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Abstract. We present a cryptosystem which is complete for the class of probabilistic public-key cryp-
tosystems with bounded error. Besides traditional encryption schemes such as RSA and El Gamal,
this class contains probabilistic encryption of Goldwasser-Micali as well as Ajtai-Dwork and NTRU
cryptosystems. The latter two are known to make errors with some small positive probability.

To our best knowledge, no complete public-key cryptosystem has been known before, whether encryp-
tion/decryption errors are allowed or not. At the same time, other complete primitives such as Levin’s
universal one-way function [1] have been known for a long time.

1 Introduction

Reductions between computational problems have great meaning for complexity theory. In par-
ticular, reduction is a natural tool for establishing computational hardness of various algorithmic
problems. With reductions, one can prove that some problem is at least as hard as another one.
Furthermore, for some classes of problems, it is possible to find a complete problem, which is at
least as hard as any other problem in the class.

The same idea can be applied to cryptography, where problems of breaking cryptographic prim-
itives are considered. The notion of a reduction and the notion of completeness may be adapted to
this cryptographic setting. In particular, they may help to find the hardest to break implementa-
tions of cryptographic primitives. If a complete public-key cryptosystem C exists, one could argue
that under the assumption that secure public-key cryptography is possible at all, this is C what
provides a secure cryptosystem.

There is a number of important cryptographic primitives such as, to name a few, one-way
functions and public-key cryptosystems. In [1], Levin presented a universal (complete) one-way
function. Informally speaking, it is a polynomial-time computable function which is the hardest to
invert (read “to break”) among all polynomial-time computable functions. Therefore, if hard-to-
invert polynomial-time functions exist, then Levin’s function is one of them. Readers are referred
to [7, Section 2.4.1] for a more detailed discussion. Surprisingly, complete public-key encryption
schemes have been unknown so far.
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1.1 Probabilistic Encryption

The main insight of this paper is to look for a complete public-key encryption scheme in the class
of probabilistic encryption schemes with bounded error rather than in the class of all “perfect”
cryptosystems (that do not have encryption/decryption errors). This approach is motivated by
a recent result of Fortnow and Santhanam [9, Theorem 2] on a time hierarchy for probabilistic
algorithms that are allowed to fail on a small fraction of inputs.

The fact that we consider “imperfect” probabilistic encryption schemes makes our result even
more interesting. We present a public-key cryptosystem which is complete for the class that contains
all “traditional” public-key encryption schemes as well as probabilistic encryption of Goldwasser
and Micali [2], one of the first encryptions schemes, Ajtai-Dwork cryptosystem [3], which is based
on lattice problems, and NTRU [4]. The latter two permit small positive probability of error during
encryption and decryption of a message.

In recent works, it has been shown that error probability of probabilistic cryptosystems can be
easily reduced down to negligible one [5, 6]. Therefore it is of great interest to find the hardest to
break probabilistic public-key encryption scheme, even one with small positive probability of error.

1.2 Reductions

In order to formalize the notion of “the hardest-to-break” cryptographic primitive, we use reduc-
tions. A cryptographic primitive S1 is reducible to another primitive S2, iff there exists a prob-
abilistic oracle procedure R (called a reduction) that, given an oracle A that breaks S2, breaks
S1.

As an illustration, Levin’s result on universal one-way function means that inversion of any
polynomial-time computable function F is reducible to inversion of the universal one-way function.
One may see that this notion of a reduction is quite similar to the one used in complexity theory:
task of breaking a primitive is an analogue of recognizing a language.

1.3 Our Result

We present an encryption scheme4 which is complete for the class of all probabilistic public-key
encryption schemes with bounded error. Our encryption scheme is provably secure5 under the
weakest possible assumption that secure public-key encryption schemes exist at all.

We stress that our encryption scheme is of theoretical interest only. It is impractical as it is
secure only for huge values of its security parameter. For such values, key generation, encryption
and decryption algorithms, which are polynomial-time in the security parameter, require a huge
amount of time and communication. However, from now on, one may think of a concrete public-key
encryption scheme when (dis)proving the existence of hard-to-break public-key encryptions.

