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Abstract

We give tight lower bounds for the size of depth-3 circuits with limited bottom fanin com-
puting symmetric Boolean functions. We show that any depth-3 circuit with bottom fanin &
which computes the Boolean function Exacty, /(1. has at least (1 +1/ k)ntOUogn) gates. We
show that this lower bound is tight, by generalizing a known upper bound on the size of depth-3
circuits with bottom fanin 2, computing symmetric Boolean functions.

1 Introduction

One of the most challenging problems in theoretical computer science is to prove lower bounds
on the resources needed in order to compute a Boolean function. An important measure for the
complexity of a Boolean function is the circuit complexity of the function.

A Boolean function is a function f : {0,1}" — {0,1}. A circuit is a directed acyclic graph in
which every node of in-degree 0 is labeled with a variable (x1, 2, ...) or its negation or a constant;
the nodes which are labeled with either a variable or its negation are called the inputs of the circuit.
Every other node v of in-degree £ > 1 in the circuit is labeled with some Boolean function on &
variables; furthermore these nodes are called gates. A special node with out-degree 0 is called the
output of the circuit. A circuit with n inputs computes a Boolean function f : {0,1}" — {0,1} in a
natural way. If f: {0,1}" — {0,1} is a Boolean function and €2 is a set of Boolean functions then
we denote by Cq(f) the minimal integer m such that there exists a circuit C over n variables and
m gates that computes f and such that each gate in C computes a function from 2. Every circuit
has an obvious representation by a directed acyclic graph, where edges are directed from the inputs
towards the output of the circuit. The depth of a circuit is the length of the longest directed path
in its graph representation.

Why study circuit complexity? First, there is the practical interest: circuits for computing
various Boolean functions are used within the hardware of digital computers, so it is important
to understand, for optimization reasons, how large a circuit does a Boolean function requires.
Secondly, studying circuit complexity has important applications to the theory of algorithms; one
such application is this: proving sufficiently high lower bounds for the circuit complexity of a
Boolean function f will imply a lower bound on the running time of algorithms computing f. This
relation between circuit complexity and the theory of algorithms comes from efficient simulations of
Turing machines by Boolean circuits. Efficient simulations are due to Schnorr [14] and Pippenger
and Fischer [13], which shows how to simulate a Turing machine with time resources ¢(n) and
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space resources s(n) by a circuit of size O(t(n) log(s(n))) over the Boolean basis Bs, consisting of
all Boolean functions over 2 variables.

Shannon [15] shows that for a random Boolean function f on n variables, Cp,(f) = Q(2"/n) is
valid with high probability. Lupanov [8] shows that this lower bound is best possible, i.e., for every
Boolean function f on n variables, Cp,(f) < O(2"/n). In contrast, for explicit Boolean functions
f (i-e., functions computable in nondeterministic polynomial time,) the best lower bounds on their
circuit complexity over the basis By are merely linear. The best circuit lower bound over the full
binary basis Bz is due to Blum [1], who gives a lower bound of 3n — o(n) for an explicit Boolean
function. For the basis Us, which is Bs without the XOR and its negation, the best circuit lower
bound for an explicit Boolean function is 5n — o(n), due to Iwama and Morizumi [5] and Lachish
and Raz [7].

1.1 Depth-3 Circuits

In this paper we consider the well studied, restricted model of depth-3 circuits. A formal definition
of depth-3 circuits will be given at Section 2. For now it will suffice to think about depth-3 circuits
over the variable set X, as circuits which are the OR (resp. AND) of an unbounded number of
Boolean formulas over the variable set X, each written in conjunctive normal form (resp. disjunctive
normal form.) We shall write CNF (DNF) for conjunctive normal form (resp. disjunctive normal
form.) We also consider depth-3 circuits with bottom fanin &, which are the OR (resp. AND) of
an unbounded number of Boolean formulas, each being a k-CNF (resp. k-DNF.)

