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Abstract

Given a set of monomials, the Minimum AND-Circuit problem asks for
a circuit that computes these monomials using AND-gates of fan-in two and
being of minimum size. We prove that the problem is not polynomial time
approximable within a factor of less than 1.0051 unless P = NP, even if the
monomials are restricted to be of degree at most three. For the latter case, we
devise several efficient approximation algorithms, yielding an approximation
ratio of 1.278. For the general problem, we achieve an approximation ratio of
d− 3/2, where d is the degree of the largest monomial. In addition, we prove
that the problem is fixed parameter tractable with the number of monomials
as parameter. Finally, we reveal connections between the Minimum AND-

Circuit problem and several problems from different areas.

1 Introduction

Given a set of Boolean monomials, the Minimum-AND-Circuit problem asks for a
circuit that consists solely of logical AND-gates with fan-in two and that computes
these monomials. The monomials may for example arise in the DNF-representation
of a Boolean function or in some decomposed or factored form. Thus, the Minimum-

AND-Circuit problem is of fundamental interest for automated circuit design, see
Charikar et al. [4, Sect. VII.B] and references therein. The investigation of minimum
AND-circuits from a complexity theoretic standpoint was proposed by Charikar et
al. [4]. According to them, no approximation guarantees have been proved at all
yet.

We give the first positive and negative approximability results for the Minimum-

AND-Circuit problem. Specifically, we show that the problem is not approximable
within a factor of less than 983

978
unless P = NP, even if the monomials are restricted

to be of maximum degree three (Sect. 3). For the latter variant, we present several
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algorithms and prove an upper bound of 1.278 on its approximation ratio (Sect. 4).
If the number of occurrences of each submonomial of size two in the input instance,
called the multiplicity, is bounded by a constant µ ≥ 3, similar hardness results are
achieved (Sect. 3) and the upper bounds are slightly improved (Sect. 4.4). For µ = 2,
the problem is even in P (Sect. 4.2). However, if we allow the monomials to be of
degree four, it remains open whether the case µ = 2 is solvable in polynomial time.
We show that the general problem with multiplicity bounded by µ is approximable
within a factor of µ (Sect. 6.2).

In general, restricting the monomials to be of degree at most d admits a straight-
forward approximation within a factor of d − 1, which we improve to d − 3/2
(Sect. 6.1). If the degrees are required to be exactly d and in addition, the multi-
plicity is bounded by µ, we prove an upper bound on the approximation ratio of
µ(d− 1)/(µ + d− 2) (Sect. 6.2).

Besides from fixing the maximum degree or the multiplicity of the input monomi-
als, we consider fixing the number of monomials (Sect. 5). We show that Minimum-

AND-Circuit instances have small problem kernels, yielding a fixed parameter trac-
table algorithm (for terminology, see Downey and Fellows [8]). In other words,
the Minimum-AND-Circuit problem restricted to instances with a fixed number of
monomials is in P.

There are two evident generalizations of AND-circuits. The first one is to ask
for a minimum Boolean circuit (with AND-, OR-, and NOT-gates) that computes a
given function. This problem has, for example, been investigated by Kabanets and
Cai [11]; its complexity is still open. The second one is to consider monomials over
other structures such as the additive group of integers or the monoid of finite words
over some alphabet (see also Sect. 6.3). While the former structure leads to addition
chains [13, Sect. 4.6.3], the latter yields the smallest grammar problem which has
attracted much attention in the past few years; a summary of recent results has been
provided by Charikar et al. [4, Sect. I and II]. In fact, Charikar et al.’s suggestion
to investigate minimum AND-circuits was motivated by the lack of understanding
the hierarchical structure of grammar-based compression. In particular, there is a
bunch of so-called global algorithms for the smallest grammar problem which are
believed to achieve quite good approximation ratios, but no one has yet managed
to prove this.

2 Preliminaries

For i ∈ N, let [i] = {1, . . . , i}.

2.1 Monomials and Circuits

We study the design of small circuits that simultaneously compute given monomials
M1, . . . , Mk over a set of Boolean variables X = {x1, . . . , xn}. More precisely, a
(Boolean) monomial is an AND-product of variables of a subset of X, and by an
AND-circuit, we mean a circuit consisting solely of AND-gates with fan-in two. We
identify a monomial M = xi1 ∧ . . . ∧ xid with the subset {xi1 , . . . , xid}, which we
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denote by M again. Since we only use one type of operation, we often omit the ∧
signs and simply write xi1 . . . xid . The degree of M is |M |.

An (AND-)circuit C over X is a directed acyclic graph with node set G(C) (gates)
and edge set W (C) (wires) satisfying the following properties:

1. To each input variable x ∈ X is associated exactly one input gate gx ∈ G(C)
that has indegree zero and arbitrary outdegree.

2. All nodes that are not input nodes have indegree exactly two and arbitrary
outdegree. These nodes are called computation gates.

We denote the set of computation gates of C by G∗(C), i.e., G∗(C) = G(C) \ {gx |
x ∈ X}. The circuit size of C is equal to the number of computation gates of C,
i.e., size(C) = |G∗(C)|. A gate g computes the monomial val(g), which is defined as
follows:

1. val(gx) = x.

2. For a computation gate g with predecessors g1 and g2, val(g) = val(g1)∧val(g2).

The circuit C computes a Boolean monomial M if some gate in C computes M . It
computes a setM of monomials if it computes all monomials inM. Such a circuit
is called a circuit forM. The gates that compute the monomials inM are referred
to as the output gates.

