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Abstract. We present a deterministic algorithm producing the number of

k-colourings of a graph on n vertices in time 2nnO(1). We also show that the
chromatic number can be found by a polynomial space algorithm running in

time O(2.2461n). Finally, we present a family of polynomial space approxi-

mation algorithms that find a number between χ(G) and (1 + ε)χ(G) in time

O(1.2209n + 2.2461e
−ε

n).

1. Introduction

The chromatic number of a graph G = (V,E), |V | = n is the smallest integer
k ≤ n such that there is a mapping V → {1, . . . , k} (a ‘k-colouring’) that gives
different values (‘colours’) to neighbouring vertices. The chromatic polynomial is
defined by letting pG(k) denote the number of valid k-colourings of G.

Our main result is an algorithm that computes χ(G) in time 2nnO(1). This punc-
tuates a history of successive improvements since Lawler’s O(2.4423n) algorithm
(Table 1) and answers in the affirmative an open question [22]. The algorithm
is self-contained and elementary, the time and correctness analyses are from first
principles.

1.1. Inclusion–exclusion formulations. The algorithmic results in this paper are
based on a characterisation of the chromatic number as the smallest k for which

(1)
∑

X⊆V

(−1)|X|s(X)k

is nonzero. Here, s(X) is the number of stable sets of G not intersecting X. For
the chromatic polynomial we use

(2) pG(k) =
n

∑

r=1

k!

(k − r)!

(

∑

X⊆V

(−1)|X|ar(X)

)

,

where ar(X) denotes the number of ways to choose r stable sets S1, . . . , Sr ⊆ V −X,
such that |S1| + · · · + |Sr| = n.

To the best knowledge of the authors, these characterisations are new and might
be of independent combinatorial interest; in any case, their proofs are elementary.
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Time O(cn) Reference

c = 2.4423 Lawler [16]
2.4151 Eppstein [10]
2.4023 Byskov [6]
2.3236 Björklund and Husfeldt [5]
2.2590 Beigel and Eppstein [3], randomised, χ(G) ≤ 5
2.1592 Byskov [6], χ(G) ≤ 5
2.1020 Byskov and Eppstein [4], χ(G) ≤ 5
2.1809 ibid., χ(G) ≤ 6

Table 1. Previous exponential space algorithms for finding χ(G),
or deciding χ(G) ≤ k for small constants k.

1.2. Algorithms. To find χ(G) we evaluate the 2n terms of (1); the only challenge
is to compute the s(X) quickly. Through a recursion formula for s(X) and mem-
oization in an exponential-size table, we get the desired 2nnO(1) time bound, the
main result of this paper.

If only polynomial space is available, the values s(X) for |X| = i can obviously
be computed in time O(2ii) by a Gray-code enumeration of the subsets of X , for
a total running time within a polynomial factor of

∑n
i=1

(

n
i

)

2i = 3n. Until very
recently [5], finding a polynomial space algorithm with running time cn for any c
was an open problem [7, 17]. Using instead the fastest currently known algorithm
in the literature for counting stable sets to compute s(X), the total running time
to evaluate (1) becomes O(2.2461n), which is the best known for polynomial space.
Note however, that the fastest algorithms for computing s(X), and their analysis,
are far from simple.

Because our construction is based on evaluating a formula, we learn little else
from it than the value of χ(G). For example, the algorithm does not construct

an optimal colouring. We show how to obtain one from the chromatic number
algorithm. By using (2) instead, still in exponential time and space 2nnO(1), we
show how to compute the number of k-colourings pG(k) of G and how to solve the
related Chromatic Sum problem.

Finally, we derive a family of exponential-time approximation algorithms based
on the widely-used idea of iteratively removing large independent sets and applying
our ideas on the remaining graph. For instance, we can approximate χ(G) within
a factor 2 in time O(1.3998n) and polynomial space. The approximability of the
chromatic number is very well studied; the best known polynomial time algorithm
guarantees only an approximation ratio of O(n log−3 n log log2 n) [15], and χ(G) is
NP-hard to approximate within n1−o(1) [23].

1.3. Previous work and discussion. The first non-trivial algorithm for finding the
chromatic number, by Christofides [8] in 1971, runs in time n!nO(1) and can be
seen to require only polynomial space. Then, a series of exponential time and space
algorithms began in 1976 with Lawler’s algorithm [16], see Table 1, all of which are
based on finding maximal independent sets and owing their running time ultimately
to the fact that there are only 3n/3 maximal independent sets in a graph [18].

