Electronic Colloquium on Computational Complexity, Report No. 41 (2006)

k-Connected Spanning Subgraphs of Low Degree

Tom3&s Feder* Rajeev Motwani' An Zhut

Abstract

We consider the problem of finding a k-vertex (k-edge) connected spanning subgraph K of
a given n-vertex graph G while minimizing the maximum degree d in K. We give a polynomial
time algorithm for fixed k that achieves an O(logn)-approximation. The only known previous
polynomial algorithms achieved degree d 4+ 1 for optimum d if ¥ = 1 (the case of spanning
trees) and a factor O(n®) for any § > 0 if k = 2 for the case of 2-edge connectivity. Our
result answers open problems of Ravi, Raghavachari, and Klein [12, 11] and Hochbaum [8].
The result extends to a weighted version with non-uniform degree bounds for different vertices.
Our approach is based on an O(logn)-approximation bound for a problem that combines set
cover and degree minimization, thus extending the tight ©(logn) bound for set cover. We also
consider extensions to finding k-connected subgraphs or minors of low degree spanning a large
fraction of the vertices, for k = 1,2, 3, with an application to finding long cycles in graphs.

1 Introduction

The problem of computing low degree subgraphs satisfying given connectivity properties of a given
graph arises naturally in the design of communications networks. The simplest of these problems
is the MINIMUM DEGREE SPANNING TREE (MDST) problem. The input is an arbitrary graph G
and the goal is to compute a spanning tree of G whose maximal degree is the smallest among all
spanning trees of G. The MDST problem is a generalization of the HAMILTONIAN PATH problem
and is NP-hard. For any k > 2, the problem of deciding whether the optimal solution has maximal
degree k is NP-complete [6]. The first result on approximation a minimum-degree spanning tree
was that of Fiirer and Raghavachari [3]. They gave a polynomial time approximation algorithm
with ratio O(logn). In subsequent work, Fiirer and Ragahavachari [4] improved their previous
results and provided another polynomial time algorithm to approximate MDST problem to within
one from optimal. Clearly no better approximation algorithms are possible for this problem.
Little success was obtained in generalizing this problem to larger degrees of connectivity. Ravi,
Raghavachari, and Klein [12, 11] used local optimization techniques to obtain an approximation
algorithm for the minimum-degree 2-edge-connected spanning subgraph problem. They obtained
an algorithm that approximates the maximal degree d by cd + O(log.d) for any ¢ > 1 in time
nOM)+1og. " Thus approximation factor O(logn/loglogn) is achieved in time nO{cgn/loglogn) 44
the best approximation factor achieved in polynomial time is O(n?) for any fixed § > 0. This leaves
open the question of whether better approximation factors, either for this problem or for higher

*268 Waverley Street, Palo Alto, CA 94301. Email: tomasQtheory.stanford.edu

tDepartment of Computer Science, Stanford University, Stanford, CA 94305. Supported in part by NSF
Grants 11S-0118173, EIA-0137761, and ITR-0331640, and grants from Microsoft, SNRC, and Veritas. Email:
rajeev@cs.stanford.edu

tDepartment of Computer Science, Stanford University, Stanford, CA 94305. Email: anzhu@cs.stanford.edu

ISSN 1433-8092

connectivity, can be obtained. The problem of minimizing the number of edges while achieving k-
connectivity has also been extensively studied [1, 5, 7]. A general introduction to this subject area
can be found in Chapters 6 and 7 in the book, Approzimation Algorithms for NP-Hard Problems,
edited by Hochbaum [8].

In this paper, we solve the open problem mentioned above [12, 11, 8] by designing an O(k log n)-
approximation algorithm (in polynomial time) that minimizes the maximum degree of k-edge-
connected or k-vertex-connected spanning subgraphs for fixed k via a new approach. The basic
approach comes from a general problem related to set cover, which we call the MINIMUM DEGREE
HYPERGRAPH (MDH) problem. The MDH problem asks to select a set of hyperedges in a hyper-
graph G, where each edge e in G has a corresponding hyperedge f in an associated hypergraph
H, and the aim is to cover the vertices in H with the hyperedges f while minimizing the maximal
degree of vertices with the corresponding selected hyperedges g in G. We first give a combinatorial
algorithm that achieves a bound of O(slogn) in polynomial time, where H has n vertices and the
hyperedges in G have size at most s. We further improve this bound to O((log s/ loglog s) logn)
via randomization and O(s'/" logn) after re-randomization for any integer constant r.

The results generalize to the case where the vertices in G and/or in H have possibly different
degree upper and lower bounds given to be achieved within an approximation factor, and with
possibly different degree contributions given for each hyperedge to each vertex in G and/or in H.
In particular, this implies that if there exists a k-vertex (edge, respectively) connected spanning
subgraph with degree d; for each vertex v;, then we can find in polynomial time a corresponding
k-vertex (edge, respectively) connected spanning subgraph with degree O(d; logn) for each vertex
V-

We also consider the problem of minimizing the degree of a k-vertex (edge) connected subgraph
(minor) that spans only r of the vertices, and give a polynomial time approximation algorithm
with ratio (n/r)log®M n for k = 1 and k = 2 in the case of subgraphs, and for k = 3 in the case
of minors. We remark that this version of the problem is closely related to the problem of finding
a long cycle in a graph, and leads to a result that finds a long cycle in a graph containing a large
3-cyclable minor of low degree, continuing the work of Feder and Motwani [2].