A subcircuit C′ of a circuit C is a subgraph of C that is again a circuit. In
particular, C′ contains all “induced” input gates. For g ∈ G(C), let Cg be the minimal
subcircuit of C containing g. Note that since Cg is a circuit, it contains all input
gates gx with x ∈ val(g). Moreover, Cg contains at least | val(g)| − 1 computation
gates. Let M be a set of monomials and C be a circuit for M. For each M ∈ M,
denote the gate that computes M by gM and write CM for CgM

. The frequency of a
computation gate g ∈ G∗(C) (with respect to M) is the number of monomials that
g is used for, i.e.,

freqM(g) = |{M ∈M | g ∈ G(CM )}| .

The following straightforward equation proves very useful:

∑

g∈G∗(C)

freqM(g) =
∑

M∈M

size(CM) . (1)

A gate is called strict if its predecessors compute disjoint monomials. A circuit
is called strict if all of its gates are strict. It is not hard to see that any non-strict
circuit for a Min-AC instanceM of maximum degree at most four can be turned into
a strict circuit forM of the same size. As we will show in the proof of Lemma 17,
this is not true if the monomials are allowed to be of degree five or more.

Let S ⊆ X. The multiplicity of S inM is the number of occurrences of S inM
as a submonomial, i.e.,

multM(S) = |{M ∈ M | S ⊆M}| .
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The maximum multiplicity of M is defined by

mult(M) = max
|S|≥2

multM(S) .

It is equal to the number of occurrences of the most frequent pair of variables inM.
For all computation gates g of a circuit C forM, we have

freqM(g) ≤ multM(val(g)) ≤ mult(M) . (2)

2.2 Optimization Problems

For an introduction to the approximation theory of combinatorial optimization prob-
lems, we refer to Ausiello et al. [3]. For an optimization problem P and an instance
I for P , we write optP (I) for the measure of an optimum solution for I.

Let A be an approximation algorithm for P , i.e., an algorithm, that on input I
of an instance for P , outputs an admissible solution A(I). The approximation ratio
ρA(I) of A at I is the ratio between the measure m(A(I)) of a solution A(I) output

by A and the size of an optimal solution, i.e., ρA(I) = m(A(I))
optP (I)

. The approximation

ratio ρA of A is the worst-case ratio of all ratios ρA(I), i.e., ρA = maxI ρA(I).
The Minimum-AND-Circuit problem, abbreviated Min-AC, is defined as follows:

Given a set of monomials M = {M1, . . . , Mk} over a set of Boolean
input variables X = {x1, . . . , xn}, find a circuit C of minimum size that
computes M.

Throughout the paper, k denotes the number of monomials, n denotes the number
of input variables, and N =

∑

M∈M |M | denotes the total input size. In addition,
we always assume that X =

⋃

M∈M M .
We denote by Min-d-AC the Minimum-AND-Circuit problem with instances re-

stricted to monomials of degree at most d. The problem where the degrees are
required to be exactly d is denoted by Min-Ed-AC.

A vertex cover of a graph G is a subset Ṽ ⊆ V such that every edge has at least
one endpoint in Ṽ . This definition also applies to hypergraphs. Aside from Min-AC,
we will encounter the following optimization problems: The vertex cover problem,
denoted by Min-VC, is defined as follows:

Given an undirected graph G, find a vertex cover of G of minimum size.

The restriction of Min-VC to graphs of maximum degree d is denoted by Min-d-VC.
A hypergraph is called r-uniform if all of its edges have size exactly r. The vertex
cover problem for r-uniform hypergraphs, denoted by Min-r-UVC, is:

Given an r-uniform hypergraph G, find a vertex cover of G of minimum
size.

Finally, Maximum-Coverage is the following optimization problem:

Given a hypergraph G and a number r ∈ N, find r edges e1, . . . , er ∈ E
such that

⋃r

i=1 ei is of maximum size.
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(a) Graph with ver-
tex cover {2, 3}.

x0 x1 x2 x3 x4

x0x2 x0x3

x0x1x2 x0x1x3 x0x2x3 x0x2x4

(b) AND-circuit for the Min-3-AC instanceM = {M1, M2, M3, M4}
with Ma = x0x1x2, Mb = x0x1x3, Mc = x0x2x3, and Md = x0x2x4.
Input gates are represented as circle nodes, whereas computation
gates are boxed. In addition, output gates have a double box.

Figure 1: A graph with a vertex cover and the corresponding AND-circuit as con-
structed in the proof of Lemma 1.

3 Hardness

In this section, we prove that the Minimum-AND-Circuit problem is NP-complete
and that there is no polynomial-time approximation algorithm that achieves an
approximation ratio of less than 983

978
unless P = NP. To show this, we reduce

Min-VC to Min-AC.
Let G = (V, E) be an undirected graph with n = |V | vertices and m = |E|

edges. We construct an instance of Min-AC as follows. For each node v ∈ V ,
we have a variable xv. In addition, there is an extra variable x0. For each edge
e = {v, w} ∈ E, we construct the monomial Me = x0xvxw. Our instance of Min-AC

is then MG = {Me | e ∈ E}. Note that |M | = 3 for all M ∈ MG. Moreover, if G
has maximum degree ∆, then MG has maximum multiplicity ∆. Clearly, MG can
be constructed in polynomial time. An example is shown in Figure 1.

Lemma 1. Let G and MG be as described above. Then optMin-AC(MG) = |E| + `,
where ` = optMin-VC(G). Furthermore, given a circuit C of size |E|+ `′ for MG, we
can compute a vertex cover Ṽ of G with |Ṽ | ≤ `′ in polynomial time.

