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Abstract

We establish a 1-1 correspondence between Valiant’s character theory of matchgate/matchcircuit [14]
and his signature theory of planar-matchgate/matchgrid [16], thus unifying the two theories in express-
ibility. In [5], we had established a complete characterization of general matchgates, in terms of a set of
useful Grassmann-Plücker identities. With this correspondence, we give a corresponding set of identities
which completely characterizes planar-matchgates and their signatures. Applying this characterization
we prove some negative results for holographic algorithms. On the positive side, we also give a poly-
nomial time algorithm for a simultaneous node-edge deletion problem, using holographic algorithms.
Finally we give characterizations of symmetric signatures realizable in the Hadamard basis.



1 Introduction

Recently Valiant has introduced a novel methodology in algorithm design. In a ground breaking pa-
per [14], Valiant initiated a new theory of matchgate/matchcircuit computations. Subsequently, in [16],
he further proposed the theory of holographic algorithms, based on planar matchgates and matchgrids.
Underlying both theories are the beautiful ideas of (a) using perfect matchings to encode and organize
computations, and (b) applying the algebraic construct called the Pfaffian.

A basic component in both theories is a matchgate. A matchgate is essentially a finite graph with
certain nodes designated as inputs or outputs. In the matchcircuit theory, each matchgate defines a
character matrix, with entries defined in terms of the Pfaffian. In the theory of holographic algorithms,
only planar matchgates are considered, and each planar matchgate defines a signature matrix, which
directly captures the properties of the matchgate under the consideration of (perfect) matchings when
certain input and/or output nodes are retained or removed.

These matchgates are combined to form matchcircuits or matchgrids. For a matchcircuit, some of
its global properties can be interpreted as realizing certain computations which would seem to take
exponential time in the size of the circuit. However, due to the way the matchcircuits are constructed
and the algebraic properties of Pfaffians defining the character matrices of the constituent matchgates,
these properties can in fact be computed in polynomial time. For holographic algorithms, a new crucial
ingredient was added—a choice of a set of linear basis vectors, in terms of which the computation
can be expressed and interpreted. They are called holographic, because the algorithm introduces an
exponential number of solution fragments in a pattern of interference, analogous to quantum computing.
However, because of the planarity condition, the computation by matchgrids can be expressed via
the elegant Fisher-Kasteleyn-Temperley (FKT) method [9, 10, 12] for planar perfect matchings, and
therefore computable in P. Valiant [14] used matchcircuits to show that a non-trivial fragment of
quantum circuits can be simulated classically in polynomial time. With holographic algorithms, he was
able to devise polynomial time algorithms for several problems, which were not known to be in P, and
certain minor variations of which are NP-hard (or even #P-hard). It is not clear what are the ultimate
computational capabilities of either theories.

In a paper currently in submission [5], the present authors investigated a number of interesting
properties of matchgate computations. In particular, we gave a necessary and sufficient condition, in
terms of a set of useful Grassmann-Plücker identities, which completely captures the realizability of
matchgates with given characters. The study of matchgate identities was already initiated by Valiant
in [15]. It was shown in [5] that the matchgates form an algebraic variety, and a certain group action
underlies the symmetry present in the character matrices.

In this paper, we first unite the two theories: matchcircuit computation on the one hand and
matchgrid computation on the other. We show that, the planarity restriction not withstanding, any
matchcircuit computation can be simulated by a matchgrid, and vice versa. In fact we will give an
interpretation between the characters and signatures in a one-to-one fashion. Thus, all important
theorems in [14] (e.g., its Matchcircuit Theorem and its Main Theorem) can be stated in terms of
planar matchgrids. Conversely, to design holographic algorithms, one can ignore the planar restriction
on the matchgates. For the proof of this equivalence theorem, in one direction we use a cross-over
gadget designed by Valiant [16]; in the other direction we use the FKT method [9, 10, 12].

As part of this proof, we also define a notion of a naked character. Based on our previous work
reported in [5], we can derive a corresponding set of matchgate identities, which are necessary and
sufficient for naked characters. Then we prove that a matrix is a naked character matrix iff it is a
signature matrix. This gives us a complete characterization on the realizability of planar matchgates in
terms of their signatures.

Such a characterization provides for the first time the possibility of proving negative results for holo-
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graphic algorithms. We note that, by definition, even with a fixed number of input and output nodes, a
matchgate may consist of an arbitrarily large number of internal nodes. Thus one can prove the existence
of a matchgate fulfilling certain computational requirements by construction. But one cannot prove in
this way the non-existence of such a matchgate. Our characterization makes this possible. Indeed, we
define holographic templates to capture a restricted but natural subclass of holographic algorithms, and
prove certain non-existence theorems. In particular, we prove that certain natural generalizations of
some of the problems solved by P-time algorithms in [16] do not have P-time algorithms by holographic
templates by linearly independent basis. In many of the problems in [16], a particular basis b2 (which
can be called the Hadamard basis) was particularly useful. We characterize the representable matchgate
signatures that are based on cardinality alone over this basis. This uses the properties of Krawtchouk
polynomials. We also give a positive result by deriving a polynomial time algorithm for a problem using
holographic templates. It is a simultaneous node-edge deletion problem for a graph to become bipartite,
for planar graphs with maximal degree 3. This generalizes both the edge deletion problem, and the
node deletion problem which was considered in [16] for such graphs. We note that the edge deletion
problem is the same as the MAX-CUT problem. 1

The most intriguing question is whether this new theory leads to any collapse of complexity classes.
The kinds of algorithms that are obtained by this theory are quite unlike anything before and almost
exotic. If our belief in NP 6= P is based on the sense and experience that the usual algorithmic paradigms
are insufficient for NP-hard problems (certainly it is not due to strong lower bounds), then we feel our
erstwhile experience does not apply to these new algorithms. Of course it is quite possible that the
theory of matchcircuit and holographic algorithms do not in the end lead to any collapse of complexity
classes. But even in this eventuality, as Valiant suggested in [16], “any proof of P 6= NP may need to
explain, and not only to imply, the unsolvability” of NP-hard problems using this approach. Regardless
of its final outcome, this paper is an attempt towards such a fundamental understanding.

The rest of the paper is organized as follows: In Section 2, we give a brief account of the background.
Due to space limitations, most details are left out. The readers are referred to [14, 15, 16, 4, 5]. In
Section 3, we give the equivalence theorem of the two theories. We also discuss matchgate identities for
naked characters and signatures. In Section 4, we give a positive result on the simultaneous node-edge
deletion problem. In Section 5 we define holographic templates, and give some impossibility results. In
Section 6, we characterize symmetric signatures for basis b2.

2 Background

2.1 Graph and Pfaffian

Let G = (V,E,W ) be a weighted undirected graph, where V is the set of vertices represented by
integers, E is the set of edges and W are the weights of the edges. In general, V = {k1, . . . , kn}
where k1 < . . . < kn. We represent the graph by the skew-symmetric adjacency matrix M , where
M(i, j) = w(ki, kj) if i < j, M(i, j) = −w(ki, kj) if i > j, and M(i, i) = 0. We speak of G and M
interchangeably.

The Pfaffian of an n × n skew-symmetric matrix M is defined to be 0 if n is odd, 1 if n is 0, and if
n = 2k where k > 0 then it is defined as

Pf(M) =
∑

π

επw(i1, i2)w(i3, i4) . . . w(i2k−1, i2k),

where

1MAX-CUT for planar graphs is known to be in P [6].
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• π =

(

1 2 . . . n
i1 i2 . . . in

)

, is a permutation,

• summation is over all permutations π where i1 < i2, i3 < i4, . . . , i2k−1 < i2k and i1 < i3 < . . . <
i2k−1, and

• επ ∈ {−1, 1} is the sign of the permutation π. Another equivalent definition of επ is that it is the
sign or parity of the number of overlapping pairs where a pair of edges (i2r−1, i2r), (i2s−1, i2s) is
overlapping iff i2r−1 < i2s−1 < i2r < i2s or i2s−1 < i2r−1 < i2s < i2r.

The Pfaffian is computable in polynomial time. In particular (Pf(M))2 = det(M).
There is a graph-theoretic interpretation of the Pfaffian. If M is the matrix of a graph G, then there is

a one-to-one correspondence between monomials in the Pfaffian and perfect matchings in G. The mono-
mial w(i1, i2) . . . w(i2k−1, i2k) in Pf(M) corresponds to the perfect matching {(i1, i2), . . . , (i2k−1, i2k)} in
G. The condition on the permutation implies that every perfect matching corresponds to exactly one
monomial. The coefficient επ of this monomial is the parity of the number of overlapping pairs of edges,
in the sense defined earlier.

If M is an n × n matrix and A = {i1, . . . , ir} ⊆ {1, . . . , n}, then M [A] denotes the matrix obtained
after deleting from M , the rows and columns indexed by elements of A. We also denote by M(A) =
M [A], where A is the complement of A. The Pfaffian Sum of M is a polynomial over indeterminates
λ1, λ2, . . . , λn defined as

PfS(M) =
∑

A

(

∏

i∈A

λi

)

Pf(M [A])

where the summation is over the 2n submatrices obtained from M by deleting some subset A of indices.
The Pfaffian Sum of M is also computable in polynomial time for any values of λi. We will only need
instances where each λi is fixed to be 0 or 1. If S = {i | λi = 1}, then S is called the omittable vertices
of the graph, as PfS(M) in this case sums over all matchings which can only omit vertices in S.

2.2 Grassmann-Plücker Identities

Let M be a skew-symmetric matrix, and A = {i1, . . . , ir} where i1 < . . . < ir. PfM (i1, . . . , ir), or simply
Pf(i1, . . . , ir) or Pf(A), is defined as the Pfaffian of the matrix obtained by restricting M to rows and
columns present in A, namely i1, . . . , ir. When i1, . . . , ir are not in increasing order, the sign will vary,
e.g., PfM (i2, i1, . . . , ir) = −PfM (i1, i2, . . . , ir) and so on.

The following theorem states the Grassmann-Plücker identities [2, 3].

