Electronic Colloguium on Computational Complexity, Report No. 43 (2006)

Random 3CNF formulas elude the Lovéasz theta
function

Uriel Feige Eran Ofek
March 21, 2006

Abstract

Let ¢ be a 3CNF formula with n variables and m clauses. A simple
nonconstructive argument shows that when m is sufficiently large com-
pared to n, most 3CNF formulas are not satisfiable. It is an open question
whether there is an efficient refutation algorithm that for most such for-
mulas proves that they are not satisfiable. A possible approach to refute
a formula ¢ is: first, translate it into a graph G4 using a generic reduc-
tion from 3-SAT to max-IS, then bound the maximum independent set of
G4 using the Lovasz ¥ function. If the ¥ function returns a value < m,
this is a certificate for the unsatisfiability of ¢. We show that for random
formulas with m < n?/27°(clauses, the above approach fails, i.e. the ¥
function is likely to return a value of m.

1 Introduction

A 3CNF formula ¢ over n variables is a set of m clauses, where each clause
contains exactly 3 literals. A formula ¢ is satisfiable if there is an assignment
to its n variables that sets at least one literal in every clause to "true”. The
3-SAT problem of deciding whether an input 3CNF formula ¢ is satisfiable is
NP-hard. In this paper we consider a certain heuristic for 3-SAT. A heuristic
for satisfiability may try to find a satisfying assignment for an input formula ¢ if
one exists. A refutation heuristic may try to prove that no satisfying assignment
exists.

How does one measure the quality of a refutation heuristic? A possible test
may be to check how good the heuristic is on a random input. But then, how do
we generate a random unsatisfiable formula? To answer this question we review
some known properties of random 3CNF formulas. The satisfiability property
has the following interesting threshold behavior. Let ¢ be a random 3CNF
formula with n variables and cn clauses (each new clause is chosen independently
and uniformly from the set of all possible clauses). As the parameter ¢ governing
the density of the formula is increased, it becomes less likely that ¢ is satisfiable,
as there are more constraints to satisfy. In [8] it is shown that there exists ¢,
such that for ¢ < ¢, (1 —€) almost surely ¢ is satisfiable, and for ¢ > ¢, (1 +¢€), ¢

ISSN 1433-8092

is almost surely unsatisfiable (for some e which tends to zero as n increases). It
is also known that 3.52 < ¢,, < 4.596 [14, 12, 13] and it is widely believed that
¢, converge to some constant c. We will use random formulas with cn clauses
(for ¢ > ¢, (1 4 €)) to measure the performance of a refutation heuristic. Notice
that for any n, as ¢ is increased (for ¢ > ¢, (1 + €)), the algorithmic problem of
refutation becomes less difficult since we can always ignore a fixed fraction of
the clauses.

In this paper we analyse a semidefinite programming based refutation algo-
rithm which was introduced at [6], and show that for random formulas of certain
densities (well above the satisfiablity threshold) this algorithm fails.

The algorithm itself is simple to describe (to readers familiar with some of
the previous work).

1. Given an input 3CNF formula ¢, apply to it a standard reduction from
max 3-SAT to maximum independent set, resulting in a graph G4. The
size of the maximum independent set in G4 is equal to the maximum
number of clauses that can be simultaneously satisfied in ¢.

2. Compute the Lovész ¥ function of the graph G¢. This provides an upper
bound on the size of the maximum independent set of G.

3. If 9(Gg) < m, then output ”unsatisfiable”. Otherwise return ”do not
know” .

We now describe the graph G4 in more detail. Recall that for a 3CNF
clause, there are seven different assignments to its three literals that satisfy the
clause. For each clause of ¢ the graph contains a clique of 7 vertices, which we
call a cloud. Hence G4 contains 7m vertices. Each vertex of the clause cloud
is associated with a different assignment to the three literals of the clause that
satisfies the clause. Vertices of different clouds are connected by an edge if they
are associated with contradicting assignments. (Namely, if there is a variable
that is assigned to true by one of the assignments and to false by the other. For
the same reason, the vertices within a cloud form a clique.)