For polynomial space, Feder and Motwani [11] gave a randomised linear space
algorithm with running time O

(

(χ/e)n
)

, improving Christofides’ result for small
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values of χ. The running time of an algorithm by Angelsmark and Thapper [1] can
be given as O

(

(2+log χ)n
)

, an asymptotic improvement over Christofides’ result for
all values of χ. In a precursor to the present paper, the authors presented algorithms
with running times O(8.33n) and O(2.4423n). The bound given in the present
paper, O(2.2416n) will improve whenever the running time for counting stable sets
is improved, but there is little hope that this approach will ever reach 2nnO(1) in
polynomial space, since counting independent sets is #P -complete [20, 14]. The
existence of such an algorithm remains open.

Our algorithms beat the running time of previous algorithms that decide k-
colourability for small values of k. The exceptions are 3- and 4-colourability, which
can be decided in time O(1.3289n) [3] and O(1.7504n) [6], respectively, well beyond
the reach of our constructions.

The principle of inclusion–exclusion has been used before to solve combinatorial
problems on graphs. For instance the most effective way known to date to count
the number of matchings in a bipartite graph exactly is to apply the Ryser formula
for the permanent [19]. Also, Bax [2] counts the number of Hamiltonian circuits in
a graph in polynomial space and time 2nnO(1) using the principle. Both examples
count covers of the vertices by graph edges. We note that the technique can be
almost as powerful when counting covers assembled from an exponential number
of larger subsets of the vertex set. A precursor paper by the authors [5] already
tentatively explores this idea, but the constructions there are still based on maximal
independent sets, much slower, and more complicated.

Given the simplicity of our arguments it seems curious that they were not dis-
covered before. Reconsidering the literature in the light of hindsight we find that
in 1932, Whitney [21] proved

(3) pG(k) =

n−1
∑

i=0

(−1)iaik
n−i,

where ai is the number of i-subsets of E(G) containing no broken cycle. (Given
an ordering E = {e1, . . . , em} of the edges, a broken cycle is a cycle missing the
edge of highest index.) However, how to obtain ai more efficiently than explicitly
check each of the 2m subsets of E(G) for broken cycles is unclear; it seems difficult
to calculate these values in time close to 2n for dense graphs. In any case, the
resulting arguments, including the proof of (3) itself, would be more complicated.

2. Results

2.1. Inclusion–exclusion formula. Let S denote the family of stable (independent)
sets of a graph G on vertices V . (Notation is simplified by deciding that ∅ is not
stable.)

For a set of vertices X ⊆ V we write S[X] = {S ∈ S : S ⊆ X } for its stable
subsets. We write s(X) = |S[V − X]|, the number of stable sets not intersecting
X, and we let s(i)(X) be the number of stable sets in S[V −X] of size i. Let ck(G)
denote the number of ways to cover V with k stable sets, possibly overlapping and
non-distinct.

Lemma 1. χ(G) = min{ k : ck(G) > 0 }.
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Proof. A legal k-colouring is a covering with k non-overlapping, distinct subsets,
so if it exists, ck(G) > 0. On the other hand, if S1, . . . , Sk cover G (possibly non-
distinct and non-disjoint) then C(v) = min{ r : v ∈ Sr } is a legal colouring of size
at most k. �

Lemma 2.

(4) ck(G) =
∑

X⊆V

(−1)|X|s(X)k.

Proof. s(X)k counts the ways to pick k sets from S[V − X] with replacement.
Note that when a set of k stable sets cover V it is counted only in s(∅). Every
other selection of k sets avoids some vertices U and is counted once in every s(W )
for every subset W ⊆ U but in no other terms. Since every non-empty set has as
many even-sized subsets as odd ones, the result follows. �

2.2. Algorithms for chromatic number.

Proposition 1. The chromatic number can be found in time 2nnO(1) and space 2nn.

Proof. To compute (4) we need to evaluate s(X) for every subset X ⊆ V .
We can compute s(X) by the recursive formula

(5) s(X) = s
(

X ∪ {v}
)

+ s
(

X ∪ {v} ∪ N(v)
)

+ 1, v /∈ X

where N(v) is the set of neighbours of v. By storing computed values to avoid
recomputing them later, we can get all s(X) in time O(2nn); the linear factor
accounts for s(X) being an n-bit number.

To find the least k for which (4) is nonzero we perform a binary search. �

Without the exponential space needed to memorize previous values, we need to
compute s(X) anew for each term of (4). We can do this by applying (5) solely,
but this will result in execution times as large as 2|X| when the graph induced by
X is sparse. Very recently, [13] continuing a line of improvements, notes that by
combining (5) by other strategies for sparse graphs, the time Tstable(n) to count the
stable sets in a n-vertex graph can be bounded by O(1.2461n).