Theorem 2.1. For any n × n skew-symmetric matrix M , and any I = {i1, . . . , iK} ⊆ [n] and J =
{j1, . . . , jL} ⊆ [n],

L
∑

l=1

(−1)lPf(jl, i1, . . . , iK)Pf(j1, . . . , ĵl, . . . , jL) +

K
∑

k=1

(−1)kPf(i1, . . . , îk, . . . , iK)Pf(ik, j1, . . . , jL) = 0

2.3 Matchgates and Matchcircuits

A matchgate Γ is a quadruple (G,X, Y, T ) where G = (V,E,W ) is a graph, X ⊆ V is a set of input
nodes, Y ⊆ V is a set of output nodes, and T ⊆ V is a set of omittable nodes such that X,Y and T
are pairwise disjoint, and are ordered such that ∀i ∈ T , if j ∈ X then j < i and if j ∈ Y then j > i.
We call the set X ∪ Y the external nodes. Furthermore, each external node is assumed to have exactly
one incident external edge. For nodes in X, the other end point of the external edge is assumed to have
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index less than any node in V and for nodes in Y , the other end point has index more than any node
in V . The allowed matchings will be those that match all the unomittable nodes and also an arbitrary
(possibly empty) subset of T . Whenever we refer to the Pfaffian Sum of a matchgate fragment, we
assume that λi = 1, if i ∈ T , and 0 otherwise. We say that a matchgate Γ has normal numbering if the
numbers of nodes in V are consecutive from 1 to |V | and X,Y have minimal and maximal numbers,
respectively.

For Z ⊆ X∪Y , the character χ(Γ, Z) of Γ with respect to Z is defined to be the value µ(Γ, Z)PfS(G−
Z), where G−Z denotes the graph obtained after deleting the vertices in Z together with their incident
edges from G and the modifier µ(Γ, Z) ∈ {−1, 1} counts the parity of the number of overlaps between
matched edges in G−Z and matched external edges. Here, the nodes in Z are assumed to be matched
externally. Since the index numbers of input nodes are always less than any omittable node and those
of output nodes always greater, it can be shown that the modifier is well-defined as it depends only on
Z and not on the actual matchings in G − Z.

The character matrix χ(Γ) is defined to be the 2|X|× 2|Y | matrix where rows are indexed by subsets
X ′ ⊆ X and columns by subsets Y ′ ⊆ Y and the entries are χ(Γ, Z) for various Z = X ′ ∪ Y ′. To define
the ordering of the rows and columns of this matrix precisely, we need to define a 1-1 correspondence
between subsets of X (and respectively subsets of Y ) and the rows (and respectively columns) of the
matrix. Here, we assume that the character matrices are normally ordered i.e. rows and columns are
indexed by binary bit strings of length |X| and |Y | respectively, and they correspond to subsets in
lexicographic order. Consider an entry (i, j) of χ(Γ), where 0 ≤ i < 2|X| and 0 ≤ j < 2|Y |. The subset
X ′ ⊆ X corresponding to i is obtained as follows. If v ∈ X is the mth smallest input vertex, then v ∈ X ′

iff the mth bit from the right in the binary expansion of i is 1. Similarly, the mth largest output vertex
is in Y ′ iff the mth bit from the right in j is 1. And Z = X ′ ∪ Y ′.

A matchcircuit is a way of combining matchgates using what are called connecting edges. Informally,
all inputs/outputs of constituent matchgates have an external edge. The external edges are connected
to each other with an odd number of connecting edges. The matchgates are arranged in a layered
fashion from left to right where the connecting edges separate these layers. Figure 3 shows a typical
matchcircuit. We refer the reader to [14] for a more formal definition. The character of a matchcircuit
is defined in the same way as the character of a matchgate except that there is no modifier µ as we do
not consider the matchcircuit itself to have any external edges. Another difference is that 1 and 0 have
opposite meanings with respect to deletion of external nodes in matchgates and matchcircuits.

2.4 Matchgate Identities

Character matrices of matchgates satisfy a rich set of algebraic constraints called matchgate identities.
Valiant already derived a number of these identities in [15]. In our paper [5] we derived a complete set
of algebraic identities using the so-called useful Grassmann-Plücker identities. Due to space limitation
we will only describe these for 4 × 4 character matrices B.

Denote by D(ij, kl) =

∣

∣

∣

∣

Bik Bil

Bjk Bjl

∣

∣

∣

∣

, the 2 × 2 minor of B consisting of rows i and j, and columns

k and l. Let S denote the set of
(

4
2

)

unordered pairs of {1, 2, 3, 4}, S = {{1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4}}. Define an involution σ on S which exchanges the pair {1, 4} and {2, 3}, and leaves
everything else fixed. Then it is proved in [5] that B is a character matrix iff the following set of
identities hold:

D(p, q) = D(σ(p), σ(q)),

for any (p, q) ∈ S × S. E.g., B11B44 − B14B41 = B22B33 − B23B32 and B12B43 − B13B42 = B21B34 −
B24B31, etc.
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Theorem 2.2. [5] Let B be a 4 × 4 matrix over a field F . It satisfies the above set of matchgate
identities (there are ten non-trivial identities) iff there exists a matchgate Γ such that χ(Γ) = B.

Theorem 2.3. [5] There is an effectively constructible set of matchgate identities which completely
characterizes any k input l output matchgate.

The matchgate identities have far reaching implications. On the positive side, the proof in [5]
indicates that whenever B is a 2k × 2l character matrix there is a matchgate Γ of size O(k + l) realizing
it, thus it can be found in a bounded search. On the negative side, the complete characterization
provides us with the tools to prove non-existence for general parameters k and l.

2.5 Planar matchgates and matchgrids

When the weighted graph G = (V,E,W ) is planar, we have a planar matchgate Γ = (G,X, Y ). We
assume a planar embedding of G is given, where counter-clock wise one encounters vertices of the input
nodes X, labeled 1, . . . , |X| and then the output nodes Y , labeled |Y |, . . . , 1.

In contrast to characters, a planar matchgate is assigned a signature matrix. Let PerfMatch(G) =
∑

M

∏

(i,j)∈M wij , where the sum is over all perfect matchings M . The standard signature, u = u(Γ), is

defined to be a 2|X| × 2|Y | matrix whose entries are indexed by subsets X ′ ⊆ X and Y ′ ⊆ Y , and the
entry indexed by (X ′, Y ′) is PerfMatch(G −Z), where Z = X ′ ∪ Y ′. Here G −Z denotes the subgraph
of G obtained by removing the subset of nodes in Z (and all their incident edges). We also permit
omittable nodes on the outer face of a matchgate, and use MatchSum(G) to define signature entries.
Here MatchSum(G) =

∑

M ′

∏

i6∈M ′ λi
∏

(i,j)∈M ′ wij, where the sum is over all (not necessarily perfect)

matchings M ′, and λi = 1 for omittable i, and 0 otherwise. When all omittable nodes are on the outer
face, MatchSum(G) can be evaluated in P, using the FKT method [10].

Matchgates with only output nodes are called generators. Matchgates with only input nodes are
called recognizers. More generally, with both input and output nodes a matchgate is called a transducer.
We note that the standard signature of a generator is a row vector and the standard signature of a
recognizer is a column vector.

Let b denote the standard basis for two dimensional space, b = [e0, e1] = [(1, 0), (0, 1)]. Consider

another basis β = [n, p] = [(n0, n1), (p0, p1)]. Let T =

[

n0 n1

p0 p1

]

.

Let Γ be a generator with m output nodes. Then by definition its standard signature u = u(Γ) is a
2m-vector. The signature of this generator with respect to the basis β is a row vector of dimension 2m,
denoted as valG(Γ), or uβ , such that

u = uβT⊗m,

where T⊗m denotes the m-fold tensor product of T .
Similarly let Γ′ be a recognizer with m input nodes. The signature of this recognizer with respect to

the basis β is a column vector of dimension 2m, denoted as valR(Γ′), or uβ, such that (cf. [4])

uβ = T⊗mu,

If a signature has the same value at entries indexed by subsets of equal cardinality, then we abbreviate
the 2m-vector by a symmetric signature [σ0, σ1, . . . , σm].

Next, a matchgrid Ω = (A,B,C) is defined to be a weighted planar graph consisting of a disjoint
union of: a set of g generators A = (A1, . . . , Ag), a set of r recognizers B = (B1, . . . , Br), and a set of
f connecting edges C = (C1, . . . , Cf ), where each Ci edge has weight 1 and joins an output node of a
generator with a input node of a recognizer, so that every input and output node in every constituent
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matchgate has exactly one such incident connecting edge. (If omittable nodes are present they must be
on the outer face.)

Now we come to the central definition of the theory of holographic algorithms —the Holant.

Holant(Ω) =
∑

x∈β
⊗f

{

[Π1≤i≤gvalG(Ai, x|Ai)] · [Π1≤j≤rvalR(Bj , x|Bj )]
}

.

The following Holant Theorem says that the Holant can be efficiently computed.

Theorem 2.4 (Valiant). For any matchgrid Ω over any basis β, let G be its underlying weighted graph,
then

Holant(Ω) = PerfMatch(G).

3 An Equivalence Between Matchcircuits and Planar Matchgrids

3.1 Naked characters

In [5], we showed that the set of useful Grassmann-Plücker identities gives a complete characterization
of matchgate characters, i.e., every character matrix satisfies these equations and any matrix satisfying
these is the character of some matchgate. A useful Grassmann-Plücker identity is derived from a
Grassmann-Plücker identity on (I, J), where I and J ⊆ V are subsets of nodes of the matchgate
containing all internal nodes. We refer to [5] for details. For convenience of proof, we also define a
naked character as a character without the modifiers. Thus, the entries of the naked character of a
k-input, l-output matchgate is simply PfS(G−Z) where Z varies over subsets of X ∪Y (see 2.3). Since
the modifier µ(Z) does not depend on the internal nodes, the useful Grassmann-Plücker identities can
be considered as identities over the entries of the naked character matrix. These identities completely
characterize the naked character matrices of matchgates.

3.2 Equivalence of matchgates and planar matchgates

In this subsection, we prove a surprising equivalence between matchgates (which are generally not
planar) and planar matchgates. Specifically, we can show that the set of naked character matrices
of k-input, l-output matchgates is the same as the set of signature matrices of k-input, l-output pla-
nar matchgates. This theorem has remarkable implications. In particular, it implies that the set of
matchgate identities (for naked characters) also characterize all signature matrices. With this we ob-
tain a complete algebraic characterization of planar matchgates. This will enable us to prove some
impossibility results.

Lemma 3.1. Given a matchgate Γ with naked character matrix B, there exists a planar matchgate Γ′

with signature B.