The ¥ function of any graph G upper bounds the maximum independent set
in it, and can be computed in polynomial time up to arbitrary precision, using
semidefinite programming. The fact that the vertices of G4 can be covered by
m cliques implies that 9(Gg) < m. Thus, if ¢ is satisfiable then the value of the
theta function will be exactly m. If the value of the theta function is < m then
¢ is unsatisfiable.

The above algorithm has one sided error, in the sense that it will never
say “unsatisfiable” on a satisfiable formula, but for some unsatisfiable formu-
las it will fail to output “unsatisfiable”. If for some formula ¢ the algorithm
outputs ‘unsatisfiable’, then the algorithm execution on ¢ is a witness for the
unsatisfiability of ¢.

Our main result is that for random 3CNF formula ¢ with m < n
clauses it is very likely that #(Gy) = m.

3/2—0(1)

1.1 Related work

A possible approach for refuting a formula ¢ is to find a resolution proof for
the unsatisfiability of ¢. However, Chvatal and Szemeredi [4] proved that a
resolution proof of a random 3CNF formula with linear number of clauses is
almost surely of exponential size. A result of a similar flavor for denser formulas
was given by Ben-Sasson and Wigderson [3] who showed that a random formula
with n3/27¢ clauses almost surely requires a resolution proof of size 22"~
These lower bounds imply that finding a resolution proof for a random formula
is computationally inefficient.

A simple refutation algorithm can be used to refute random instances with
en? clauses, when ¢ > 2/3. This is done by selecting all the clauses that contain
a variable z. Fixing x to be true leaves about half of the selected clauses as a
random 2-cnf formula with roughly 3cn/2 > n clauses. This formula is unlikely
to be satisfiable, and its nonsatisfiability can be verified by a polynomial time
algorithm for 2SAT. The same can be done when fixing x to be false.

A spectral approach introduced by Goerdt and Krivelevich [10] gave a signifi-
cant improvement and reduced the bound to (logn)”-n* clauses for efficient refu-
tation of 2k-cnf formulas. This was later improved by [5], [7] that showed how to
efficiently refute a random 2k-cnf instances with at least cn® clauses. The basic
approach for refutation of 2k-cnf formulas was later extended in [9],[11],[7] to
handle also random 3CNF formulas with n3/2+¢, poly(logn) - n3/2, en?/? clauses
respectively. Our current result gives a somewhat weak indication that spectral
methods can not break the n3/2=°(1) barrier.

Further motivation for studying efficient refutability of random 3CNF for-
mulas is given in [6]. There it is shown that if there is no polynomial time
refutation heuristic that works for most 3CNF formulas with cn clauses (where
¢ is an arbitrarily large constant) then certain combinatorial optimization prob-
lems (like minimum graph bisection, the dense k-subgraph, and others) have
no polynomial time approximation schemes. It is an open question whether
it is NP-hard to approximate these problems arbitrarily well, though further
evidence that these problems are indeed hard to approximate is given in [15].

The algorithm considered in the current paper for refuting ¢ by computing
9(Gy) was presented in [6]. There is was shown that when m < n?~°() | almost
surely 9(Gy) > (1 — o(1))m. Our current work overcomes a difficulty that
prevented the approach of [6] to show that ¥(Gy) = m, not even for formulas
¢ with a linear number of clauses. The difficulty was the existence of pairs of
clauses that share two variables.

Related algorithms for refuting CNF formulas were analysed in [2, 1]. There
the authors considered a certain linear programming relaxation of the satisfia-
bility problem, and successive tightenings of this relaxation via the operators of
Lovasz and Schrijver. The authors of [1] show that in order to refute a random
3CNF formula with ¢n clauses (where ¢ is a sufficiently large constant) one has
to apply (n) rounds of the Lovasz-Schrijver operator to the initial relaxation.
Our results deal only with the Lovasz 9 function which lies at the lowest level
of the Lovasz-Schrijver hierarchy (for maximum independent set relaxation).