The rest of the paper is organized as follows. Section 2 presents a deterministic algorithm for
the MDH problem, as well as a reduction from the k-vertex (edge) connected spanning subgraph
problem to the MDH problem. Section 3 presents a randomized algorithm for the MDH problem
with non-fixed degree upper bounds. Finally, Section 4 talks about finding k-vertex (edge) con-
nected subgraph that spans a large fraction of the vertices, and applications to finding long cycles
in graphs.

2 Deterministic Algorithms for Fixed Degree Bound

We first formally define the MINIMUM DEGREE HYPERGRAPH (MDH) problem. An instance of the
MDH problem consists of two hypergraphs G = (V(G), E(G)) and H = (V(H),E(H)), where the
hyperedges of G are paired up with the hyperedges of H. The goal is to select a set of hyperedges in
H to form a set cover of the vertices in H and so that the corresponding set of selected hyperedges
in G give the minimum possible maximum degree for vertices in G. If all hyperedges in G share
a vertex in G, then this is the SET COVER problem, and the optimal polynomial time algorithm
achieves a ©(log |V (H)|)-approximation [10, 13].
We can formulate the MDH problem as an integer program, as follows:

Minimize: d
Subject to: > z. <d Vu; € V(G)
’uiESe
> ze>1 Vv € V(H)
’UjETe
z. € {0,1}

where z is an integer variable corresponding to whether hyperedge e € F(G) (and its corresponding
edge e € E(H)) is chosen, S is the set of vertices in G corresponding to hyperedge e, and T is the
set of vertices in H corresponding to hyperedge e.

The problem can be generalized by requiring various proportional degree factors «; > 1 for
each vertex u; in (G, various proportional degree contributions 1 < ae; < a; for S, to vertex wu;,
and similarly, various proportional multiple covering amounts 3; > 1 for each vertex v; in H, and
various proportional multiple covering contributions 1 < b.; < 3; for T, to vertex v;. This leads to
the following integer program.

Minimize: d>1
Subject to: > aeize < a;d Yu; € V(Q)
U;ESe
Z bej-'L'e > ﬁj V’Uj € V(H)
’UjETe

z. € {0,1}

We consider two parameters s = max,|Se| and m = > ; ;. Here we obtain a O(slogn)-
approximation with a deterministic combinatorial algorithm under a specific additional assumption,
ae; = ae for all e € E(G),i € V(G). In the next section, we shall improve this bound with
a randomized algorithm that achieves an O((log s/ loglog s) log m)-approximation, by means of
linear programming and randomized rounding, which also gives an O(s'/"logm) deterministic
approximation result after de-randomization for any integer constant r.

Theorem 1 Suppose ae; = ae, Ve € E(G),Vi € V(G). Then there is a deterministic polynomial
time algorithm for the MDH problem that achieves a mazimum degree 2(ds+1) log m for an optimum
degree of d, or (ds + 1)logm if further ac = 1 for all e € E(QG), for an approzimation factor of
O(slogm).

Proof. We adopt a greedy approach. In each phase i > 0 (with mg = m), greedily select a maximal
set of hyperedges in G, so that each chosen hyperedge e, which contributes h, = Z,U], e, Min(B;, be;)
towards m; =) j Bj, is picked to give the largest possible value for h./ a.'. Hyperedges are selected
until each e that has not been chosen has a vertex u; in G for which the bound «; has been reached.
Only hyperedges e such that this bound «; has not been reached for any u; in e may be chosen, so
the degree bound for the selected edges in each phase in G may not exceed «; + a. < 2¢;, and may
not exceed q; if all a, = 1. When we may no longer choose any e, the chosen edges have covered a
total h =) h, out of m;. We then set m;;1 = m; — h and continue until all the 3;’s become 0.
We wish to bound the amount of m;;; with respect to m;. Let GE denote the set of the
hyperedges selected greedily during phase 7. The remaining m; — h at the end of phase ¢ can be
covered with the edges in the optimal solution. Assume a hyperedge e in the optimal solution could
cover h, with respect to m;y1, and let u; be the vertex for which «; has been reached using the

!Once some hyperedge is chosen, we properly subtract the amount be; from each affected 3;, or set 8; = 0 if
bej > ,BJ

edges in GE. Then for each ¢’ € GE that was used to reach «; we have he /ae > h; > he/a. since
the algorithm was greedy. Of the he achieved by €/, we may assign her/s to u; by the definition of
s. The edges e € GE in the optimal solution containing u; have a combined contribution towards
m;+1 no more than Y he =Y ac(he/ae) < ach; < dajh; <Y dag(he Jag) =Y dher, a factor of
ds from the assigned her/s. Thus m;11 = m; — h < dsh, or mjy+1 < mi(1 —1/(ds + 1)), indicating
the total number of phases is bounded by (ds + 1) logm.

Since each phase contributes at most 2q; for w;, or at most «; for the case where all a, = 1,
this gives the bounds 2¢;(ds + 1) log'm and «;(ds + 1) log m respectively. 0

Next we show how to reduce the k-vertex (edge) connected spanning subgraph problem to the
MDH problem. We introduce an intermediate MINIMUM DEGREE SPANNING SUBGRAPH (MDSS)
problem. An instance of the MDSS problem is a graph G and a collection of r subgraphs G; of G.
The aim is to select a subgraph K of G so that the subgraph of G; induced by the edges of G; in
K spans G;, for each G;, and the maximum degree d of K is minimized. As before, this may be
generalized to having amounts «; > 1 at each vertex u; in G, so that the degree at u; to be satisfied
is a;d, and we may also assume that edge e contributes 1 < aq; < «; to the degree at u;.