Proof. Recall that the vertices of Γ are numbered 1 through n with the first k being inputs and the last
l being outputs. Now arrange the vertices (with their edges) on a strictly convex curve, e.g., a upper
semicircle, such that as we move clockwise from vertex 1, we encounter all the vertices in increasing
order (see Figure 1). By doing this, we have achieved the following: Any two edges (i, j) and (k, l)
overlap (i.e. i < k < j < l or k < i < l < j) iff they physically cross each other as two straight line
segments. If any such pair of overlapping edges is present in a matching, it introduces a negative sign to
the Pfaffian. Now we can convert this graph into a planar graph by using the gadget given in Figure 2.
We will replace any physical crossing by a local copy of the gadget. We then use the properties of this
gadget proved in Proposition 6.3 of [16]. We omit the details, but it can be shown that the MatchSum
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polynomial of the new graph is the same as the Pfaffian Sum of the original graph. It follows that
the signature of this planar graph is the same as the character of Γ except that the signature doesn’t
consider any external edges and hence, it doesn’t have any modifiers. This means that the signature is
actually equal to the naked character B. Note that, in this construction, if omittable nodes are present,
they are now all on the outer face (in fact all the original nodes of Γ are now on the outer face).

Lemma 3.2. Given a planar matchgate Γ with signature u, there is a matchgate Γ′ with naked character
equal to u.

Proof. The underlying graph of Γ′ is the same as that of Γ but we’ll change the weights suitably. For
that, we have to consider the orientation given to edges by the FKT algorithm to count the number
of perfect matchings as described in [10]. For any edge (i, j) where i < j, if the direction assigned
to it is i to j, then we keep the weight as is, otherwise we multiply the weight by a −1. The matrix
whose Pfaffian we evaluate to count the number of perfect matchings in Γ is exactly the same as the
(skew-symmetric) adjacency matrix of the new graph. That means that its character, after dropping
the modifiers µ, is the same as the signature of Γ.

If omittable nodes are present, we need to evaluate MatchSum. Since the omittable nodes are all
on the outer face, one single consistent orientation can be chosen for all edges, as the result of FKT
algorithm, simultaneously for all terms of MatchSum. This reduces to a Pfaffian Sum.

Lemmas 3.1 and 3.2 prove the following theorem.

Theorem 3.1. The set of signature matrices of planar matchgates is the same as the set of naked
character matrices of matchgates.

3.3 Equivalence of matchcircuits and planar matchgrids

We can now prove that matchcircuits and planar matchgrids are computationally equivalent. To make
this meaningful, matchgrids must be generalized to have inputs and outputs. Previously every in-
put/output node of a matchgate is required to be incident to exactly one connecting edge (to another
matchgate). Now for some input/output nodes of some matchgates, we allow them to be free, i.e. not
incident to any connecting edge, if that input/output is on the outer face of the matchgrid. These are
the input/output nodes of the matchgrid. We also require that if we move in clockwise direction from
some vertex on the outer face of a planar matchgrid, we first encounter all the free input nodes, perhaps
interspersed with some internal nodes, then the free output nodes. Now we can define the signature
matrix of a matchgrid where each entry is the PerfMatch polynomial (or MatchSum, if omittable nodes
are present) of the graph obtained by deleting a subset of the free inputs and outputs (see 2.5).

Every theorem in [14] on matchcircuits has a formulation in the theory of planar matchgrids with
signatures. For instance, the Matchcircuit Theorem can be stated as

Theorem 3.2. For any matchcircuit Γ, there is a polynomial time computable transformation to a
planar matchgrid Ω with graph G, where each matchgate Γi in Γ is replaced by a planar matchgate Γ′

i

whose signature is equal to the naked character of Γi. In addition, there are a polynomial number of
cross-over planar matchgates.

MatchSum(G) =
∑

S

εS

∏

i

MatchSum(Γ′
i − Si),

where S runs through all choices of assigning every input/output node of all Γ′
i to be matched by an edge

internal or external to the matchgate, Si is the set of externally matched nodes of Γ′
i by S, and εS = ±1

depending only on S and not on the internal matchings of each matchgate.
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Proof. Recall that the Matchcircuit theorem in [14] states that

PfS(Γ) =
∑

S

εS

∏

i

PfS(Γi − Si).

The construction of Ω from Γ is similar to the one in the proof of Lemma 3.1. We arrange the vertices
(with their edges) on a strictly convex curve, e.g., an upper semicircle, such that as we move clockwise
from vertex 1, we encounter all the vertices in increasing order (see Figure 4). Again, we replace any
physical crossing by a local copy of the gadget in Figure 2. Following the same argument as before, it
can be shown that the MatchSum polynomial of the new graph is the same as the Pfaffian Sum of the
original graph: MatchSum(G) = PfS(Γ).

Now we analyze what happens to any matchgate Γi which was part of the matchcircuit Γ. Note
that, by definition, the vertices of Γ are numbered in such a way that the numbers of the vertices of Γi

are contiguous. Therefore, these vertices are (physically) contiguous in G, in the sense that as we move
in clockwise direction from the first vertex of Γi to its last vertex, we encounter only the vertices of Γi.
These vertices and any new ones introduced with the gadgets used to replace crossings between edges
among them (vertices of Γi) now form a planar graph, say Hi. The planar matchgate Γ′

i formed by Hi is
the same as what we would have obtained by applying the construction in Lemma 3.1 to Γi. In particular,
the naked character of Γi is the same as the signature of Γ′

i. Hence, ∀S,MatchSum(Γ′
i−Si) = PfS(Γi−Si).

The theorem now follows from the Matchcircuit theorem of [14].

If the matchgates Γi are of the restriction stipulated in the Main Theorem in [14], then all εS = 1 and
we obtain a classical simulation of the same fragment of quantum computation by planar matchgrids.

Theorem 3.3. The same fragment of quantum computation that was simulated by matchcircuits in [14]
can be simulated by matchgrids.

Conversely,

Theorem 3.4. Given a planar matchgrid Ω, there is a matchcircuit Γ such that the signature of Ω is
equal to the character of Γ.

Proof. Here is the process to convert from a matchgrid to a matchcircuit. First, number the vertices of
this graph in some arbitrary way. For every free input/output, we add a set of two new vertices with
an edge between them. We connect one of these new vertices to the free input/output and the other
new vertex is the new input/output as shown in Figure 5. All the newly added vertices are such that
they lie on the outer face. All the newly added edges have weight 1. Let’s call this new graph G′. We
number the newly added vertices in such a way that they are ordered from left to right as shown in
Figure 5. In particular, the new inputs and their adjacent nodes have numbers lower than any node of
Ω whereas the new outputs and their adjacent nodes have higher numbers. The signature of G′ is the
same as the signature of Ω. Now we use FKT to change the weights of the edges of G′ suitably, as in
Lemma 3.2 to obtain a graph G′′ such that the signature of G′ is the same as the naked character of
G′′. G′′ has the structure of a matchcircuit composed of only one matchgate. The naked character of
a matchcircuit is the same as its character since a matchcircuit has no external edges and its character
has no modifiers. Therefore, G′′ is our matchcircuit Γ with the same character as the signature of the
planar matchgrid Ω.

4 Simultaneous Node-Edge Deletion

In this section we give a holographic algorithm for a simultaneous node-edge deletion problem. This
is the first poly-time algorithm for this problem. The problem is a generalization of the PL-NODE-
BIPARTITION problem for which the first polynomial time algorithm was given by Valiant [16]. It
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also generalizes the planar edge deletion problem, which is the same as MAX-CUT. Planar MAX-CUT
is known to be in P [6]. We note that the closely related problem of Planar-Max-Bisection (where a
bisection is a cut with two equal parts) was a long standing open problem till Jerrum proved it NP-hard
(see [7]). There has also been important progress on its approximability [7]. We also note that the
status of Planar-Min-Bisection remains open.

PL-NODE-EDGE-BIPARTITION

Input: A planar graph G = (V,E) of maximum degree 3. A non-negative integer k ≤ |V |. Output:

The minimal l such that deletion of at most k nodes (including all of their incident edges) and l more
edges results in a bipartite graph.

Theorem 4.1. There is a polynomial time algorithm for PL-NODE-EDGE-BIPARTITION.

Proof. We will use the method of holographic algorithms [16]. Let the given input graph be G. First,
note that we can simply delete any node of degree 1. We will replace each remaining nodes by recognizers
with symmetric signature [1, x, x, 1] or [1, x, 1] depending on their degree. The edges will be replaced
by generators with symmetric signature [y, 1, y]. This forms a matchgrid Ω. It is known that the above
symmetric signatures are realizable in the Hadamard basis b2 = [n, p] = [(1, 1), (1,−1)]. (See [16] and
also Section 6.) Every term in the Holant corresponds to an assignment of n or p to each end of every
connecting edge in Ω. This induces an assignment on the vertices of G. We consider vertices in G that
get nnn or nn (depending on the degree) are colored white and those that get ppp or pp are colored
black. The remaining vertices are not colored. Now, every colored node contributes 1 to the Holant
and every uncolored node contributes x. Any edge that is assigned nn or pp contributes y and any edge
that is assigned np or pn contributes 1. It is clear that we can obtain a bipartite graph by deleting the
uncolored vertices and the edges that are assigned nn or pp. We define

`(k) = min{ l′ | The coefficient of xkyl′ in Holant is non-zero.}
l(k) = min{ l′ | ∃ a subset S ⊆ V of size k and some l′ edges in G − S such that

removal of the l′ edges from G − S gives a bipartite graph.}

Claim 1. l(k) ≤ `(k).

This follows from our discussion earlier.

Claim 2. l(k) is a strictly monotonic decreasing in k, until l(k) = 0.

Proof. Let k′ < k. We show that if l(k′) > 0, then l(k′) > l(k). Let S ⊆ V be a subset of size k′, such
that the deletion of S and some l(k′) edges from G − S results in a bipartite graph. Then, if we are
allowed to delete k > k′ vertices, we can choose to delete S and some of the vertices to which the other
l(k′) edges are incident. Then, clearly, l(k) < l(k′).

