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Maŕıa López-Valdés∗

Abstract

We define a new discrete version of scaled dimension and we find
connections between the scaled dimension of a string and its Kol-
mogorov complexity and predictability. We give a new characterization
of constructive scaled dimension by Kolmogorov complexity, and prove
a new result about scaled dimension and prediction.

1 Introduction

Effective fractal dimension, defined by Lutz (2003) [10], allow us to study
the fractal structure of many sets of interest in computational complexity.
Furthermore, many connections have been found since then between effec-
tive fractal dimension and other topics in computational complexity like
Kolmogorov complexity [12], [11] and prediction [2], [3].

In 2004, scaled dimension was introduced by Hitchcock et al [5] as a nat-
ural hierarchy of “rescale” effective fractal dimensions. The main objective
was to overcome limitations of effective fractal dimension for investigating
complexity classes. For example classes such as the Boolean circuit-size
complexity classes SIZE(2αn) and SIZE(2nα

) have trivial dimensions, and
the definition of scaled dimension make it possible to quantify the difference
between those classes. Connections between Kolmogorov Complexity and
scaled dimension were found in [6].

The definition of effective fractal dimension is based in a characterization
of classical Hausdorff dimension in the Cantor space C in terms of gales (s-
gales). Intuitively, we regard a s-gale d as an strategy for betting on the
successive bits of a sequence S ∈ C and the parameter s gives us an idea
about the fairness on the gambling game. Scaled dimension is defined using
scaled gales (sg-gales), intuitively, d is an strategy for betting on a sequence
but the fairness on the gambling game depends on the s and on the scale g.
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In [11], Lutz uses supertermgales, which are supergale-like functions that
bet on the terminations of (finite, binary) strings as well on their successive
bits, to define a discrete version of constructive dimension (an special case of
effective fractal dimension). Lutz then characterizes the dimension of a finite
string in terms of its Kolmogorov complexity. We generalize those results by
defining a new discrete version of constructive scaled dimension (section 3).
The main result of this section states that the scaled dimension of an infinite
sequence is characterized by the scaled dimension of its prefixes (Theorem
3.6). Now, when we obtain characterizations of the scaled dimension of
individual strings in terms of Kolmogorov complexity or prediction (section
4), we can obtain results in constructive scaled dimension, just applying the
results to the prefixes of a sequence.

With this method, we obtain a new characterization of the ith -order
scaled constructive dimension in terms of Kolmogorov Complexity extending
the results in [6].

Furthermore, we define the concept of termpredictor by adding the abil-
ity to predict the end of an unknown finite string to the standard on-line
prediction algorithms. That is, a termpredictor guesses the next character
as well as the termination point of a finite string.

We show that the scaled constructive dimension of sets of sequences
can be bounded in terms of the log-loss of constructive termpredictors.
This extends partially the characterization that Hitchcock obtains in [3]
for resource-bounded dimension to the cases of scaled and constructive di-
mension.

2 Preliminaries

A string is a finite, binary string w ∈ {0, 1}∗. We write |w| for the length
of a string and λ for the empty string. The Cantor space C is the set of
all infinite binary sequences. If w ∈ {0, 1}∗ and x ∈ {0, 1}∗ ∪ C, w v x
means that w is a prefix of x. For 0 ≤ i ≤ j, we write x[i . . . j] for the string
consisting of the i-th through the j-th bits of x.
The set of all terminated binary strings and prefixes thereof is the set

T = {0, 1}∗ ∪ {0, 1}∗2

where we use the symbol 2 to mark the end of a string.
Definition. Let f : D → R be a function where D is some discrete domain
such as N, {0, 1}∗, T , etc.
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1. f is computable if there is a computable function f̂ : D×N → Q such
that for all (w, n) ∈ D × N, |f̂(w, n) − f(w)| ≤ 2−n.

2. f is lower semicomputable if there is a computable function f̂ : D ×
N → Q such that

(a) for all (w, n) ∈ D × N, f̂(w, n) ≤ f̂(w, n + 1) < f(w), and

(b) for all w ∈ D, limn→∞ f̂(w, n) = f(w).

Definition.