In this respect, the results in [1] are stronger than ours. However, we believe
that our results are of independent interest. (In fact, they were obtained inde-
pendently of and roughly concurrently with the results of [1].) One superficial
difference is that we consider denser 3CNF formulas. This difference is only
superficial, because also the results of [1] extend to denser formulas, by limiting
them to the lower levels of the Lovasz-Schrijver hierarchy. A more substantial
difference is that the staring point of [1], which is a linear program relaxation of
3CNF, is different from ours. We first apply a reduction to the 3CNF formula,
inducing a graph, and only then apply the Lovasz ¢ function to the induced
graph. It is not obvious (at least for us) what is the minimal ¢ for which the i-th
relaxation used in [1] is stronger than the relaxation we use (such ¢ exists since
the n-th relaxation always returns the correct answer). And finally, there are
differences between our proof techniques and those of [1]. We present a solution
to the vector formulation of the ¥ function, whereas [1] present a solution to the
matrix formulation of their relaxation.

2 Results

Instead of working with Gy we work with an induced subgraph of G4 that is
derived from G4 by retaining in each clause cloud only the vertices corresponding
to satisfying 3XOR assignments of the clause. Namely, for each clause we keep
those four vertices that are associated with assignments that satisfy an odd
number of literals in the clause. We call this subgraph Gg’f‘”. Since GZ°" is
an induced subgraph of G it follows (by known monotonicity properties of the
theta function) that J(GZ°") < ¥(Gg). We show that when m < n®2=°(1) w.h.p.
J(G§°") = m, which by the above discussion implies that also J(Gy) = m.
Theorem 2.1. Let ¢ be a random 3CNF formula with m = o(n%_%
clauses and n variables. With high probability ﬁ(G;OT) =m.

221log log n

3_
2 logn

Corollary 2.2. Let ¢ be a random SCNF formula with m = o(n
clauses and n variables. With high probability ¥(Gy) = m.

For GZ°" our results are nearly optimal in terms of the density of the under-
lying 3CNF formula ¢.

Proposition 2.3. Let ¢ be a random 3CNF formula with m > en®/? clauses
and n variables, where ¢ is a sufficiently large constant. With high probability
IGET) < m.

We suspect that when m > cn®/? then also 9(Gg) < m, although we did not
prove it (when m > cn3/? there are other refutation methods that succeed, see
[7] for details).

For convenience, from now on we will refer to the J(G§°") also as SDP(¢).
We prove Theorem 2.1 in two steps. First we introduce a simple refutation proof
system that we call narrow Gauss Elimination 3 (in short GE3) and prove that it

is stronger then SDP(¢), i.e. if ¢ cannot be refuted by GE3 then SDP(¢) = m.

loglogn
We then show that a random 3XOR formula with m = o(n%7 o) clauses

almost surely cannot be refuted by GE3.

Definition 2.4. The GES proof system works as follows. It receives as input
a system of linear equations modulo 2, where every equation has at most three
literals. It succeeds in refuting the system of linear equations if it manages to
derive the equation 0 = 1. A new equation can be derived only if it contains at
most three variables, and it is the result of adding exactly two existing equations
and simplifying the result modulu 2. By simplifying modulo 2 we mean that
1£1=0, z; £x; =0 and z; £ T; = 1, for every variable 7.

To clarify the derivation rule of GE3, consider the following three linear
equations: 1 + 22 +x3 =1, 21+ 24 +25 = 1 and 29 + x4 + ¢ = 1. No
new equation can be derived by the GE3 proof system, because adding any
two equations produces an equation with four variables. In particular, also the
equation x3 + x5 + xr¢ = 1 cannot be derived, even though it contains only three
variables and is implied by the original equations (by adding the three of them).

Observe that if an equation e; containing only two variables is derived in
GE3 (say, 1 + 2 = 0), then in every other equation es we can use GE3 to
replace the occurrence of one of the variables by the other, by adding e; and es.

The proof of Theorem 2.1 is an immediate consequence of the following two
lemmas.

Lemma 2.5. Let ¢ be any formula with m clauses. If ¢ cannot be refuted by
GE3 then SDP(¢) = m.

Lemma 2.6. Let ¢ be a random 3XOR formula with n variables and m =
3 __22loglogn

o(n2~ " Tesn) clauses. With high probability GE3 cannot refute ¢.