Claim 3. `(k) ≤ l(k)

Proof. Let S ⊆ V be a subset of size k such that the deletion of S and some l(k) other edges results
in a bipartite graph. Assign nnn or nn to the vertices on the left and ppp or pp to those on the right.
This means that for a connecting edge incident to a recognizer for a node on the left, we assign n to its
end which is incident to it. Similarly for a connecting edge incident to a recognizer for a node on the
right we assign p there. The generator corresponding to any edge present in the bipartite graph gets
np or pn and the l(k) deleted edges get nn or pp, due to the minimality of l(k). The remaining edges
can be of three types: having one end point on the left side and one in S, having one end point on the
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right and one in S, or having both end points in S. The generators corresponding to all these edges
are given np or pn in such a way that any output adjacent to a recognizer on the left gets n and any
output adjacent to a recognizer on the right gets p. This can be done, since the remaining edges have
at least on end point in S, we have at least one free output.

It is easy to see that the degree of y in this term of the Holant is exactly l(k). Note that all the
vertices not in S are assigned nnn or ppp (or nn or pp) and contribute 1 to the Holant. We further
claim that no vertex in S gets nnn or ppp (or nn or pp). Hence the coefficient of xkyl(k) is positive,
and therefore `(k) ≤ l(k). If some vertex in S were to get nnn or ppp (or nn or pp), we can add those
vertices and their incident edges to the bipartite graph, and we will still have a bipartite graph, since
all the edges incident to any vertex in S are assigned either np or pn. This means that for some k′ < k,
l(k′) ≤ l(k) which is impossible, by Claim 2.

The proof of the theorem is now easy. The required value is l = l(k). As l(k) = `(k), we can find
this by computing the Holant, which is a polynomial in x and y of degree at most |V | + |E|. This is
done by evaluating Holant at several values of x and y, and then by polynomial interpolation. Note
that, since every term in the Holant contributes either a one or a zero to the coefficient of at most one
term in the polynomial, the coefficients are bounded by 22|E|, i.e., O(|E|) bits.

Valiant’s PL-NODE-BIPARTITION [16] asks for the minimal k such that l(k) = 0, while PL-
EDGE-BIPARTITION (Planar MAX-CUT for degree ≤ 3) [6] asks for l(0). This problem generalizes
both.

5 Limitations of Holographic Algorithms

There is not yet any formal definition of what is computable by holographic algorithms. In this section,
we try to define the most basic kinds of holographic algorithms and call these holographic templates.
The aim is to capture essentially what is computable by using only the Holant and nearly no other
meaningful polynomial time computation. Then we look at some generalizations of two of the problems
solved by Valiant using holographic algorithms in [16]. We show that there are no holographic templates
for these generalizations. To make the impossibility results more meaningful, we will also need a formal
definition of the types of problems to which holographic templates can possibly be applied. The formal
definition of such problems and of holographic templates is presented in the Appendix. The definition
captures the notion that local solution fragments of a counting problem are mapped to the non-zero
entries in the signature of planar matchgates in such a way that the Holant of the matchcircuit is equal
to the answer of the counting problem. All of the holographic algorithms presented by Valiant can
essentially be realized in this notion of holographic templates.

By our definition, if there is holographic template for a problem then the answer produced by it, i.e.
the Holant of the holographic template, is the answer of the counting problem. Below we will show the
non-existence of holographic template algorithms for some problems. We will only consider holographic
templates using planar matchgates and matchgrids without omittable nodes. The impossibility results
will be achieved by showing that there are no bases in which there are recognizers and generators having
some required signatures. Suppose we need to find a basis and some generators/recognizers with given
signatures w.r.t. the basis. We first translate the signature into standard signatures. The entries of
the standard signature will be in terms of the basis vectors. We will then use our algebraic equations
that completely characterize the signature matrices of planar matchgates. These include the parity
constraints and the matchgate identities. By parity constraints, we mean the constraint that for any
standard signature, either all terms corresponding to deletion of an odd number of nodes are zero or
all terms corresponding to deletion of even number of nodes are zero. This is a consequence of perfect
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matchings. For a number of problems, we will be able to show that there are no bases for which the
standard signature satisfies all these constraints, thus concluding that these problems cannot be solved
by this method.

Before moving on, we note that if a basis β consists of only two linearly dependent two-dimensional
vectors, then the span of any higher tensor β⊗f will also be one-dimensional and thus ruling out any
interesting signatures from being in its span. So for the problems we consider, we will only look for
linearly independent bases without explicitly proving that any linearly dependent basis of two vectors
doesn’t work.

#X-Matchings

One problem solved by Valiant by a holographic algorithm [16] is called #X-Matchings. This is mo-
tivated by its proximity to counting the number of (not necessarily perfect) matchings in a planar
graph, which was proved to be #P-complete by Jerrum [8]. Vadhan [13] subsequently proved that it
remains #P-complete for planar bipartite graphs of degree 6. For degree two the problem can be easily
solved. For Valiant’s #X-Matchings, a planar bipartite graphs G = (V,E,W ) is given with bipartition
V = V1 ∪ V2, where nodes in V1 have degree 2 and nodes in V2 have arbitrary degrees. The problem is
to compute

∑

M m(M), where M runs through all (not necessarily perfect) matchings, and the mass
m(M) is the product of (1) weights of e ∈ M and (2) the quantity −(w1 + . . .+wk) for each unmatched
node in V2, where wi are the weights of edges incident to that node. One can use this to compute the
total number of matchings mod 5, if all vertices in V2 have degree 4.

Still, the quantity −(w1 + . . .+wk) seems artificial. If one were to be able to replace −(w1 + . . .+wk)
by 1, then one would be able to count all (not necessarily perfect) matchings in such planar bipartite
graphs. However, we prove that this is impossible using holographic templates.

Theorem 5.1. There is no holographic template using any basis of two linearly independent vectors to
solve the counting problem for all (not necessarily perfect) matchings for such graphs, which is the same
as the above problem with −(w1 + . . . + wk) replaced by 1.

The proof uses our characterizations of realizability of matchgates and the equivalence theorems on
characters and signatures. Due to space limitations the details are in the Appendix.

Several other problems solved by Valiant in [16] use a matchgate with a symmetric signature which is
logically a Not-All-Equal gate. This is typified by the following problem:

#PL-3-NAE-ICE

Input: A planar graph G = (V,E) of maximum degree 3.
Output: The number of orientations such that no node has all edges directed towards it or away from
it.

If one were to relax the degree bound k = 3, some of his problems [16] are known to be NP-hard.
We prove that for any k > 3, one can not realize a Not-All-Equal by a symmetric signature.

Theorem 5.2. There is no holographic template using any basis of two linearly independent vectors to
solve the above ICE problem if we replace the degree bound by any k > 3.

Again the proof uses our characterizations including matchgate identities, and is in the Appendix. As
the proof deals with the non-existence of certain matchgates of prescribed signatures, this is applicable
to other problems in addition to #PL-3-NAE-ICE.
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6 Symmetric Signatures in b2

The most versatile basis in the design of holographic algorithms so far has been the Hadamard basis b2,
namely [n, p] = [(1, 1), (1,−1)]. In [16], most often, it is used to realize a symmetric signature that has
a clear Boolean logical meaning, such as the Not-All-Equal function. In this section, we give a complete
characterization of all the symmetric signatures that can be realized by some generators or recognizers
(having no omittable nodes) in this basis.

Let T denote the matrix

(

1 1
1 −1

)

. T is symmetric and non-singular, and therefore T⊗n is a

symmetric non-singular 2n × 2n matrix. It follows that for b2, realizability for a recognizer is the same
as for a generator.

The Hamming weight of a row or column index to T⊗n, which is a 0-1 vector in binary representation,
is the number of 1’s in it. Suppose we have a generator having standard signature u and signature ub2

under b2. We claim that ub2 is a symmetric signature iff u is. Since T−1 = 1
2T , we only need to show

this in one direction.
Row vectors u and ub2 are related by u = ub2T

⊗n (see 2.5). Suppose ub2 is a symmetric signature.
We sum the rows of equal Hamming weight in T⊗n to obtain an (n + 1) × 2n matrix M . It is clear
that M has a full row rank because any linear combination of rows of M is a linear combination of
rows of T⊗n, which is non-singular. It can be seen that any two columns of M having indices of the
same Hamming weight are equal. So M has at most n + 1 distinct columns. Thus u is also symmetric.
And since the rank of M is n + 1, there must be exactly n + 1 distinct columns, and they are linearly
independent. Consider the (n + 1) × (n + 1) matrix A = [aij ] obtained by taking the distinct columns
from M . A is non-singular.

In fact, these aij can be expressed by the Krawtchouk polynomials [11].

Lemma 6.1. aij =
∑i

k=0(−1)k
(j
k

)(n−j
i−k

)

. In particular, aij = (−1)iai,n−j = (−1)jan−i,j.

Theorem 6.1. A symmetric signature [x0, x1, . . . , xn] is realizable under the Hadamard basis b2 iff it
takes the following form: There exist (arbitrary) constants λ, s, t and ε where ε = ±1, such that for all
0 ≤ i ≤ n/2,

xi = λ
(

(s + t)n−i(s − t)i + ε(s − t)n−i(s + t)i
)

.

and xn−i = εxi.

The proof uses the properties of the Krawtchouk polynomials and matchgate identities. It is in the
Appendix.

7 Conclusions and Future Work

In this paper, we have substantially developed the theory of matchcircuit and matchgrid computations,
uniting the two in expressibility. Building on the structural theory, we also derived some results on
holographic algorithms, some positive and some negative. We have also defined the notion of holographic
templates to capture a substantial part of holographic algorithms. It is still premature to speculate on
the ultimate capability of all the holographic algorithms. It seems more tractable to prove this for
holographic templates. Linear bases with more than two basis vectors or linearly dependent bases have
not been investigated. They have proved to be useful in some problems solved by holographic algorithms
in polynomial time. We have achieved a complete understanding of symmetric signatures under the
Hadamard basis. However this is only restricted to the Hadamard basis. It is plausible that we can
characterize this for other bases. A systematic exploration of non-symmetric signatures seems still out
of reach.
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Appendix

Definition of Holographic Templates

Here we try to define formally the most basic kinds of holographic algorithms. We call these holographic
templates. First we define the type of counting problems to which these algorithms can be applied.
These include essentially all the problems discussed by Valiant [16], and therefore we call them Valiant
Counting Problems. Some of his problems, such as planar Boolean formula problems, may not be
directly presented as such; but they can all be easily and isomorphically expressed in this way by an
obvious transformation.

Definition 8.1. A Valiant Counting Problem is a counting problem with the following structure.

• A planar graph G(V,E).