1. A subprobability measure on {0, 1}∗ is a function p : {0, 1}∗ → [0, 1]
such that ∑

w∈{0,1}∗

p(w) ≤ 1

2. A subprobability measure on {0, 1}∗ is constructive if it is lower semi-
computable.

3. A subprobability measure p on {0, 1}∗ is optimal constructive if for
every constructive subprobability measure p′ there is a real constant
α > 0 such that, for all w ∈ {0, 1}∗, p(w) > αp′(w).

Theorem 2.1 (Levin [13]) There exists an optimal constructive subproba-
bility measure m on {0, 1}∗.

The following theorem is the well-know characterization by Levin [7], [8] and
Chaitin [1] of Kolmogorov complexity in terms of m. Further details may
be found in [9].

Theorem 2.2 There is a constant c ∈ N such that for all w ∈ {0, 1}∗,

∣∣∣∣K(w) − log
1

m(w)

∣∣∣∣ ≤ c

Definition. A scale is a continuous function g : H × [0,∞) → R with the
following properties.

1. H = (a,∞) for some a ∈ R ∪ {−∞}.

2. g(m, 1) = m for all m ∈ H.

3. g(m, 0) = g(m′, 0) ≥ 0 for all m, m′ ∈ H.
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4. For every sufficiently large m ∈ H, the function s 7→ g(m, s) is non-
negative and strictly increasing.

5. For all s′ > s ≥ 0, limm→∞[g(m, s′) − g(m, s)] = ∞.

Definition. A smooth scale is a computable scale function g : H×[0,∞) →
R such that verifies

1. g is differentiable in the second coordinate and ∂g
∂s (m, ·) are strictly

increasing for all m ∈ H.

2. ∂g
∂s (m, 0) → ∞ as m → ∞

3. 4g(m, s′) −4g(m, s) > 0 for all m ∈ H, s′ > s.

For each scale g : H × [0,∞) → R, we define ∆g : H × [0,∞) → R by

∆g(m, s) = g(m + 1, s) − g(m, s)

The following important family of smooth scales is used in the definition
of the ith-order dimension.
Definition. We define gi : Hi × [0,∞) → R by the recursion on i ∈ N as
follows:

g0(m, s) = ms.

gi+1(m, s) = 2gi(log m,s)

The domain of gi is of the form Hi = (ai,∞), where a0 = −∞ and
ai+1 = 2ai .
Definition. Let g : H × [0,∞) be a scale function. Denote by fm :
[g(m, 0),∞] → [0,∞) the inverse of g(m, .), that is the function defined as
fm(x) = y if g(m, y) = x. This function is well define since g(m, .) is strictly
increasing. For the family {gi} we denote by fm

i the inverse of gi(m, .) and

fm
i (x) =

log(log( i. . . log(x)..))

log(log( i. . . (log(m + 1))..))

3 Scaled Dimension of Individual Strings

In this section we first introduce scaled termgales and scaled supertermgales,
which are a generalization of termgales introduced by Lutz in [11]. Next,
we show the existence of optimal constructive scaled supertermgales that
allows us to give a universal definition of the scaled dimension of a string.
Definition. For s ∈ [0,∞) and g : H × [0,∞) → [0,∞) a scale function,
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1. An sg-supertermgale is a function dg : T → [0,∞) such that

(a) dg(w) ≤ 1 for |w| /∈ H.

(b) For all w ∈ {0, 1}∗ with |w| ∈ H,

dg(w) ≥ 2−4g(|w|,s)[dg(w0) + dg(w1) + dg(w2)] (1)

2. An sg-termgale is an sg-supertermgale that satisfies (1) with equality
for all w ∈ {0, 1}∗ with |w| ∈ H.

An sg-termgale is a strategy for betting on the successive bits of a binary
string and also on the point at which the string terminates. The fairness of
the gambling game depends on the s and on the scale function g.

Observation 3.1 Let g : H × [0,∞) → R be a scale, dg, d
′
g : T → [0,∞)

and s, s′ ∈ [0,∞). If

2−g(|w|,s)dg(w) = 2−g(|w|,s′)d′g(w)

for all w ∈ T with |w| ∈ H, then dg is an sg-supertermgale (sg-termgale) if
and only if d′g is an s′g − supertermgale (s′g-termgale).