As complete cryptographic primitives are the natural bridges from cryptography to complexity
theory, our successful attempt to construct a complete cryptosystem suggests that probabilistic
encryption schemes with errors may be easier to research rather than “perfect” ones.

4 We use the terms “cryptosystem” and “encryption scheme” interchangeably.
5 We consider schemes for encrypting a single bit; the adversary is given the public key and the encrypted message.
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1.4 Previous Work

To our best knowledge, it is the first successful attempt to construct a complete public-key cryp-
tosystem, although the existence of a complete (universal) one-way function has been known for
a long time [1, 7]. More of that, the idea of a universal one-way function may be traced back to
Levin’s optimal algorithm for NP-complete problems. The same idea was used later to construct
a universal learning algorithm [8].

We prefer to use the term “complete” instead of “universal” in this paper to stress that there
is a reduction (of a certain form) between any public-key encryption scheme and our complete
cryptosystem. From the view point of complexity theory, the latter is stronger than a statement
that the existence of some hard-to-break cryptosystem implies that our cryptosystem is hard-to-
break also.

In complexity theory, the existence of a complete language for some class of languages is closely
related to the existence of a time hierarchy in the class: namely, both complete languages and
hierarchy theorems are known for “syntactic” (i.e., efficiently enumerable) classes, but are hard to
devise for other (“semantic”) classes. Recently, much work has been put into proving the existence
of time hierarchies for probabilistic algorithms with two-sided error (for which no complete problems
are known). An interesting paper of Fortnow and Santhanam [9] shows that there exists a time
hierarchy for heuristic probabilistic algorithms with two-sided error. Such algorithms are permitted
not to satisfy error bound on some small fraction of inputs. Our research to big extent is motivated
by this work.

An important ingridient of our proof is the amplification of cryptosystem correctness, i.e. a
procedure that reduces the error probability of a given cryptosystem while moderately worsening
its security. Such correctness amplification technique is known from the work of Dwork, Naor and
Reingold [6]. For more discussion on this topic, see recent papers by Holenstein and Renner [10,
11].

2 Definitions

Definition 1. A public key encryption scheme S consists of three probabilistic worst-case polynomial-
time algorithms (G,E,D), for key generation, encryption and decryption respectively.

Key generation algorithm G is given a security parameter 1n as input, and outputs the public
key and secret key pair (pk, sk)← G(1n). Encryption algorithm E takes as input a public key pk, a
one-bit plaintext message m and produces a ciphertext M = Epk(m). Finally, decryption algorithm
D takes as input a secret key sk and a ciphertext. The output of D is a message m′ = Dsk(M),
which may fail to equal the original message m. For more details, see [12].

Definition 2. A public key encryption scheme is δ(n)-correct, iff for all sufficiently large security
parameters n, for any one-bit message m ∈ {0, 1},

Pr[Dsk(Epk(m)) = m] ≥ δ(n) for (pk, sk)← G(1n),

where probability is taken over randomness of algorithms G, E and D.

Definition 3. A probabilistic black-box A ε(n)-breaks an encryption scheme (G,E,D), if for in-
finitely many security parameters n,

Pr[Apk(1
n, Epk(m)) = m] ≥ ε(n) for (pk, sk)← G(1n),
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where probability is taken over uniform selection of a one-bit message m and over randomness of
algorithms G, E and of black-box A.

Since we consider public-key encryption schemes that encode one-bit messages, it makes sense
to consider only those ε(n) and δ(n) that are greater than 1/2. Also, note that Definition 2 implies
that knowing private key sk one can δ(n)-break the encryption scheme.

We could have defined δ(n)-correct encryption schemes in a different way, so that the probability
in the definition is also taken over randomly chosen messages m ∈ {0, 1} like in Definition 3.
However, Definition 2 that we use makes our construction of a public-key encryption scheme a
little bit easier.

Definition 4. A probabilistic black-box A breaks an encryption scheme (G,E,D), if it (1/2 +
1/p(n))-breaks the encryption scheme for some polynomial p(n).

An encryption scheme (G,E,D) is secure, if no probabilistic polynomial-time Turing machine
breaks (G,E,D).

Some encryption schemes may be harder to break than others. So let us define a reduction
between a pair of encryption schemes similarly to that between two languages. In some sense, the
notion of a break of a cryptosystem is an analogue of recognition of a language in complexity theory.