3 SDP formulation of the ¥ function

For each vertex ¢ we assign a vector v;. There is also a special vector vg. The
semidefinite program is:

maxZ(vo, v;) subject to:
i=1
(vo, vo) =1 (1)
for every i > 1: (vi,v;) = (v;, v0) (2)
for every pair 1, j: (vi,v;) >0 (3)
for any edge (4, 7): (vi,v;) =0 (4)

Instantiating the above semi-definite program for the graph G7°" we derive
the following semi-definite program, in which for clause i there are 4 assignment

vectors vg , one for every assignment of its three variables that satisfies an odd
number of literals in the clause.

max Z (vo, v?) subject to:
i=1..m,
j=1..4
<’Uo, 1)0> =1 (5)
for every vector: (!l vy = (v!,vo) (6)
for every pair of vectors: (Wl vh) >0 (7)
for every pair of contradicting vectors: Wl vty =0 (8)

(A pair of vectors is contradicting if there is some variable that the assignment
associated with one of the vectors sets to true, and the assignment associated
with the other vector assigns to false.)

The value of the second semi-definite program is at most m because ev-
ery clause cloud forms a clique. As the following known Lemma shows, the
contribution of a clique to the objective function is at most 1.

Lemma 3.1. Let vy be a unit vector and let v, vs,v3,vq be orthogonal vectors,
such that (v;,v;) = (v;,v9) for all i. Then Z?:1<'U07Ui> <1

Proof. Since vy is a unit vector and vy, vs,v3,v4 are orthogonal, it holds that
E?Zl (vo, IIZJJ—1H>2 < 1. Tt thus follows that

4 4

Vs
§ ’UO,’Ul § ”Uz” Vo, || ||> E <U07 : >2 S 17
i=1 i

20
where the last equality follows from ||v;||? = (v, v;). O

Note that Lemma 3.1 implies that for any graph G, if the vertices of G' can
be covered by p cliques, then ¢(G) < p.

4 Proofs

We will use the SDP formulation of the ¢ function as appears in Section 3.

Proof of lemma 2.5. Apply the derivation rule of the GE3 system as long as
new equations are generated by it. Since the number of possible equations with
at most three variables is O(n?), then this procedure must end. Assume that
the equation 0 = 1 could not be derived. Hence we are left with equations
containing one variable (meaning that the value of this variable must be fixed
to a constant), two variables (meaning that their values must be identical, or
sum up to 1, depending on the free constant in the equation), or three variables.

The information that GE3 derives about ¢ allows us to partition all literals into
equivalence classes of the form:

Si1: 1 =218 =...=T9g (Sli ,flzii'lg:...:l'g)
SQS Ty =20 = ... = XTp (SQZ f42520:...:f5)
(9)
Sg: Ty =21 =---=1x3 (So: @y =1To1 =--=T30)
St 1l=2¢=211=...28 (S’li O=f6:$11=...£i'8)

Notice that each equivalence class S; has a “mirror” part S;; we think of these
two parts as one class. A class might contain only one variable. We call a
variable fized if it belongs either to S; or to the mirror of S;. Other variables
are called free. Similarly, except S; which is fixed, all other classes are free. A
variable is fixed if and only if the GE3 refutation system can derive a clause
containing only this variable (equal to a constant). Two free variables belong
to the same class if and only if the GE3 system can derive a clause containing
only these two variables.
Each original clause of ¢ is of one of the following types:

1. Tt contains three free variables, each of them has distinct equivalence class.

2. It contains one fixed variable and two free variables from the same equiv-
alence class.

3. It contains three fixed variables.

We now explain why the above three types cover all clauses. If a clause has
no fixed variable then its variables must be from distinct classes (type 1), as
otherwise two of them will cancel out and cause the other variable to be fixed.
If a clause has exactly one fixed variable then the other two belong to the same
class and they are free (type 2). A clause cannot have exactly two fixed variables
as the remaining variable will be also fixed (thus the remaining case is type 3).