Thanks to this observation, a 0g-supertermgale (termgale) determines a
whole family of sg-supertermgales (termgales).
Definition. For g : H × [0,∞) → [0,∞) a constructive scale function,

1. A g-supertermgale is a family dg = {ds
g | s ∈ [0,∞)} such that each ds

g

is an sg-supertermgale and

2−g(|w|,s)ds
g(w) = 2−g(|w|,s′)ds′

g (w)

for all s, s′ ∈ [0,∞), w ∈ T , |w| ∈ H.

2. A g-termgale is a g-supertermgale where each ds
g is an sg-termgale for

all s ∈ [0,∞).

3. A g-supertermgale dg is constructive if d0
g is constructive.

4. A constructive g-supertermgale d̃g is optimal if for every constructive
g-supertermgale dg there is a constant α > 0 such that for all s ∈ [0,∞)
and w ∈ {0, 1}∗ with |w| ∈ H,

d̃g
s
(w2) > α ds

g(w2)
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5. The g-supertermgale induced by a subprobability measure p on {0, 1}∗

is the family dg[p ] = {ds
g[p ] | s ∈ [0,∞)}, where each ds

g[p ] is defined
by

ds
g[p ](w) = 2g(|w|,s)

∑

x∈{0,1}∗

wvx2

p(x)

for all w ∈ T with |w| ∈ H.

Theorem 3.2 If p̃ is an optimal constructive subprobability measure on
{0, 1}∗ and g : H × [0,∞) → [0,∞) is a constructive scale function then
dg[p̃ ] is an optimal constructive g-supertermgale.

Corollary 3.3 For every g : H × [0,∞] → [0,∞) constructive scale func-
tion, there exists an optimal constructive g-supertermgale.

Definition. Let g : H × [0,∞] → [0,∞) be a scale function and w ∈ {0, 1}∗

with |w| ∈ H. If dg is a constructive g-supertermgale, then the g-dimension
of w relative to dg is

dimdg
(w) = inf{s ∈ [0,∞) | ds

g(w2) > 1}

The next two results prepare the definition of g-dimension of a string.

Proposition 3.4 Let g : H × [0,∞) → [0,∞) be a smooth scale function.
If d̃g is an optimal constructive g-supertermgale and dg is a constructive
g-supertermgale, there exists C > 0 such that

dimd̃g
(w) ≤ dimdg

(w) +
C

∂g
∂s (|w| + 1, dimdg

(w))

for all |w| ∈ {0, 1}∗ (|w| enough large).

Corollary 3.5 Let g : H × [0,∞) → [0,∞) be a smooth scale function.
If d̃g1 and d̃g2 are optimal constructive g-supertermgales, then there is a
constant C > 0 such that for all w ∈ {0, 1}∗ (|w| enough large).

|dimd̃g1

(w) − dimd̃g2

(w)| ≤
C

∂g
∂s (|w| + 1, s0)

where s0 = min{dimd̃g1

(w), dimd̃g2

(w)}.
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As g is a smooth scale function, ∂g
∂s (m, 0) → +∞ as m → ∞, and Corollary

3.5 says that if we base our definition of g-dimension on an optimal con-
structive g-supertermgale d̃g, then the particular choice of d̃g has negligible
impact on the dimension dimd̃g

(w).
We fix an optimal constructive g-supertermgale dg2

and define the g-
dimensions of finite strings as follows.
Definition. Let g : H × [0,∞) → [0,∞) be a smooth scale function. The
g-dimension of a string w ∈ {0, 1}∗ with |w| ∈ H is

dimg(w) = dimdg2
(w)

3.1 Scaled dimension of strings and sequences

Resource-bounded scaled dimension of sequences in the Cantor space was
defined in [5] as a generalization of resource-bounded dimension. In that
definition scaled gales were used.
Definition. Let g : H × [0,∞) → R be a scale function, and let s ∈ [0,∞).

1. An sg-supergale is a function d : {0, 1}∗ → [0,∞) such that for all
w ∈ {0, 1}∗ with |w| ∈ H,

d(w) ≥ 2−∆g(|w|,s)[d(w0) + d(w1)]

2. We say that an sg-supergale d succeeds on a sequence S ∈ C if

lim sup
n

d(S[0 . . . n − 1]) = ∞

3. The success set of an sg-supergale d is S∞[d] = {S ∈ C | d succeeds on S}.

Definition. Let g be a scale function and X ⊆ C

1. Ĝ(X) is the set of all s ∈ [0,∞) such that there is an sg-supergale d
for which X ⊆ S∞[d].

