
Adaptive Sampling and Fast Low-Rank Matrix Approximation

Amit Deshpande∗ Santosh Vempala∗

Abstract

We prove that any real matrix A contains a subset of at most 4k/ε+2k log(k+1) rows whose
span “contains” a matrix of rank at most k with error only (1+ε) times the error of the best rank-
k approximation of A. This leads to an algorithm to find such an approximation with complexity
essentially O(Mk/ε), where M is the number of nonzero entries of A. The algorithm maintains
sparsity, and in the streaming model, it can be implemented using only 2(k + 1)(log(k + 1) + 1)
passes over the input matrix. Previous algorithms for low-rank approximation use only one or
two passes but obtain an additive approximation.

1 Introduction

Given an m × n matrix A of reals and an integer k, the problem of finding a matrix B of rank
at most k that minimizes ‖A − B‖2

F =
∑

i,j(Aij − Bij)
2 has received much attention in the past

decade. The classical optimal solution to this problem is the matrix Ak consisting of the first k
terms in the Singular Value Decomposition (SVD) of A:

A =
n

∑

i=1

σiuiv
T
i

where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 are the singular values and {ui}
n
1 , {vi}

n
1 are orthonormal sets of

vectors called left and right singular vectors, respectively. Computing the SVD and hence the best
low-rank approximation takes O(min{mn2, m2n}) time.

Recent work on this problem has focussed on reducing the complexity while allowing an ap-
proximation to Ak. Frieze et al. [10] introduced the following sampling approach.

Theorem 1 ([10]). Let S be an i.i.d. sample of s rows of an m × n matrix A, from the following

distribution: row i is picked with probability

Pi ≥ c
‖A(i)‖2

‖A‖2
F

.

Then there is a matrix Ãk whose rows lie in span(S) such that

E
[

‖A − Ãk‖
2
F

]

≤ ‖A − Ak‖
2
F +

k

cs
‖A‖2

F .

∗Mathematics Department and CSAIL, MIT. Email:{amitd, vempala}@mit.edu.

1

Electronic Colloquium on Computational Complexity, Report No. 42 (2006)

ISSN 1433-8092

Setting s = k/cε in the theorem, we get

E
[

‖A − Ãk‖
2
F

]

≤ ‖A − Ak‖
2
F + ε‖A‖2

F .

The theorem suggests a randomized algorithm (analyzed in [10], [5] and later in [7]) that makes two
passes through the matrix A and finds such an approximation using O(min{m, n}k2/ε4) additional
time. So overall, it takes O(M + min{m, n}k2/ε4) time. A different sampling approach that uses
only one pass and has comparable guarantees (in particular, additive error) was given in [1].

The additive error ε‖A‖2
F could be arbitrarily large compared to the true error, ‖A−Ak‖

2
F . Is it

possible to get a (1 + ε)-relative approximation efficiently, i.e., in linear or sublinear time? Related
to this, is there a small witness, i.e., Is there a (1 + ε)-approximation of rank k whose rows lie in a
small subset of the rows of A? Addressing these questions, it was shown in [8] that any matrix A
contains a subset S of O(k2/ε) rows such that there is a matrix Ãk of rank at most k whose rows
lie in span(S) and

‖A − Ãk‖
2
F ≤ (1 + ε)‖A − Ak‖

2
F .

This existence result was applied to derive an approximation algorithm for a projective clustering
problem: find j linear subspaces, each of dimension at most k, that minimize the sum of squared
distances of each point to its nearest subspace. However, the question of efficiently finding such a
(1 + ε)-relative approximation to Ak was left open.

1.1 Our Results

Our first result is the following improved existence theorem.

Theorem 2. Any m×n matrix A contains a subset S of 4k/ε + 2k log(k + 1) rows such that there

is a matrix Ãk of rank at most k whose rows lie in span(S) and

‖A − Ãk‖
2
F ≤ (1 + ε)‖A − Ak‖

2
F .

Based on this, we give an effcient algorithm in Section 3.2 that exploits any sparsity of the input
matrix. For a matrix with M nonzero entries, a rank-k approximation is computed in

O

(

M

(

k

ε
+ k2 log k

)

+ (m + n)

(

k2

ε2
+

k3 log k

ε
+ k4 log2 k

))

time using O(n(k
ε + k2 log k)) space (Theorem 9). In the streaming model, the algorithm requires

2(k + 1)(log(k + 1) + 1) passes over the input matrix. The running time is O
(

M(k/ε + k2 log k)
)

for M sufficiently larger than m, n; when k is a constant it is O(M/ε + 1/ε2). We note that while
the analysis is new, most of the algorithmic ideas were proposed in [8].