Proof. We prove the above lemma by showing that every vertex cover of size `′ yields
a circuit of size |E|+ `′ and vice versa.

Suppose we are given a vertex cover Ṽ ⊆ V of G of size |Ṽ | = `′. We construct
an AND-circuit for MG as follows. The circuit consists of two layers. In the first
layer, there is one gate gv for each node v ∈ Ṽ . The gate gv computes x0xv. In
the second layer, the monomials in MG are computed: for each edge e ∈ E, there
is a gate ge. If e = {v, w} with v ∈ Ṽ , then ge has computation gate gv and input
gate gxw

as predecessors, thus computes Me. The described circuit computes MG

and uses ` + |E| gates.
Now suppose that there is a circuit C of size `′ + |E| that computes MG. Since

each M ∈ MG is of degree 3, we can assume that C has exactly two layers, the second
one containing the |E| output gates that compute the monomials Me. Let F denote
the set of the remaining `′ gates in the first layer. For a gate g ∈ F , let v(g) be a
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node such that gxv(g)
is an input of g. Such a node exists since g has two predecessors

and at least one of them is different from x0. If both predecessors are different from
x0, then we choose one of them arbitrarily. We claim that Ṽ = {v(g) | g ∈ F} forms
a vertex cover of G. To prove this, let e = {v, w} ∈ E. The gate that computes Me

must be connected to at least one gate g ∈ F . This gate in turn has an incoming
edge from either gxv

or gxw
(or both). Thus v ∈ Ṽ or w ∈ Ṽ . Given the circuit, the

vertex cover can clearly be constructed in polynomial time.

Theorem 2. Min-AC is NP-complete, APX-hard and cannot be approximated in
polynomial time within a factor of less than 983

978
> 1.0051 unless P = NP.

This holds even for Min-3-AC restricted to instances with maximum multiplicity
six.

Proof. The NP-completeness and APX-completeness follows from Theorem 4 below.
For the inapproximability, we exploit a result of Chleb́ık and Chleb́ıková.

Theorem 3 (Chleb́ık and Chleb́ıková [5]). Given an instance G of Min-6-VC

with n vertices, it is, for every sufficiently small ε > 0, NP-hard to decide whether
the size of a minimum vertex cover of G is at most (474

494
+ε) ·n or at least (484

494
−ε) ·n.

Thus, it is NP-hard to decide whether the instance of Min-AC corresponding to
the graph can be computed by a circuit of size at most |E| + (474

494
+ ε)|V | or if

every circuit for this instance has a size of at least |E|+ (484
494
− ε)|V | for sufficiently

small ε > 0. The inapproximability bound follows by plugging in the inequality
|E| ≤ 3|V |.

Theorem 4. Min-3-AC restricted to instances of maximum multiplicity three is NP-
complete, APX-hard, and cannot be approximated in polynomial time within a factor
of less than 269

268
> 1.0037 unless P = NP.

Proof. The NP-completeness and APX-hardness follow from the NP-completeness
and APX-completeness of Min-3-VC [2, 9].

It remains to prove the inapproximability bound. Again, we exploit a result of
Chleb́ık and Chleb́ıková.

Theorem 5 (Chleb́ık and Chleb́ıková [5]). Given an instance G of Min-3-VC

with n vertices, it is, for every sufficiently small ε > 0, NP-hard to decide whether
the size of a minimum vertex cover of G is at most (494

564
+ε) ·n or at least (499

564
−ε) ·n.

Analogously to the proof of Theorem 2, the inapproximability result for Min-3-AC

follows from plugging in the inequality |E| ≤ (3/2) · |V |.

Since for fixed d, Min-d-AC can be approximated within a constant factor (see
Section 6.1), the problem is in APX and thus APX-complete.

4 Approximation Algorithms for Min-3-AC

In this section, we provide several polynomial-time approximation algorithms for
Min-3-AC, the problem of computing minimum AND-circuits for monomials of degree
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x1x3

x0x1 x0x3

x1x2 x0x2 x2x3

x0x4 x2x4

Figure 2: This shows the hypergraph H(M) associated with the Min-AC instanceM
introduced in Figure 1. Each triangle represents a hyperedge. The two bold mono-
mials constitute a vertex cover.

at most three. Note that the lower bounds proved in Section 3 hold already for
Min-E3-AC.

Without loss of generality, we may assume that all monomials have degree exactly
three for the following reasons. Firstly, we do not need any computation gates
to compute monomials of degree one, so we can delete such monomials from the
input. Secondly, for each input monomial of size two, we are forced to construct
an output gate. On the other hand, we should use this gate wherever we can for
other input monomials, so we can delete all monomials of degree two from the input
and substitute all occurrences of such monomials in the other monomials by extra
variables. We repeat this process until no more monomials of size two are in the
input.

Since each monomial M of degree at most three can be computed by a circuit
of size two, we can construct a trivial circuit Ctriv for a Min-3-AC instance M of
size 2k, where k is the number of monomials. On the other hand, the computation
of k monomials obviously requires at least k gates. Thus, we obtain an upper bound
of 2 on the polynomial-time approximation ratio for Min-3-AC. In the following, we
show how to improve this bound.

4.1 Algorithm “Cover”

We first reduce Min-3-AC to Min-3-UVC, the problem of finding a vertex cover in
three-uniform hypergraphs. Subsequently, we will present our algorithms.