2. Ĝconstr(X) is the set of all s ∈ [0,∞) such that there is a lower semi-
computable sg-supergale d for which X ⊆ S∞[d].

3. The constructive g-scaled dimension of X is cdimg(X) = inf Ĝconstr(X).

4. The constructive g-scaled dimension of a sequence S ∈ C is dimg(S) =
cdimg({S}).
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The main result of this section states that the constructive scaled dimen-
sion of a sequence is characterized by the scaled dimension of its prefixes in
the following way,

Theorem 3.6 Let g : H × [0,∞) → [0,∞) be a smooth scale function and
S ∈ C,

dimg(S) = lim inf
n

dimg(S[0 . . . n − 1])

In [4] Hitchcock shows that constructive gales and constructive supergales
are interchangeable in order to define constructive Hausdorff dimension. In
this spirit, the next lemma relates constructive scaled dimension of finite
strings dimg(w), that uses optimal constructive supertermgales, and con-
structive scaled dimension with just constructive termgales involved.

Lemma 3.7 Let g be a smooth scale function and w ∈ {0, 1}∗, then

dimg(w) ≥ inf{dimd(w) | d constructive g-termgale}

Such inequality has a remarkable aplication for infinite strings, namely
the following characterization of constructive scaled dimension just using
constructive termgales.

Corollary 3.8 Let S ∈ C and g smooth scale function,

dimg(S) = lim inf
n

Dg(S0 . . . n − 1])

where Dg(w) = inf{dimd(w) | d constructive g-termgale}

4 Kolmogorov Complexity and Log-loss prediction

4.1 Scaled dimension and Kolmogorov Complexity

In [6] the authors give an exact characterization of computable and space-
bounded scaled dimension of a sequence in terms of (time and space-bounded)
Kolmogorov complexity .

Theorem 4.1 [6]. Let S ∈ C

1. For all i ∈ N

dim(i)
comp(S) = inf

t∈comp
lim inf

n
fn

i (Kt(n)(S[0 . . . n − 1]))
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2. For all i, j ∈ N with i < j

dim(i)
pjspace(S) = inf

t∈pjspace
lim inf

n
fn

i (KSt(n)(S[0 . . . n − 1]))

In this section we obtain the relationship between the scaled dimension
of a finite string and its Kolmogorov complexity, and this result allow us to
give a new characterization for constructive scaled dimension of an infinite
sequence, extending theorem 4.1.

Theorem 4.2 Let g : H×[0,∞) → [0,∞) be a smooth scale function. Then
there exists a constant c > 0 such that for all w ∈ {0, 1}∗ (|w| enough large),

∣∣∣f |w|+1(K(w)) − dimg(w)
∣∣∣ ≤

c
∂g
∂s (|w| + 1, 0)

Corollary 4.3 Let S ∈ C and g smooth scale function,

dimg(S[0..n − 1]) = lim
n

fn+1(K(S[0..n − 1]))

Example 4.4 For the family gi, i ∈ N,

dim(i)(S) = lim inf
n

fn
i (K(S[0 . . . n − 1]))

In the particular case of i = 0 we have the result of constructive dimen-
sion obtained by Mayordomo in [12].

dim(S) = lim inf
n

K(S[0..n − 1])

n + 1

4.2 Scaled dimension and Prediction.

Consider predicting the symbols of an unknown finite string. Then, given a
prefix of this string, the next character could be 0, 1 or may be, the string
doesn’t have any characters. A termpredictor Π gives us an estimation of
the probability of each of these cases.
Definition. A function Π : {0, 1}∗ × {0, 1, 2} → [0, 1] is a termpredictor if

Π(w, 0) + Π(w, 1) + Π(w, 2) = 1

We interpret Π(w, a) as the Π’s estimation of the likelihood that there
is a bit a following the string (if a = 0 or 1) or there is not bit following the
string (if a = 2).

The next lemma establishes a correspondence between termpredictors
and g-termgales.
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Lemma 4.5 Let g be a smooth scale function.

1. Let Π be a termpredictor, define ∀s ∈ [0,∞), ds
Π,g : T → [0,∞) by

ds
Π,g(w) = 1 if |w| /∈ H

ds
Π,g(w) = 2g(|w|,s)

|w|−1∏

i=0

Π(w[0 . . . i − 1], w[i]) if |w| ∈ H

Then, dΠ,g is a g-termgale.