We will now give values to the vectors corresponding to all clauses. These
vectors will satisfy the SDP constraints and will also give a value of m. An
assignment for a clause that contradicts the information gathered by GE3 is
called illegal; otherwise it is legal. For example, for the equivalence classes
given above, an assignment such as x1; = 1 is illegal because it contradicts .5;,
also an assignment such as (x1, g, z11) = (1,1, 0) is illegal because it contradicts
S1. We will use the following guidelines:

e Each vector has [coordinates, numbered from 0 tol—1. For 1 < <[—1,
coordinate ¢ will correspond to free class 4

e A clause vector that corresponds to an illegal assignment will be set to
the zero vector 0. For a clause of type (1) the clause cloud will have four
assignments with non zero vectors, for a clause of type (2) there will be
two assignments, and for a clause of type (3) there will be one assignment.

e Let ¢ be a clause that has ¢ different free classes (i € {0,1,3}). The
vectors corresponding to legal assignments of ¢ will have exactly 1+ 4 non
zero entries. The only non-zero coordinates are 0 and the coordinates
corresponding to the indices of the free classes.

Notice that the second bullet can be interpreted as removing from Gg°" all
the vertices corresponding to illegal assignments. Thus from now we will assume
that such vertices are indeed removed from G§°". To simplify the notation in
the remainder of the proof, we do the following. With each subclass S; we
associate a literal s; (and with S, we associate 5;). We translate each clause
¢ = (Zg,x2,x5) into a new clause ¢ = (s1, 9, $2) by replacing each literal x; of
¢ with the literal corresponding the unique subclass which contains z;. Note
that the subclass literal replacing the literal x; may have polarity opposite to
z; (if for example z; € S;). The new induced formula ¢ may contain some
clauses with multiplicity > 1 as well as clauses in which some variable appears
more than once (e.g. (s1,$1,88)). We will now define a homomorphism f
from G§°" to GZ”BOT, which implies that J(G§") > ﬁ(GfEOT) (a homomorphism
f + G — H maps the vertices of GG into the vertices of H while preserving the
edge relation, i.e. if (u,v) € E(G) then (f(u), f(v)) € E(H)). Recall that each
clause ¢ = (Zg, x2,25) of ¢ has a unique corresponding clause ¢ = (s1, 39, $2) of
¢ (although other copies of (s, 359, s2) may exist in ¢). The map f is defined
only for legal satisfying assignments of ¢ (we already removed from G all the
non legal assignments). f maps the vertices (assignments) in the clause cloud
of ¢ to vertices (assignments) in the clause cloud of ¢ as follows:
for a legal satisfying assignment of ¢, say (Zg,z2,25) = (1,1,1), we replace
each literal x; with its corresponding class literal and leave the values as is. For
example if Zg € Sy, 72 € S, r5 € Sy then f maps the assignment (Zg, xo, 75) =
(1,1,1) into (s1,89,82) = (1,1,1). It is not hard to see that f maps a legal
satisfying assignment for ¢ into an assignment for ¢ that is both satisfying and
noncontradictory (meaning for example that it will not result in one occurrence
of s1 being set to 0 and the other being set to 1). The assignment f returns
must be non contradictory as otherwise ¢ can be refuted by GE3. Note that
GE3 can not refute (;3 nor can it derive an equation like s; = s;, for ¢ # j. From
here on we show a SDP solution to Gzor.

The vector vg is set to be (1,0,...,0). The remaining vector assignments
are as follows, divided by the clause types:

1. Type (1), three free distinct classes. Assume the clause is ¢ = (51, s2, 84).

The vector assignments will be:

V(s ,50,80)=(1,1,1) = (Ya, —1/4, Ya, 0, 14, 0, ...,0)
U(é§1,52,54):(1,0,o) = (Y4, =14, =11, 0, =11, 0, ...,0)
U(é§1,52,54):(0,1,o) = (14, 1/4, Y4, 0, —=1/4, 0, ...,0)
U€§1,52,S4):(0,0,1) = (1/4, Ya, —1/4, 0, Ya, 0, ...,0)

2. Type (2), one fixed class and two occurrences of some free class. Hence the
equation has exactly two satisfying assignments. One assignment would
get a vector that has 1/2 in its 0 coordinate and 1/2 on the coordinate
corresponding to the free class, and the other would get a vector that has
1/2 in its 0 coordinate and —1/2 on the coordinate corresponding to the
free class. For example, for the clause ¢ = (s, s2, s2) the vectors would
be:

U(CSL,SQ,SQ):(:l,l,l) = (1/27 0, 1/27 0, ..., 0)

Vistsasn=(100) = (/2 0 =120, ..., 0)

3. Type (3), three fixed classes. Assume ¢ = (s;, 5;,5;). In this case the only
non-zero vector is:

Visrsnan=100) = (1,0,0,0,...,0)

We next show that the above vector configuration is a valid solution of the
¥ function of G%°" (it is easy to see that the above solution has value of m).