Theorem 2 The MDSS problem can be approximated in polynomial time to achieve mazimum
degree at most 2(2d + 1) log((|V(G)| — 1)r) when the optimum degree is d and if ae; = ae, Ve €
E(G),Yi € V(G); and at most (2d + 1)log((|V(G)| — 1)r) if ac = 1, Ye € E(G). This gives an
O(log(|V(G)|r)) approzimation factor.

Proof. During the duration of the algorithm, we will need to consider at most |V(G;)| — 1 cuts
per G; to be traversed in order to obtain a spanning tree of G; with |[V(G;)| — 1 edges, for a total
of at most (|]V(G)| — 1)r cuts. At any stage of the algorithm, we may let H be the hypergraph
whose vertices are the different cuts out of different components of selected edges in G;, where the
hyperedges of H correspond to edges e € E(G), and the elements of such hyperedges in H are the
cuts traversed by e. We may thus apply Theorem 1 to G and H, with H updated every time a new
edge is added to K to reflect the changing cut requirements. The result follows with s = 2 and
m = (|[V(G)| — 1)r from Theorem 1. O

For the problem of k-vertex (edge, respectively) connected spanning subgraph, the G;’s are
. V(G
the graphs obtained from G by removing k — 1 vertices (edges, respectively), with r = (‘ k&”)
(r = (‘Ek(f?'), respectively). The following answers an open problem of Hochbaum’s book [8] and
of Ravi, Raghavachari, and Klein’s paper [12, 11].

Theorem 3 For any constant k, there is a polynomial time algorithm that finds a k-vertex-(or
edge)-connected spanning subgraph H of mazimum degree O(dk logn), where the optimum mazimum
degree is d, for an O(klogn) approximation factor. This approximation factor for d extends to the
case the degree at a vertex u; must be at most a;d and the contribution of each edge e to this degree
18 Qei = Qe

For the special case of 2-vertex connectivity, we could further improve the above bound under
certain conditions, via the following.

Theorem 4 There is a polynomial time algorithm that finds a 2-vertez-connected spanning sub-
graph H of mazimum degree d+1+2df for optimum degree d, provided a 2-edge-connected spanning
subgraph H' of mazimum degree f can be found.

Proof. First find a spanning tree H” of degree at most d + 1. Each time a vertex v splits H” (that
is H" — v has at least two components), split v into two adjacent vertices, one for each of the two
parts joined at v. Finding a 2-edge-connected spanning subgraph on this new graph takes care of
each such edge v1vo, with increase in degree 2f. This needs to be done d times to fully take care
of v, for an increase of 2df and total degree d + 1 + 2df. O

The current best known estimate for f is cd + O(log.n), for any ¢ > 1, with running time
nO(ogen) [12, 11]. Thus improves the bound of Theorem 3 only if d < logn. In particular, if
d is constant, we can achieve degree O(logn/loglogn) in time n@Uo8n/loglogn) from Theorem
4, versus degree O(logn) in polynomial time from Theorem 3. Note that the earlier best know
polynomial time approximation algorithm for the case of a 2-edge connected spanning subgraph
gives an approximation of n? for any chosen § > 0, by letting ¢ = n’, as opposed to the much
smaller O(logn) bound of Theorem 3.

3 The General Case

We now generalize Theorem 1 by removing the assumption that a.; = a. there stated.

Theorem 5 There is a randomized polynomial time algorithm for the general MDH problem that
achieves an O((log s/ loglog s) logm) approzimation factor, and also achieves an O(s*/" logm) ap-
proximation factor after de-randomization for any integer constant r > 2.

Proof. We consider the integer program corresponding to the problem, replace the integer con-
straint z, € {0,1} with the linear constraint 0 < z. < 1, and solve the linear program to obtain
values for the z, and for d > 1. We may assume that d = 1 by setting the new «o; to be a;d. Next,
we select hyperedge e with probability x., independently for each e at random. We shall show that
with probability at least 1 — 1/(cs) for any chosen constant ¢, for a constraint corresponding to u;
and bound ¢, if we set z, to 1 or 0 depending on whether e is chosen or not, the constraint will
be satisfied with the bound «; replaced by a new bound O((log s/ loglog s)a;). Furthermore, if the
ze’s are not chosen as mutually independent but pairwise independent, the same assertion holds
but with a weaker new bound O(y/sq;). This weaker bound is improved to O(s'/"q;) when the
x.’s are chosen r-wise independent for » > 2. We then set an z, that had value 1 (i.e., chosen by
the random process) to 0 if the new bound in each of these two cases is not satisfied. This happens
with probability at most 1/(cs) per constraint for the u;, and therefore with probability at most
1/c per z., since each z. participates in at most s such constraints. Finally, after this modification
of the z.’s, for a constraint corresponding to v; and bound f;, the constraint with the modified
bound j3;/¢ is satisfied with some constant probability at least 1/¢” for some constants ¢ and ¢”.
Therefore repeating this process an expected O(c'¢’) number of times leads to satisfying in one
such trial a portion Q(m/(c'c")) of m = 7, B;. We then start the process over with m replaced
by m — Q(m/(c'c")) and corresponding adjustments of the ;. Thus after O(logm) such rounds
the bound m is satisfied. Adding all the rounds satisfies the constraints with for the u; and bound
o; with a bound O((log s/ log log s)a; logm), or with the bound O(s'/"a; logm) if only r-wise in-
dependence is used. Furthermore, r-wise independence for » > 2 only requires a polynomial size
sample space that can be determined ahead of time, so in the latter case the algorithm can be
de-randomized. It thus only remains to prove the probabilistic claims to complete the proof of this
theorem.