2. Let dg be a g-termgale, then for s ∈ [0,∞) define Πdg
: {0, 1}∗ ×

{0, 1, 2} → [0, 1] by

Πdg
(w, a) = 2−∆g(|w|,s) dg(wa)

dg(w)
if dg(w) 6= 0

Πdg
(w, a) =

1

3
if dg(w) = 0

Πdg
is a termpredictor and this definition doesn’t depends on s.

3. dΠdg ,g = dg and ΠdΠ,g
= Π.

In order to define the performance of a termpredictor, we will consider
(as in [3]) the sum of its “loss” on each individual symbol (including 2).
Definition. For w ∈ T and Π termpredictor we define the log-loss

Llog
Π (w) =

|w|−1∑

i=0

log
1

Π(w[0 . . . i − 1], w[i])

Theorem 4.6 Let g be a smooth scale function, let dg be a constructive
g-termgale and w ∈ {0, 1}∗ with |w| ∈ H then

dimdg
(w) = f |w|+1(Llog

Πdg
(w2))

In particular if d is a simple termgale and w ∈ {0, 1}∗ then

dimd(w) =
Llog

Πd
(w2)

|w| + 1

Unfortunately, there are no existence of optimal constructive termgales
(or optimal constructive termpredictors) and we can not prove an equality
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of this kind for the definition of scaled dimension of a string. But we have
the following result for infinite sequences as a consequence of Proposition
3.4 and Theorem 4.6.

Theorem 4.7 Let g be a smooth scale function and S ∈ C,

dimg(S) ≤ inf{Llog
Π,g(S) | Π is a constructive termpredictor }

where
Llog

Π,g(S) = lim inf
n

fn+1(Llog
Π (S[0 . . . n − 1]2))

The next result extend partially the characterization that Hitchcock ob-
tains in [3] for resource-bounded dimension to the cases of scaled and con-
structive dimension.

Theorem 4.8 Let S ∈ C and let g be a smooth scale function,

dimg(S) ≤ Llog
g (S)

where,

Llog
g (S) = inf{Llog

Π,g(S) | Π is a constructive predictor }

and
Llog

Π,g(S) = lim inf
n

fn+1(Llog
Π (S[0 . . . n − 1]))

and for the particular case of constructive dimension

dim(S) ≤ inf{Llog
Π (S) | Π is a constructive predictor }

where

Llog
Π (S) = lim inf

n

Llog
Π (S[0 . . . n − 1])

n

The other inequality seems closely related to the open question of whether
constructive prediction and constructive gales are equivalent.
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Appendix

Proof of Theorem 3.2. We will use the following lemma.

Lemma 4.9 Let g : H × [0,∞) → [0,∞) be a scale function and dg a
0g-supertermgale, then for all u ∈ {0, 1}∗

∑

w∈{0,1}∗

dg(uw2) ≤ dg(u)

Proof. We use induction on m to show that
∑

w∈{0,1}<m

dg(uw2) +
∑

w∈{0,1}m

dg(uw) ≤ dg(u)

for all m ∈ [0,∞). For m = 0, this is trivial. Assume that it holds for m.
Then

∑

w∈{0,1}<m+1

dg(uw2) +
∑

w∈{0,1}m+1

dg(uw)

=
∑

w∈{0,1}<m

dg(uw2) +
∑

w∈{0,1}m

dg(uw2) +
∑

w∈{0,1}m

[dg(uw0) + dg(uw1)]

≤
∑

w∈{0,1}<m

dg(uw2) +
∑

w∈{0,1}m

dg(uw) ≤ dg(u)

2

It easy to see that dg[p̃ ] is a constructive g-supertermgale. We just have
to prove that dg[p̃ ] is optimal. Let dg = {ds

g | s ∈ [0,∞)} be an arbitrary
constructive g-supertermgale.
Define p : {0, 1}∗ → [0,∞) by p(w) = d0

g(w2) for all w ∈ {0, 1}∗. By
the lemma (with u = λ), p is a subprobability measure on {0, 1}∗ and p
is constructive because dg is constructive. For all w ∈ {0, 1}∗ there exists
α > 0 such that p̃(w) > α p(w) because p̃ is optimal .
Then, for all s ∈ [0,∞) and w ∈ {0, 1}∗ with |w| ∈ H,

ds
g[p̃ ](w2) = 2g(|w|+1,s)p̃(w)

> 2g(|w|+1,s)α p(w)

= 2g(|w|+1,s)α d0
g(w2)

= α Cds
g(w2)

and d[p̃ ] is optimal.