• A set of states S1 for the vertices and another set of states S2 for the edges.

• Every vertex can be in one of the states in S1, i.e., an assignment assigns for every vertex v ∈ V
a state sv ∈ S1.

• Every edge can be in one of the states in S2, i.e., an assignment assigns for every edge e ∈ E a
state se ∈ S2.

• A local acceptance criterion φ to decide whether a given assignment of states to the vertices and
edges is valid. By local, we mean that we can decide whether the state given to a vertex/edge is
acceptable, simply by looking at the states given to the neighboring vertices and incident edges:
For a vertex of degree k, we have a map φ : S1 × Sk

2 → {0, 1}.

• Any vertex or edge in a valid state contributes a factor f(sv) or g(se) to the mass of the assignment.
The mass of a valid assignment is the product of the factors of all the vertices and edges.

• The problem is to count the total mass of all valid assignments of states to the vertices and edges.

Now we present the definition of holographic templates.

Definition 8.2. Holographic Template: Given a Valiant counting problem, as defined above, any
holographic template to solve the problem is required to have the following structure.

• We have a basis β.
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• Every vertex v is replaced by a generator (or a recognizer) depending upon the state set S1 and its
degree. The generator has the same number of outputs as the degree of v.

• Every edge e = (v1, v2) is replaced by a recognizer (or a generator) depending upon the state set
S2. The recognizer has two inputs, one of which is connected to an output of the generator for v1

and the other to an output of the generator for v2.

• Every assignment of basis elements in β to the external nodes of the generators or recognizers
corresponds to a state of the vertex or edge. Consider an assignment x ∈ β⊗k to the external
nodes of a generator Γ with k inputs. Suppose x corresponds to a state s, then valG(Γ, x) = f(s).
The same holds for the recognizers.

• If x is an invalid assignment to the connecting edges, then the term in the Holant corresponding
to x is zero.

It is clear that, by this definition, the Holant of a holographic template is the solution to the
corresponding Valiant counting problem, as every term of the Holant is simply equal to the mass of the
appropriate assignment.

Proof of Theorem 5.1

We consider a variant of the #X-Matchings problem where we drop the factor −(w1 + . . . + wk) for
any unmatched V2 node from the mass of a matching. This becomes the counting problem for all (not
necessarily perfect) matchings for such graphs. We’ll show that this problem cannot be solved by any
holographic template with any basis of two linearly independent vectors. Specifically, replace each node
on the left by a generator (or recognizer) with two external nodes and replace each node on the right of
degree k by a recognizer (or generator) with k external nodes. Furthermore, we have to find a basis β

= [n, p] such that the signature of the generator w.r.t. β is (1, 1, 1, 0) and the signature w.r.t. β of a
recognizer with k external nodes takes value 1 at n⊗ . . .⊗n, takes value wi at x1⊗ . . .⊗xk where it has
exactly one p at the i th place, namely, xi = p, and ∀j 6= i, xj = n, and takes value 0 otherwise. Here
w1, . . . , wk are the weights of the edges incident to the vertex which is to be replaced by that recognizer.

Theorem 8.1. Given k ≥ 3 and weights w1, . . . , wk where wi’s are not all zero. Then, for any linearly
independent basis β = [n, p] such that there are generators and recognizers with the following properties,

• A generator having two external nodes whose signature w.r.t. β is (1, 1, 1, 0).

• A recognizer Γ having k external nodes with valR(Γ, x1 ⊗ . . . ⊗ xk) equal to

a. 1, if x1 = . . . = xk = n;

b. wi, if xi = p and for every j 6= i, xj = n; and

c. 0, otherwise.

we have, w1 + . . . + wk = −1.
Thus, the quantity in (a.) has to be −(w1 + . . . + wk).

Proof. Let β = [n, p] be a linearly independent basis, where n = (n0, n1), p = (p0, p1). Suppose that a
generator Γ′ and a recognizer Γ as stated in the theorem exist. The generator signature w.r.t. β is
(1, 1, 1, 0), i.e., its standard signature can be written as

n ⊗ n + n ⊗ p + p ⊗ n = (n2
0 + 2n0p0, n0n1 + n0p1 + n1p0, n0n1 + n0p1 + n1p0, n

2
1 + 2n1p1).
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As the matchgate Γ′ is either even or odd without omittable nodes, the parity requirements on the
standard signature imply that either

n2
0 + 2n0p0 = 0 (1)

n2
1 + 2n1p1 = 0 (2)

or

n0n1 + n0p1 + n1p0 = 0 (3)

In the first case, from (1), n0 = 0 or n0 = −2p0. From (2), n1 = 0 or n1 = −2p1. Since the basis β

is linearly independent, either n0 = 0 ∧ n1 = −2p1 or n1 = 0 ∧ n0 = −2p0. By Proposition 4.3 in [16],
we need to consider only one of these. So let’s assume n0 = 0 and n1 = −2p1 6= 0. Let Z = {1, . . . , k}
denote the k external nodes of the recognizer Γ, and let u be its standard signature. As stated in Section
2.5, the signature entries in valR(Γ) are inner products of the standard signature u with various basis
elements in the tensor product space β⊗k. In particular, 〈u, n⊗k〉 = 1 and 〈u, p ⊗ n⊗(k−1)〉 = w1, etc.
Therefore,

uZ =
1

nk
1

and

For every i, 1 ≤ i ≤ k : uZ−{i} =
wi + 1/2

p0n
k−1
1

,

applying the last equation just obtained.
By parity requirements on the standard signature, since uZ 6= 0, we get uZ−{i} = 0, i.e. wi = −1

2 ,
for every i.

Now we look at the signature entries with two or three bits of the index zero. By parity requirements,
for any 1 ≤ i < j < l ≤ k, uZ−{i,j,l} = 0.

For every i and j, 1 ≤ i < j ≤ k : nk−2
1 (p2

1uZ + 0 + p2
0uZ−{i,j}) = 0

Here the zero term in the sum comes from uZ−{i} = 0 for every i. This equation gives uZ−{i,j} = − p2
1

p2
0
nk

1

.

It shows that in particular it only depends on the cardinality of Z − {i, j} being k − 2, and not the
particular i and j. Next,

For every i, j and l, 1 ≤ i < j < l ≤ k : nk−3
1 (p3

1uZ + 0 + p2
0p1(3uZ′′) + 0) = 0

where Z ′′ denotes a subset of cardinality k − 2, and the zero terms in the sum come from parity
requirement. These equations imply that p1 = 0, which makes the basis β linearly dependent.

Now we are left with the other choice: (3) holds. First we consider what happens when some of
the values n0, n1, p0, p1 are zero. Suppose n0 = 0. This implies n1p0 = 0 which makes n and p
linearly dependent. Similarly, n1 = 0 implies n0p1 = 0 and again, n and p become linearly dependent.
Therefore, we can assume that n0 and n1 are non-zero. Now suppose p1 = 0. Then, p0 6= 0 and we
get n0n1 + n1p0 = 0 and since n1 6= 0, it means n0 = −p0 6= 0. By Proposition 4.3 in [16], we can
do a simple change of scale, and assume n = (−1, 1) and p = (1, 0). (Note that this is Valiant’s basis

b1 [16].) Let uβ be its signature of Γ w.r.t β. Let M be the matrix

[

−1 1
1 0

]−1

=

[

0 1
1 1

]

. We

have u = M⊗kuβ by Section 2.5. Note that M⊗k expresses the function
∧k

i=1(xi ∨ yi) on 2 k-bit inputs

x and y which index the rows and columns of M⊗k respectively.
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Consider uZ and uZ−{i} for different values of i. Using this interpretation of M⊗k as
∧k

i=1(xi ∨ yi),
we have the following:

uZ = 1 +

k
∑

i=1

wi

For every i, 1 ≤ i ≤ k : uZ−{i} = wi

Since wi’s are not all zero, by the parity requirement, uZ = 0. This forces
∑k

i=1 wi = −1.
We next assume p1 6= 0. By Proposition 4.3 in [16], we may also assume p0 6= 0. Hence, from

here on, we assume that all of n0, n1, p0 and p1 are non-zero. Now we’ll need to change our notations

slightly. Let M be the matrix

[

n0 n1

p0 p1

]−1

. Again by Proposition 4.3 from [16] we may assume the

determinant of M is 1. Then M =

[

p1 −n1

−p0 n0

]

. Denote by a0
0 = p1, a0

1 = −n1, a1
0 = −p0 and

a1
1 = n0, then we can write M as simply

[

a0
0 a0

1

a1
0 a1

1

]

. Eq. (3) translates to

a0
0a

1
1 + a0

1a
1
0 = a0

1a
1
1 (4)

In the following, the tensor notation will be convenient (see [4] for details). We have u = M⊗kuβ. Then,

for example, for the empty subset ∅, u∅ =
∑

j1j2...jk
a0 0 ... 0

j1j2...jk
uj1j2...jk

β
, where a0 0 ... 0

j1j2...jk
= a0

j1
a0

j2
· · · a0

jk
. Of

course, for the requisite uβ, the only non-zero terms among uj1j2...jk

β
are for j1j2 . . . jk of Hamming

weight ≤ 1.
We have two cases to consider.

Case 1. k is odd.
First assume that the recognizer Γ is an odd matchgate. So entries in the standard signature
corresponding to even cardinality subsets of external nodes being deleted are all zero. Consider
the empty subset ∅. By u = M⊗kuβ we have,

u∅ = (a0
0)

k · 1 + (a0
0)

k−1a0
1w1 + (a0

0)
k−1a0

1w2 + . . . + (a0
0)

k−1a0
1wk = 0 (5)

Let S =
∑k

i=1 wi. Since a0
0 6= 0, by (5), a0

0 = −Sa0
1. Substituting this in (4), and canceling a0

1 6= 0,
we get a1

0 = a1
1(1 + S). Note that this also forces S 6= 0 otherwise a0

0 will be zero.

Now consider the subsets with k− 1 elements. All the entries uZ−{i}, 1 ≤ i ≤ k, are zero, because
k − 1 is even. This gives us the following set of equations.