Let M be a Min-3-AC instance. We introduce some notation that will be used
throughout this paper. For M ∈M, let

pairs(M) = {S ⊆ X | |S| = 2 ∧ S ⊆ M}

be the set of pairs contained in M . Note that | pairs(M) = 3|. Furthermore, let
pairs(M) =

⋃

M∈M pairs(M) be the set of all pairs of variables appearing inM.
Let C be a circuit for M. Then C consists of two layers, the second one con-

taining the k = |M| output gates. In the first layer, certain monomials of size two
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Cover

1: Input M = {M1, . . . , Mk}.
2: Compute the hypergraph H = H(M).
3: Compute greedily an inclusion-maximal matching Ẽ in H, i.e., a

collection of disjoint hyperedges that cannot be enlarged.

4: Let Ṽ =
⋃

e∈Ẽ e.
5: Compute C = CṼ .
6: Output C.

Figure 3: Algorithm Cover for Min-3-AC.

are computed: for each monomial M ∈ M, one of the pairs S ∈ pairs(M) has
to be computed at the first level of C. The task is thus to find a minimum set
of pairs S ∈ pairs(M) such that each monomial M ∈ M contains one such pair.
This corresponds to finding a minimum vertex cover of the three-uniform hyper-
graph H(M) = (V, E) described in the following. The node set is the set of pairs
appearing in M, i.e., V = pairs(M), and for each monomial M ∈ M, there is a
hyperedge containing the pairs that appear in M , i.e., E = {pairs(M) | M ∈ M}.
A circuit C forM with gates computing the pairs S1, . . . , S` at its first level corre-
sponds to the vertex cover of H(M) given by {Si | 1 ≤ i ≤ `} and vice versa. Denote
the circuit corresponding to a vertex cover Ṽ by CṼ . By the preceding discussion,
we have shown

Lemma 6. Let Ṽ be a vertex cover of H(M). Then size(CṼ ) = k + |Ṽ |. In
particular,

optMin-3-AC(M) = k + optMin-3-UVC(H(M)) .

Our first polynomial-time approximation algorithm for Min-3-AC, which is pre-
sented in Figure 3, is based on the reduction we have just presented. The set Ṽ
consists of all nodes that are incident with the matching Ẽ. Thus the size of Ṽ
equals 3 · |Ẽ|. Ṽ is a vertex cover since otherwise Ẽ could be enlarged. On the
other hand, any vertex cover of H(M) must include at least one vertex from each
hyperedge of the maximum matching Ẽ, so any vertex cover of IG(M) must be of
size at least |Ẽ|. In conclusion, we have |Ṽ | ≤ 3 · optMin-3-UVC(H(M)). Together
with Lemma 6 this proves

Lemma 7. Let optMin-3-AC(M) = k + `. Then Cover outputs a circuit CCover for
M of size at most k + 3 · `.

E.g., for instancesM that consist of pairwise disjoint monomials of degree three,
size(CCover) = k + 3` is indeed achieved (with ` = k).

In case that ` ≥ 1
3
k, Cover outputs a circuit that is larger than the trivial

one. Choosing to output the trivial circuit instead, yields an algorithm with an
approximation ratio of

max{k + 3`, 2k}

k + `
≤

2

4/3
=

3

2
.
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x 2

x
0 x

3

x0x2

Figure 4: Intersection graph IG(M) associated with the Min-AC instanceM intro-
duced in Figure 1. The edges are labeled by the pairs that their endpoints have in
common. The bold edges constitute a maximal matching.

Match

1: Input M = {M1, . . . , Mk}.
2: Compute G = IG(M).
3: Compute a matching Ẽ of G of maximum cardinality.

4: For each {M, M ′} ∈ Ẽ:

5: Add a gate computing M ∩M ′ to C.
6: Add subcircuits computing M and M ′ to C, using two additional

gates.

7: For each M ∈M \
⋃

e∈Ẽ e (not incident with Ẽ):

8: Add a subcircuit computing M, using |M | − 1 gates.

9: Output C.

Figure 5: Algorithm Match for Min-3-AC.

Thus, we have already found an algorithm that achieves a non-trivial approximation
ratio. In the course of this paper, we will improve this ratio to below 1.3.

4.2 Algorithm “Match”

Before we present our next algorithm, we introduce another technical utility. Asso-
ciate withM the intersection graph IG(M) defined as follows: the nodes of IG(M)
are the monomials ofM, and two monomials M, M ′ ∈ M are connected by an edge
iff |M ∩M ′| = 2. An example is shown in Figure 4.

Algorithm Match, which is presented in Figure 5, is a polynomial-time algo-
rithm; in particular, a maximum matching in IG(M) can be computed in time
O(n2.5) [1]. To bound the approximation ratio of Match, we need the following

Lemma 8. Let optMin-3-AC(M) = k + ` and Ẽ be the matching computed in step 3
of Match on input M. Then |Ẽ| ≥ 1

2
(k − `).

Proof. Let C be a minimum circuit forM. Let S = {S1, . . . , S`} be the set of pairs
computed by the gates at the first level of C. We construct a matching of IG(M)
of size 1

2
(k− `). For each M ∈M, we select an SM ∈ S ∩ pairs(M). This partitions

the monomials into sets ES = {M ∈ M | SM = S}, S ∈ S. Since all monomials
in ES have the pair S in common, each set ES forms a clique of the intersection

9



graph IG(M). Hence we can choose
⌊ |ES |

2

⌋

≥ |ES |−1
2

disjoint edges of IG(M) with
endpoints in ES. In total, this yields a matching of size at least

∑

S∈S

|ES| − 1

2
=

1

2
(|M| − |S|) =

1

2
(k − `) .

Lemma 9. Let optMin-3-AC(M) = k + `. Then Match outputs a circuit CMatch for
M of size at most 3

2
· k + 1

2
· `.