Consider the constraint ZWG s, GeiTe < ;. If the z,’s are r-wise independent, then the proba-
bility that z.,,...,x., are all set to 1 is z,, - - z.,. Suppose some variables z, are set to 1 for a set

E of hyperedges e with probability p, and we have Zul e Gei > ta; with © > 2r?. This contributes
P (ererici Geri s~ Geyi 2 P(Xoep tei) /Tl = air(Xoep aer)’ [/ (r — 1) > pltey)" (1 = r2/t) fr! >
p(ta;)"/(2r!) to the sum Y7, o ycg GeiiTerit " GeniTe, < (Pees, @eiTe)” < of /rl. Adding over
all such cases with corresponding probabilities p, we have Y p < of /((tey)"/2) < 2/t". Setting
t = s/, we thus have that with probability at least 1 — 1/(cs), D uies, GeiTe < O(s'/") .

The stronger bound under the assumption of mutual independence is obtained via Chernoff
bound. We simplify the constraint as follows Zu, s, beite < 1, where 0 < be; = ae; Joi < 1. We
thus have random variables Y., where Y, = b.; with probability z., and 0 with probability 1—xz.. We
replace Y, with random variables Z,, where Z, = 1 with probability b¢;z., and 0 with probability
1 — be;ze. We have that for any convex function f, E[f(Y.)] < E[f(Z.)]. Define random variables
Y=>Y.and Z =) Z,. We know that E[Y] = E[Z] = u < 1. Thus, it suffices to obtain the tail
bound on Y applying Chernoff bound on Z. In particular, we have that

h) 7
e
PlY 1+6 —_—| -
Y >@1+4dul < |:(1+5)1+(5:|
Setting § = O(log s/ (1 loglog s)), we have P[Y > O(log s/ loglogs)] < 1/(cs).

Consider the constraint Evj er, bejTe > Bj. For each integer p > 0, define qép = min(max(be; —
p,0),1), Thus bej = 3, qgp, With gg, =0 or gg, = 1, and 0 < p < be; < B;2. For each 0 < p < f3;,
consider the sum 7";, =D qé,pxe. Divide the summands into at most 27";) + 1 groups with at most
one group adding to less than 1/2 and all the others between 1/2 and 1. The total number of
groups adding to at least 1/2 is thus at least) (r, — 1/2) > (35, 7,) — B;/2 = (32, . depTe) —
Bi/2 = (D, beize) — Bj/2 > Bj/2. If we consider one such group, with the assumption of pairwise
independence, the probability to obtain at least one z, = 1 is at least >, xc — > {e,e'} TeTe! >

YoeTe — (D ze)%)2 > (>-.ze)/2 > 1/4. The probability that this z. = 1 that occurs with
probability at least 1/4 will be changed to z. = 0 is at most s(1/(cs)) < 1/c by the preceding
argument, and therefore the probability that it will still be z, = 1 is at least 1/4 — 1/c > 1/5.
The expected total number of groups containing at least one z, = 1 out of ;/2 groups is thus
at least (8;/2)/5 > (;/10, while the probability that it will be at least £;/20 is at least 1/10,
otherwise expected value f3;/10 cannot be obtained with maximum value 3;/2. Therefore a portion
B;/20 of the bound j; is satisfied with probability at least 1/10 under the assumption of pairwise
independence, hence a constant fraction of m = Z]- Bj is satisfied at each round, for a total of
O(logm) rounds.

The de-randomization of pairwise independent z. is as follows. We may assume that each z. is
of the form z, = g./p for some prime p = ¢"n for some sufficiently large constant ¢”, where n is the
number of variables z., and 0 < ¢, < p is integer, with only a small rounding effect on the preceding
argument. We may then choose the sample space to be uniform on {(z,y) € ({0,...,p — 1})2}, and
set zo=1fore=1,...,nifx+ey+t = 0 modulo p for some 0 < ¢t < g.. Thus the probability that
Te = 1is (gep)/p? = ge/p, and the probability that z. = 1 and zo = 1 is (geqer) /P? = (ge/D)(ger /D),
giving pairwise independence. Testing all p? possible elements in this sample space de-randomizes
the algorithm. A similar de-randomization applies to r-wise independent random variables with
r > 2 an integer constant. O

Similar to Theorem 2 and 3, we conclude the following.

*In this proof only we can assume that a.; and a;’s are integers. Since originally ae;,a; > 1, we can simply round
them to the next integer while loosing only a constant factor in terms of approximation.

Theorem 6 The MDSS problem can be approximated in polynomial time to achieve mazimum
degrees at most O(a; log(|V (G)|r)) when there ezists a solution with mazimum degrees «; for weights
aei, giving an O(log(|V (G)|r)) approzimation factor.

Proof. Follows from Theorems 5 as in Theorem 2. Except that we don’t constantly update H
when edges are selected. Thus, for a particular G;, it could happen that all the cuts are covered,
however, the resulting graph does not connect G;. However, in the worst case, the added edges
form a matching and reduce the number of cuts by at least a half. O

Theorem 7 For any constant k, there is a polynomial time algorithm that finds a k-vertezx (edge)
connected spanning subgraph H of degrees O(a;klogn), where there ezxists a solution with degree
bounds «; for weights ae;, giving an O(klogn) approzimation factor.

