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Abstract

We study the problem of assigning different communication channels to access points in a
wireless Local Area Network. Each access point will be assigned a specific radio frequency
channel. Since channels with similar frequencies interfere, it is desirable to assign far-apart
channels (frequencies) to nearby access points. Our goal isto assign the channels so as to
minimize the overall interference experienced by all access points. The above problem can be
formulated as an instance of the Minimum Graph Homomorphismproblem. We give a complete
description of all possible approximation classes for the general formulation of the problem.

1 Introduction

In this paper, we consider the problem of assigning communication channels to access points in a
wireless Local Area Network (LAN). Each communication channel uses a distinct radio frequency.
However, frequencies within the same region of frequency spectrum or band will interfere with
one another. Because of this reason, it is desirable to assign far-apart channels (frequencies) to
nearby access points. Motivated by this, we formalize the MIN INTERFERENCEproblem as follows:
Number the� available channels in increasing order of radio frequency:�� � � � � � . Given the location
of all � access points, we’ll build a proximity graph as follows: each vertex represent an access
point, and two potentially interfering access points are connected by an edge. We use a simple yet
practical interference cost model as follows: Each channel	 incurs an interference cost of 1 with
itself, and an interference cost of 0.5 with adjacent channels 	 
 � or 	 � � (should they exist), and
0 with others channels. Thus, if both end-points of an edge are assigned the same channel, the cost
is 1; if they are assigned adjacent channels, the cost is 0.5;otherwise, the cost is 0. The goal is to
assign the� channels to access points so as to minimize the overall interference cost.

The formulation of the above MIN INTERFERENCEproblem is closely related to other well-
studied NP-complete problems. For instance, it is closely related to graph coloring. Specifically,
We can simplify the interference cost model as follows and obtain the MINIMUM EDGE DELETION

� -PARTITION problem: Each channel	 incurs an interference cost of 1 with itself, and 0 with the
rest of the channels. The MINIMUM EDGE DELETION � -PARTITION problem is well studied. In
the case of� � 
, the problem can be approximated within a factor of� ���� � � in polynomial
time as shown by Garg, Vazirani, and Yannakakis [4]. Recently, the approximation factor has been
improved to� ����� � � by Charikar et al. [3]. For the lower bound, the problem is NP-hard to
approximate within a factor of� � � for some� � �, even for instances that have an optimal
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solution of cost at least� �� �� � �, for some� � �, as shown by Håstad [5]. In the case of� � �, this
problem is NP-hard to approximate within an additive� �� �� � � for some� � �, even for instances
that have an optimal solution of zero cost, as shown by Petrank [7].

On the other hand, we may further generalize the MIN INTERFERENCEproblem as follows. Let�
be a fixed complete reflexive graph with weighted loops and edges. Let� � �	 
 � � 
 � � � 
 �


denote the set of weights, which are all constants. Given an irreflexive graph� , the goal of the
the MIN GRAPH HOMOMORPHISM problem is to provide a mapping� from � �� � to � �� � with
the minimum cost. The cost of a mapping is the sum of the weights of the edges�� �� � � � �� �� in�

over all edges�� � � � in �. The MIN INTERFERENCEproblem is the special case where� is the
proximity graph on access points and the graph

�
is a path on� vertices with self-loops of weight

1 on each vertex, while the weight of the path edges is 0.5. Alon et al. show that the MIN GRAPH

HOMOMORPHISM problem can be solved within an additive� � � in time 
 �� ��� � ���� ��� �� � � for
� � �� �� � � [1].

The main results of the paper are approximation and hardnessresults for the MIN GRAPH HO-
MOMORPHISM problem. Depending on the parameters�	 � � � � � � � � �
 , we show that the problem
varies from trivial to additively� �� �� �� hard. We cover all possible cases of�	 � � � � � � � � �
 . The
rest of the paper is organized as follows: Section 2 providesthe overview of the classification,
ranging from easy to hard. Section 3 provides detailed proofs to two key theorems.

2 Classification ofM IN GRAPH HOMOMORPHISM

We begin the classification with the easy cases. If there exists a self-loop on node� with weight
�	 in

�
, then the problem is trivial. We map all vertices in� to �, guaranteeing the minimum cost.

Otherwise, there is no self-loop with the least weight.
If �	 � �, then the following algorithm gives a���	 � �
 ��
�	 �-approximation. In

�
, identify

the edge�� � � � such that the weight of�� � � � is �	 . For each vertex in� , the algorithm randomly
maps it to either� or � with equal probability. The algorithm can be derandomized easily as well.
Thus we obtain a constant approximation. Note that this caseis MAX SNP-hard, due to the hardness
result of MINIMUM EDGE DELETION 2-PARTITION.

We are thus left with the case�	 � �, which we analyze depending on whether the edges of
weight zero form a bipartite graph or not. We introduce the following two theorems, for which we
give the detailed proofs in the next section.

Theorem 1 If the edges of weight zero form a non-empty bipartite graph, then the M IN GRAPH

HOMOMORPHISM problem is within a constant factor of the M INIMUM EDGE DELETION 2-
PARTITION problem.