Why study depth-3 circuits? Leslie Valiant [16] have showed that sufficiently large lower bounds
on the size of depth-3 circuits with limited bottom fanin would imply super linear lower bounds on
the size of logarithmic depth circuits over the basis Bs; in more detail, if f is a Boolean function
over n variables which for some ¢ > 0, cannot be computed by depth-3 circuits with bottom fanin
n¢ and 20(n/loglogn) gates then f cannot be computed by a linear sized logarithmic depth circuit
over the basis By. What Valiant has observed is that the graph representation of a linear sized
Boolean circuit over By has a relatively small set of edges F, whose removal separates the graph
representation into components of small depth; thus, by trying all possible truth assignments to
the edges in F, while keeping valid the constraints implied by the circuit, Valiant have constructed
a depth-3 circuit with relatively small bottom fanin which computes the same Boolean function as
the original circuit. Valiant’s reduction gives a good motivation for a large line of work done on the
complexity of depth-3 circuits [6, 2, 3, 12, 9, 10, 4, 11]. For an explicit Boolean function, the largest
lower bound for the number of gates in the depth-3 circuit model is due to Paturi, Pudldk, Saks
and Zane [11], who showed that sufficiently dense codes cannot be accepted by depth-3 circuits of
size less than 27V7/6 > 21-281Vn. this lower bound was the first to give a lower bound for depth-3
circuits of the kind 2¢V™, with ¢ > 1. The technique in [11] also gives the best known known lower
bounds for depth-3 circuits with bottom fanin k.

For symmetric Boolean functions, which are functions that essentially depend on the hamming
weight of their input, the best known lower bound for depth-3 circuits with bottom fanin k£ was
given by Paturi, Pudlik and Zane [9], who showed that 2"/k*°(") gates are necessary and suffi-
cient in this model, in order to compute the parity function. Paturi, Saks and Zane [12] showed
nonuniform constructions of depth-3 circuits with bottom fanin 2 for symmetric Boolean function.
In Section 2 we extend the construction from [12] and show that any symmetric Boolean function
can be computed by a depth-3 circuit with bottom fanin k& and (1 + 1/k)"tO0%8") gates. We
also show that this upper bound is best possible: we show that for any k there exists an explicit
Boolean function which cannot be computed by depth-3 circuits with bottom fanin k£ and less than



(14 1/k)n+0OUogn) 5, gn/k+o(n) gates. As a byproduct of the generalization of the construction of
depth-3 circuits for symmetric Boolean functions we also answer an open question of Hastad, Jukna
and Pudldk [3], regarding the complexity of depth-3 circuits that compute the Majority function:
we improve the upper bound of Klawe et. al. [6] for the size of depth-3 circuits for Majority from
20(vnlogn) to 20(vn)  This, together with the lower bound for Majority from [3] implies that the
complexity of depth-3 circuits computing the Majority function is 20(Vn),

2 Tight Bounds for ¥} Circuits Computing Symmetric Boolean
Functions

Say that a circuit is leveled if its gates can be arranged such that the inputs are at level 0 and
gates at level [ > 0 depend only on gates (or inputs) from level [ — 1. Say that a circuit is an
alternating circuit over the De Morgan basis if it is a leveled circuit, the input nodes are labeled
with z1,Z7,...,2Z,,Ty,,0,1, gates at the same level are either all AND gates or all OR gates and
lastly, OR gates (AND gates) at level [ are being followed by AND gates (OR gates) at level [ + 1,
if such a level exists. The depth of an alternating circuit over the De Morgan basis is the number
of levels consisting of AND or OR gates. Denote by E’j the class of all alternating circuits over the
De Morgan basis such that the depth of the circuit is d, the top level is an OR gate, the fanin of
the gates at the first level is & and the fanin of all other gates is unbounded. Define the size of a
circuit to be the number of gates of the circuit.

A Boolean function f over the variables z1,...,z, is symmetric if for every permutation o in
the group S,, of permutations on n letters, the following holds:

f(:L‘l,. e ,37n) = f(xa(l)a- s 7550(71))'

For an integer k, define sym(k,d,n) to be the minimal integer m such that if f is a symmetric
Boolean function over n variables then there exists a E’; circuit computing f, having m gates. In
order for sym(k,d,n) to be well defined we assume that d > 3. Paturi, Saks and Zane [12] have
showed that sym(2,3,n) < 1.57+0008n) 1In this section we prove that this upper bound is best
possible, i.e., sym(2,3,n) = 1.57+0008n) 1n fact, we give a more general result and obtain a tight
bound for sym(k, 3,n) for all k.

