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Abstract

We study the problem of assigning different communicatioarmels to access points in a
wireless Local Area Network. Each access point will be assiga specific radio frequency
channel. Since channels with similar frequencies interféris desirable to assign far-apart
channels (frequencies) to nearby access points. Our gaaldssign the channels so as to
minimize the overall interference experienced by all asgasnts. The above problem can be
formulated as an instance of the Minimum Graph Homomorplpisshlem. We give a complete
description of all possible approximation classes for theayal formulation of the problem.

1 Introduction

In this paper, we consider the problem of assigning comnatioic channels to access points in a
wireless Local Area Network (LAN). Each communication ahalnuses a distinct radio frequency.
However, frequencies within the same region of frequen®cspm or band will interfere with
one another. Because of this reason, it is desirable toragsigapart channels (frequencies) to
nearby access points. Motivated by this, we formalize the MITERFERENCEproblem as follows:
Number the: available channels in increasing order of radio frequency:. , k. Given the location

of all n access points, we’ll build a proximity graph as follows: leaertex represent an access
point, and two potentially interfering access points anenexted by an edge. We use a simple yet
practical interference cost model as follows: Each chanmaturs an interference cost of 1 with
itself, and an interference cost of 0.5 with adjacent chinine 1 or: + 1 (should they exist), and

0 with others channels. Thus, if both end-points of an edgeassigned the same channel, the cost
is 1; if they are assigned adjacent channels, the cost iothBrwise, the cost is 0. The goal is to
assign theé: channels to access points so as to minimize the overalfénggice cost.

The formulation of the above M INTERFERENCEproblem is closely related to other well-
studied NP-complete problems. For instance, it is closeligted to graph coloring. Specifically,
We can simplify the interference cost model as follows andiotthe MNIMUM EDGE DELETION
k-PARTITION problem: Each channélincurs an interference cost of 1 with itself, and 0 with the
rest of the channels. The IMiMuM EDGE DELETION k-PARTITION problem is well studied. In
the case ok = 2, the problem can be approximated within a factorOdogn) in polynomial
time as shown by Garg, Vazirani, and Yannakakis [4]. Reggtité approximation factor has been
improved toO(+/logn) by Charikar et al. [3]. For the lower bound, the problem is hN#d to
approximate within a factor of + ¢ for somee > 0, even for instances that have an optimal
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solution of cost at least E(G)|, for somes > 0, as shown by Hastad [5]. In the casekof 3, this
problem is NP-hard to approximate within an addit®y&(G)| for somee > 0, even for instances
that have an optimal solution of zero cost, as shown by Pefi@n

On the other hand, we may further generalize thet M\NTERFERENCEproblem as follows. Let
J be a fixed complete reflexive graph with weighted loops anéedget) < ag < a1 < --- < a;,
denote the set of weights, which are all constants. Givenrafiexive graphG, the goal of the
the MIN GRAPH HOMOMORPHISM problem is to provide a mappinf) from V(G) to V(J) with
the minimum cost. The cost of a mapping is the sum of the weighthe edge$f(u), f(v)) in
J over all edgesu,v) in G. The MIN INTERFERENCEproblem is the special case whe¥eis the
proximity graph on access points and the grdpis a path ork vertices with self-loops of weight
1 on each vertex, while the weight of the path edges is 0.5n Ataal. show that the Mi GRAPH
HOMOMORPHISM problem can be solved within an additive m in time 200*/(€m) 0 (n2) for
m = |E(G)| [1].

The main results of the paper are approximation and hardesalts for the MN GRAPH HO-
MOMORPHISM problem. Depending on the parametessas,- .., ax, we show that the problem
varies from trivial to additivelyQ2(E|G|) hard. We cover all possible casesagf ay,...,a;. The
rest of the paper is organized as follows: Section 2 provitiesoverview of the classification,
ranging from easy to hard. Section 3 provides detailed gramfwo key theorems.

2 Classification ofMIN GRAPH HOMOMORPHISM

We begin the classification with the easy cases. If therdseaiself-loop on node with weight
ag in J, then the problem is trivial. We map all verticesGhto u, guaranteeing the minimum cost.
Otherwise, there is no self-loop with the least weight.

If ap > 0, then the following algorithm gives @ag + ax)/2a¢)-approximation. InJ, identify
the edge(u, v) such that the weight ofu, v) is ag. For each vertex i, the algorithm randomly
maps it to eithew or v with equal probability. The algorithm can be derandomizasilg as well.
Thus we obtain a constant approximation. Note that thisisdd&X SNP-hard, due to the hardness
result of MINIMUM EDGE DELETION 2-PARTITION.

We are thus left with the casg = 0, which we analyze depending on whether the edges of
weight zero form a bipartite graph or not. We introduce tHiv¥ang two theorems, for which we
give the detailed proofs in the next section.