Proof of Proposition 3.4. We will use the following lemma.
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Lemma 4.10 Let g : H × [0,∞] → [0,∞) be a scale function. Suppose that
for m > m0 the functions g(m, ·) are strictly increasing.
Let d̃g be an optimal constructive g-supertermgale and dg an arbitrary con-
structive g-supertermgale with d̃s

g(w2) > α ds
g(w2) for all s ∈ [0,∞) and

w ∈ {0, 1}∗ with |w| ∈ H.
Define h : {0, 1}>m0 → [0,∞) by h(w) = s′, where s′ is such that

g(|w| + 1, dimdg
(w) + s′) − g(|w| + 1, dimdg

(w)) = log 1
α .

Then

dimd̃g
(w) ≤ dimdg

(w) + h(w) ∀ |w| > m0

Proof. Observe h is well defined because g(m, ·) are continuous and strictly
increasing for all m > m0.
Denote s = dimdg

(w) + h(w). In order to see that dimd̃g
(w) ≤ dimdg

(w) +

h(w) ∀ |w| > m0 it suffices to show that d̃g
s
(w2) > 1

d̃g
s
(w2) > α ds

g(w2) =

α 2g(|w|+1,s)−g(|w|+1,dimdg (w)) = 1

2

By this lemma, dimd̃g
(w) ≤ dimdg

(w) + h(w) ∀ |w| > m0, where h(w) is
defined by

g(|w| + 1, dimdg
(w) + h(w)) − g(|w| + 1, dimdg

(w)) = log 1
α .

By the mean value theorem, there exists s′ ∈ (dimdg
(w), dimdg

(w) + h(w))
such that

g(|w| + 1, dimdg
(w) + h(w)) − g(|w| + 1, dimdg

(w)) =
∂g

∂s
(|w| + 1, s′)h(w)

so

h(w) =
log 1

α
∂g
∂s (|w| + 1, s′)

≤
log 1

α
∂g
∂s (|w| + 1, dimdg

(w))

Proof of Theorem 3.6.

To see that dimg(S) ≤ lim infndimg(S[0, . . . , n − 1]), let s and s′ be
rational numbers such that s′ > s > lim infndimg(S[0, . . . n − 1]). It suffices
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to show that dimg(S) ≤ s′. By our choice of s, there is an infinite set J ⊆ N

such that for all n ∈ J, dimg(S[0, . . . n−1]) < s, whence d̃g
s

2
(S[0, . . . n−1]) >

1. Define d′g : {0, 1}∗ → [0,∞) by d′g(w) = d̃g
s′

2
(w) + 1

2 d̃g
s′

2
(u2), u =

w[0, . . . |w| − 1]. Then d′g is a constructive g-supergale and for all n ∈ J ,

d′g(S[0, . . . , n]) =
1

2
d̃g

s′

2
(S[0, . . . n − 1]2) + d̃g

s′

2
(S[0, . . . , n])

≥
1

2
d̃g

s′

2
(S[0, . . . n − 1]2)

=
1

2
2g(n,s)−g(n,s′)d̃g

s

2
(S[0, . . . n − 1]2)

>
1

2
2g(n,s)−g(n,s′)

Since J is infinite, this implies that S ∈ S∞[d′g ], whence dimg(S) ≤ s′.
To see that dim(S) ≥ lim infndimg(S[0, . . . n − 1]), let s′ and s rational

numbers such that s′ > s > dimg(S). It suffices to show that there exist
infinitely many n ∈ N for which dimg(S[0, . . . , n − 1]) ≤ s′.
Since s > dimg(S), there is a constructive sg-supergale dg such that S ∈
S∞[dg ]. Define

d′g : T → [0,∞)

w 7→ dg(w)

w2 7→ [24g(|w|,s′) − 24g(|w|,s)]dg(w)