For every i, 1 ≤ i ≤ k :
∑

j1j2...jk

a1...0...1
j1j2...jk

uj1j2...jk

β
= 0

where the single 0 in the superscript is at the ith place. This gives

For every i, 1 ≤ i ≤ k : a0
0(a

1
0)

k−1 + wia
0
1(a

1
0)

k−1 +
∑

j 6=i

wja
0
0a

1
1(a

1
0)

k−2 = 0

Dividing throughout by (a1
0)

k−2 and then adding up, we obtain

ka0
0a

1
0 + Sa0

1a
1
0 + (k − 1)Sa0

0a
1
1 = 0

⇒ −kSa0
1a

1
0 + S(a0

1a
1
0 + (k − 1)a0

0a
1
1) = 0 (Using a0

0 = −Sa0
1)
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Since S 6= 0, then for k > 1, we have a0
0a

1
1 = a0

1a
1
0 which gives det M = 0, a contradiction.

The other case is when Γ is an even matchgate. In that case, we get a complementary set of
equations—we just interchange the roles of 0 and 1 in the above analysis and get the same result.

Case 2. k is even.
Our analysis again depends on whether Γ is odd or even. First assume that Γ is an odd matchgate.
We consider the entries corresponding to the empty subset ∅ and the full set Z. We have,

u∅ = (a0
0)

k · 1 + (a0
0)

k−1a0
1w1 + (a0

0)
k−1a0

1w2 + . . . + (a0
0)

k−1a0
1wk = 0 (6)

uZ = (a1
0)

k · 1 + (a1
0)

k−1a1
1w1 + (a1

0)
k−1a1

1w2 + . . . + (a1
0)

k−1a1
1wk = 0 (7)

Again denote by S =
∑k

i=1 wi. Since a0
0, a

1
0 6= 0, we may cancel a0

0 and a1
0, and get a0

0 = −Sa0
1

and a1
0 = −Sa1

1. But this makes detM = 0.

Now assume that Γ is an even matchgate. Consider the subsets with k − 1 elements. All the
entries uZ−{i}, 1 ≤ i ≤ k, are zero. This gives us the following set of equations.

For every i, 1 ≤ i ≤ k : a0
0(a

1
0)

k−1 + wia
0
1(a

1
0)

k−1 +
∑

j 6=i

wja
0
0a

1
1(a

1
0)

k−2 = 0

Dividing throughout by (a1
0)

k−2 and then adding up, we obtain

ka0
0a

1
0 + S(a0

1a
1
0 + (k − 1)a0

0a
1
1) = 0 (8)

Note that we can now conclude S 6= 0 otherwise a0
0a

1
0 will be zero.

We further consider all subsets with 1 element. All the entries u{i}, 1 ≤ i ≤ k, are zero and we
get the following set of equations.

For every i, 1 ≤ i ≤ k : a1
0(a

0
0)

k−1 + wia
1
1(a

0
0)

k−1 +
∑

j 6=i

wja
0
1a

1
0(a

0
0)

k−2 = 0

Dividing throughout by (a0
0)

k−2 and then adding up, we obtain

ka0
0a

1
0 + S(a0

0a
1
1 + (k − 1)a1

0a
0
1) = 0 (9)

From equations (8) and (9), we get

S(a0
0a

1
1 + (k − 1)a1

0a
0
1) = S(a1

0a
0
1 + (k − 1)a0

0a
1
1)

Since we already have S 6= 0, then for k 6= 2, we have a0
0a

1
1 = a0

1a
1
0, which gives detM = 0 again.

This is a contradiction.

Proof of Theorem 5.2

We prove that for any k > 3, the Not-All-Equal gate can not be realized as a signature by any matchgate
over any basis of two linearly independent vectors.

Theorem 8.2. Given k > 3, there is no linearly independent basis β such that there is a recognizer Γ
having k external nodes with valR(Γ, x1⊗, . . . ,⊗, xk) equal to
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1. 0, if x1 = . . . = xk, and

2. 1, otherwise.

We’ll use the following simple lemmas.

Lemma 8.1. Let AX + BY = 1 be a linear equation where both A and B are non-zero. Suppose, for
some x and y, (1, 1), (x, y) and (x2, y2) are all solutions of this equation. Then x = y = 1.

Proof. We have the following equalities.

A + B = 1 (10)

Ax + By = 1 (11)

Ax2 + By2 = 1 (12)

First we show that none of x and y can be zero. Suppose x = 0. Then from (11) and (12) and
B 6= 0, we get y = 1 and B = 1. Then A = 0 by (10), contrary to assumption. Similarly y 6= 0.

Now suppose any one of x or y is 1. Then, from the first two equations, the other is also 1. If none
of them is 1, we subtract the first two equations to get A(x− 1) = −B(y− 1) and subtract the last two
to get Ax(x − 1) = −By(y − 1). Now we can divide these two equations to get x = y. And then, from
the first and second equations, we have x = y = 1, nonetheless.

Lemma 8.2. Suppose a, b, c, d are such that a + b = c + d = 1 and abcd 6= 0. Also, assume that
ad − bc 6= 0. Let x = c2

a2 and y = d2

b2
. Suppose (X,Y ) = (1, 1) and (X,Y ) = (x, y) are solutions of the

linear equation AX + BY = 1 where both A and B are non-zero. Then, x 6= 0, 1 and y 6= 0, 1.

Proof. It is clear that x and y are non-zero because abcd 6= 0. Since (1, 1) and (x, y) are solutions
of AX + BY = 1, we have x = 1 if and only if y = 1. Suppose x = y = 1. The only choices are
a = c, b = −d or a = −c, b = d otherwise ad − bc = 0. But from the fact that a + b = c + d = 1, a = c
implies b = d and vice-versa. This is impossible as none of a, b, c and d is zero.

Proof of theorem 8.2. Let n = (n0, n1), p = (p0, p1). Suppose Γ is a recognizer with the property stated
in Theorem 8.2. The signature of Γ w.r.t. β is uβ = (1, 0, . . . , 0, 1)t. The standard signature u of Γ can

be written as u = M⊗kuβ where M is the matrix

[

p1 −n1

−p0 n0

]

. Let a = p1, b = −n1, c = −p0, d = n0.

Denote by
σi = (a + b)k−i(c + d)i − ak−ici − bk−idi,

for 0 ≤ i ≤ k. Then, a moment reflection in terms of the tensor product equation u = M⊗kuβ shows
that the standard signature can be written in the symmetric form

[σ0, σ1, . . . , σi, . . . , σk].

It suffices to show that there do not exist a, b, c and d with ∆ = ad − bc 6= 0 such that u as given
above is the standard signature of a recognizer. Assume to the contrary that for some values of a, b, c
and d, there is such a recognizer Γ. We will use the parity conditions and the matchgate identities to
arrive at a contradiction. We consider three different cases.
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Case 1. k is odd.
First assume Γ is odd, i.e. all even positions in the symmetric standard signature are zero. When
we count from zero up to k, this gives us the following set of equations:

(a + b)k − ak − bk = 0

(a + b)k−2(c + d)2 − ak−2c2 − bk−2d2 = 0

...

(a + b)(c + d)k−1 − ack−1 − bdk−1 = 0

Note that since k > 3, we have at least three equations. For the moment, assume a+ b = 0. Then
a 6= 0 because ∆ 6= 0. Therefore, from the second equation, c2 = d2. So, c = ±d. But c 6= −d as
∆ 6= 0. So c = d 6= 0. Now we’ll use matchgate identity to show that this is not possible. Let
us fix k − 4 external nodes to 1. What remains is a four-input matchgate. The only matchgate
identity which isn’t trivially satisfied is the following:

σk−4σk = σ2
k−2. (13)

This comes from the set of 10 matchgate identities for the 4 by 4 (naked) character matrices (See
Section 2.4. For naked characters, one must change the entries by deleting the modifiers, which
amounts to multiplying a −1 in the 3rd row and the 3rd column. In this case where entries only
depend on cardinalities, the middle 2 by 2 determinant is zero.) Substituting b = −a, d = c in
the above, we get σk−4 = −2a4ck−4, σk−2 = −2a2ck−2, and σk = (2c)k − 2ck. Using the fact that
a, c 6= 0, we arrive at a contradiction. Therefore, a + b 6= 0.

Now consider what happens if c + d = 0. If so, c 6= 0 because ∆ 6= 0. Then the last equation from
the above set of equations gives a + b = 0 which makes ∆ = 0.

We can now assume that a+ b, c+d 6= 0. By using Proposition 4.3 from [16], we can scale a, b, c, d
such that a + b = c + d = 1. Again, we first consider the case when abcd = 0. If a = 0, then
b = 1, and from the second equation, d2 = 1. d = 1 would make c = 0 and therefore ∆ = 0. So
d = −1 and c = 2. Again, we substitute these values into the matchgate identity (13) to get a
contradiction. The case when b = 0 is symmetric. Now, consider c = 0. This means d = 1. The
last equation gives b = 1 and so a = 0 which makes ∆ = 0. The case d = 0 is symmetric.

The only case left is a + b = 1, c + d = 1 and abcd 6= 0. Let x = c2/a2 and y = d2/b2. Let
A = ak, B = bk. We see that the equation AX + BY = 1 has solutions

(1, 1), (x, y), (x2 , y2), . . . , (x
k−1

2 , y
k−1

2 ).

By Lemma 8.2, x 6= 0, 1 and y 6= 0, 1. Since k > 3 and odd, k−1
2 ≥ 2. Then, by Lemma 8.1, we

have x = y = 1. That is a contradiction.

The other case is when Γ is even. In that case, we get the same set of equations except that a, b
are replaced by c, d and vice-versa. The matchgate identity we use in that case is obtained by
fixing k − 4 external nodes to 0. The proof for odd k is complete.

Case 2. k ≥ 6 and k is even.
In this case, the proofs when Γ is even or odd are slightly different. We’ll consider them one by
one. The basic strategy is similar to what we saw earlier. First assume that Γ is odd. In this
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case, we have the following set of equations:

(a + b)k − ak − bk = 0

(a + b)k−2(c + d)2 − ak−2c2 − bk−2d2 = 0

...

(a + b)2(c + d)k−2 − a2ck−2 − b2dk−2 = 0

(c + d)k − ck − dk = 0

If a + b = 0, then the first equation gives ak = −bk = −(−a)k = −ak. This means a = b = 0
which makes ∆ = 0. The case c + d = 0 is symmetric.

We now assume, after scaling appropriately using Proposition 4.3 from [16], that a+b = c+d = 1.
Again we first consider the case when abcd = 0. If a = 0, then b = 1 and by the second equation,
d2 = 1 which upon substituting in the last equation gives ck = 0 because k is even. This makes
∆ = 0. The cases when b = 0, c = 0 or d = 0 are symmetric.