Theorem 2 If the edges of weight zero form a nonbipartite graph, then the M IN GRAPH HOMO-
MORPHISM problem is NP-hard to approximate within an additive factor � � � for some � � � even
when the optimum solution has cost 0, and �� �� � � � � � � �� for any � � �. If ! " #$ � �
�% �
for some & � �, then the problem cannot be approximated within � �� in time � �
 �� � �� �' � for some
� � � � �.

Theorems 1 and 2 both give the same additive hardness of approximation, which applies to the
case�	 � � as well by subtracting�	 from all weights. Note that we can always get an additive
approximation factor of�
 �� �� � �, regardless of the values of�	 � � � � � � � � �
 , which will be constant
factor away from the hardness result in the theorems above. Combining the results, we obtain the
following classification.
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Theorem 3 The M IN GRAPH HOMOMORPHISM problem falls in four approximation classes:

1. Trivial: If there is a self-loop of least weight;

2. Constant factor easy, and constant factor hard (even when optimum is proportional to the
number of edges): If there is no zero weight edge and no loop of least weight;

3. � ����� ��-easy, and constant factor hard (even when optimum is proportional to the number
of edges): If the zero weight edges form a bipartite graph with at least one edge;

4. additively � � �� �� � ��-easy for dense graphs, and additively � � �� �� � ��-hard (even when the
optimum is zero for graphs that are not dense): If the zero weight edges form a nonbipartite
graph without loops.

3 Detailed Proofs for Theorem 1 and 2

Proof for Theorem 1: Let � be the graph with� �� � � � �� � and
� �� � consisting of

the edges of� of weight �. The graph� is bipartite. Since there is a homomorphism from�
to a graph consisting of two adjacent vertices, the problem of minimizing the number of edges
of � that map to non-edges of� is the minimum edge deletion 2-partition problem, which canbe
approximated within� ���� � � [4], or within � �� ��� � � [3]. Thus our problem can be approximated
within � ���
 �� � � ��� � �, or within � ���
 �� � �� ��� � �.

We prove hardness of approximation by induction on the size of
�

. Let
� �

be obtained by
removing from

�
all vertices not incident to any edge of weight�. If

� �
has fewer vertices than

�
,

then apply the inductive hypothesis to
� �

for instances� �
. Such an instance� �

can be transformed
into an equivalent instance� for

�
, by attaching to each vertex� in � �

, of degree� �� �, a total
of � �� � � �� �� ��
 �� �� edges joining� to � �� � new vertices. An optimal solution for� can be
assumed to assign� to a vertex in

� �
, otherwise the� �� � added edges would incur cost at least

� �� ��
 instead of�, and the� �� � neighbors of� in � �
incur cost at most� �� ��
 .

We may thus assume that every vertex in
�

is incident to some edge of weight�. Let � be the
number of vertices in

�
, and suppose

�
has vertex� incident to two edges�� and�� of weight �.

Let
� �

be the graph obtained from
�

by assigning to each edge�	 in
� �

the minimum total weight
of a path of length
� � � from � to 	 in

�
, where the path may traverse loops and visit the same

vertex multiple times. A path of odd length greater than
� � � in
�

can be made of length
� � �
by removing an even cycle (since some vertex appears three times on the original path) and then
traversing� length edges in both directions. In

� �
, for the two vertices� �� , the weight of an edge�� is the same as the weight of the corresponding edge��. Thus the problem for

� �
is equivalent

to the problem for
� �� 
 � . We apply the inductive hypothesis to

� �� 
 � on instances� �
, and to

obtain an equivalent instance� for
�

, we replace each edge of� �
with a path of length
� � �.

We may thus assume that every vertex in
�

is incident to exactly one edge of weight�. Let the
mate of a vertex� in

�
be the vertex	 such that�	 has weight�. The graph

� �
in the preceding

construction has the property that if� � 	 are mates, and�� � 	 � are mates, then the edges�� � and
		 � have the same weight. We show hardness of approximation for

� �
, which implies hardness

of approximation for
�

as before. We may consider instances� that have multiple parallel edges
and multiple loops, by reducing such instances to equivalent instances� �

without parallel edges or
loops, as follows. If a vertex� in � has
 �� � parallel edges and� �� � loops, replace� by vertices� � � � � 	 � 
 �� � � 
� �� �, one for each edge incident to� , and join each� �, 	 � � to � � by ��
 �� ��
paths of length 2. These paths will incur weight� if and only if � � maps to the same vertex in

��
,

otherwise the path incurs weight at least�
 . We may thus change a solution by assigning� � to the
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same vertex as for� �, since this saves at least�
 on the paths of length 2 and incurs cost at most�

on the single additional edge incident to� �.