Proposition 2. The chromatic number can be found by a polynomial space algorithm

in time
n

∑

i=0

(

n

i

)

Tstable(i) = O(2.2461n).

Proof. To compute (4) we evaluate s(X) for every subset X ⊆ V . �

We note that the polynomial factors in Prop. 1 and hidden in the asymptotic
bound in Prop. 2 can be reduced by repeatedly counting modulo a small integer
instead of once for the full value.

Lemma 3.

ck(G) ≡

p−1
∑

i=1

aii
k (mod p)

where ai is the difference between the number of even sized subsets and odd sized

subsets satisfying s(X) ≡ i (mod p).
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Proof. Sum over the range of possible values for s(X) mod p in (4). �

By calculating and storing s(X) mod p and evaluating Lem. 3 we save both time
and space. However, we need to run the algorithm for several choices of p to be
certain to get the right value for χ. If we are content with a randomized algorithm
returning the correct value almost surely, we can settle for only one p though.

Let R be the set of the largest prime powers less than n4 for each prime less than
n4. Note that each element of R is larger than n2. We pick a prime power p ∈ R
uniformly at random. The event that p is bad in the sense that for some k, ck ≡ 0
(mod p) even though ck 6= 0, is very unlikely. This is because |R| ∼ n4/ log n by

the prime number theorem, and ck < 2n2

for all k. Thus each ck can be divisible
by at most n2/ log n numbers in R, and hence the probability that we pick a bad p
is O(1/n).

2.3. Number of colourings. The algorithm for chromatic number does not tell us
the number pG(k) of k-colourings. To find those values, we need a slightly clumsier
construction.

Let πG(k) denote the number of ways to partition G into k stable sets, i.e., the
number of ways to choose stable sets S1, . . . , Sk ∈ S satisfying:

(6) S1 ∪ · · · ∪ Sk = V and Si ∩ Sj = ∅, (i 6= j).

It is clear that every legal colouring induces such a partition, so χ(G) = min{ k : πG(k) >
0 }. Hence these numbers can be used to find the chromatic number as well.

Lemma 4. For X ⊆ V let ak(X) denote the number of ways to choose k stable sets

S1, . . . , Sk ∈ S[V − X], such that

(7) |S1| + · · · + |Sk| = n.

Then

(8) πG(k) =
∑

X⊆V

(−1)|X|ak(X).

Proof. If S1, . . . , Sk form a colouring then they are disjoint and cover the whole
graph, so |S1|+ · · ·+ |Sk| = n and Si ∩X is empty (for all i) only for X = ∅. Thus
every k-colouring contributes (once) to the term ak(∅).

On the other hand, every non-covering k-set family avoids some vertices U ⊂ V
and thus contributes once to the terms corresponding to every subset X ⊆ U but
no other terms. These contributions cancel because every set has as many even
sized subsets as it has odd ones. �

Proposition 3. The number pG(k) of k-colourings of an n-vertex graph G can be

found in time and space 2nnO(1).

Proof. We compute s(i)(X) recursively, storing obtained values in a table as we
go along. However, this time we need to build tables for all s(i)(X), instead of for
s(X). To obtain ak(X), we use dynamic programming. Let A(l,m, X) denote the
number of ways to choose l stable sets S1, . . . , Sl ∈ S[V −X] with replacement such
that

|S1| + · · · + |Sl| = m.
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Then ak(X) = A(k, n,X)/k!. We can compute A(l,m, X) for l = 1, . . . , n by
observing A(1,m, X) = s(m)(X) and

A(l,m, X) =
m−1
∑

i=1

s(m−i)(X)A(l − 1, i,X).

Finally, every partition into r non-empty independent sets corresponds to (k)r =
k(k − 1)(k − 2) · · · (k − r + 1) different k-colourings, so

pG(k) =
n

∑

r=1

πG(r)(k)r.

�

2.4. Algorithm for chromatic sum. The Chromatic Sum problem (sometimes called
Minimum Colour Sum) is to find a colouring C : V → {1, . . . , n} that minimises

∑

v∈V

C(v)

(rather than maxv∈V C(v)).

Proposition 4. The chromatic sum of a graph can be determined in time and space

2nnO(1).

Proof. We count the number of solutions qk,l(G) having chromatic sum at most
k using l colours. For each l ∈ [1 . . . n] we do a binary search over the range of
possible chromatic sums k ∈ [1 . . . l2], and calculate

qk,l(G) =
∑

X⊆V

(−1)|X|bk,l(X).

where bk,l(X) is the number of ways to choose l stable sets S1, . . . , Sl ∈ S[V − X],
such that

|S1| + 2|S2| + · · · + l|Sl| ≤ k.