We complement the existence result with following lower bound (Prop. 11): there exist matrices
for which the span of any subset of k/2ε rows does not contain a (1 + ε)-relative approximation.

Finally, the improved existence bound also leads to better PTAS for the projective clustering
problem. The complexity becomes d(n/ε)O(jk2/ε+jk2 log k) reducing the dependence on k in the
exponent from k3 and resolving an open question of [8].
Notation. Henceforth, we will use πV (A) to denote the matrix obtained by projecting each row
of A onto a linear subspace V . If V is spanned by a subset S of rows, we denote the projection of
A onto V by πspan(S)(A). We use πspan(S),k(A) for the best rank-k approximation to A whose rows

lie in span(S). Thus, the approximation Ãk in Theorem 2 is Ãk = πspan(S),k(A) for a suitable S.

2

2 Sampling Techniques

We now describe the two sampling techniques that will be used.

2.1 Adaptive Sampling

One way to generalize the sampling procedure of Frieze et al. [10] is to do the sampling in multiple
rounds, and in an adaptive fashion. Here is the t-round adaptive sampling algorithm, introduced
in [8].

1. Start with an linear subspace V . Let E0 = A − πV (A), and S = ∅.

2. For j = 1 to t, do:

(a) Pick a sample Sj of sj rows of A independently from the following distribution: row i is

picked with probability P
(j−1)
i ≥ c

‖E
(i)
j−1‖

2

‖Ej−1‖2
F

.

(b) S = S ∪ Sj .

(c) Ej = A − πspan(V ∪S)(A).

The next theorem, from [8] is a generalization of Theorem 1.

Theorem 3 ([8]). After one round of the adaptive sampling procedure described above,

ES1

[

‖A − πspan(V ∪S1),k(A)‖2
F

]

≤ ‖A − Ak‖
2
F +

k

cs1
‖E0‖

2
F .

We can now prove the following corollary of Theorem 3, for t-round adaptive sampling, using
induction on the number of rounds.

Corollary 4. After t rounds of the adaptive sampling procedure described above,

ES1,...,St

[

‖A − πspan(V ∪S),k(A)‖2
F

]

≤

(

1 +
k

cst
+

k2

c2stst−1
+ . . . +

kt−1

ct−1stst−1 . . . s2

)

‖A − Ak‖
2
F

+
kt

ctstst−1 . . . s1
‖E0‖

2
F .

Proof. We prove the theorem by induction on t. The case t = 1 is precisely Theorem 3. For the
inductive step, using Theorem 3 with span(V ∪ S1 ∪ · · · ∪ St−1) as our initial subspace, we have

ESt

[

‖A − πspan(V ∪S),k(A)‖2
F

]

≤ ‖A − Ak‖
2
F +

k

cst
‖Et−1‖

2
F .

Combining this inequality with the fact that

‖Et−1‖
2
F = ‖A − πspan(V ∪S1∪···∪St−1)(A)‖2

F ≤ ‖A − πspan(V ∪S1∪···∪St−1),k(A)‖2
F

we get

ESt

[

‖A − πspan(S′),k(A)‖2
F

]

≤ ‖A − Ak‖
2
F +

k

cst
‖A − πspan(V ∪S1∪···∪St−1),k(A)‖2

F .

3

Finally, taking the expectation over S1, . . . , St−1:

ES1,...,St

[

‖A − πspan(V ∪S),k(A)‖2
F

]

≤ ‖A − Ak‖
2
F +

k

cst
ES1,...,St−1

[

‖A − πspan(V ∪S1∪···∪St−1),k(A)‖2
F

]

and the result follows from the induction hypothesis for t − 1.