Proof. Each edge of the matching Ẽ saves us at least one gate compared with the
trivial solution (since we compute two monomials with only three gates). Hence
size(CMatch) = 2k − |Ẽ|. By Lemma 8, |Ẽ| ≥ 1

2
(k − `). Consequently,

size(CMatch) = 2k − |Ẽ| ≤
3

2
k +

1

2
` .

It is not hard to construct instances for which the upper bound on size(CMatch)
stated in Lemma 9 is indeed achieved.

Note that although the analysis of Match is not needed for our best upper
bound result for Min-3-AC, the algorithm is the only one for which we can prove a
non-trivial approximation ratio for Min-d-AC in case that d ≥ 4. We will discuss
this issue in Section 6.1.

For Min-3-AC with instances restricted to a multiplicity of at most two, we ob-
serve that Match computes an optimum solution.

Lemma 10. Let M be a Min-3-AC instance with multiplicity at most two. Then
Match outputs a circuit CMatch of minimum size for M.

Proof. Since every edge of the matching Ẽ computed by Match in step 3 saves
exactly one gate, we have size(CMatch) = 2k − |Ẽ|.

Claim 11. An arbitrary circuit C for M yields a matching F of the intersection
graph IG(M) of size 2k − size(C).

Proof of Claim 11. Without loss of generality, assume that C is strict. Let ` =
2k − size(C). Since M has multiplicity at most two, each gate is used for at most
two monomials and thus saves at most one gate. But then there must be exactly
` gates that are used in two monomials. Let these gates be g1, . . . , g` with gi used
for Mi and M ′

i , i ∈ [`]. We claim that F = {{Mi, M
′
i} | i ∈ [`]} is a matching

in IG(M). Clearly, {Mi, M
′
i} ∈ E. Moreover, the edges are disjoint since otherwise

two different gates gi and gj would be used for the same monomial, which would
contradict the strictness of C. Consequently, F̃ is indeed a matching of size `.

Now let Copt be a circuit for M of minimum size. By the above claim, the
intersection graph IG(M) has a matching of size 2k − size(Copt). Since Ẽ is a
matching of maximum size, |Ẽ| ≥ 2k − size(Copt). Hence size(CMatch) = 2k − |Ẽ| ≥
size(Copt).

Corollary 12. Min-3-AC with instances restricted to maximum multiplicity at most
two is in P.

10



Greedy

1: Input M = {M1, . . . , Mk}.
2: While ∃S ∈

(

X

2

)

such that |{M ∈M | S ⊆M}| ≥ 3 do

3: Arbitrarily select S ∈
(

X

2

)

with maximum |{M ∈M | S ⊆M}|.
4: Add a gate computing S to C.
5: For each M ∈M with S ⊆M:

6: Add subcircuit computing M to C, using at most |M | − 2
additional gates.

7: M←M\ {M}.
8: C′ ←Match(M).
9: C ← C ∪ C′.
10: Output C.

Figure 6: Algorithm Greedy for Min-3-AC.

4.3 Algorithm “Greedy”

Our last algorithm Greedy is presented in Figure 6. It greedily constructs gates
for pairs that occur most frequently in the input instance M until each remaining
pair is shared by at most two monomials. At that point, instead of proceeding in
an arbitrary order, an optimal solution is computed for the remaining monomials.
The latter task is achieved by Match, as we have shown in Lemma 10.

Lemma 13. LetM = {M1, . . . , Mk} be a Min-3-AC instance with optMin-3-AC(M) =
k + `. Then Greedy outputs a circuit CGreedy for M of size at most

min

{

4

3
· k + `,

(

1 +
1

e2

)

k + 2`

}

.

Proof. Clearly, for every M ∈M, Greedy eventually adds M to C = CGreedy, hence
C computes M. Let k1 denote the number of monomials in M that are computed
by C after steps 1–8 and k2 denote the size of C′ computed in step 9 of Greedy.
Since the sets S selected in step 4 are all shared by at least three monomials each,
at most k1/3 gates are added to C in step 5. In addition, k1 gates are added to C
in step 7. Denote by M′ the set of monomials that remain in M after the while

loop is exited. By Lemma 10, the circuit C′ constructed in step 9 is of minimum
size for M′. Let Copt be a circuit for M of minimum size k + `. Clearly, we can
construct an alternative circuit for M′ by only using the ` non-output gates of C
and k2 output gates for the monomials M ∈ M′, i.e., size(C′) ≤ k2 + `. In total,
size(C) ≤ 4

3
· k + `.

Next we show that also size(C) ≤
(

1 + 1
e2

)

k + 2`. Although not necessary for
our investigations, we start by showing that size(C) ≤

(

1 + 1
e

)

k + ` since the proof
of this latter bound is easily understandable and the proof of the former bound
follows the same line. Let H(M) = (V, E) be the hypergraph associated with the
Min-3-AC instance M. The greedy algorithm for Maximum-Coverage achieves an
approximation ratio of (1 − 1

e
) [6]. In particular, if optMin-3-AC = k + `, then all k
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elements ofM can be covered by ` pairs by Lemma 6, and so the greedy algorithm
covers at least (1 − 1/e)k monomials. To cover the remaining (1/e)k monomials,
the greedy algorithm will clearly need to select at most (1/e)k additional nodes.
Thus, size(C) ≤ k + ` + 1

e
k. However, this bound is worse than size(C) ≤ 4

3
k + `.