4 Large 2-Connected Subgraphs of Low Degree

In their study of the problem of finding large cycles in a graph, Feder and Motwani [2] obtained the
intermediate result that if a graph G with n vertices has a cycle K with k vertices, then for all » > 1
we can find in G a subgraph containing a 2-connected component that has at least k(1 — 1/r) of
the vertices of K, with vertex degree at most (rn/k) log®n, for some constant ¢ > 1 in polynomial
time [2]. The proof generalizes to the following seven results, and in particular allow us to find
large cycles in graphs with a large 3-cyclable minor of small degree. This extends the result of [2]
that shows that if a graph has a cycle of length k, then for all » > 1 we can find in polynomial time
an almost 3-cyclable minor with at least k(1 —1/r) vertices and with degrees at most (rn/k) log®n,
for some constant ¢ > 1, and thus a cycle of length k(1/(log(n/k)+loglogn))

Theorem 8 If a connected graph G with n vertices and m edges has a subgraph that is a tree K
with k vertices of verter degree at most d, then for all ¥ > 1 we can find in G a tree that has at
least k(1 —1/r) of the vertices of K, with vertex degree at most O((drn/k)log?n), in O(nm) time.
This gives a polylogarithmic degree approzimation if v and n/k are bounded by a polylogarithm.

Proof. Lett = rlogn. We consider a series of logn phases ¢ = 0,1,...,logn during which we select
edges to form a subgraph H. In phase i, we consider components of H that have between 2° and
2i*1 vertices. By the end of the phase, these components will be combined into components with
at least 2¢*1 vertices, or not considered as part of H. The number of vertices that are thus removed
from H but belong to K in each phase will be at most &/, and the degree increase in each phase will
be at most dtn/k. Thus over all logn phases we have removed from H a total of (k/t)logn = k/r
vertices that belong to K, and the maximum degree is at most (din/k)logn = (drn/k)log®n, as
required in Theorem 8.

Consider H as selected at the beginning of phase i. The components that have between 2°
and 2°*! can be joined in pairs by a maximal collection of disjoint paths that do not go through
H and are added to H. Eventually, we are left with such components that can not be combined
in pairs by paths not going through H. Suppose there are at least k/¢ vertices of K that belong
to such components. Then the number of such components that contain vertices of K is at least
s = [k/(t2"*1)]. These components can be joined together by the tree K of maximum degree d.
These s components have s representative vertices in K, that can be joined in pairs as disjoint
paths, so that every time a path is chosen, joining two consecutive leaves that are among these
s vertices with common ancestor v, at most d — 1 other leaf descendants from v that are among

the s vertices are discarded. Thus at least 2s/d of these s vertices can be paired by disjoint paths.
These disjoint paths necessarily go through other components of H that have at least 2'*! vertices,
so we can set a flow problem where the sources are the components having between 2¢ and 2¢+!
vertices and the sinks are the components having at least 2¢*1 vertices, thus obtaining at least
[s/d] > [k/(td2')] paths. Since the total number of such components to be joined is at most n/2¢,
the computation of disjoint paths by flow happens at most (n/2)/(k/(td2!)) = dtn/k times, for an
increase of degree at most din/k during a phase. When such a flow can no longer be found, the
phase is complete, which happens only when fewer than &/t vertices of K belong to such compo-
nents that have between 2¢ and 2*! vertices. The time complexity is dominated by pushing O(n)
units of flow in O(m) time each, for a total O(nm) time. O

Theorem 9 If a 2-edge-connected graph G with n vertices and m edges has a 2-edge-connected
subgraph K with k vertices of vertex degree at most d, then for all r > 1 we can find in G a 2-edge-
connected subgraph that contains at least k(1 —1/r) of the vertices of K, while having vertex degree
at most O((drn/k)log*n), in O(nm) time. This gives a polylogarithmic degree approzimation if r
and n/k are bounded by a polylogarithm.

Proof. Let t = rlog®n. We initially find the tree of degree O((drn/k)log®n) from Theorem 8.
We shall gradually add paths to this tree H until H becomes 2-edge-connected. At any stage, H
consists of a collection of disjoint 2-edge-connected components joined by single edges in a tree
structure. The degree of a component is the number of these edges coming out of the component.
Consider removing all paths joining leaf components to components of degree at least 3, going
through components of degree 2. If we repeatedly remove these paths, the number of paths going
through components of degree 2 in H is halved each time, so we may remove such hanging paths
at most logn times. This sets up logn phases, where each phase considers the hanging paths of
components.

A phase that deals with hanging paths of components first begins by consider each such path,
one at a time. It starts with the leaf component and finds the path not going through H that
connects to the latest component on the path of components starting at this leaf, thus forming
a single 2-edge connected component that constitutes a new leaf, and the operation is performed
again. Since vertices in the earlier leaf are not used to start a new path, this increases degrees by
at most 2. When the leaf component can no longer be connected, we proceed to the parent of the
leaf component as we had with the leaf. In the end, we have reduced the number of components on
the path as much as possible by paths not going through H, and increased the degree by at most
2.