From Corollary 4, it is clear that if we can get a good initial subspace V such that dim(V) = k
and the error given by V is within some multiplicative factor of ‖A − Ak‖

2
F , then we can hope to

prove something about relative rank-k approximation. This motivates a different generalization of
the sampling method of [10].

2.2 Volume Sampling

Another way to generalize the sampling scheme of Frieze et al. [10] is by sampling subsets of rows
instead of individual rows. Let S be a subset of k rows of A, and ∆(S) be the simplex formed
by these rows and the origin. Volume sampling corresponds to the following distribution: we pick
subset S with probability equal to

PS =
vol(∆(S))2

∑

T :|T |=k vol(∆(T))2
.

This was also introduced in [8] to prove the next theorem.

Theorem 5 ([8]). Let S be a random subset of k rows of a given matrix A chosen with probability

PS defined as above. Then.

ES

[

‖A − πspan(S)(A)‖2
F

]

≤ (k + 1)‖A − Ak‖
2
F .

The next lemma was used crucially in the analysis of volume sampling.

Lemma 6 ([8]).
∑

S,|S|=k

vol(∆S)2 =
1

(k!)2

∑

1≤t1<t2<...<tk≤n

σ2
t1σ

2
t2 . . . σ2

tk
,

where σ1, σ2, . . . , σr > 0 = σr+1 = . . . = σn are the singular values of A.

2.3 Approximate Volume Sampling via Adaptive Sampling

Here we give an algorithm for approximate volume sampling. In brief, we run a k-round adaptive
sampling procedure, picking one row in each round.

1. S = ∅, E0 = A.

2. For j = 1 to k, do:

(a) Pick row i with probability proportional to P
(j−1)
i ≥ c

‖E
(i)
j−1‖

2

‖Ej−1‖2
F

.

(b) Add this new row to subset S.

(c) Ej = A − πspan(S)(A).

4

Next we show that the above procedure gives an approximate implementation of volume sam-
pling.

Proposition 7. Suppose the k-round adaptive procedure mentioned above picks a subset S with

probability P̃S. Then,

P̃S ≤ k! PS

Proof. Let S = {Ai1 , Ai2 , . . . , Aik} be a subset of k rows, and let τ ∈ Πk, the set of all permutations
of {i1, i2, . . . , ik}. By Hτ,t we denote the linear subspace span(Aτ(i1), Aτ(i2), . . . , Aτ(it)), and by
d(Ai, Hτ,t) we denote the orthogonal distance of Ai from this subspace. Our adaptive procedure
picks a subset S with probability equal to

P̃S =
∑

τ∈Πk

‖Aτ(i1)‖2

‖A‖2
F

d(Aτ(i2), Hτ,1)
2

∑m
i=1 d(Ai, Hτ,1)2

· · ·
d(Aτ(ik), Hτ,k−1)

2

∑m
i=1 d(Ai, Hτ,k−1)2

≤

∑

τ∈Πk
‖Aτ(i1)‖2 d(Aτ(i2), Hτ,1)

2 · · · d(Aτ(ik), Hτ,k−1)
2

‖A‖2
F ‖A − A1‖2

F · · · ‖A − Ak−1‖2
F

=

∑

τ∈Πk
(k!)2vol(∆(S))2

‖A‖2
F ‖A − A1‖2

F · · · ‖A − Ak−1‖2
F

=
(k!)3 vol(∆(S))2

∑m
i=1 σ2

i

∑m
i=2 σ2

i · · ·
∑m

i=k σ2
i

≤
(k!)3 vol(∆(S))2

∑

1≤i1<i2<...<ik≤m σ2
i1

σ2
i2
· · ·σ2

ik

=
k! vol(∆(S))2

∑

T :|T |=k vol(∆(T))2
(using Lemma 6)

= k! PS

Now we will show why it suffices to have just the approximate implementation of volume
sampling. If we sample subsets S with probabilities P̃S instead of PS , we get an analog of Theorem
5 with a weaker multiplicative approximation.

Proposition 8. If we sample a subset S of k rows using the k-round adaptive sampling procedure

mentioned above, then

ES

[

‖A − πS(A)‖2
F

]

≤ (k + 1)! ‖A − Ak‖
2
F .