Constraints of type (2) hold because of the special form of non-zero vectors.
The fact that constraints of type (3) hold will be implicit in our proof that
constraints of type (4) hold, and is omitted. Hence we will only consider now
constraints of type (4).

Observe first that within every clause cloud constraints of type (4) hold.
Hence it remains to check (4) for pairs of different clauses that have an s variable
in common. Let ¢;, ¢3 be two clauses that intersect. We continue by case analysis
according to the number of distinct s variables shared by ¢y, éo.

1. Three distinct variables are shared: since GE3 did not deduce 0 = 1 the
clauses are identical and (4) (and (3)) hold from the fact that it holds for
each cloud separately.

2. Two distinct variables are shared: using GE3 we deduce that also the
third variable is shared and this case was already handled.

3. Exactly one variables is shared: for simplicity, assume that each of the
clauses contain 3 different variables and say s; is the shared variable.
The only two indices that contribute to the inner product sum are 0 and
(possibly) 4. If s; is fixed the assignments cannot be contradictory and the

sum is strictly positive (only coordinate 0 contribute to the sum). Assume
that s; is free. Consider the case in which in each clause the other two
literals are also free. If the vectors are of contradicting assignments the
sum will be (1/4)(1/4)+(—1/4)(1/4) (or (1/4)(1/4)4+(1/4)(—1/4)). If the
vectors are not of contradicting assignments, the sum is strictly positive.

Note that also in the other cases where one of the clauses contains only
one or two different s variables, a similar argument works.

O

Proof of Lemma 2.6. We follow the line of proof given at [3] with some simpli-
fications that can be applied in our case. We use the following definitions from
[3]. Let A, B be any two formulas. A = B if every satisfying assignment for A is
a satisfying assignment for B, or equivalently, every non-satisfying assignment
of B is also a non-satisfying assignment of A. Let ¢ be a formula (collection
of clauses) and let C' be any clause. We use p4(C) to denote the minimum
size subformula of ¢ that implies C, i.e. uy(C) = mingcy |{¢' = C}|. As ¢ is
known from the context (and fixed) we use p(C) instead of 114(C'). The function
 is sub-additive, meaning that if A, B |= C then u(C) < u(A) 4+ p(B). We use
0 to denote a contradiction (the empty clause).

A simple counting argument shows that any subformula of ¢ of size smaller

than k = 41(1)‘;"-?’1;1 — is satisfiable; see Lemma 4.1. Thus, x(0) > k. From the
sub-additivity of u, it follows that any GE3 proof of 0 contains some clause C'
for which % < u(C) < % (the explanation is as follows. The derivation of 0
can be described by a tree in which every leaf has a label that equals to some
clause of ¢ and the root has a label that equals 0. For each leaf label, say A, it
holds that u(A) = 1 and for the root label 0 it holds (0) > k). In other words,
the minimal subformula E’ that implies C is of size in [%, 2£]. The subformula
E’ (as any other subformula of ¢, whose size in [£, 28], see Lemma 4.1) has at
least 4 special variables, each of them appears in exactly one clause of E’. We
show in the next paragraph that each of these 4 special variables must be in C.
This implies that C' cannot be derived in GE3, contradicting the assumption
that GE3 refutes ¢.

Let x be a special variable that belongs to some clause f of E’ (and not to
any other clause in E’). From the minimality of E’, there exists an assignment
a such that f(a) = C(«) = 0 but for any other clause g € E’ it holds that
g(a) =1 (as otherwise E' \ {f} = C). By contradiction, assume that = ¢ C.
Changing the value of a only on x leaves C unsatisfied. Yet, f becomes satisfied
and any other clause of E’ remains satisfied because = appears only on f. We
deduce that after changing o only on x the subformula E’ becomes satisfied
while C is not, this is a contradiction to £’ = C.