Again, bk,l(X) can be found in polynomial time by dynamic programming. �

2.5. Finding an optimal colouring. Our algorithms only return the chromatic num-
ber or the chromatic sum, without ever constructing a corresponding colouring. For
completeness, we outline how this can be done.

Pick a vertex v ∈ V and enumerate the vertices u1, . . . , uk not incident to v. For
1 ≤ i ≤ k, consider the graphs Gi formed by adding the missing edges,

V (Gi) = V (G), E(Gi) = E(G) ∪ {vu1, . . . , vui}.

The sequence of chromatic numbers χ(G) = χ(G0), χ(G1), . . . , χ(Gk) cannot de-
crease, and increases by at most one at each step. If χ(G) = χ(Gk) then there
is an χ(G)-colouring of G in which v has a different colour than the rest of the
vertices; we can remove it and its incident edges from G and look for a (χ(G)− 1)-
colouring in the resulting graph. If χ(G) < χ(Gk) we can find the smallest i such
that χ(Gi) = χ(G)+1 using binary search. We infer from this that in some optimal
colourings of Gi−1 (and G), the vertices v and ui received the same colour. Hence
we can contract vui in Gi and continue in the resulting graph.

Each iteration removes a vertex and incurs O(log n) computations of χ. Let
Tχ(n) denote the running time of our chromatic number algorithm, then the total
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running time is O
(

(Tχ(n)+Tχ(n−1)+Tχ(n−2)+ · · ·+1) log n
)

= O(Tχ(n) log n),
since our algorithm is exponential.

2.6. Approximating the chromatic number. We can find a good approximation of
the chromatic number much faster than the precise value.

Proposition 5. For every ε > 0, the chromatic number χ of a graph on n vertices

can be approximated by a value χ̄ obeying χ ≤ χ̄ ≤ d(1 + ε)χe which can be found

in polynomial space and time O(1.2209n + 2.2461e−εn).

Proof. Fix some ε > 0. We will perform the following operation a number of
times:

Find the largest independent set and remove it from the graph. Repeat until the
graph has at most e−εn vertices. Let s be the number of thus removed independent
sets. We run the exact algorithm in Prop. 2 for the resulting graph to find its
chromatic number χ0. Our approximation is χ̄ = χ0 + s.

We need to argue χ̄ is not far from the actual chromacity. First note that χ̄ ≥ χ
since the subgraph obtained after removing an independent set has chromacity at
least χ − 1. Second, χ0 ≤ χ since a subgraph cannot have larger chromacity than
its host graph. We note that s ≤ t for t obeying

(1 − 1/χ)t ≤ e−ε

since every graph with chromacity χ has an independent set consisting of at least a
fraction 1/χ of its vertex set. Furthermore, (1 − 1/χ)t ≤ e−t/χ and thus s ≤ dεχe.

Turning to the running time, we note that the fastest known polynomial space
algorithm finding a largest independent set in a graph runs in time O(1.2209n)
[12]. �

References

[1] O. Angelsmark and J. Thapper. Partitioning based algorithms for some colouring problems.

In Proc. 5th Workshop on Constraint Solving and constraint logic programming (CSCLP),
pages 28–42, 2005.

[2] E. T. Bax. Inclusion and exclusion algorithm for the Hamiltonian Path problem. Inf. Process.

Lett., 47(4):203–207, 1993.
[3] R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n). J. Algorithms 54(2):168-204, 2005.
[4] J. M. Byskov and D. Eppstein An algorithm for enumerating maximal bipartite subgraphs.

Manuscript, 2004.

[5] A. Björklund and T. Husfeldt Polynomial space algorithms for exact satisfiability and chro-
matic number. Manuscript, 2005.

[6] J. M. Byskov. Enumerating maximal independent sets with applications to graph colouring.

Operations Research Letters, 32:547–556, 2004.
[7] J. M. Byskov. Exact algorithms for graph colouring and exact satisfiability. PhD thesis,

University of Aarhus, 2004.

[8] N. Christofides. An algorithm for the chromatic number of a graph. Computer J., 14:38–39,
1971.

[9] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Com-
munications of the ACM, 5(7):394–397, 1962.

[10] D. Eppstein. Small maximal independent sets and faster exact graph coloring. J. Graph

Algorithms and Applications, 7(2):131–140, 2003.
[11] T. Feder and R. Motwani. Worst-case time bounds for coloring and satisfiability problems.

J. Algorithms, 45(2):192–201, 2002.

[12] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and Conquer: A Simple O(20.288n)
Independent Set Algorithm. SODA , 2006.
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