But let us take the analysis one step further, for it may happen that 1
e
k is still

quite large compared to `. Let k1 denote the number of monomials covered by
the first ` nodes selected by the greedy algorithm. By the preceding argument,
k1 ≥ (1 − 1/e)k. The remaining k − k1 can easily be covered by ` nodes again
since this is even possible for the entire set of monomials. Consequently, the greedy
algorithm covers at least (1− 1/e)(k − k1) out of these monomials, and we remain
with at most k − k1 − (1 − 1/e)(k − k1) = 1

e
(k − k1) ≤

1
e2 k uncovered monomials.

Again, this number is an upper bound on the number of nodes picked by the greedy
algorithm after having chosen 2` nodes. In total, we obtain the desired bound:
size(C) ≤

(

1 + 1
e2

)

k + 2`.

Note that it does not make much sense to reiterate the last step of the analysis
since this would give us a circuit of size larger than k + 3`, the size achieved by
Cover.

Corollary 14. The approximation ratio of Greedy for Min-3-AC is at most 5e2−3
4e2−3

≈
1.278.

Proof. Let M be a Min-3-AC instance with optMin-3-AC = k + `, k = |M|. By
Lemma 13, the approximation ratio of Greedy is at most

min{ρ1(`), ρ2(`)} , (3)

where ρ1(`) =
4
3
k+`

k+`
and ρ2(`) =

(1+ 1
e2

)k+2`

k+`
. We have

ρ1(`) ≥ ρ2(`) ⇔
4

3
k+` ≤

(

1 +
1

e2

)

k+2`⇔ ` ≥

(

1

3
−

1

e2

)

k =
e2 − 3

3e2
≈ 0.1980·k .

Since ρ1 is monotone increasing and ρ2 is monotone decreasing in `, the minimum
in (3) is attained for ` = (e2 − 3)k/(3e2). It is

ρ1

(

e2 − 3

3e2
k

)

=
4
3

+ e2−3
3e2

1 + e2−3
3e2

=
5e2 − 3

4e2 − 3
≈ 1.278 .

The best lower bound that we are able to show for the approximation ratio
of Greedy is 10/9 = 1.111 . . .. It is obtained by the reduction from vertex cover
presented in Lemma 1. The corresponding vertex cover instance is shown in Figure 7.

4.4 Summary of Approximation Ratios

In this subsection, we summarize the approximation ratios of the algorithms pre-
sented in the preceding subsections and present some improvements for Min-3-AC

12



Figure 7: Graph with vertex cover of size 3, but for which the greedy algorithm
outputs a cover of size 4.
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(a) Upper bounds for Greedy, Cover,
and Match.
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(b) Upper bounds for Greedy given by
Lemma 13.

Figure 8: Upper bounds on the approximation ratios of the Min-3-AC algorithms
dependent on the ratio `/k.

instances with bounded multiplicity. So far, we have found the following bounds for
the approximation ratios of the Min-3-AC algorithms:

ρCover ≤ k+3`
k+`

increasing in ` ,

ρGreedy ≤
(1+e−2)k+2`

k+`
increasing in ` ,

ρGreedy ≤
4
3
k+`

k+`
decreasing in ` ,

ρMatch ≤
3
2
k+ 1

2
`

k+`
decreasing in ` .

These approximation ratios are presented in Figure 8. Concerning restricted multi-
plicity, we prove the following result.

Theorem 15. The Min-3-AC problem restricted to instances of maximum multiplic-
ity µ, µ ∈ {3, 4, 5}, is approximable within a factor of

(a) 5/4 = 1.25 if µ = 3,

(b) 19/15 = 1.26 if µ = 4, and

(c) 23/18 = 1.27 if µ = 5.

Proof. LetM be a Min-3-AC instance with mult(M) = µ and C be a circuit forM.
Then each of the ` gates at the first layer of C can be used for at most µ mono-
mials in M. Consequently, ` ≥ k/µ. For µ = 3, Match has approximation ratio
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at most max`≥ 1
3
k

3
2
k+ 1

2
`

k+`
= 5

4
. For µ = 4 and µ = 5, Greedy achieves ratio at

most max`≥ 1
µ

k

4
3
k+`

k+`
, which evaluates to 19/15 and 23/18 for ` = k/4 and ` = k/5,

respectively.

5 Fixing the Number of Monomials

In this section we show that Min-AC is fixed parameter tractable with respect to the
number k of monomials in the input instance. For more details on fixed parameter
tractability, we refer to Downey and Fellows [8].

Theorem 16. Min-AC, parameterized by the number of input monomials, is fixed pa-
rameter tractable. This means that there are a function f : N→ N and a polynomial
p : N→ N such that Min-AC can be solved deterministically in time f(k) + p(N).

Proof. To prove the theorem, we show that the instances of Min-AC have problem
kernels that can be computed in polynomial time and the size of which depend only
on the number k of monomials.

Let M = {M1, . . . , Mk} be a Min-AC instance and X =
⋃

i∈[k] Mi. We describe

a problem kernel of M of size f(k), i.e., a Min-AC instance M′ such that we can
compute a minimum AND-circuit forM from a minimum AND-circuit forM′ (i.e.,
we present a self-reduction of Min-AC such that an instance with k monomials is
mapped to an instance with total size depending only on k).