Then d′g is a constructive s′g-supertermgale, so if for each s ∈ [0,∞) we
define
d̃g

t
: T → [0,∞) by d̃g

t
= 2g(|w|,t)+g(|w|,s′)d′g(w), then the family

d̃g = {d̃g
s
|s ∈ [0,∞)} is a constructive g-termgale. It follows by the opti-

mality of d̃g2
that there is a constant α > 0 such that for all t ∈ [0,∞) and

w ∈ {0, 1}∗, |w| ∈ H, d̃g
t

2
(w2) > α d̃g

t
(w2). Since S ∈ S∞[dg ], there are in-

finitely many n ∈ N such that α [24g(n,s′)−24g(n,s)]dg((S[0, . . . , n−1]) > 1.
For all such n with n ∈ H we have

d̃g
s′

2
(S[0, . . . , n − 1]2) > α d̃g

s′
(S[0, . . . , n − 1]2)

= α [24g(n,s′) − 24g(n,s)]dg(S[0, . . . , n − 1]) > 1

whence dimg(S[0, . . . , n − 1]) ≤ s′.

Proof of lemma 3.7.We will use the following lemma.

16



Lemma 4.11 Let g be a smooth scale function, let s ∈ [0,∞) and let ds
g

be a constructive sg-supertermgale, then, for all ε < 0 computable, there

exists a contructive (s + ε)g-termgale d̃
(s+ε)
g such that d̃

(s+ε)
g (w2) > 1 when

ds
g(w2) > 1.

Proof. Let ds
g be an sg-supertermgale and define for each n ∈ N dn : T →

[0,∞)

dn(w) =

{
2−|w|+

� |w|−1

n=0
∆g(n,s+ε)]{v|w v v, ds

g(v2) > 1} if |w| − 1 < n

0, otherwise

and

dn(w2) =

{
2∆g(n,s+ε)dn(w) if |w| = n
0, otherwise

then dn is a constructive (s + ε)-termgale for each n. let t such that
s < t < s + ε and let d =

∑∞
n=1 2g(n,t)−g(n,s)dn

For w ∈ T , d(w) =
∑|w|

n=1 2g(n,t)−g(n,s)dn(w) so, d is a constructive
(s + ε)g-termgale and if ds

g(w) > 1 then

d(w2) = 2∆g(|w|,s+ε)d|w|(w)2g(|w|,t)−g(|w|,s)

= 2|w|−
�∞

n=1
∆g(n,s+ε)2g(|w|,t)−g(|w|,s) ≥ 1

2

Suppose that dimg(w) = s0 it’s suffices to show that for all ε > 0 there
exists a constructive g-termgale (depending on ε) such that dimd(w) ≤ s0+ε.

By definition, dimd(w) = inf{s|ds(w2) > 1} and dimd(w) ≤ s0 +ε if and
only if ds0+ε(w2) > 1.

Since dimg(w) = s0 then d
(s0+ε/2)
2 (w2) > 1 and by the last lemma, there

exist a constructive [(s0 + ε/2) + ε/2]g-termgale such that ds0+ε > 1. Let d
the constructive g-termgale constructed using this (s0 + ε)g-termgale.

Proof of Theorem 4.2.

Let m be the optimal subprobability measure on {0, 1}∗ such that for
all w ∈ {0, 1}∗, ∣∣∣∣K(w) − log

1

m(w)

∣∣∣∣ ≤ c

17



For all w ∈ {0, 1}∗, |w| ∈ H and s ∈ [0,∞),

dg[m ](w2) > 1 ⇔ 2g(|w|+1,s)m(w) > 1

⇔ g(|w| + 1, s) > log
1

m(w)

If |w| is sufficiently large, g(m, 0) > log 1
m(w) and exists sw ∈ [0,∞) such

that
g(|w| + 1, sw) = log 1

m(w) . Then dimdg [m](w) = sw. So,

|K(w) − g(|w| + 1, sw)| =

∣∣∣∣K(w) − log
1

m(w)

∣∣∣∣ < c.

On the other hand,

|K(w) − g(|w| + 1, sw)| = |g(|w| + 1, f |w|+1(K(w)) − g(|w| + 1, sw)|

=
∂g

∂s
(|w| + 1, s′w)|f |w|+1(K(w)) − sw|

min{f |w|+1(K(w)), sw} ≤ s′w ≤ max{f |w|+1(K(w)), sw}.

Then

|f |w|+1(K(w)) − dimdg [m](w)| <
c

∂g
∂s (|w| + 1, s′w)

<
c

∂g
∂s (|w| + 1, 0)

.

