ /∈ S. In other words, the
hypotenuse of ∆ might be northeast oriented. So, 2D-BROUWER could be
easier than 2D-SPERNER.

Motivated by the discussion above, we define a problem 2D-BROUWER∗

whose output is similar to 2D-SPERNER. One can reduce 2D-SPERNER
to 2D-BROUWER∗ easily and prove the latter is complete in PPAD.

Definition 10 (2D-BROUWER∗) The input of the problem is a pair (F, 0k)
where F is the description of a polynomial-time Turing machine which generates

a valid 3-coloring g on B2k . Here g(p) = F (p) ∈ {0, 1, 2} for every p ∈ B2k .

The output is trichromatic triangle ∆ ∈ S which has all the three colors.

We now construct a polynomial-time reduction from 2D-BROUWER∗ to
2D-BROUWER.

Let (F, 0k) be the input instance of 2D-BROUWER and n = 2k. In figure
4, we describe a new Turing machine F ′ which generates a 3-coloring on B3n.
For integers 0 ≤ l, k < n, figure 5 shows the 3-coloring F ′ on set

{

3l, 3l + 1, 3l + 2, 3l + 3
}

×
{

3k, 3k + 1, 3k + 2, 3k + 3
}

⊂ B3n.

Clearly, as F is polynomial-time, F ′ is also a polynomial-time Turing machine,
which can be constructed from F in polynomial time. Besides, F ′ generates a
valid 3-coloring on B3n.



Turing Machine F ′ with input p = (p1, p2) ∈ B3n

1: let p1 = 3l + i and p2 = 3k + j, where 0 ≤ i, j ≤ 2

2: if (i, j) = (0, 0), (1, 0) or (0, 1) then

3: F ′(p) = F (q) where q1 = l and q2 = k

4: else if (i, j) = (1, 1), (2, 0) or (2, 1) then

5: F ′(p) = F (q) where q1 = l + 1 and q2 = k

6: else [when j = 2 ]

7: F ′(p) = F (q) where q1 = l and q2 = k + 1

Fig. 4. The construction of Turing machine F ′
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Fig. 5. The 3-coloring generated by Turing machine F ′. c1 = F (l, k), c2 = F (l + 1, k),
c3 = F (l, k + 1) and c4 = F (l + 1, k + 1)

We now prove that, for every p ∈ B3n such that Kp is trichromatic in F ′,
one can find a trichromatic triangle ∆ = (p0,p1,p2) ∈ S in F easily.

Let p1 = 3l + i and p2 = 3k + j, where 0 ≤ i, j ≤ 2. By examining figure 5,
we know that either (i, j) = (0, 1) or (i, j) = (2, 1), since Kp has all the three
colors. Figure 5 also shows that

1. if (i, j) = (0, 1), then (p0,p1,p2) ∈ S is a trichromatic triangle in F , where
p0 = (k, l), p1 = p0 + e1 and p2 = p0 + e2;

2. if (i, j) = (2, 1), then (p0,p1,p2) ∈ S is a trichromatic triangle in F , where
p0 = (k + 1, l + 1), p1 = p0 − e1 and p2 = p0 − e2.

Finally, we get an important corollary of Theorem 1.

Theorem 2 Search problem 2D-BROUWER is PPAD-complete.



7 Concluding Remarks

All the PPAD-complete proofs of Sperner’s problems before rely heavily on
embeddings of complete graphs in the standard subdivisions. That is, edges
in the complete graph correspond to independent paths which are composed
of neighboring triangles or tetrahedrons in the standard subdivision. Such an
embedding is obviously impossible in the plane, as complete graphs with order
no less than 5 are not planar. We overcome this difficulty by placing a carefully
designed gadget (which looks like a switch with two states) at each intersection
of two paths. While the structure of the graph is mutated dramatically (e.g.
figure 7), the property of a vertex being a leaf is well maintained.