Definition 5. An encryption scheme (G1, E1,D1) is reducible to an encryption scheme (G2, E2,D2),
if there exists a probabilistic polynomial time oracle machine R, such that for any probabilistic black-
box A that breaks (G2, E2,D2), RA breaks (G1, E1,D1).

Obviously, if encryption scheme (G1, E1,D1) is secure, then (G2, E2,D2) is also secure. Thus,
it makes sense to find a complete encryption scheme, a one to which any other encryption scheme,
secure or not, is reducible.

Proposition 1. Reductions are transitive.

3 Our Approach

In our construction of a complete public key encryption scheme (which is the hardest to break
among all encryption schemes), we employ a natural idea of combining all possible public-key
encryption schemes (Gi, Ei,Di)i∈N, in order to achieve the maximal possible level of security. For
a given security parameter n, we combine the first n of encryption schemes in a way that their
combination is secure if and only if at least one of them is secure.

To encrypt a message m ∈ {0, 1}, our complete public key encryption scheme S = (G, E ,D)
performs as follows. First, key generator G on input 1n obtains pairs of public and private keys
(pk1, sk1) ← G1(1

n), . . . (pkn, skn) ← Gn(1n). As we will see in Lemma 3, w.l.o.g. key generators
Gi work in time, say, n4.

Then, encryption algorithm E selects x1, . . . xn ∈R {0, 1} 6 and produces a codeword (E1,pk1
(x1),

. . . , En,pkn
(xn), x1⊕. . .⊕xn⊕m). Evidently, if at least one encryption Ei is secure, then no adversary

has noticeable advantage over random guessing in learning xi from Ei,pki
(xi), thus in learning m

from x1 ⊕ . . . ⊕ xn ⊕m, even if all other encryption schemes are insecure.

6 i.e. independently and uniformly at random from {0, 1}
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In order to extract the message m from x1⊕ . . .⊕xn⊕m, having our private keys (sk1, . . . skn),
we need to recover all xj from Ej,pkj

(xj). However, most of encryption schemes are probably not
correct in the sense that Dj,skj

(Ej,pkj
(xj)) is not necessarily equal to xj . We overcome this difficulty

by using only those encryption schemes that are correct in a certain sense. And this is exactly the
place where we have to allow encryption/decryption errors.

Although it is impossible to test a given encryption scheme for 100% correctness, we are able
to determine with high confidence whether a given scheme is almost correct. So we select those
encryption schemes that pass our test for “almost correctness” and combine them in our construc-
tion. Since the errors in several almost correct schemes may accumulate and increase, we employ
correctness amplification technique [6], the last ingredient of our proof.

Definition 6. We denote the class of all 2/3-correct public key encryption schemes (every algo-
rithm of which runs in probabilistic polynomial time) with PKCS.

Sometimes, a key generation algorithm is allowed to run in expected polynomial time [12,
Section 7.1]. However, since we allow encryption schemes to fail with positive probability, these two
possible definitions are equivalent.

Notice that we do not include any requirement on security into this definition. Therefore some
schemes from PKCS may be much more easier (sometimes trivial) to break than others. Our goal
is exactly to find the scheme that is the hardest-to-break in this class.

The choice of the constant 2/3 in the definition is arbitrary because it is possible to efficiently
amplify correctness of an encryption scheme while preserving its security. In fact, we could have
defined PKCS as a class of encryption schemes that are (1− 1

p(n))-correct for any fixed polynomial

p(n).

The remaining part of the paper constitutes a proof of the following theorem.

Theorem 1. There exists a complete PKCS.