Theorem 1. sym(k,3,n) = (1 + 1/k)"+Oogn),

We establish Theorem 1 by generalizing the upper bound of Paturi, Saks and Zane [12] and by
proving a lower bound on the size of any ¥ circuit computing the Boolean function Exact, Je for
¢ = k+ 1, where Exact], is the Boolean function which accepts an input iff its hamming weight is
exactly |n/c|. For clarity of exposition we will drop the use of the floor function in the remaining
of the paper. We let A denote the set of all non-negative integers. For the lower bound we would

need the following definition.

Definition 1. Let k,d,n € N such that d < n. Say that a k-CNF over n variables is a (k,d,n)-
CNF if it accepts only assignments whose hamming weight is exactly d. Note that a (k,d,n)-CNF
does not necessarily need to accept all, or any, assignments of hamming weight d.

The lower bound part of the proof of Theorem 1 on Section 2.1 is based on a top-down approach
which has been already used by others [2, 9, 11, 12] in order to give lower bounds for 2’§ circuits.
This approach, in our context, can be sketched as follows. We first upper bound the possible
number of satisfying assignments a (k,d,n)-CNF can have. We then show that if a X% circuit



computes Exact]] and has too small a size then one of its sub-circuits must accept a large set of
assignments, which will lead to a contradiction given the upper bound on the number of assignments
accepted by a (k,d,n)-CNF. For the upper bound on sym(k, 3,n) a straightforward application of
the probabilistic method is used in Section 2.2. We stress the fact that the upper bound we give
on sym(k, 3,n) is merely a generalization of the upper bound on sym(2,3,n) from [12].

Lastly, we’d like to note the following. Let H’; denote the class of all alternating circuits over
the De Morgan basis such that the depth of the circuit is d, the top level is an AND gate, the
fanin of the gates at the first level is k and the fanin of all other gates is unbounded. It is easy
to see that if a symmetric Boolean function f cannot be computed by a Z’; circuit with m gates
then there is a symmetric Boolean function g which cannot be computed by a H’(j circuit with m
gates; simply take g = = f. Hence, the lower bound on the size of E§ circuits computing symmetric
Boolean functions in Section 2.1 applies also to H’?f circuits. Also, it would not be hard to see that
the upper bound in Section 2.2 also applies to H’§ circuits.

2.1 The Lower Bound

We now give a lower bound on sym(k,3,n). Let us ask the following question. Suppose that ¢ is
a (k,d,n)-CNF. How large is the set of satisfying assignments of ¢, [¢ 1(1)|?

Lemma 1. Let ¢ be a (k,d,n)-CNF. Then
671 (1) < &4

Proof. For t € N, denote by [t] the set {1,2,...,¢}. Suppose for now that given a (k,d’,n')-
CNF, with d' > 0, we can construct at most k formulas, ¢1, ..., ¢ which satisfy the following two
properties:

L Ui 671 (1) = ¢ (1), and
2. For all i € [t], ¢; is a (k,d —1,n' — 1)-CNF.

Clearly, such a construction would imply by induction that the number of satisfying assignments
of a (k,d,n)-CNF is at most k¢, as a (k,0,n — d)-CNF has at most one satisfying assignments. It
is thus left for us to show how to construct the at most k& formulas satisfying the two conditions
above.

Let ¢ be a (k,d',n')-CNF, with d’ > 0. Consider the assignment o = 0" to the variables of ¢
and observe that there must be some clause C of length ¢ < k in ¢, which is not satisfied by a.
Write C = (z1 V...V x;). For i € [t], define ¢; = ¢|,,, where ¢|, denotes the formula ¢ restricted
to the case where the literal z assumes the truth value 1. We claim that this construction satisfies
the two properties mentioned above. To see that the first property hold, first observe that if 3 is
a satisfying assignment for ¢ then it must satisfy at least one literal in C' and hence, it must also
satisfy at least one of the formulas ¢;. Also, it is clear that any satisfying assignment for ¢;, for all
i, is also a satisfying assignment for ¢. We thus conclude that (Ji_; ¢; (1) = ¢ (1). To see that
the second property hold, note that ¢; has n’ — 1 variables and that any satisfying assignment for
¢; must have hamming weight d' — 1, for all i € [t]. This concludes the proof. O