The hanging paths of components are then taken care in logn sub-phases by considering paths
of components with between n/2°*! and n/2¢ vertices in phases 0 < i < logn. For each such path
of components, we consider the components containing the bottom half of vertices closer to the leaf.
As in Theorem 8, we first connect these to one another by disjoint paths not going through H, and
when this is no longer possible, find disjoint paths for the remaining ones joining them to the rest
of the graph. If at least k/t vertices of K are in these bottom halfs, then at least s = [(k/t)/(n/2%)]
such bottom halfs are involved, and as in Theorem 8, there are at least s/d such disjoint paths
within K. A flow operation finds s/d such paths as before, and since the number of such bottom
halfs is at most 2°t1, the number of flow operations in each sub-phase is at most 2'*'d/s = 2dtn/k,
for degree increase at most 2din/k. After each such sub-phase, either a bottom half was joined in
the sub-phase, so the remaining hanging path of components has at most half as many vertices,
or the bottom half is ignored and we consider the half as many vertices of the top half for the

next sub-phase. Since each sub-phase increases degree by at most 2dtn/k, and the total number of
sub-phases is log? n because there are logn sub-phases within log n phases, the total degree increase
is at most (2dtn/k)log?n = O((drn/k)log* n). Each sub-phase leaves out k/t vertices of K, for
a total of (k/t)log?n = k/r vertices of K left out. The time complexity is dominated by pushing
O(n) units of flow in O(m) time each, for a total O(nm) time. 0

Theorem 10 If a 2-vertex-connected graph G with n vertices and m edges has a 2-vertez-connected
subgraph K with k vertices of verter degree at most d, then for all r > 1 we can find in G a 2-
vertex-connected subgraph that has at least k(1 — 1/r) of the vertices of K, with vertex degree at
most O((drn/k)log®n), in O(nm) time. This gives a polylogarithmic degree approzimation if r and
n/k are bounded by a polylogarithm.

Proof. Let t = rlog3n. We proceed as in Theorem 9, with the difference that the tree of
2-connected components is viewed as a tree with vertices corresponding both to the actual compo-
nents and the vertices joining components, as vertices instead of edges join 2-connected components.
We define phases and sub-phases in an analogous way. The algorithm only differs when examining
hanging paths of components in order to join the bottom halves of these paths to the rest of the
graph by a maximum flow defining disjoint paths. Here the separating vertices joining the bottom
half to the top half, and joining the top half to the rest of the graph, must not be used in joining
the bottom half, but may be used by the bottom half of other paths, so we may not use a single flow
computation. Instead, we divide the at most 2* bottom halfs into groups of size 2/ with 1 < j < i,
and attempt in sub-sub-phase j flows joining the bottom of one part of size 2/~! to the top of the
other part of size 277! in successive flows giving disjoint paths. Each sub-sub-phase may not join
in flows at most of (k/t)/(dn/2") bottom halfs, or (k/t)/(dn/2’) bottom halfs per group. Since the
number of bottom halves per group is 27, the degrees increase by at most dtn/k in each sub-sub-
phase, or (dtn/k)log®n = O((drn/k)log®n) over all log® n sub-sub-phases. The k/t vertices of K
that may not be joined in a sub-sub-phase give a total of (k/t)log®n = k/r vertices over all log®n
sub-sub-phases. The time complexity is dominated by pushing O(n) units of flow in O(m) time
each, for a total O(nm) time. 0

Say that a 2-edge-connected graph H represents a 2-edge-connected graph K if K is obtained
from H by repeatedly replacing some vertices z of degree two and their incident edges (z,vy), (z, 2)
with a single edge (y, z).

Theorem 11 If a graph G with n vertices and m edges has a 2-edge-connected subgraph H that
represents a 3-edge-connected graph K with k vertices of vertexr degree at most d, then for all
r > 1 we can find in G a subgraph H' representing a 3-edge-connected graph K' with least k(1 —
1/r) wertices and with vertex degree at most O((drn/k)log*n), in O(nm) time. This gives a
polylogarithmic degree approzimation if r and n/k are bounded by a polylogarithm.

Proof. We initially find the 2-edge-connected subgraph K’ of degree O((drn/k)log*n) from The-
orem 9. We then proceed as in Theorem 9 to find the subgraph H representing a 3-edge-connected
subgraph K. The proof finds pairs of edges separating K’ organized in a tree structure. The root
corresponds to any such pair of edges (e, f) separating K’ into two components K| and Kj. In
general, given a component K connected to the rest of the graph by a pair of edges (e;, f;), we
identify maximal components K]’ contained in K| and connected to the rest of the graph by a pair
of edges (ej, f;), and select a maximal collection of disjoint such K as children of K;. This gives

9

to all such K J’ a tree structure 7', and we proceed as in Theorem 9 by considering log n phases of
hanging paths of T', where the last phase reaches the root, and subdivide each phase by logn sub-
phases. The only difference with the proof of Theorem 9 is that each chosen path leaving K; goes
to the other side of the pair of edges (e;, f;) instead of going to the other side of a single edge e;.
The proof is thus completed as in Theorem 9. When a component K]' remains separated by a pair
of edges (ej, f;), the component K J’ is removed and replaced with a single edge combining e; and
fj in K'; the paths used to join different components are taken as individual edges in K'. The time
complexity is dominated by pushing O(n) units of flow in O(m) time each, for a total O(nm) time. O

Theorem 12 If a graph G with n vertices and m edges has a 2-vertex-connected subgraph H that
represents a 3-vertex-connected graph K with k vertices of vertex degree at most d, then for all
r > 1 we can find in G a subgraph H' representing a 3-vertex-connected graph K' with at least
k(1 —1/7) vertices and with vertez degree at most O((drn/k)log®n), in O(nm) time. This gives a
polylogarithmic degree approzimation if r and n/k are bounded by a polylogarithm.