Proof. Since we are picking a subset S with probability P̃S the expected error is

ES

[

‖A − πspan(S)(A)‖2
F

]

=
∑

S:|S|=k

P̃S‖A − πspan(S)(A)‖2
F

≤ k!
∑

S:|S|=k

PS‖A − πspan(S)(A)‖2
F

≤ k! (k + 1)‖A − Ak‖
2
F (using Theorem 5)

= (k + 1)! ‖A − Ak‖
2
F

5

3 Low-rank approximation with multiplicative error

In this section, we combine adaptive sampling and volume sampling to prove the existence of a
small witness and then to derive an efficient algorithm.

3.1 Existence

We now prove Theorem 2.

Proof. From Theorem 5, we know that there exists a subset S0 of k rows of A such that

‖A − πspan(S0)(A)‖2
F ≤ (k + 1)‖A − Ak‖

2
F .

Let V = span(S0), t = log(k +1), c = 1 in Corollary 4, we know that there exist subsets S1, . . . , St

of rows with sizes s1 = . . . = st−1 = 2k and st = 4k/ε, respectively, such that

‖A − πspan(V ∪S1∪...∪St),k(A)‖2
F ≤

(

1 +
ε

4
+

ε

8
+ . . .

)

‖A − Ak‖
2
F +

ε

2t+1
‖E0‖

2
F

≤ (1 +
ε

2
) ‖A − Ak‖

2
F +

ε

2t+1
‖A − πV (A)‖2

F

≤ (1 +
ε

2
) ‖A − Ak‖

2
F +

ε

2t+1
(k + 1)‖A − Ak‖

2
F

= (1 +
ε

2
) ‖A − Ak‖

2
F +

ε

2
‖A − Ak‖

2
F

= (1 + ε)‖A − Ak‖
2
F .

Therefore, for S = S0 ∪ S1 ∪ . . . ∪ St we have

|S| ≤
t

∑

j=0

|Sj | = k + 2k(log(k + 1) − 1) +
4k

ε
≤

4k

ε
+ 2k log(k + 1)

and
‖A − πspan(S′),k(A)‖2

F ≤ (1 + ε)‖A − Ak‖
2
F .

3.2 Efficient algorithm

In this section we describe an algorithm that given a matrix A ∈ R
m×n, finds another matrix Ãk

of rank at most k such that ‖A− Ãk‖
2
F ≤ (1 + ε)‖A−Ak‖

2
F . The algorithm has two phases. In the

first phase, we pick a subset of k rows using the approximate volume sampling procedure described
in Subsection 2.3. In the second phase, we use the span of these k rows as our initial subspace and
perform (k + 1) log(k + 1) rounds of adaptive sampling. The rows chosen are all from the original
matrix A.

6

Linear Time Low-Rank Matrix Approximation

Input: A ∈ R
m×n, integer k ≤ m, error parameter ε > 0.

Output: Ãk ∈ R
m×n of rank at most k.

1. Pick a subset S0 of k rows of A using the approximate volume sampling procedure de-

scribed in Subsection 2.3. Compute an orthonormal basis B0 of span(S0).

2. Initialize V = span(S0). Fix parameters as t = (k+1) log(k+1), s1 = s2 = . . . = st−1 =
2k, and st = 16k/ε.

3. Pick subsets of rows S1, S2, . . . , St, using t-round adaptive sampling procedure described

in Subsection 2.1. After round j, extend the previous orthonormal basis Bj−1 to an

orthonormal basis Bj of span(S0 ∪ S1 ∪ . . . ∪ Sj).

4. S =
⋃t

j=0 Sj , and we have an orthonormal basis Bt of span(S).

5. Compute h1, h2, . . . , hk, the top k right singular vectors of πspan(S)(A).

6. Output matrix Ãk = πspan(h1,...,hk)(A), written in the standard basis.

Here are some details about the implementations of these steps.
In Step 1, we use the k-round adaptive procedure for approximate volume sampling. In the j-th

round of this procedure, we sample a row and compute its component vj orthogonal to the span of
the rows picked in rounds 1, 2, . . . , j − 1. The residual squared lengths of the rows are computed