O
3_ 22loglogn

Lemma 4.1. Let ¢ be a random formula with m = o (n2 Tog n) clauses.
Set k = 41<1)(;g1:gn' With high probability the following properties hold.

10

1. Any subformula of ¢ of size k is satisfiable.

2. Any subformula E' C ¢, whose size is in [%, %], has at least 4 variables,

each of them belongs to exactly one clause of E'.

Proof. We show that any small subformula ¢ is satisfiable by showing that
in any such small subformula, the number of variables is at least the number
of clauses. By Hall’s marriage theorem, in any such subformula ¢ there is a
matching from the variables to the clauses that covers all the clauses, which
implies that ¢ is satisfiable. We now analyse the first event (proving part 1
of the lemma). Consider k clauses chosen at random. The probability that
they contain less than & different variables is bounded by the probability of the
following event: when throwing 3k balls into n bins, the set of non empty bins
is < k. Thus the probability for the first event is at most

(X E) =200 (25) ()

<2 () <o ()"

(the first inequality is because the sum is geometric with ratio > <, the last
inequality holds for k = 41(1)(;%&").

We now bound the probability of the second event (part 2 of the lemma).
Fix [to be in the interval [%, %] Consider ! clauses chosen at random. The
probability that they contain less than 4 special variables equals the probability
of the following event. When throwing [triplets of balls into n bins (where each
triplet of balls choose three different bins) there are less than 4 bins that contain
exactly one ball. Notice that if the balls fall into more than 3(I + 1)/2 bins,
there must be at least 4 bins that contain exactly one ball. The probability is

thus bounded by
N
B0 () <522)™ sy
l P i 3)) ~ l 3(1+1)/2 ' n
l 4 l
4 m ml
= (—n3<1%>> = (n‘;(fb‘) |

To cover all possible values of | € [%, %] we multiply the last term by k. The
induced bound is o(1) for m = o (n%722 Togn)

O

Proof of Proposition 2.3. A simple probabilistic argument shows that if ¢ is
large enough, ¢ is likely to contains four clauses of the following form (see
Lemma 4.2):

c1 = (v1,22,73) c3 = (x5, 6, 3)

c2 = (w1, 2, 14) c4 = (5,6, T4)

11

The above four clauses are contradictory (summing all of them give 1 = 0
modulus 2).

The 9 function of the graph induced only by these 4 clauses has a value
of ~ 3.4142 < 4. This bound was experimentally derived by running a semi-
definite programming package on Matlab. The adjacency matrix we used is:

o

S OO OO EFEOFMEMFEOFFERFRO
OO OO R OO FHEFMFEFOKFKFEKFEOR
OO OO R OO R PO, R, EFEFORFF
SO O OO R H OO KFRFEOFRFH
H OO R OO FEFEFORFFEKFEO
O R P OO OO OO MFEFOF MM O
O H HF OO OO R OHFHKFEMFEOF M
—H OO R OO OOOoOFFHFEOFRF =
H = P, O RFPFFFOOOOOoO o~ FO
H = OFMFHFRPROHOODODOHFEOOR
_ O MFEMFEFOF FFOOOO OO -
O R R FF OF MFEFMFEF OODOOO KO
=== OO OO, OOOO
R R OrRrRFRP P OFRORFR,REFPLROOOOO
R O rRrR PP P OFRFRPRORFRFPLROOOOO
OR PR OFRRFRMFHRRPFRLRODOROOO

vertices 1,2, 3,4 correspond to c; ,vertices 5,6, 7,8 correspond to clause ca, ver-
tices 9,10,11,12 correspond to clause c3 and vertices 13,14, 15,16 correspond
to clause c¢y4:

Iy T2 I3 Ty T2 X4
(%1 1 1 1 Vs 1 1 1
vo 0 1 0 v 0 1 O
v 1 0 0 vz 1 0 0
vy 0 0 1 vg 0 0 1

T5 Te T3 T5 Te T4
Vg 1 1 1 V13 1 1 1
V10 0 1 0 V14 0 1 0
V11 1 0 0 V15 1 0 0
V12 0 0 1 V16 0 0 1

The ¥ function of G4 must be smaller than < m as the remaining graph
(without the clouds of ¢1, ¢a, ¢, c4) can be covered by m — 4 cliques.
O