4 Correctness Test

In order to distinguish for a given security parameter n between those encryption schemes that are
(δ + ∆)-correct and those that are less than (δ − ∆)-correct, we will use the straightforward test
given below:

Correctness Test ((G,E,D), 1n, T, δ, k)
for m ∈ {0, 1} do

for i := 1 to k do
Run G(1n) for T steps to obtain a pair of keys (pk, sk)
Run Epk(m) for T steps to obtain a ciphertext M
Run Dsk(M) for T steps to obtain a decrypted message m′

if m′ = m then Xm,i := 1 else Xm,i := 0

if for both m ∈ {0, 1},
∑k

i=1 Xm,i > δ · k then accept else reject

In this test, if one of the algorithms G, E, and D wants to work for more than T steps, it is
stopped after allowed T execution steps, and its output tape by that moment is considered as the
result of the execution.
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Proposition 2 (Chernoff bound). Let X1, X2, . . . , Xn be independent Poisson trials with
Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi. Then if X is the sum of Xi and if µ is E[X], for
any λ, 0 < λ ≤ µ:

Pr[X ≤ µ− λ] < e−λ2/2n, Pr[X ≥ µ + λ] < e−λ2/2n.

The following proposition can be proved using the Chernoff and union bounds:

Proposition 3. For a given security parameter n, every (δ + ∆)-correct encryption scheme, every
algorithm of which runs in time T , passes the test almost for sure, failing with probability less than

2e−
∆2

·k
2 . At the same time, if the encryption scheme, every algorithm of which is restricted to run

no more than time T , is less than (δ −∆)-correct, then it passes the test with probability at most

e−
∆2

·k
2 .

Consequently, we can distinguish in probabilistic polynomial time with high confidence those
encryption schemes that are, say, (1− 1

12n)-correct from those that are not (1− 1
4n)-correct. Thus,

if we have n encryption schemes Si, 1 ≤ i ≤ n, and combine into a new encryption scheme (Section
6.1) only those of them that pass the test, we get at least 2/3-correct encryption scheme (by union
bound). It remains to show that every scheme Si ∈ PKCS, which is 2/3-correct, is reducible to
some (1− 1

12n)-correct encryption scheme, that is to amplify the correctness of encryption schemes
(cf. [6]).

5 Correctness Amplification

Assume our encryption scheme (G,E,D) is secure and (1/2+δ(n))-correct. Our aim is to improve its
reliability while moderately worsening its security. The recent work by Dwork, Naor and Reingold
[6] provides a way to achieve this. However, we present an amplification scheme here because we
need to prove that there is a reduction (in our sense) from a weakly correct encryption scheme to
an encryption scheme with amplified correctness.

Definition 7. Let Sk(n) = (G,E,D)k(n) be the encryption scheme obtained from encryption scheme
S = (G,E,D) as follows. The key generation algorithm Gk(n) on input 1n runs k(n) copies of G(1n)
with independent sources of randomness to obtain pairs of keys (pk1, sk1), . . . , (pkk(n), skk(n)). The

encryption algorithm Ek(n), provided a public key pk1, . . . , pkk(n) and a message m, runs k(n) copies
of E(m, pki) (one copy per one value of i) with independent sources of randomness to obtain code-
words M1, . . . ,Mk(n). Finally, the decryption algorithm Dk(n), provided a private key sk1, . . . , skk(n)

and an encoded message M1, . . . ,Mk(n), runs k(n) copies of D(Mi, ski) with independent sources
of randomness to obtain codewords m′

1, . . . ,m
′
k(n) and outputs their majority value (we assume that

k(n) is odd).

The next two lemmas are close to [6, Lemma 3]. In the first lemma, which is responsible for the
security aspect of the construction, we prove that, for any polynomial k(n), (G,E,D) is reducible
to (G,E,D)k(n). Then, in the second lemma, responsible for the correctness, we show that the
probability of error of (G,E,D)k(n) is exponentially smaller than the probability of error of the
original cryptosystem.
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Lemma 1. Every encryption scheme S = (G,E,D) is reducible via some reduction R to the
encryption scheme Sk(n) = (G,E,D)k(n). Furthermore, if some black-box A (1/2 + ε(n))-breaks
(G,E,D)k(n), then RA (1/2 + ε(n)/k(n))-breaks (G,E,D).

Proof. Assume an adversary A breaks Sk(n) with probability greater than 1/2 + ε(n) for infinitely
many security parameters n. Let us construct an adversary R that breaks S with probability greater
than 1/2 + ε(n)/k(n) for the same set of security parameters n using adversary A as a black-box.