Now, we have a + b = c + d = 1 and abcd 6= 0. Let x = c2/a2 and y = d2/b2. Let A = ak, B = bk.
We see that the equation AX + BY = 1 has solutions

(1, 1), (x, y), (x2 , y2), . . . , (x
k
2 , y

k
2 ).

By Lemma 8.2), x 6= 0, 1 and y 6= 0, 1. Since k ≥ 4, k
2 ≥ 2. Therefore, by Lemma 8.1, we get that

x = y = 1. That is a contradiction.

The other case is when Γ is even. In this case, we have the following set of equations:

(a + b)k−1(c + d) − ak−1c − bk−1d = 0

(a + b)k−3(c + d)3 − ak−3c3 − bk−3d3 = 0

...

(a + b)(c + d)k−1 − ack−1 − bdk−1 = 0

If a + b = 0, the first equation gives ak−1(c − d) = 0. Since we already have a 6= 0, we get c = d.
We’ll use matchgate identity to show that this is not possible. Let us fix k − 4 external nodes
to 1. What remains is a four-input matchgate. The only matchgate identity which isn’t trivially
satisfied is the following:

σk−4σk = σ2
k−2 (14)

Substituting b = −a, d = c in the above, and using the fact that a, c 6= 0, we arrive at a
contradiction. Therefore, a + b 6= 0. The case when c + d = 0 is symmetric.

So we have a + b, c + d 6= 0. Again, after scaling appropriately, we assume that a + b = c + d = 1.
As before, we first consider the case when abcd = 0. If a = 0, then b = 1 and by the first equation,
d = 1 which means c = 0 and ∆ = 0. The cases when b = 0, c = 0 or d = 0 are symmetric.

Now, we have a + b = c + d = 1 and abcd 6= 0. Let x = c2/a2 and y = d2/b2. Let A = ak−1c,B =
bk−1d. The equation AX + BY = 1 has solutions

(1, 1), (x, y), (x2 , y2), . . . , (x
k−2

2 , y
k−2

2 ).

By Lemma 8.2, x 6= 0, 1 and y 6= 0, 1. Since k ≥ 6, k−2
2 ≥ 2. Therefore, by Lemma 8.1, we get

that x = y = 1 which is not true.
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Case 3. k = 4.
Again we distinguish the cases when Γ is even or odd. When Γ is odd, the proof for the case k ≥ 6
holds because the set of parity constraints gives at least three equations.

To prove that Γ can’t be even, we have to do a little more work because we get only the following
two equations using parity.

(a + b)3(c + d) − a3c − b3d = 0 (15)

(a + b)(c + d)3 − ac3 − bd3 = 0 (16)

First part of the proof for the case k ≥ 6 also works here and we can conclude that a+b = c+d = 1
and abcd 6= 0. For the time being, assume that a3 6= (1 − a)3. Now we substitute b = 1 − a,

d = 1 − c in (15) gives c = 1−(1−a)3

a3−(1−a)3
. Putting this in (16) gives the following equation in a:

[

(1 − (1 − a)3)3 − (a3 − 1)3
]

a = (a3 − (1 − a)3)3 − (a3 − 1)3 (17)

So, either a3 = (1 − a)3 or a satisfies (17). We conclude that a satisfies the following equation:

(a3 − (1 − a)3)
{[

(1 − (1 − a)3)3 − (a3 − 1)3
]

a − (a3 − (1 − a)3)3 − (a3 − 1)3
}

= 0 (18)

There is a symmetry effected by a reflection at 1/2, namely x 7→ 1 − x. This suggests that we
replace the variable a by the new variable x where a = 1/2 + x. Then (17) factors into

x(2x + 1)(2x − 1)(4x2 + 7)(16x4 + 7)

16

with roots x = 0,±1/2,±
√

7i/2, ±71/4±71/4i
2 . Similarly the factor a3 − (1 − a)3 = (1/2 + x)3 −

(1/2 − x)3 = x
2 (3 − 4x2), with roots 0 and ±

√
3

2 .

Symmetrically, c, b and d also satisfy the same equation (18).

Now consider the only non-trivial matchgate identity.

((a + b)4 − a4 − b4)((c + d)4 − c4 − d4) = ((a + b)2(c + d)2 − a2c2 − b2d2)2 (19)

After substituting b = 1 − a, d = 1 − c in (19) and simplifying using the fact that a 6= c because
otherwise ∆ = 0, we get the following equation in a and c.

(a + c − 2)2 + 4ac(a + c − ac) = 0 (20)

What remains is to consider all pairs a, c of solutions to (18). Substitute these into (20) we verify
that none works. This can be done explicitly.

Symmetric signatures in b2

Here we discuss the symmetric signatures that can be realized in the basis b2. We will obtain a closed
form for such signatures, thereby proving Theorem 6.1.

We have already defined the matrices M and A = (ai,j). The expression of ai,j in Lemma 6.1 can be
obtained by considering the number of ways two subsets I and J of cardinality i and j respectively can
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intersect each other. In fact, these aij can be expressed by the Krawtchouk polynomials [11]. Pn
k (x) is

defined as:

Pn
k (x) =

k
∑

j=0

(−1)j
(

x

j

)(

n − x

k − j

)

From Lemma 6.1, we see that aij = Pi(j).
Suppose we want to realize the symmetric signature [x0, x1, . . . , xn] by a generator. By the notation

from Section 6, this means that the standard signature we want is (x0, . . . , xn)M , where M is the
(n + 1) × 2n matrix. From which we know, the standard signature is also a symmetric signature and
the symmetric form can be written as [z0, z1, . . . , zn] = (x0, x1, . . . , xn)A, where A was also defined in
Section 6. We need to consider various cases. Before that, let’s prove a lemma that will be useful later.

Lemma 8.3. Suppose Γ is an even matchgate, with symmetric standard signature [z0, . . . , zn]. Then,
for all odd i, zi = 0, and there exist r1 and r2 not both zero, such that for every even k ≥ 2,

r1zk−2 = r2zk

Proof. We use matchgate identities to prove the lemma. Let k be odd. Let Z,U be the sets of external
and internal nodes, respectively. To prove that z0 : z2 = zk−1 : zk+1, we use the Grassmann-Plücker
identity generated by the two sets, I = (Z − I ′) ∪ U and J = (Z − J ′) ∪ U , where I ′ is a singleton set,
say I ′ = {a} and a is an external node, and J ′ is a set of k external nodes other than a. The resulting
matchgate identity is as follows:

z0zk+1 =
∑

k times

(±)z2zk−1

where the sign of the terms in the right hand side alternates, beginning with a +. Therefore, z0zk+1 =
z2zk−1. If z0, z2, . . . are all non-zero, we can choose r1 = z2

z0
, r2 = 1 and we’re done.

Now suppose zk = 0 for some even k. For the moment assume k ≤ n − 4. We give some more
matchgate identities which will imply that all of z0, z2, . . ., except one extremal value, are zero. Let
I1 be a set of k external nodes. Let a, b, c, d be four external nodes not in I1. Let I ′ = I1 ∪ {a}
and J ′ = I1 ∪ {b, c, d}. Consider the Grassmann-Plücker identity generated by I = (Z − I ′) ∪ U and
J = (Z −J ′)∪U . This gives us zkzk+4 = z2

k+2. From these identities, we can conclude that if zk = 0 for
some even then zk′ is zero for all even k′ except possibly the two extremes z0 and zn∗ , where n∗ = 2bn/2c,
which is n if n is even, and n − 1 if n is odd. From the identity z0zn∗ = zn∗−2z2 that we found earlier,
we can conclude that at most one of them can be non-zero. If z0 6= 0 is the only non-zero, we can choose
r1 = 0, r2 = 1 and if zn∗ is the only non-zero, we can choose r1 = 1, r2 = 0. (Of course it is also possible
that all zi = 0.)

Lemma 8.4. Suppose Γ is an odd matchgate, with symmetric standard signature [z0, . . . , zn]. Then for
all even i, zi = 0, and there exist r1 and r2 not both zero, such that for every odd k ≥ 3,

r1zk−2 = r2zk

Proof. We again use matchgate identities for the proof. Let k be even. Let Z,U be the sets of external
and internal nodes, respectively. To prove that z1 : z3 = zk−1 : zk+1, we use the Grassmann-Plücker
identity generated by the two sets, I = (Z − I ′) ∪ U and J = (Z − J ′) ∪ U , where I ′ is a set of two
elements, say I ′ = {a, b} and a, b are external nodes, and J ′ is a set of k external nodes such that b ∈ J ′

and a /∈ J ′. The resulting matchgate identity is as follows:

z1zk+1 =
∑

k−1 times

(±)z3zk−1
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where the sign of the terms in the right hand side alternates, beginning with a +. Therefore, z1zk+1 =
z3zk−1. If z1, z3, . . . are all non-zero, then we can choose r1 = z3

z1
and r2 = 1, and we’re done. What

remains is the case when zk is zero for some odd k. In this case, we need more matchgate identities as
in the proof of Lemma 8.3 to finish the proof. These identities can be obtained by the same method as
described there.

It follows from the characterization theorem for matchgates, that the requirements of Lemma 8.3,
and Lemma 8.4 are both necessary and sufficient. Because the signatures are symmetric, it can be
proved that the set of useful Grassmann-Plücker Identities considered here is a complete set.

Proof of theorem 6.1. We will need to consider various cases. First we will obtain a set of equations for
each case. Later we will see how to solve these equations.

Case 1: n is odd and an even matchgate Γ realizes the signature.

Since the matchgate Γ is even, zj = 0 whenever j is odd.

n
∑

i=0

aijxi = 0, j = 1, 3, . . . , n. (21)

Using Lemma 6.1 and the fact that j is odd, an−i,jxn−i = (−1)jaijxn−i = −aijxn−i. Therefore,

aijxi + an−i,jxn−i = aij(xi − xn−i)

Let us introduce new variable yi = xi − xn−i, where i = 0, 1, . . . , n−1
2 which now satisfy the

following set of equations:
∑

i<n/2

aijyi = 0, j = 1, 3, . . . , n.