Having Lemma 1 at hand we are now ready to prove the lower bound on sym(k, 3,n). Fix k and
let ¢ < n, be an integer whose value will be determined soon. We consider the Boolean function
Exact .. Let C be a Y% circuit computing Exact) Je- Let s be the number of gates in C'. Since C is
a circuit of depth-3 with the top level gate being an OR gate, we can view C' as a disjunction of at
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most s k-CNFs ¢1, ¢o, ..., ¢s. This implies, together with the fact that the function computed by
C'is Exacty, ,,, that ¢; is a (k,n/c,n)-CNF for all i € [s]. Since the number of satisfying assignments

of Exact”, is (n’} C) we have by the pigeon hole principle that there exists ¢ € [s] for which ¢; has

n/c
at least (nT;c) /s satisfying assignments. By Lemma 1, since ¢; is a (k,n/c,n)-CNF, we have that

(7:;0) /s < kn/e, (1)

For constant ¢ we can approximate (n%) by 2H(/0" where H(z) = —zlogy(z)— (1—x) logy (1—x)

is the binary entropy function. It then follows from (1) that

n
> —n/c
N AL

~ 2H(1/c)nk—n/c
(CI/C(C/(C _ 1))171/c)nk,fn/c

N (CHESEGE e

It is easily seen that (2) is maximized whenever ¢ = k + 1. We hence conclude the following.

Lemma 2. sym(k,3,n) > (1+1/k)".

2.2 The Upper Bound

We now turn to give the upper bound on sym(k,3,n). Paturi, Saks and Zane [12] gave an upper
bound on sym(k, 3,n), for k = 2. We give this upper bound for completeness. More accurately, we
generalize the upper bound from [12] to give an upper bound on sym(k,3,n), for all £ > 2.

To give the desired upper bound on sym(k,3,n) we note the following property of symmetric
Boolean functions: if f is a symmetric Boolean function then it is the disjunction of at most
n + 1 functions from the set {Exactz/c :n/c € {0,1,...,n}}. Hence, in order to upper bound

sym(k,3,n) it is suffice to construct X% circuits for Exactz/c, for all n/c € {0,1,...,n}. The

plan for constructing a E’?f circuit for Exact; Je is as follows. First, we consider a probabilistic
construction of a X% circuit of size at most 22%n, which will be constructed in a way so that it
will be in fact a (k,n/c,n)-CNF. Secondly, we show that constructing a sufficient number s of
such (k,n/c,n)-CNFs and taking their disjunction (which is a %% circuit) will result, with positive
probability, in a circuit computing Exact”, . From this we will conclude the existence of a depth-3

n/c
circuit over at most 2%¥sn gates computing Exact) Je
Let z1,...,Z, be the variables underlying the X% circuit we are about to construct probabilis-

tically. In fact, we will construct k-CNFs instead of $5 circuits, as clearly a k-CNF is a 32 circuit.
The formula we construct will be the conjunction of two formulas, ¢; and ¢o. The formula ¢;
will consist of a conjunction of clauses of length 1, and ¢9 will consist of clauses of length k. The
construction is as follows. First partition uniformly at random the set of n variables to two sets S;
and Sy of size n—kn/c and kn/c, respectively. Define ¢; to be the conjunction of the literals 7;, for
all z; € S7. Next, to the definition of ¢2, which is a formula over the variables in Sy. Partition the
variables in Sy u.a.r. to n/c sets R; of size k each. Define ¢, to be the conjunction of the Boolean
functions 1;, where 1; is the k-CNF over the variables of R;, computing the function Exact?. Lastly,
let ¢ be the conjunction of ¢; and ¢,. Observe that the formula ¢ is a (k,n/c,n)-CNF. Also note
that each ; has at most 2%¥ clauses and so the size of ¢ is at most 2% n.