Our reduction R (with oracle A) on input composed by a public key pk, by a security parameter
1n and by a codeword M = Epk(m) works as follows:

1. Choose i from {1, 2, . . . , k} uniformly at random. 7

2. Generate keys (pk1, sk1), . . . , (pkk, skk) ← Gk(1n) (actually, we need only the public keys for
our reduction).

3. Invoke encryption (M1, . . . ,Mi−1)← Ei−1
(pk1,...pki−1)

(0).

4. Invoke encryption (Mi+1, . . . Mk)← Ek−i
(pki+1,...pkk)(1).

5. Output A(M1, . . . Mi−1,M,Mi+1, . . . Mk).

Note that all invocations of key generator G and encryption E use independent sources of
randomness. Then success probability of RA is:

Pr[RA(Epk(m)) = m] =
1

2
Pr[RA(Epk(1)) = 1] +

1

2
Pr[RA(Epk(0)) = 0] =

=
1

2

(

1

k
Pr[A(Ek(1)) = 1] +

k
∑

i=2

1

k
Pr[A(E(i−1)(0), Ek−(i−1)(1)) = 1]

)

+

+
1

2

(

k−1
∑

i=1

1

k
Pr[A(Ei(0), Ek−i(1)) = 0] +

1

k
Pr[A(Ek(0)) = 0]

)

=

=
1

2k

(

Pr[A(Ek(1)) = 1] + Pr[A(Ek(0)) = 0]
)

+
k − 1

k
·
1

2
>

>
1

2k
· 2

(

1

2
+ ε

)

+
k − 1

k
·
1

2
=

(

1

2k
+

ε

k

)

+

(

1

2
−

1

2k

)

=
1

2
+ ε/k,

where probability is taken over uniform choice of one-bit message m, randomness of key generations
pk ← G(1n) and pki ← G(1n), randomness of encryptions Epk(m), Epki

(0) and Epki
(1) and over

randomness of adversaries A and R.

Lemma 2. If (G,E,D) is (1
2 + δ(n))-correct, then (G,E,D)k(n) is (1− e−δ2(n)k(n)/2)-correct.

Proof. Recall that Dk(n) decodes the encrypted message M1, . . . Mk(n), where Mi = Epki
(m), by

taking majority of outcomes Dski
(Mi). The key pairs (pki, ski) ← G(1n) are generated indepen-

dently, therefore, applying the Chernoff bound, we estimate the probability of error of the encryption
scheme (G,E,D)k(n) on a message m as

Pr[
∑

Xi ≤ k/2] = Pr[
∑

Xi ≤ (1/2 + δ)k − δk] < e−
δ2k2

2k = e−
δ2k
2 ,

where Xi indicates whether Dski
(Epki

(m)) = m.
Now we have a method of provably secure correctness amplification that we will employ in the

completeness proof of a public-key encryption scheme that we present in the next section.

7 For brevity, we omit parameter n and write k instead of k(n) and ε instead of ε(n).
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6 A Complete Public Key Encryption Scheme

Before giving a proof of Theorem 1, we prove a lemma that allows us to simplify the proof of our
encryption scheme’s completeness:

Lemma 3. Every scheme S ∈ PKCS is reducible to some scheme S′ ∈ PKCS, every algorithm
of which runs in time n2.

Every encryption scheme S′ ∈ PKCS, every algorithm of which runs in time n2, is reducible
to some (1 − e−n)-correct encryption scheme S′′ ∈ PKCS, every algorithm of which runs in time
n4.

Proof. The first part of our lemma is proved by the standard padding argument. Note that, since
the correctness 2/3 is a constant, it does not decrease when we apply this argument.

In order to prove the second part, it is sufficient to take S′′ = (S′)72n+1 by Lemma 1 and
Lemma 2.

6.1 The Construction and Proof of Correctness

Our complete public-key encryption scheme S = (G, E ,D) is given below. For the correctness test,
we choose δ = 1

2 · ((1 −
1
4n) + (1 − 1

12n )) = 1 − 1
6n , therefore ∆ = 1

12n . Also we choose k = n4 (see
Proposition 3). Time limit T is set to n4 (see Lemma 3; it coincides with k only by chance).