We may assume that there exists an instance�	 for which every optimal solution uses every
vertex in

� �
, otherwise the problem is reduced to a proper subgraph of

��
. Let �	 be the optimal

cost for�	 , and let
�	 � �	 be the minimum cost for�	 over all suboptimal solutions. If

��
has

mates� � 	 with loops of weight� �, then every optimal solution uses only� � 	 , since all other mates
�� � 	 � may be assigned to� � 	 . Otherwise

� �
has four distinct vertices� � 	 � �� � 	 � such that� � 	 are

mates,� � � 	 � are mates, and the edges��� and		 � have weight� �. Let � � be the weight of edges�	 �
and	��. Two cases arise: (1) If the loops at� � 	 � � � � 	 � have weight� � � � �, let

�� �
be the subgraph

of
��

induced by� and	 �; the problem on
�� �

is hard to approximate within an additive� �� �� � �
for some� � � by hardness of approximation of minimum edge deletion 2-partition [5]. In this
case let� � � � � � � � � 
� � � � 	 � �� � 		 � 	 . (2) Otherwise, say the loops at� and	 have weight� 
 �� � � �, and let

�� �
be the subgraph of

� �
induced by the vertices� that give the minimum sum

� � of the weights of�� and	 � , where
�� �

consists of a collection of pairs of mates not including
�� � 	 �; the problem on

���
is hard to approximate within an additive� �� �� � � for some� � � by

inductive hypothesis. Let
� � � � � be the next smallest sum of weights of�� and	 � over vertices�

in
��

, after� �, and let� 	 � � � 		 � 	 in this case.
Given an instance� �

for
�� �

, we construct an instance� for
�

. Suppose�	 has� vertices. Then
for each pair of vertices
 � in �	 , we include in� a copy� �� of � �

, and we also include in� a copy
of �	 . If a vertex� in � �� has degree� �� �, then we include in� additional �� �� ��
 � �� � 
 � ���
parallel edges joining� to both vertices of
 �. So far� has at most� � �
 � �
 � �� � 
 � ��� �� �� � � �
edges. We replace each edge in the copy of�	 in � by 
� � �
 � �
 � �� � 
 � ��� �� �� � � ��
 � ��	 
 �	 �
parallel edges, for a total of� �� �� � � � edges, where the constant� depends on� � �
 � �	 � �	 � � � � � �.
The number of parallel edges in the copy of�	 guarantees that if�	 is assigned with cost

�	 or
more, instead of�	, then an additive cost of at least� � �� �� � � will be incurred with respect to the
optimal solution, for some constant� � � �. We may thus assume that the cost for the copy of�	 is
�	 per parallel edge in the solution found, and thus�	 uses every vertex of

� �
. In particular some

pair 
 � in the copy of�	 maps to�� 	 � 		 �, and the parallel edges joining� � to �	 guarantee that
the vertices in� � will be assigned to vertices in

�� �
. The solution found for� � incurs an additional

� �� �� � � � � � �� �� �� � � cost by inductive hypothesis, for some constant� �� � �.

Proof for Theorem 2: Let � be the graph with� �� � � � �� � and
� �� � consisting of

the edges of� of weight �. The� -coloring problem asks whether there is a homomorphism from
� to � , and is NP-complete whenever� is nonbipartite, as shown by Hell and Nešetřil [6]. We
follow the proof of this result given by Bulatov [2]. First assume that� is a core, that is, there
is no homomorphism of� into a proper subgraph of� . If � is not a core, then� contains a
subgraph� �

that is a core and such that there is a homomorphism from� to � �
. If � is a core,

then we may use vertices of� in an instance� , by including a copy of� in � , since this copy
of � must map to� by an isomorphism. It is shown in [2] that there exist two vertices�	 #� � �
in � such that given any Boolean relation� �� � � � � � � � � �, there exists a graph	 containing� as
a subgraph, and containing special distinct vertices� � � � � � � � � , such that there are homomorphisms
� from 	 to � leaving the subgraph� of 	 fixed, with the property that (1) each such� satisfies
� �� � � 
 ��	 � � ��, and (2) the possible tuples�� �� � � � � � � � � �� � �� are the tuples��
 � � � � � � �
� � such
that the relation� �� � � � � � � � � � holds. The problem is thus NP-complete by the NP-completeness of
Boolean 3-satisfiability.

To reduce an instance� �
of the minimum edge deletion 3-partition problem to our problem,

we represent the three parts for the 3-partition by three Boolean assignments 001, 010 and 100.
Consider the triangle on these three parts, giving as its edge relation the Boolean relation� �� � � � � �
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� � � 	 � � 	� � 	� � with tuples ��� �� � ��� � ��� �� ��� �, �� �� � �� �� � �� �� � ��� � � ���� � �� �� � ���� � � ���. A
copy of the corresponding graph	 , containing a copy of� as described above, can then be used
as a gadget for each edge of the instance� �

. Thus, by the hardness of approximation of minimum
edge deletion�-partition [7], we infer that there exists a� � � such that it is NP-hard to distinguish
graphs� that have a homomorphism to� from graphs� such that every mapping from� �� � to
� �� � has at least� �� �� � � edges of� that map to non-edges of� , thus showing that the problem
is hard to approximate within an additive�� � �� �� � � even when the optimum has cost 0. We may
increase�� �� � � by making� �� copies of the� vertices for� � �  and� � � � �� .
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