Note that there are n+1
2 equations. As (n + 1)-dimensional vectors, all the column vectors in A =

(aij), for j = 0, 1, . . ., are linearly independent. In particular then, they are linearly independent
for odd j = 1, 3, . . . , n. By Lemma 6.1, the truncated vectors of dimension n+1

2 (where row index
0 ≤ i ≤ n−1

2 ) appearing in the above equations, for j = 1, 3, . . . , n, is still linearly independent.

Since the number of variables is also n+1
2 , the only solution is yi = 0 for i = 0, 1, . . . , n−1

2 .
Therefore,

xi = xn−i, i = 0, 1, . . . ,
n − 1

2
. (22)

When j is even, we have,

zj =

n
∑

i=0

aijxi

=

n−1

2
∑

i=0

aijxi +
n
∑

i= n+1

2

aijxi
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=

n−1

2
∑

i=0

aijxi +

n
∑

i= n+1

2

an−i,jxi (by Lemma 6.1)

=

n−1

2
∑

i=0

aijxi +

n−1

2
∑

i=0

aijxn−i

=

n−1

2
∑

i=0

aij(xi + xn−i)

= 2

n−1

2
∑

i=0

aijxi (by using (22))

Now we use Lemma 8.3 to get the following set of equations.

r1

∑

i< n
2

aijxi = r2

∑

i< n
2

ai,j+2xi, j = 0, 2, . . . , n − 3. (23)

We have a set of n−1
2 equations in n+1

2 variables other than r1, r2.

Case 2: n is odd and an odd matchgate Γ realizes the signature.

In this case, zj is zero for all even j. Using an analysis similar to the above, we will get xi = −xn−i

and will eventually obtain the following set of equations by using Lemma 8.4.

r1

∑

i< n
2

aijxi = r2

∑

i< n
2

ai,j+2xi, j = 1, 3, . . . , n − 2. (24)

Again we have a set of n−1
2 equations in n+1

2 variables other than r1, r2.

Case 3: n is even and an even matchgate Γ realizes the signature.

As before, since the matchgate Γ is even, zj = 0 whenever j is odd.
∑

i

aijxi = 0, j = 1, 3, . . . , n − 1. (25)

From Lemma 6.1, we get an
2
j = −an

2
j and therefore, an

2
j = 0 for odd j. Using Lemma 6.1 again,

and the fact that j is odd, an−i,jxn−i = (−1)jaijxn−i = −aijxn−i. Therefore,

aijxi + an−i,jxn−i = aij(xi − xn−i)

As in Case 1, we can introduce new variables yi = xi − xn−i, and rewrite the equations which are
linearly independent because the original equations (25) are linearly independent. Since we have
n
2 equations in as many variables, we conclude that the only solution is yi = 0 which implies

xi = xn−i, i = 0, 1, . . . ,
n

2
− 1. (26)

Using the above, when j is even, we can write zj as:

zj = 2

n
2
−1
∑

i=0

aijxi + an
2

jxn
2
, j = 0, 2, . . . , n.
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Now we can use a new variable xi = x′
i, except xn

2
= 2x′

n
2

. Then we can use Lemma 8.3 to get

the following set of equations.

r1

∑

i≤n
2

aijx
′
i = r2

∑

i≤n
2

ai,j+2x
′
i, j = 0, 2, . . . , n − 2. (27)

We have a set of n
2 equations in n

2 + 1 variables other than r1, r2.

Case 4: n is even and an odd matchgate Γ realizes the signature.

In this case, zj is zero for all even j. This case differs from Case 3 in the same way as Case 2
differs from Case 1. The analysis is similar to the above. We begin with the equations

∑

i

aijxi = 0, j = 0, 2, . . . , n. (28)

As before, aijxi + an−i,jxn−i = aij(xi + xn−i), and we introduce new variables yi = xi + xn−i, for
i = 0, . . . , n

2 − 1 and yn
2

= xn
2
. We will get xi = −xn−i and xn

2
= 0. Now we use Lemma 8.4 to

get the following set of equations.

r1

∑

i< n
2

aijxi = r2

∑

i< n
2

ai,j+2xi, j = 1, 3, . . . , n − 3. (29)

Now we show how to solve the equations we obtained above. We will then obtain the complete set
of symmetric signatures that can be realized in basis b2. We use the fact that aij’s can be represented
in terms of the Krawtchouk polynomials defined earlier.

Pn
k (x) =

k
∑

j=0

(−1)j
(

x

j

)(

n − x

k − j

)

.

We will drop the superscript n when it is clear from the context. From Lemma 6.1, we see that
aij = Pi(j). These polynomials satisfy the following orthogonality relation [11].

n
∑

i=0

(

n

i

)

Pr(i)Ps(i) = 2n

(

n

r

)

δrs. (30)

Also,
(n

i

)

Ps(i) =
(n

s

)

Pi(s). Therefore, we conclude that

∑

s

1
(

n
s

)asiasj =

{

2n

(n
i)

i = j

0 i 6= j
(31)

Lemma 8.5. For n odd and i ≡ j mod 2,

∑

s< n
2

1
(n

s

)asiasj =

{

2n−1

(n
i)

i = j

0 i 6= j
(32)

Proof. The proof follows by using equation (31) and Lemma 6.1

26



Lemma 8.6. For n even and i ≡ j mod 2,

∑

s≤n
2

1
(n

s

)a′sia
′
sj =

{

2n−1

(n
i)

i = j

0 i 6= j
(33)

where a′i,j = ai,j, except a′n
2
,j = an

2
,j/

√
2.

In the following we will assume n is odd. The case for n even is similar. Therefore, if we define
âij =

aij
q

(n
i)

, then the column vectors âj = [âij]0≤i≤n/2 are orthogonal vectors, among all even j or

among all odd j, and it has square norm ‖ âj ‖2
2=

2n−1

(n
j)

. Let â0
j = 1

‖âj‖ âj be a set of orthonormal vectors

(among all even or all odd j).

Now we show how to solve the equations (23) in Case 1 above. Let us define yi = xi

√

(

n
i

)

, i =

0, 1, . . . , n−1
2 . We can re-write these equations as

r1

∑

i< n
2

âijyi = r2

∑

i< n
2

âi,j+2yi j = 0, 2, . . . , n − 3. (34)

Then,
r1 ‖ âj ‖ 〈y, â0

j 〉 = r2 ‖ âj+2 ‖ 〈y, â0
j+2〉 (35)

Hence, in terms of the basis â0
j ’s, j = 0, 2, . . . , n − 1, we can write y as

y = λ

(

r
n−1

2

2 , r1r
n−3

2

2

√

(

n

2

)

, r2
1r

n−5

2

2

√

(

n

4

)

, . . . , r
n−1

2

1

√

(

n

n − 1

)

)

(36)

Therefore, xi = 1
q

(n
i)

yi can be written as

xi =
λ

2
n−1

2

(n
i

)

[

r
n−1

2

2 ai0 + r1r
n−3

2

2

(

n

2

)

ai2 + . . . + r
n−1

2

1

(

n

n − 1

)

ai,n−1

]

(37)

Now we will try to obtain a closed form for the above expression. For the sake of clarity, let’s
substitute r1 = t21 and r2 = t22. Denoting by Si the expression in the bracket, we get,

Si =
∑

j even

(

n

j

)

tj1t
n−1−j
2 aij

=
∑

j even

(

n

j

)

tj1t
n−1−j
2





∑

0≤s≤i,j

(−1)s
(

j

s

)(

n − j

i − s

)





=
∑

s

∑

j even, j≥s

(−1)stj1t
n−1−j
2

n!

s!(i − s)!(j − s)!(n − i − j + s)!

=
∑

s

(−1)s
n!

s!(i − s)!(n − i)!





∑

j even, j≥s

(n − i)!

(j − s)!(n − i − j + s)!
tj1t

n−1−j
2





=
∑

s

(−1)s
n!

s!(i − s)!(n − i)!
ts1t

i−s−1
2





∑

j even, j≥s

(n − i)!

(j − s)!(n − i − j + s)!
tj−s
1 tn−i−j+s

2





=
∑

s

(−1)s
(

n

i

)(

i

s

)

ts1t
i−s−1
2





∑

j even, j≥s

(n − i)!

(j − s)!(n − i − j + s)!
tj−s
1 tn−i−j+s

2





27



Now the sum within parentheses is

∑

j even, j≥s

(n − i)!

(j − s)!(n − i − j + s)!
tj−s
1 tn−i−j+s

2 =

{

(t2+t1)n−i+(t2−t1)n−i

2 if s is even.
(t2+t1)n−i−(t2−t1)n−i

2 if s is odd.

Therefore, we have,

Si/

(

n

i

)

=
∑

s even

(

i

s

)

ts1t
i−s−1
2

(

(t2 + t1)
n−i + (t2 − t1)

n−i

2

)

−
∑

s odd

(

i

s

)

ts1t
i−s−1
2

(

(t2 + t1)
n−i − (t2 − t1)

n−i

2

)

=
1

2t2

(

(t2 + t1)
n−i + (t2 − t1)

n−i
)

(

∑

s even

(

i

s

)

ts1t
i−s
2

)

− 1

2t2

(

(t2 + t1)
n−i − (t2 − t1)

n−i
)





∑

s odd

(

i

s

)

ts1t
i−s
2





=
1

2t2

(

(t2 + t1)
n−i + (t2 − t1)

n−i
)

(

(t2 + t1)
i + (t2 − t1)

i

2

)

− 1

2t2

(

(t2 + t1)
n−i − (t2 − t1)

n−i
)

(

(t2 + t1)
i − (t2 − t1)

i

2

)

=
1

2t2

(

(t2 + t1)
n−i(t2 − t1)

i + (t2 − t1)
n−i(t2 + t1)

i
)

The statement in the Theorem follows.
The other equations can be solved similarly.
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Figure 1: An example of converting a 2-input, 2-output matchgate to a planar matchgate.
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cd

ee

e

e

1
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Figure 2: The gadget used to replace crossovers. Here a = 1, b = i, c = d = −1/2, e =
√

i, where
i =

√
−1. The gadget was from [16] by Valiant.
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A

B

Figure 3: An example of a matchcircuit consisting of two matchgates A and B. The internal structures
of A and B are not shown.

B

A

Figure 4: A planar matchgate equivalent to the matchcircuit shown in Figure 3. The dotted curves
enclose the planar matchgates equivalent to the matchgates A and B from the matchcircuit. Each of
these, when magnified, looks like Figure 1.
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Figure 5: Constructing a matchcircuit from a planar matchgrid.
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