Key generator G (1n)
let I = ∅
for all i ∈ {1, . . . n}

if Correctness Test accepts
input ((Gi, Ei,Di), 1

n, T = n4, δ = 1− 1
6n , k = n4) then

(*) Run Gi(1
n) for T = n4 steps to obtain (pki, ski)

Include i into set I
return PK = (1n, I, {pki}i∈I) and SK = (1n, I, {ski}i∈I)

Encryption E (µ,PK)
for all i ∈ I do

Select mi ∈R {0, 1}
(**) Run Ei,pki

(mi) for T = n4 steps to obtain Mi

return M = ({Mi}i∈I , µ⊕
⊕

i∈I mi)

Decryption D (M,SK)
for all i ∈ I do

Run Di,ski
(Mi) for T = n4 steps to obtain m′

i

return (µ⊕
⊕

i∈I mi)⊕
⊕

i∈I m′
i

Obviously, it is an encryption scheme (every algorithm of which runs in polynomial time).
Further, it is 2/3-correct, because any encryption scheme that is not (1 − 1

4n)-correct passes the

correctness test with probability at most e−
∆2

·k
2 = e−

n2

288 by Proposition 3. Further, for all suffi-
ciently large security parameters n, the set I is guaranted to be nonempty, because the identity
encryption (the one that leaves message as it is) always passes the test.
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6.2 Proof of Completeness

In order to prove the completeness of S, assume that we have an encryption scheme Sj′ ∈ PKCS.
By transitivity of reductions and Lemma 3, it is reducible to some (1 − e−n)-correct public-key
encryption scheme Sj = (Gj , Ej ,Dj), every algorithm of which runs in time n4. It remains to
construct a reduction from Sj to S.

We define a reduction R on input composed by a security parameter 1n, by a public key pk and
by a codeword M = Ej,pk(m), where m ∈R {0, 1}. Note that for any security parameters n ≥ j,
the encryption scheme Sj is among the first n encryption schemes that are combined in S.

1. Simulate key generator G on input 1n to obtain a public key PK. The only one exception is
that, instead of generating pkj in step (*), R selects pkj to be equal to pk (if occasionally Sj

fails the correctness test and thus j 6∈ I, then give up). All the other {pki}i6=j , are generated by
G.

2. Simulate encryption E on input composed by a new uniformly selected message µ ∈R {0, 1}
and by the public key PK in order to obtain a codeword M with the following modification:
instead of computing Mj = Ej,pk(mj) in step (**), R selects Mj to be equal to M . Nonetheless,
mj is generated (think of it as of R’s guess of m) as well as all the other {mi}i6=j . Then return
ciphertext M = ({Mi}i∈I\{j} ∪M}, µ⊕

⊕

i∈I mi).
3. Provide oracle A with security parameter 1n, public key PK and ask it to break the codeword
M. Output APK(1n,M)⊕ µ⊕mj .

By Definition 3, the probability that RA succeeds is exactly

Pr
[

RA
pk(1

n, Ej,pk(m)) = m
]

for pk ← Gj(1
n)

where probability is taken over a uniformly selected one-bit message m, over randomness of key
generation Gj(1

n), encryption Ej,pk(m), reduction Rpk and over randomness of the invocation of
probabilistic black-box A.

Conditioned on the event that j ∈ I, this probability, by the definition of reduction R and by
the definition of cryptosystem S = (G, E ,D), is equal to

Pr [APK(1n, EPK(µ⊕mj ⊕m)) = m⊕ µ⊕mj]

for PK ← G(1n),

where probability is taken over uniformly selected one-bit messages m, µ and mj, over randomness
of key generation G(1n), encryption EPK and probabilistic black-box A. Notice that key generation
pk ← Gj(1

n) and encryption Ej,pk(m) become parts of key generation PK ← G(1n) and encryption
EPK correspondingly.

Let µ̃ = µ⊕mj ⊕m. Then the probability above is equal to

Pr [APK(1n, EPK(µ̃)) = µ̃] for PK ← G(1n),

where probability is taken over a uniformly selected one-bit message µ̃, over randomness of key gen-
eration G(1n), encryption EPK and probabilistic black-box A. This is exactly the success probability
of adversary A.

To finish the proof, it remains to notice that the encryption scheme Sj = (Gj , Ej ,Dj) passes
the correctness test with probability greater than 1− e−n, thus j 6∈ I with a negligible probability.
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