Theorem 1 If the edges of weight zero form a non-empty bipartite graph, then the MIN GRAPH
HOMOMORPHISM problem is within a constant factor of the MINIMUM EDGE DELETION 2-
PARTITION problem.

Theorem 2 If the edges of weight zero form a nonbipartite graph, then the MIN GRAPH HOMO-
MORPHISM problem is NP-hard to approximate within an additive factor € - m for some e > 0 even
when the optimum solution has cost 0, and |E(G)| = m > n?~ for any § > 0. If NP ¢ O(2™")

for some 1 > 0, then the problem cannot be approximated within e-m in timeO(Z(”z/m)‘s) for some
€,0 > 0.

Theorems 1 and 2 both give the same additive hardness ofxapgtion, which applies to the
caseag > 0 as well by subtracting,, from all weights. Note that we can always get an additive
approximation factor ofi; | E(G)|, regardless of the values @f, a1, . . . , ax, which will be constant
factor away from the hardness result in the theorems abogmbihing the results, we obtain the
following classification.



Theorem 3 The MIN GRAPH HOMOMORPHISM problem falls in four approximation classes:

1. Trivial: If thereisa self-loop of least weight;

2. Constant factor easy, and constant factor hard (even when optimum is proportional to the
number of edges): If thereis no zero weight edge and no loop of least weight;

3. O(+v/1og n)-easy, and constant factor hard (even when optimum s proportional to the number
of edges): If the zero weight edges form a bipartite graph with at least one edge;

4. additively O(|E(G)|)-easy for dense graphs, and additively Q(| E(G)|)-hard (even when the
optimum is zero for graphs that are not dense): If the zero weight edges form a nonbipartite
graph without loops.

3 Detailed Proofs for Theorem 1 and 2

Proof for Theorem 1: Let H be the graph witi/ (H) = V(J) and E(H) consisting of
the edges off of weight0. The graphH is bipartite. Since there is a homomorphism frdm
to a graph consisting of two adjacent vertices, the problémmiaimizing the number of edges
of G that map to non-edges @&f is the minimum edge deletion 2-partition problem, which ban
approximated withirQ (log n) [4], or within O(+/log n) [3]. Thus our problem can be approximated
within O((ax/a1) logn), or within O((ax/a1)+/logn).

We prove hardness of approximation by induction on the sfzd.olLet J' be obtained by
removing from.J all vertices not incident to any edge of weightlf J’ has fewer vertices thas,
then apply the inductive hypothesis 6for instancess’. Such an instancé”’ can be transformed
into an equivalent instanc@ for J, by attaching to each vertexin G’, of degreed(v), a total
of n(v) = [d(v)ag/a1] edges joiningw to n(v) new vertices. An optimal solution fa& can be
assumed to assignto a vertex inJ’, otherwise then(v) added edges would incur cost at least
d(v)ay instead of0, and thed(v) neighbors o in G’ incur cost at mosi(v)ay.

We may thus assume that every vertex/iis incident to some edge of weight Letr be the
number of vertices ity, and supposd has vertex: incident to two edgesav anduw of weight0.
Let J? be the graph obtained froth by assigning to each edge in J? the minimum total weight
of a path of lengti2r + 1 from z to y in J, where the path may traverse loops and visit the same
vertex multiple times. A path of odd length greater tlant+ 1 in J can be made of lengttr + 1
by removing an even cycle (since some vertex appears thras thn the original path) and then
traversing0 length edges in both directions. If#, for the two vertices, w, the weight of an edge
vz is the same as the weight of the corresponding edgeThus the problem fog? is equivalent
to the problem forJ” — w. We apply the inductive hypothesis #§ — w on instances?’, and to
obtain an equivalent instanc¢efor .J, we replace each edge 6f with a path of lengtt2r + 1.

We may thus assume that every vertexiis incident to exactly one edge of weightLet the
mate of a vertexz in J be the vertexy such thatry has weight). The graphJ? in the preceding
construction has the property thatzify are mates, and’, 1y’ are mates, then the edges’ and
yy' have the same weight. We show hardness of approximatiod®owhich implies hardness
of approximation forJ as before. We may consider instanceéshat have multiple parallel edges
and multiple loops, by reducing such instances to equivatestancess’ without parallel edges or
loops, as follows. If a vertex in G hasp(v) parallel edges ané(v) loops, replaces by vertices
vi, 1 <14 < p(v) + 24(v), one for each edge incidenttoand join eachy;, i > 1 to vy by [ax/a1]
paths of length 2. These paths will incur weighif and only if v; maps to the same vertex iff,
otherwise the path incurs weight at leagt We may thus change a solution by assigningp the
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same vertex as far, since this saves at leagt on the paths of length 2 and incurs cost at mgst
on the single additional edge incidentuo