An important corollary follows Theorem 1 is that, the computation of Bro-
uwer fixed point in 2-dimensional spaces (2D-BROUWER) is also complete
in PPAD. Naturally, our results may serve as a basic tool to the same ques-
tion on related problems: Can we show more problems complete for PPA and
PPAD? For example, is 2D-TUCKER [8] PPAD-complete? Can we find a
natural complete problem for either PPA or PPAD that doesn’t have an ex-
plicit Turing machine in the input? For example, is SMITH [8] (that is, given
a Hamiltonian cycle in a graph with all vertices of odd degree, find another.)
PPA-complete? Finally and most importantly, what is the relationship between
complexity classes PPA, PPAD and PPADS? Indeed, our new fundamental
results provide helpful insight into the study of the related problems of the two
player Nash Equilibrium as well as its approximations.
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Appendix

Fig. 6. The planar grid graph G3



Fig. 7. Graph C(G) ∈ C3 where G = ({0, 1, 2}, {02, 21})

Fig. 8. Graph G2 and one of its sub-graphs G ∈ C2 specified by pair (K, 01)



A 0

Fig. 9. The admissible 3-coloring F on T128 : black – 0, gray – 1, white – 2



Turing Machine K with input u = (u1, u2) ∈ V2k

1: let r1 and r2 be the nearest integer to u1/3 and u2/3 respectively

2: let u∗ = (3r1, 3r2), r1 = i2k + j where 0 ≤ i, j < 2k,

r2 = 2i∗ + c where c = 0 or 1

3: if r1 = 0 and c = 0 then

4: use M to compute the predecessor i′ and successor j′ of vertex i∗ in G

5: case i′ 6= no, j′ 6= no, use figure 11.1; case i′ 6= no, j′ = no, use figure 11.2

6: case i′ = no, j′ 6= no, use figure 11.3; case i′ = no, j′ = no, use figure 11.4

7: else if r1 = 0 and c = 1 then

8: use M to compute the predecessor i′ of vertex i∗ in G

9: case i′ = no, use figure 11.4; case i′ 6= no, use figure 11.5

10: else if r1 > 0 and c = 0 then

11: use M to decide whether edge ij ∈ G or not

12: use M to compute the successor j′ of vertex i∗ in G

13: if j′ = no or i∗2k + j′ < r1 then

14: case ij ∈ G and i < i∗ ≤ j, use figure 12.1;

15: case ij ∈ G and j < i∗ < i, use figure 12.2;

16: otherwise, use figure 12.3

17: else if i∗2k + j′ = r1 then

18: case j′ < i∗, use figure 12.4; otherwise, use figure 12.5

19: else

20: case ij ∈ G and i < i∗ ≤ j, use figure 12.6

21: case ij ∈ G and j < i∗ < i, use figure 12.7

22: otherwise, use figure 12.8

23: else (r1 > 0 and c = 1)

24: use M to decide whether edge ij ∈ G or not

25: use M to compute the predecessor i′ of vertex i∗ in G

26: if i′ = no or i′2k + i∗ < r1 then

27: case ij ∈ G and i ≤ i∗ < j, use figure 13.1;

28: case ij ∈ G and j < i∗ < i, use figure 13.2;

29: otherwise, use figure 13.3

30: else if i′2k + i∗ = r1 then

31: case i′ < i∗, use figure 13.4; otherwise, use figure 13.5

32: else

33: case ij ∈ G and i ≤ i∗ < j, use figure 13.6

34: case ij ∈ G and j < i∗ < i, use figure 13.7

35: otherwise, use figure 13.8

Fig. 10. Construction of Turing machine K



u
*
u
*
u
*
u
*


C
a
s
e
 
1
 C
a
s
e
 
2
 C
a
s
e
 
4
C
a
s
e
 
3


u
*


C
a
s
e
 
5


Fig. 11. Cases of r1 = 0
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Fig. 12. Cases of r1 > 0 and c = 0
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Fig. 13. Cases of r1 > 0 and c = 1

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