To each input variable x ∈ X, we associate the characteristic vector b(x) =
b1(x) . . . bk(x) ∈ {0, 1}k with bi(x) = 1 iff x ∈ Mi. Let B = {b(x) | x ∈ X} be the
set of characteristic vectors. The idea is now to merge input variables with identical
characteristic vectors since such variables appear in exactly the same monomials.
In the problem kernel M′, the variable set X ′ consists of one variable x′

b for each
characteristic vector b ∈ B, i.e., X ′ = {x′

b | b ∈ B}. The monomials in M′ are
M ′

1, . . . , M
′
k defined by

M ′
i =

∧

b∈B,bi=1

x′
b

for i ∈ [k]. Thus, M ′
i is derived from Mi by replacing all variables with characteristic

vector b by the single variable x′
b. Clearly, the instance M′ is of size at most k · 2k.

Thus a minimum AND-circuit C′ forM′ can be computed deterministically in time
f(k) for some appropriate function f that is independent of N .

It remains to show how to construct a minimum AND-circuit C forM using C′.
For b ∈ B, let Xb = {x ∈ X | χ(x) = b} be the set of input variables with
characteristic vector b, which we may also interpret as submonomials of M1, . . . , Mk.
We build subcircuits for computing the monomials Xb first, each using |Xb|−1 gates.
Next we take the circuit C′ and substitute its input gates x′

b by the gates computing
Xb. Call the resulting circuit C. A gate of C′ computes M ′

i iff it computes Mi in C.
Since C′ computes M′, it follows that C computes M.

Now we prove that C is of minimum size forM. As a first step, we show that an
arbitrary circuit D for M can be turned into a circuit for M of at most the same
size such that it computes all monomials Xb in addition. We proceed step by step
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S ◦ k n Description Remark

{0, 1} ∧ arb. arb. Boolean monomials, Min-AC

Z + 1 1 Addition chains [13, 15] complexity unknown
Z + arb. 1 Extended addition chains NP-complete [7]
Σ∗ concat. 1 arb. Grammar-based compression [12] NP-complete for n ≥ 3 [14],

of strings over alphabets of size n complexity unknown for n ≤ 2

Table 1: The circuit problem for several semigroup structures and parameters.

for each b ∈ B such that Xb is not computed by D. Let Xb = {x1, . . . , xr}, r = |Xb|.
For i = 2, . . . , r, we successively add a gate hi with incoming edges from gx1 and gxi

and, for i ≥ 3, integrate it in a subcircuit computing x1 . . . xi by replacing the wire
(x1, hi−1) with the wire (hi, hi−1). By induction hypothesis, at the time just before
hi is introduced, hj computes x1xj . . . xi−1 for 2 ≤ j ≤ i − 1. Clearly, after the
changes are made, hi computes x1xi, hi−1 computes x1xi−1xi, . . ., and h2 computes
x1x2 . . . xi−1xi.

In the following, we show that at least one successor gate of gxi
can be eliminated

in turn, thus not enlarging the circuit. Since xi appears in at least one monomial,
gxi

has at least one successor gate. We show how to eliminate all successor gates of
gxi

except from hi. Let g be a successor of xi. We delete g from C. The outgoing
edges of C are replaced as follows. Let the predecessors of g be xi and g′. If
| val(g)| = 1, then val(g) = {xj} for some j ≥ i + 1 since all successors of input
gates gxj

with j < i have already been eliminated. Each wire (g, h) is replaced by
the wire (g′, h).

Clearly, having undertaken the modifications for a b ∈ B, C computes the mono-
mial Xb since C contains h2. Moreover, it still computes M: we only erased gates
that computed monomials containing variables from Xb. The edge modifications
were all undertaken in such a way that only variables from Xb were deleted from
the concerned val(g). Consequently, the modifications could only affect the output
gates for monomials containing Xb. For M ∈M, let gM be the gate that originally
computed M . Since the subcircuit rooted at gM now contains the gate h2, we have
Xb ⊆ val(gM). Hence gM still computes M .

To finish the proof, assume that there is a circuit D forM with size(D) < size(C).
As we have just demonstrated, we may assume that D computes all monomials Xb.
But then we can simply use the gates g that compute the monomials Xb as input
gates gx′

b
for a circuit D′ forM′ and throw away the gates in Cg (except for g itself).

Since the monomials Xb are pairwise disjoint, each deleted subcircuit Cg is of size
|Xb| − 1, i.e., we throw away |Xb| − 2 gates. In total, this is exactly the number of
gates we have added to C′ in order to build C. Consequently, D′ is smaller than C′,
which is a contradiction. Thus, C is indeed minimal.

6 Concluding Remarks and Future Research

6.1 Approximation Algorithms for Min-d-AC, d ≥ 4

Obviously, the approximation ratio of Min-d-AC is at most d − 1 since on the one
hand, every monomial of degree at most d can be computed by at most d − 1
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separate gates and on the other hand, any circuit contains at least one gate per
monomial of the input instance. It is easy to see that Match achieves the slightly
better approximation ratio d − 3

2
(which is tight); the proof is almost identical to

the proofs of Lemmas 8 and 9. Unfortunately, neither do we see how to generalize
algorithm Cover to d ≥ 4, nor is it clear how to analyze greedy algorithms in
that case. The problem is that once one has decided to substitute all occurrences
of a pair of variables in all monomials, it may happen that an optimal circuit for
the remaining monomials is strictly larger than an optimal circuit for the original
instance. This makes it difficult to apply standard techniques as in the proof of the
classical 1 + ln n approximation bound for the greedy set cover algorithm [10].

We are particularly curious about whether Min-d-AC is approximable within a
factor of o(d) or whether it is possible to show an Ω(d) hardness result.

Note that for d ≥ 4, there are several possibilities of generalizing the greedy
algorithm, some of which are presented in the following.

• Greedy Pairing: Select a most frequent pair, build a gate for it, and substi-
tute the pair by a new variable wherever possible. Repeat until all monomials
have size one.