We may assume that there exists an instadgdor which every optimal solution uses every
vertex inJ?, otherwise the problem is reduced to a proper subgrapff ol et sq be the optimal
cost forGy, and letty > sy be the minimum cost fo, over all suboptimal solutions. If? has
matesz, y with loops of weighta;, then every optimal solution uses onlyy, since all other mates
z',y' may be assigned te, y. OtherwiseJ? has four distinct vertices, y, z, ' such thatr, y are
matesy’, y' are mates, and the edges’ andyy’ have weightz;. Leta; be the weight of edgesy’
andyz’. Two cases arise: (1) If the loopsaty, z’, ' have weightz; + a;, let J? be the subgraph
of J? induced byz andy’; the problem onj? is hard to approximate within an additivéeE (G)|
for somed > 0 by hardness of approximation of minimum edge deletion Zipar [5]. In this
case lets; = a1, t; = 2a1,79 = 7’,y0 = y. (2) Otherwise, say the loops atandy have weight
b < a1 + a;, and letJP be the subgraph of? induced by the vertices that give the minimum sum
s1 of the weights ofrz andyz, whereJ? consists of a collection of pairs of mates not including
',y'; the problem onj? is hard to approximate within an additiiéE(G)| for somed > 0 by
inductive hypothesis. Let > s; be the next smallest sum of weightsaef andyz over vertices:
in J?, aftersy, and letzy = z,yo = y in this case.

Given an instancé’ for J?, we construct an instane@for J. Supposés, hasg vertices. Then
for each pair of verticep; in Gy, we include inG' a copyG’; of G, and we also include i6¥ a copy
of Gy. If a vertexv in G} has degree(v), then we include irG additional [d(v)ak/(t1 — s1)]
parallel edges joining to both vertices op;. So farG has at most?(2 + ax/(t1 — s1))|E(G")|
edges. We replace each edge in the cop§iein G by 2¢2(2 + ay/(t1 — 51))|E(G")|ax/(to — o)
parallel edges, for a total of E(G’)| edges, where the constantlepends om, a, so, to, 51, 1.
The number of parallel edges in the copy@f guarantees that i/ is assigned with cosfy or
more, instead ofy, then an additive cost of at leaS{E(G)| will be incurred with respect to the
optimal solution, for some consta#it > 0. We may thus assume that the cost for the cop§iofs
so per parallel edge in the solution found, and tligsuses every vertex af?. In particular some
pair p; in the copy ofGy maps to(zy, yo), and the parallel edges joinin@; to Gy guarantee that
the vertices irnG; will be assigned to vertices i#*. The solution found for7; incurs an additional
S|E(G")| = ¢"|E(G)| cost by inductive hypothesis, for some constéht> 0. O

Proof for Theorem 2: Let H be the graph with/(H) = V(J) and E(H) consisting of
the edges off of weight0. The H-coloring problem asks whether there is a homomorphism from
G to H, and is NP-complete whenevéf is nonbipartite, as shown by Hell and NeSetfil [6]. We
follow the proof of this result given by Bulatov [2]. Firstasme thatd is acore, that is, there
is no homomorphism off into a proper subgraph d. If H is not a core, therf{ contains a
subgraphH’ that is a core and such that there is a homomorphism ftbio H'. If H is a core,
then we may use vertices &f in an instanceZ, by including a copy of in G, since this copy
of H must map toH by an isomorphism. It is shown in [2] that there exist two @S uy # u;
in H such that given any Boolean relatid®(z1, ..., z;), there exists a graphl containingH as
a subgraph, and containing special distinct vertiges. . , v, such that there are homomorphisms
f from T to H leaving the subgrap®l of T fixed, with the property that (1) each suglsatisfies
f(vi) € {ug,u1}, and (2) the possible tuplég(v1),..., f(v:)) are the tupleguy,, ..., usz,) Such
that the relationR(z1, . . . , z¢) holds. The problem is thus NP-complete by the NP-complstené
Boolean 3-satisfiability.

To reduce an instanc@’ of the minimum edge deletion 3-partition problem to our peaf
we represent the three parts for the 3-partition by threeld@mpassignments 001, 010 and 100.
Consider the triangle on these three parts, giving as ite eglgtion the Boolean relatiaR(z1, x4,



x3,Y1,Y2,y3) With tuples(001,010), (001, 100), (010,001), (010, 100), (100, 001), (100, 010). A
copy of the corresponding gragh containing a copy o as described above, can then be used
as a gadget for each edge of the insta@i¢eThus, by the hardness of approximation of minimum
edge deletior3-partition [7], we infer that there existséa> 0 such that it is NP-hard to distinguish
graphsG that have a homomorphism # from graphsG such that every mapping froli(G) to
V(H) has at least|E(G)| edges ofG that map to non-edges &f, thus showing that the problem
is hard to approximate within an additive;|E(G)| even when the optimum has cost 0. We may
increasd E(G)| by makingn/k copies of thek vertices fork = n? andk = n?/m. O
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