Let « be an assignment to n variables having hamming weight exactly n/c. Denote by A,
the event that « is a satisfying assignment for ¢, where ¢ is as defined in the previous paragraph.
We claim that Prob(4,) = k"/¢ / (n’}c) Consider the probabilistic construction of ¢ from above.
One way to think of the probabilistic construction of ¢ is as follows. We have an ordered list of
n — kn/c+ n/c bins, the first n — kn/c bins being of size 1 and the last n/c bins are of size k; we
then think of the construction of ¢ as first choosing a random permutation of the n variables and
entering each variable in order, to the first non-full bin. Then, we use the first n — kn/c bins to
construct ¢ and the last bins to construct ¢, as described above, treating the i-th bin of size k as
the set R;. Let A be the set of n/c variables which are assigned 1 under . Then the probability
that « satisfies the resulting formula ¢ is exactly the probability that the variables in A each ends
up in one of the last n/c bins, those of size k and there does not exist a bin of size k which do
not contain a variable from A. We note that each variable can “fall” in k different places in each
bin of size k. Hence, the number of permutations of n variables which lead to a construction of a
formula which is satisfied by « is &"/°(n — n/c)!(n/c)!. It then holds that Prob(4,) = k"/c/(n7c),
as claimed.

Let B, be the event that upon constructing s k-CNFs as described above, independently of
each other, a does not satisfy any of the s formulas. Then

Prob(B,) < <1 - WC/( n ))S < K1),

nj/c

Hence, the expected number of assignments having hamming weight n/c and which are not satisfied

by any of the s formulas is (n"c)e_Sk"/C/ (7). Choosing s = k™/¢ (n%) In (n%), the expected number
of assignments not satisfied by any of the s formulas is less than 1. We note that s is maximized
whenever ¢ = k + 1, as in the argument for the lower bound. Since every symmetric Boolean
function is computed by a disjunction of Z’?f circuits computing functions from {Exact Jet njc €

{0,1,...,n}}, we have that

sym(k,3,n) < 2%n(n+ 1)k~ (n/(k”+ 1)> In (n/(k"+ 1)) (3)

oH(1/(k+1))n (e n+0(log n)

T (k41
— (1 + l/k)n+(9(logn).

We hence have the following.
Lemma 3. sym(k,3,n) < (1 + 1/k)n+0ogn),

This concludes the proof of Theorem 1.

3 The Complexity of >3 Circuits Computing Majority

We conclude this paper with the following observation. Hastad et. al. [3] have showed that the
Majority Boolean function could not be computed by depth-3 circuits with less than 20849V gates
and have asked to determine the asymptotics of the number of gates required for computing the
Majority function by depth-3 circuits. Klawe et. al. [6] have showed that the Majority function
can be realized by depth-3 circuits of size 2°(V?187)  We observe that Lemma 3 determine the
asymptotic behavior of the size of depth-3 circuits computing the Majority function. In fact, we
show that any symmetric Boolean function can be computed by a depth-3 circuit of size 20(Vn),



Let us define the following. Let sym(d,n) be the minimal integer m such that if f is a symmetric
Boolean function over n variables then there exists a 34 circuit computing f, having m gates, where
34 is defined exactly as Z’; except for the fact that no restriction on the fanin of the first level is
imposed. We observe here that the upper bound on sym(k,3,n) given by Lemma 3 implies the
following.

Theorem 2. sym(3,n) = 2°0/n),

Proof. Since sym(k, 3,n) provides an upper bound on sym(3,n), we have from (3),

sym(3,n) < sym(4/0.5-nlogye,3,n)

< ZZWTL(TL + 1) (1 n ;)n—f-(’)(logn)
0.5-nlogye

—  92¢/2nlog, e+O(logn)

By known lower bounds for the size of depth-3 circuits computing the parity function [9], we have
sym(3,n) > 2V™. This concludes the proof. O

Since Majority is a symmetric Boolean function we can use the upper bound from the proof of
Theorem 2 in order to conclude the following, which answers the forth question of Hastad, Jukna
and Pudlék, from [3].

Corollary 1. The asymptotic complezity of depth-3 circuits for Majority is 220V™) . More precisely,
letting M, to be the least integer m such that there exists a depth-3 circuit of size m which computes
the Majority function over n Boolean variables. Then

90.849v/m < M, < 93.399v/n_
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