Proof. We initially find the 2-vertex-connected subgraph K’ of degree O((drn/k)log®n) from
Theorem 10. We then proceed as in Theorem 10 to find the subgraph H representing a 3-vertex-
connected subgraph K. The proof finds pairs of vertices separating K’ organized in a tree structure.
The root corresponds to any such pair of vertices (u,v) separating K’ into components K| In gen-
eral, given a component K connected to the rest of the graph by a pair of vertices (u;,v;), we
identify maximal components K J’ contained in K and connected to the rest of the graph by a pair
of vertices (uj,v;), and select a maximal collection of disjoint such K J’ as children of K. This
gives to all such K ; a tree structure 7', and we proceed as in Theorem 10 by considering logn
phases of hanging paths of T, where the last phase reaches the root, subdivide each phase by
log n sub-phases, and further subdivide each sub-phase into loglogn sub-sub-phases. The only
difference with the proof of Theorem 10 is that each chosen path leaving K; goes to the other
side of the pair of vertices (uj,v;) instead of going to the other side of a single vertex u;. The
proof is thus completed as in Theorem 10. When a component K ; remains separated by a pair of
vertices (uj,v;), the component K J’ is removed and replaced with a single edge joining u; and v;
in K'; the paths used to join different components are taken as individual edges in K'. The time
complexity is dominated by pushing O(n) units of flow in O(m) time each, for a total O(nm) time. O

A graph K is 3-cyclable if for every triple u, v, w of vertices in K, the graph K has a cycle going
through u, v, w. Note that a cycle K in G is a 3-cyclable subgraph K of G of maximum degree 2.

Feder and Motwani [2] considered a weaker notion. Let G be a 2-connected graph. If G has two
vertices u,v such that G — {u, v} is not connected and has connected components R;, then we may
decompose G into graphs G; with vertices V(R;) U {u,v} and the edges of R;, the edges joining
the vertices of R; to u and v, plus the edge (u,v). We may then further decompose the graphs
G, similarly, thus obtaining a tree decomposition of G into graphs G; such that each G; is either
(1) 3-connected, (2) a cycle, or (3) a multigraph consisting of two vertices u,v joined by multiple
parallel edges. In this tree decomposition, the root graph G has children G; corresponding to edges
uv in G, and similarly for the children G, until the leaf graphs G'; are reached. See Hopcroft and
Tarjan [9] for an algorithm to obtain such a decomposition.

We say that G is almost 3-cyclable if for every graph G; in this tree decomposition other than
the root graph Gy, if the edge uv in G; corresponds to the parent G; of G, then (1) there is at
most one edge incident to u in G; other than uv that corresponds to a child graph G of Gj; (2)
there is at most one edge incident to v in G; other than uv that corresponds to a child graph G

10

of G;; (3) if three edges uv,e, f separate G; into two parts, then at most one of u,v corresponds
to a child graph G of G;. Clearly if one of (1),(2),(3) is not satisfied for some G, then G is not
3-cyclable; thus 3-cyclable graphs are almost 3-cyclable graphs as well.

Theorem 13 If a graph G with n vertices and m edges has a 2-vertez-connected subgraph H that
represents a 3-cyclable graph K with k vertices of vertex degree at most d, then for all T > 1 we can
find in G a subgraph H' representing an almost 3-cyclable graph K' with at least k(1 —1/r) vertices
and with vertex degree at most O((drn/k)log®n), in O(nm) time. This gives a polylogarithmic
degree approzimation if v and n/k are bounded by a polylogarithm.

Proof. We proceed as in Theorem 12 by fist finding a 2-vertex-connected subgraph as in Theorem
10, and then proceeding to log n phases for the hanging paths of the tree decomposition, with each
phase grouped into log n sub-phases and each sub-phase grouped into log n sub-sub-phases. Again,
as in Theorem 12, we attempt in each sub-sub-phase to link the bottom half of the hanging paths
of G so that the G in the top halfs are not separated by just 2 vertices. However, we measure
the number of vertices to be obtained for a solution from such a G not by the total number of
vertices in Gj, but by the number of vertices that would have to be removed to satisfy conditions
(1),(2),(3) if G; remained only 2-connected, that is, if we counted only the vertices corresponding
to only one edge incident to u other than uwv, counted only the vertices corresponding to only one
edges incident to v other than uv, and for every pair of edges e, f such that uv,e, f separate G,
counted only the vertices for one of e, f.

Before considering connecting the bottom halfs of paths among one another and to the rest
of the graphs, we process each path individually as in Theorem 12, by going up the path from
the leaves G, joining G; together as much as possible. In addition, to attempting to join G; as
close as possible to the leaf as possible to an ancestor on the path as in Theorem 12, we consider
taking care of each G; encountered by going up the path individually, in order to partially satisfy
conditions (1),(2),(3) within G;. For condition (3), the pairs of edges e;, f; that together with uv
separate Gi; into two parts decompose G into subgraphs Hy, ..., Hg such that uv joins H; to H,
and e;, f; join H; to H; 1, and each e;, f; corresponds to a path of edges in a child of G;. We may
thus consider the sequence Hi, (e1, f1), Ho, (e2, f2), Hs, ..., Hs_1,(es—1, fs—1), Hs, and proceed as
follows. First join H; to the last item in this sequence by a path, and if this last item is (e;, f;) then
join H; to the last possible edge on the two paths for e; and for f;. Then proceed similarly starting
anywhere up to this last item, which is now part of Hy. If it is not possible to proceed from Hi,
we proceed through the edges in the paths for e, fi by connecting them to the last possible edge
similarly. Each time we add intermediate vertices of maximum degree 3, the degree of the vertices
from which the paths are started increases by 2, and the degree of the vertices where the paths
are ended increases by 1, for a total increase of 3 in the degrees. For the remaining (e;, f;) that
cannot be taken care of in this way, we will have to remove the vertices corresponding to e; or f;,
whichever has the least number of vertices. This takes care of condition (3).