using ‖E
(i)
j ‖2 = ‖E

(i)
j−1‖

2 − A(i) · vj , and ‖Ej‖
2
F = ‖Ej−1‖

2
F − ‖Avj‖

2. In the end, we have an
orthonormal basis B0 = {v1/ ‖v1‖ , . . . , vk/ ‖vk‖}.

In Step 3, there are (k + 1) log(k + 1) rounds of adaptive sampling. In the j-th round, we
extend the orthonormal basis from Bj−1 to Bj by Gram-Schmidt orthonormalization. We compute

the residual squared lengths of the rows ‖E
(i)
j ‖2, as well as the total, ‖Ej‖

2
F , by subtracting the

contribution πspan(Bj\Bj−1)(A) from the values that they had during the previous round.
Each round in Steps 1 and 3 can be implemented using 2 passes over the matrix: one pass to

figure out the sampling distribution, and an another one to sample a row (or a subset of rows)
according to this distribution. So Steps 1 and 3 require 2(k + 1) log(k + 1) + 2k passes.

Finally, in Step 5, we compute πspan(S)(A) in terms of basis Bt using one pass (now we have an
m×O(k/ε + k2 log k) matrix), and we compute its top k right singular vectors using SVD. In Step
6, we rewrite them in the standard basis and project matrix A onto their span, which requires one
additional pass.

So the total number of passes is 2(k + 1)(log(k + 1) + 1).

Theorem 9. With probability at least 3/4, the algorithm outputs a matrix Ãk such that

‖A − Ãk‖
2
F ≤ (1 + ε)‖A − Ak‖

2
F .

Moreover, the algorithm takes

O

(

M

(

k

ε
+ k2 log k

)

+ (m + n)

(

k2

ε2
+

k3 log k

ε
+ k4 log2 k

))

time and O
(

n(k
ε + k2 log k)

)

space.

7

Proof. We begin with a proof of correctness. After the first phase of approximate volume sampling,
using Proposition 8, we have

ES0

[

‖A − πspan(S0)(A)‖2
F

]

≤ (k + 1)! ‖A − Ak‖
2
F .

Now using V = span(S0), c = 1, t = (k + 1) log(k + 1), st = 16k/ε, st−1 = . . . = s1 = 2k in
Theorem 4 we get that

ES1,...,St

[

‖A − πspan(S),k(A)‖2
F

]

≤
(

1 +
ε

16
+

ε

32
+ . . .

)

‖A − Ak‖
2
F +

ε

2t+3
‖A − πspan(S0)(A)‖2

F

≤ (1 +
ε

8
) ‖A − Ak‖

2
F +

ε

8 · 2t
‖A − πspan(S0)(A)‖2

F .

Now taking expectation over S0 we have

ES0,...,St

[

‖A − πspan(S),k(A)‖2
F

]

≤ (1 +
ε

8
) ‖A − Ak‖

2
F +

ε

8 · 2t
ES0‖A − πspan(S0)(A)‖2

F

≤ (1 +
ε

8
) ‖A − Ak‖

2
F +

ε

8 · 2t
(k + 1)! ‖A − Ak‖

2
F

≤ (1 +
ε

8
) ‖A − Ak‖

2
F +

ε

8 · 2t
(k + 1)(k+1) ‖A − Ak‖

2
F

≤ (1 +
ε

8
) ‖A − Ak‖

2
F +

ε

8
‖A − Ak‖

2
F

= (1 +
ε

4
)‖A − Ak‖

2
F .

This means
ES0,...,St

[

‖A − πspan(S),k(A)‖2
F − ‖A − Ak‖

2
F

]

≤
ε

4
‖A − Ak‖

2
F .

Therefore, using Markov’s inequality, with probability at least 3/4 the algorithm gives a matrix
Ãk = πspan(S),k(A) satisfying

‖A − Ãk‖
2
F ≤ (1 + ε)‖A − Ak‖

2
F .

Now let us analyze its complexity.
Step 1 has k rounds of adaptive sampling. In each round, the matrix-vector multiplication

requires O(M) time and storing vector vj requires O(n) space. So overall, Step 1 takes O(Mk+nk)
time, O(nk) space.