12

Lemma 4.2. Let ¢ be a random formula with n variables and m = cn®/?

random clauses. Almost surely ¢ contains four clauses of the form:

a1 = (1,22,23) c3 = (x5, %6, 13)

c2 = (w1, 2, 14) c4 = (5,6, T4)

Proof. We say that a(n) ~ b(n) if lim, % = 1. A pair of clauses is said to
match if the two clauses share the same first and second literal. The expected
number of matched pairs in ¢ is

my1 1 NC2”3L:C2_”' (10)
2)2n 2n—2 2 4n? 8
Furthermore, it can be shown that w.h.p. ¢ contains ~ C%" matched pairs such

that each clause of ¢ participates in at most one pair of matching clauses (a

standard use of the second moment, see for example [7] for a proof). Assume we
have ~ CZT” matched pairs. For any such pair the third literal in each of them is
still random. Fix two matched pairs c;,co and cs3,cq. With probability ~ #

the third literal of ¢; and c3 is the same and the third literal of ¢; is opposite
from the third literal of ¢4. It thus follows that the expected number of two
pairs of the form

a1 = (z1,22,73) c3 = (25,76, T3)
c2 = (1,22, 74) ca = (v5,%6, T4),
is
1 2 2 1 4
~2(22) S~ (11)
2\ 8 4n? 83
Using standard techniques (such as the second moment), it can be shown that
almost surely ¢ contains four clauses of this form. Details are omitted. O
Acknowledgements

This work was supported in part by a grant from the German-Israeli Foundation
for Scientific Research and Development (G.I.F.).

References

[1] M. Alekhnovich, S. Arora and I. Tourlakis. Towards strong nonapproxima-
bility results in the Lovasz-Schrijver hierarchy. STOC 2005, 294-303.

[2] J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen and T. Pitassi. Rank
bounds and integrality gaps for cutting plane procedures. FOCS 2003.

13

[3] E.Ben-Sasson and A. Wigderson. Short proofs are narrow -resolution made
simple. J. ACM, 48(2):149-169, 2001.

[4] V. Chvatal and E. Szemeredi. Many hard examples for resolution. J. ACM,
35(4):759-768, Oct 1988.

[5] A. Coja-Oghlan, A. Goerdt, A. Lanka, and F. Schadlich. Certifying unsat-
isfiability of random 2k-sat formulas using approximation techniques. FCT
2003, 15-26.

[6] U. Feige. Relations between average case complexity and approximation
complexity. STOC 2002, 534-543.

[7] U. Feige and E. Ofek. Easily refutable subformulas of large random 3enf
formulas. ICALP 2004, 519-530.

[8] E. Friedgut and J. Bourgain. Sharp thresholds of graph properties, and the
k-sat problem. J. of the American Mathematical Society, 12(4):1017-1054,
1999.

[9] J. Friedman, A. Goerdt, and M. Krivelevich. Recognizing more unsatisfi-
able random 3-sat instances efficiently. Technical report, 2003.

[10] A. Goerdt and M. Krivelevich. Efficient recognition of random unsatisfiable
k-SAT instances by spectral methods. STACS 2001, 294-304.

[11] A. Goerdt and A. Lanka. Recognizing more random 3-sat instances effi-
ciently. Manuscript, 2003.

[12] M. Hajiaghayi and G.B. Sorkin. The satisfiability threshold for random
3-SAT is at least 3.52. http://arxiv.org/abs/math.CO/0310193, 2003.

[13] S. Janson, Y. C. Stamatiou, and M. Vamvakari. Bounding the unsatis-
fiability threshold of random 3-sat. Random Structures and Algorithms,
17(2):103-116, 2000.

[14] A.C. Kaporis, L.M. Kirousis, and E.G. Lalas. Selecting complementary
pairs of literals. LICS 2003.

[15] S. Khot. Ruling Out PTAS for Graph Min-Bisection, Densest Subgraph
and Bipartite Clique. FOCS 2004, 136-145.

14

ECCC

http://eccc.hpi-web.de/

ISSN 1433-8092