For conditions (1) or (2) of G, say condition (1), we consider each descendant G of G; at-
tached at the vertex u from the edge uv in G; corresponding to the parent of G;. In each G, a
path starting at u with edges e1,..., e, is subdivided into new graphs G; corresponding to paths
e1,-.-,¢; for 1 <4 < a. Thus each edge e other than uv incident to u in G corresponds to a path
of graphs Get, ..., Geq from the leaves going up to G, and we proceed from the leaf G to connect
to the highest G¢; and so on up the path, as from before, to reduce the number of G¢; on the path
corresponding to e. Then we proceed to join the paths of corresponding to different e to one another
and to the rest of Gj, by considering the bottom halfs of such paths, again by counting the number
of vertices that might be included from each G; by joining it to the rest of G;. If Gj has n; vertices

11

not in the child Gj, then instead of attempting to join at least (k/t)/(dn/2') bottom halves per
flow as before in sub-sub-phases, we consider joining at least (n;/n)(k/t)/(dn;/2') bottom halves
per flow, or (n;/n)(k/t)/d vertices, so the degree again goes up by at most 2dtn/k, and the number
of vertices not joined is at most }_,(n;/n)(k/t) < k/t over all G;. Here this is incurred in logn
sub-phases corresponding to the different values of 1 < 2¢ < n; for each G;. This completes the
cases for conditions (1),(2) and (3) and the construction of the amost 3-cyclable subgraph. The time
complexity is dominated by pushing O(n) units of flow in O(m) time each, for a total O(nm) time. O

Theorem 14 If a graph G with n vertices has a 2-vertex-connected subgraph H that represents a
3-cyclable graph K with k vertices of vertex degree at most d, then for we can find in O(n3) time
a cycle in G of length at least k/(clogdtlog(n/k)+loglogn)) for some constant ¢ > 0.

Proof. Feder and Motwani [2] showed that if G of maximum degree d has an almost 3-cyclable
minor with 7 vertices, then we can find in O(n®) time a cycle in G of length at least n!/(¢l0gd)
for some constant ¢ > 0. Applying this result to the almost 3-cyclable graph K’ with at least
n' > k/2 vertices and maximum degree d’ < d(n/k)log® n from Theorem 13 yields the correspond-
ing k!/(clog 4) bound on the length of the cycle found in K’ and thus in G. O

References

[1] J. Cheriyan and R. Thurimella, “Approximating minimum-size k-connected spanning sub-
graphs via matching.” STIAM J. Comput 30-2 (2000) pp. 528-560.

[2] T. Feder and R. Motwani, “Finging Large Cycles in Hamiltonian Graphs.” In Proceedings of
the ACM-SIAN Symposium on Discrete Algorithms (2005), to appear.

[3] M. Fiirer and B. Raghavachari, “An NC approximation algorithm for the minimum degree
spanning tree problem.” In Proceedings of the 28th Annual Allerton Conference on Commu-
nication, Control and Computing (1990) pp. 274-281.

[4] M. Fiirer and B. Raghavachari, “Approximating the minimum degree spanning tree to within
one from the optimal degree.” In Proceeding of the 8rd ACM-SIAM Symposium on Discrete
Algorithms (1992) pp. 317-324.

[5] H.N. Gabow, M.X. Goemans, E. Tardos, and D.P. Williamson, “Approximating the smallest
k-edge connected spanning subgraph by LP-rounding.” In Proceedings of the 1th ACM-SIAM
Symposium on Discrete Algorithms (2005) pp. 562-581.

[6] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of
NP-completeness. W.H. Freeman, 1979.

[7] P. Gubbala and B. Raghavachari, “Finding k-connected subgraphs with minimum average
weight.” In Proceedings Latin American Theoretical Informatics (LATIN 2004) pp. 212-221.

[8] D.S. Hochbaum, Approximation Algorithms for NP-Hard Problems. PWS Publishing Com-
pany, Boston, 1995.

[9] J.E. Hopcroft and R.E. Tarjan. “Dividing a graph into triconnected components.” SIAM
Journal on Computing 2-3 (1973), pp. 135-158.

12

[10] D.S. Johnson, “Approximation algorithms for combinatorial problems.” J. Comput. System
Sci. 9 (1974) pp. 256-278.

[11] P.N. Klein, R. Krishnan, B. Raghavachari, and R. Ravi, “Approximation algorithms for
finding low-degree subgraphs.” Networks (to appear).

[12] R. Ravi, B. Raghavachari, and P. Klein, “Approximation through local optimality: design-
ing networks with small degree.” In Proceedings of the 12th Conference on Foundations of
Software Tech. and Theoret. Comp. Sci., Lect. Notes in Comp. Sci. 652 (1992) pp. 279-290.

[13] R. Raz and S. Safra, “A sub-constant error-probability low-degree test, and sub-constant
error-probability PCP characterization of NP.” In Proc. 29th Ann. ACM Symp. on Theory
of Comp. (1997) pp. 475-484.

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de/