Step 3 has 2(k + 1) log(k + 1) rounds of adaptive sampling. The j-th round (except for the last
round), involves Gram-Schmidt orthonormalization of 2k vectors in R

n against an orthonormal basis
of size at most (2j +1)k, which takes time O(njk2). Computing πspan(Bj\Bj−1)(A) for updating the

values ‖E
(i)
j ‖2 and ‖Ej‖

2
F takes time O(Mk). Thus the total time for j-th round is O(Mk+njk2). In

the last round, we pick O(k/ε) rows. The Gram-Schmidt orthonormalization of these O(k/ε) vectors
against an orthonormal basis of O(k2 log k) vectors takes O(nk3 log k/ε) time; storing this basis
requires O(nk/ε+nk2 log k) space. So overall, Step 3 takes O

(

Mk2 log k + n(k3 log k/ε + k4 log2 k)
)

time and O(nk/ε + nk2 log k) space (to store the basis Bt).
In Step 5, projecting A onto span(S) takes O

(

M(k/ε + k2 log k)
)

time. Now we have πspan(S)(A)
in terms of our basis Bt (which is a m × O(k2 log k + k/ε) matrix) and computing its top k right
singular vectors takes time O

(

m(k/ε + k2 log k)2
)

.

8

In Step 6, rewriting h1, h2, . . . , hk in the standard basis takes time O
(

n(k3 log k + k2/ε)
)

. And
finally, projecting the matrix A onto span(h1, . . . , hk) takes time O(Mk).

Putting it all together, the algorithm takes

O

(

M

(

k

ε
+ k2 log k

)

+ (m + n)

(

k2

ε2
+

k3 log k

ε
+ k4 log2 k

))

time and O
(

n(k/ε + k2 log k)
)

space, and O(k log k) passes over the data.

This algorithm can be made to work with high probability, by running independent copies of
the algorithm in each pass and taking the best answer found at the end. The overhead to get a
probability of success of 1 − δ is O(

√

log(1/δ)).

4 Lower-bound for relative low-rank matrix approximation

Here we show a lower bound of Ω(k/ε) for rank-k approximation using a subset of rows.

Proposition 10. Given ε > 0 and n large enough so that nε ≥ 2, there exists an n× (n+1) matrix

A such that for any subset S of its rows with |S| ≤ 1/2ε,

‖A − πspan(S),1(A)‖2
F ≥ (1 + ε)‖A − A1‖

2
F

Proof. Let e1, e2, . . . , en+1 be the standard basis for R
n+1, considered as rows. Consider the n ×

(n + 1) matrix A, whose i-th row is given by A(i) = e1 + ε ei+1, for i = 1, 2, . . . , n. The best rank-1

approximation for this is A1, whose i-th row is given byA
(i)
1 = e1 +

∑n
i=1

1
nei+1. Therefore,

‖A − A1‖
2
F =

n
∑

i=1

‖A(i) − A
(i)
1 ‖2 = n

(

(n − 1)2ε2

n2
+ (n − 1)

ε2

n2

)

= (n − 1)ε2.

Now let S be any subset of the rows with |S| = s. It is easy to see that the best rank-1 approximation
for A in the span of S is given by πspan(S),1(A), whose i-th row is given by πspan(S),1(A)(i) =
e1 + ε

s

∑

i∈S ei+1, for all i (because it has to be a symmetric linear combination of them). Hence,

‖A − πspan(S),1(A)‖2
F =

∑

i∈S

‖A(i) − πspan(S),1(A)(i)‖2 +
∑

i/∈S

‖A(i) − πspan(S),1(A)(i)‖2

= s

(

(s − 1)2ε2

s2
+ (s − 1)

ε2

s2

)

+ (n − s)

(

s
ε2

s2
+ ε2

)

=
(s − 1)2ε2

s
+

(s − 1)ε2

s
+

nε2

s
+ nε2 − ε2 − sε2

=
nε2

s
+ nε2 − 2ε2.

Now if s ≤ 1
2ε then ‖A − πspan(S),1(A)‖2

F = (1 + 2ε)nε2 − 2ε2 ≥ (1 + ε)nε2 ≥ (1 + ε)‖A − A1‖
2
F , for

n chosen large enough so that nε ≥ 2.

Now we will try to extend this lower bound for relative rank-k approximation.