• Greedy Saving: Select a monomial to be computed by a gate such that
its usage “saves” as many gates as possible compared to a trivial completion
of the circuit. Substitute the monomial by a new variable wherever possible
and add the monomial to the input instance. Repeat until all monomials are
computed by the circuit.

• Greedy Cutting: Select a longest submonomial appearing in multiple places
and build a gate for it. Substitute the monomial by a new variable wherever
possible and add the monomial to the input instance. Repeat until all mono-
mials have size one.

For d = 3, all three variants coincide.
Note that Greedy Pairing, Greedy Cutting, and Match produce strict

circuits. Already for d = 5, we can construct Min-AC instances M of maximum
degree d such that any strict circuit for M is roughly 4/3 times larger than a
minimum non-strict circuit:

Lemma 17. There are Min-5-AC instances M such that every circuit C for M
of minimum size is non-strict. Moreover, for arbitrarily small ε > 0, there are
instances M such that the ratio between a minimum strict circuit for M and a
minimum non-strict circuit is 4/3− ε.

Proof. LetM = {xy, yz}∪{xyai, yzbi, xyzaibi | i ∈ [t]}, t ≥ 1. It is easy to construct
a minimum AND-circuit C forM such that every computation gate of C is also an
output gate, i.e., size(C) = |M| = 3t + 2. On the other hand, it is impossible to
strictly build the monomial xyzaibi from other monomials of M. Thus, in a strict
circuit C′ for M, we must include an additional non-output gate, say to compute
the monomial aibi for each i ∈ [t]. Consequently, size(C′) = 4t + 2, and hence

size(C′)/ size(C) = (4t + 2)/(3t + 2) −→
t→∞

4/3 .
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Corollary 18. Any approximation algorithm for Min-AC (or even Min-5-AC) that
produces only strict circuits does not achieve an approximation ratio better than 4/3.

6.2 Approximation of Instances with Bounded Multiplicity

In Section 4.2, we showed that Min-3-AC instances with maximum multiplicity two
are optimally solvable in polynomial time. In contrast, Min-3-AC instances with
maximum multiplicity three are hard to solve, as we saw in Section 3. We leave it
as an open problem whether Min-d-AC instances with d ≥ 4 are polynomial time
solvable. Nonetheless we can provide a positive approximability result for general
Min-AC instances with bounded multiplicity:

Theorem 19. The Min-AC problem with instances restricted to be of maximum
multiplicity µ is polynomial-time approximable within a factor of µ.

Proof. Let M be a Min-AC instance with mult(M) = µ and let C be a circuit for
M. As size(CM ) ≥ |M | − 1 for every M ∈ M, equation (1) yields

∑

g∈G∗(C)

freqM(g) =
∑

M∈M

size(CM ) ≥
∑

M∈M

(|M | − 1) .

By equation (2),
∑

g∈G∗(C) freqM(g) ≤ µ · size(C). Denote by Ctriv the trivial circuit

of size
∑

M∈M(|M | − 1) in which every monomial is computed by a separate sub-
circuit. Then, by the preceding arguments, we have size(C) ≥ size(Ctriv)/µ and thus

size(Ctriv)
optMin-AC(M)

≤ size(Ctriv)
size(C)

≤ µ, which means that Ctriv is a µ-approximation forM.

We can improve the result of Theorem 19 for Min-Ed-AC instances with bounded
multiplicity using the fact that for these instances, all output gates have frequency
one.

Theorem 20. The Min-Ed-AC problem with instances restricted to be of maximum
multiplicity µ is polynomial-time approximable within a factor of µ(d−1)

µ+d−2
.

Corollary 21. Min-E4-AC with maximum multiplicity two is polynomial-time ap-
proximable within a factor of 3/2.

Note that the approximation ratio of 3/2 is much lower than the 5/2-approxi-
mation achieved by Match for general Min-4-AC instances.

6.3 Generalizations and Related Problems

Beside Boolean variables and monomials, it is natural to consider monomials over
other structures. In general, the variables x ∈ X take values from some semi-
group (S, ◦) (note that we assume the structure to be associative since otherwise it
makes no sense to design small circuits). In case that S is non-commutative, the
predecessors of a gate have to be ordered. Table 1 shows several examples of semi-
groups and other parameters with their corresponding circuit problem. As one can
see, many seemingly different problems turn out to be instantiations of a general
semigroup circuit problem.
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Note that the greedy algorithms proposed in Section 6.1 are closely related to
the so-called global algorithms Re-Pair, Greedy, and Longest Match for the
smallest grammar problem [4], which deals with the compression of a given string by
a context-free grammar that generates exactly that string. Global algorithms are of
particular interest for this problem since they are believed to have low approximation
ratios. However, despite their simplicity, only very weak upper bounds are known.
We hope that techniques for proving upper and lower bounds for global algorithms
may be transferred between the smallest grammar problem and the minimum AND-
circuit problem.

6.4 Some More Open Problems

For the approximation ratio of Min-3-AC, we believe that a more concise analysis of
Greedy or similar algorithms may yield an upper bound below 5/4.

Since we still lack good approximation algorithms for any d ≥ 4, it would
already be interesting to have approximation algorithms with ratio less than 2.5
for Min-4-AC, which may be achieved by an algorithm that is similar to Cover,
tailored to the case d = 4.

Finally, as we have determined the complexity of the decision problem associated
with Min-d-AC with multiplicity bounded by µ for several choices of d and µ, it would
be nice to complete these results by studying the case d ≥ 4 and µ = 2.
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