By corollary 3.5,

|dimdg [m](w) − dimg(w)| ≤
c′

∂g
∂s (|w| + 1, 0)

|f |w|+1(K(w)) − dimg(w)| ≤ |f |w|+1(K(w)) − dimdg [m](w)|

+ |dimdg [m](w) − dimg(w)|

<
c + c′

∂g
∂s (|w| + 1, 0)

Proof of Theorem 4.6.
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For each s ∈ [0,∞) we have that,

log ds
g(w2) = g(|w| + 1, s) +

|w|−1∑

i=0

log Πd(w[0 . . . i − 1], w[i]) + log Πd(w, 2)

= g(|w| + 1, s) − Llog
Πd

(w2)

Then,

dimdg
(w) = inf{s|dΠ(w2) > 1}

= inf{s | g(|w| + 1, s) − Llog
Πd

(w2) > 0}

= f |w|+1(Llog
Πd

(w2))

Proof of Theorem 4.7.

By proposition 3.4 and theorem 3.6, for all Π constructive termpredictor,
if dΠ,g is the constructive termgale defined as in lemma 4.5 then

dimg(S) = lim infndimg(S[0 . . . n − 1]) ≤

lim infndimdΠ,g
(S[0 . . . n − 1])

and by theorem 4.6 we have the result.

Proof of Theorem 4.8.

We will use the following lemma.

Lemma 4.12 Let g be a smooth scale function,

1. For all m ∈ N, the function fm is increasing.

2. fm is differentiable for all m ∈ N and ∂fm

∂x (·) are strictly decreasing
for all m ∈ H.

3. limm
∂fm

∂x (g(m, 0)) = 0

19



Proof. The result is a direct consequence of the properties of smooth scale
functions. 2

It’s suffices to show that for a fixed S ∈ C, for all constructive predictor
Π with Llog

Π,g(S) < ∞, there exists a constructive termpredictor Π̃ such that

Llog
Π,g(S) = Llog

�

Π,g
(S)

That is,

lim inf
n

[
fn+1(Llog

�

Π
(S[0 . . . n − 1])2) − fn+1(Llog

Π (S[0 . . . n − 1]))
]

= 0

By the last lemma and the Mean Value Theorem,

lim inf
n

[
fn+1(Llog

�

Π
(S[0 . . . n − 1]2)) − fn+1(Llog

Π (S[0 . . . n − 1]))
]

=

lim inf
n

∂fn+1

∂x
(ξ)[Llog

�

Π
(S[0 . . . n − 1]2)) − Llog

Π (S[0 . . . n − 1]))] ≤

lim inf
n

∂fn+1

∂x
(g(n + 1, 0))(Llog

�

Π
(S[0 . . . n − 1]2)) − Llog

Π (S[0 . . . n − 1]))]

where ξ ∈ [Llog
Π (S[0 . . . n − 1]),Llog

�

Π
(S[0 . . . n − 1]2)].

Then, if for all constructive predictor Π with Llog
Π,g(S) < ∞, there exists

a constructive termpredictor Π̃ such that, for n enough large,

lim inf
(
Llog

�

Π
(S[0 . . . n − 1]2) − Llog

Π (S[0 . . . n − 1])
)
≤ C

then we have the result because lim infn
∂fn+1

∂x (g(n + 1, 0)) = 0.
Let for all w ∈ {0, 1}∗, b ∈ {0, 1}

Π̃(w, b) =
Π(w, b)

2

Π̃(w, b) = 1/2

It’s clear that Π̃ is a constructive termpredictor and

lim inf
n

(
Llog

�

Π
(S[0 . . . n − 1]2) − Llog

Π (S[0 . . . n − 1])
)

=

n−1∑

k=0

(
1

Π̃(S[0 . . . k − 1], S[k])
−

1

Π(S[0 . . . k − 1], S[k])

)
+

1

Π̃(S[0 . . . n − 1], 2)
=

lim inf
n

n−1∑

k=0

1

Π(S[0 . . . k − 1], S[k])
− 2 = lim inf

n
Llog

Π (S[0 . . . n − 1]) − 2 < C

since Llog
Π,g(S) < ∞ implies that lim infn L

log
Π (S[0 . . . n − 1] < ∞.
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