9

Proposition 11. Given ε > 0, k, and n large enough so that nε ≥ 2k, there exists a kn× k(n + 1)
matrix B such that for any subset S of its rows with |S| ≤ k/2ε,

‖B − πspan(S),k(A)‖2
F ≥ (1 + ε)‖B − Bk‖

2
F .

Proof. Consider B to be a kn × k(n + 1) block-diagonal matrix with k blocks, where each of the
blocks is equal to A defined as in Proposition 10 above. It is easy to see that

‖B − Bk‖
2
F = k‖A − A1‖

2
F .

Now pick any subset S of rows with |S| ≤ k
2ε . Let Si be the subset of rows taken from the i-th

block, and let |Si| = k
2εi

. We know that
∑k

i=1 |Si| =
∑k

i=1
k

2εi
≤ k

2ε , and hence nεi ≥ nε ≥ 2.
Therefore,

‖B − πspan(S),k(B)‖2
F =

k
∑

i=1

‖A − πspan(Si),1(A)‖2
F

≥
k

∑

i=1

(1 +
εi

k
)‖A − A1‖

2
F (using Proposition 10)

= (k +

∑k
i=1 εi

k
)‖A − A1‖

2
F

≥ (k +
k

∑k
i=1 1/εi

)‖A − A1‖
2
F (by A.M.-H.M. inequality)

≥ (k + kε)‖A − A1‖
2
F

= k(1 + ε)‖A − A1‖
2
F

= (1 + ε)‖B − Bk‖
2
F .

5 Discussion

Our algorithm requires O(k log k) passes in the streaming model. Can we prove a lower bound of
Ω(k) passes for any algorithm that computes a multiplicative rank-k approximation? Can exact

volume sampling be implemented efficiently?
It would also be nice to close the gap between the upper bound O(k/ε + k log k) and the lower

bound Ω(k/ε) on the number of rows whose span “contains” a (1 + ε)-approximation of rank at
most k.
Acknowledgements. We would like to thank Sariel Har-Peled, Prahladh Harsha, Frank McSh-
erry, Luis Rademacher and Grant Wang.

References

[1] D. Achlioptas, F. McSherry, “Fast Computation of Low Rank Approximations.” Proceedings
of the 33rd Annual Symposium on Theory of Computing, 2001.

10

[2] C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, J. Park. “Fast Algorithms for Projected Clustering.”
Proceedings of SIGMOD, 1999.

[3] Z. Bar-Yosseff. “Sampling Lower Bounds via Information Theory.” Proceedings of the 35th
Annual Symposium on Theory of Computing, 2003.

[4] W.F. de la Vega, M. Karpinski, C. Kenyon, Y. Rabani. “Approximation schemes for clustering
problems.” Proceedings of the 35th Annual ACM Symposium on Theory of Computing, 2003.

[5] P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay. “Clustering in large graphs and
matrices.” Proceedings of the 10th SODA, 1999.

[6] P. Drineas, R. Kannan. “Pass Efficient Algorithm for approximating large matrices,” Proceed-
ings of 14th SODA, 2003.

[7] P. Drineas, R. Kannan, M. Maloney. “Fast Monte Carlo Algorithms for Matrices II:
Computing a Low-Rank Approximation to a Matrix.” Yale University Technical Report,
YALEU/DCS/TR-1270, 2004.

[8] A. Deshpande, L. Rademacher, S. Vempala, G. Wang. “Matrix Approximation and Projective
Clustering via Volume Sampling”, Proceedings of the 17th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2006.

[9] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang. “On Graph Problems in a Semi-
Streaming Model.” Proceedings of the 31st ICALP, 2004.

[10] A. Frieze, R. Kannan, S. Vempala. “Fast Monte-Carlo algorithms for finding low-rank approx-
imations.” Journal of the ACM, 51(6):1025-1041, 2004.

[11] S. Guha, N. Koudas, K. Shim. “Data-streams and histograms.” Proceedings of 33rd ACM
Symposium on Theory of Computing, 2001.

[12] M. Henzinger, P. Raghavan, S. Rajagopalan. “Computing on Data Streams.” Technical Note
1998-011, Digital Systems Research Center, Palo Alto, CA, May 1998.

[13] J. Matoušek. “On approximate geometric k-clustering.” Discrete and Computational Geome-
try, pg 61-84, 2000.

11

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

