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Abstract

A two server private information retrieval (PIR) scheme allows a @édo retrieve thei-th bit of ann-bit
string z replicated between two servers while each server individually learns nonmiation abouti. The main
parameter of interest in a PIR scheme is its communication complexity,yn#menumber of bits exchanged by
the user and the servers. A large amount of effort has been invegteddarchers over the last decade in search
for efficient PIR schemes. A number of different schemes [6, hdl@) been proposed, however all of them ended
up with the same communication complexityXgf.'/3). The best known lower bound to dateikg n by [17].
The tremendous gap between upper and lower bounds is the focuspmanr We show aft(n'/3) lower bound
in a restricted model that nevertheless captures all known upper baeohadiques.

Our lower bound applies to bilinear group based PIR schemes. A bilindarseheme is a one round PIR
scheme, where user computes the dot product of servers’ respaa obtain the desired value of th¢h bit.
Every linear scheme can be turned into a bilinear one. A group basedgé&l&me, is a PIR scheme, that involves
servers representing database by a function on a certain finite gf&ugnd allows user to retrieve the value of
this function at any group element using the natural secret sharingwseliased ox. Our proof relies on some
basic notions of representation theory of finite groups. We also discasapibroaches one may take to obtain a
general lower bound for bilinear PIR.

1 Introduction

Private information retrieval (PIR) was introduced in a seminal paper hoyr,GSoldreich, Kuzhelevitz and
Sudan [6]. In such a scheme a server holdsidit string z representing a database, and a user holds an index
i € [n]. At the end of the protocol the user should leafrand the server should learn nothing abouA trivial
PIR protocol is to send the whole databade the user. While this protocol is perfectly private, its communication
complexity is prohibitively large. Note that, in a non-private setting, there i@#pol with onlylog n + 1 bits of
communication. This raises the question of how much communication is nectssahjeve privacy. It has been
shown in [6] that in case information-theoretic privacy is required thealvial solution is in fact optimal. To
go around this Choet al. suggested replicating the database amiongl non-communicating servers.

For the case of two servers [6] obtained a PIR protocol With!'/?) communication complexity. In spite of
the large amount of subsequent research this bound remains the best tndate. For general [6] achieved
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the complexity ofO(n'/*). Their bound was later improved by Ambainis [1]@&{n!/(?*~1). Finally in a break-
loglog k
through result [5] Beimett al. achieved the communication complexitym?( Kiog h )

On the lower bounds side the progress has been scarce. We list the keswits for the two server case. The
first nontrivial lower bound oftlogn is due to Mann [15]. Later it was improved #04 log n by Kerenidis and
de Wolf [13] using the results of Katz and Trevisan [14]. The currenbrd of5logn is due to Wehner and de
Wolf [17]. The proofs of the last two bounds use quantum arguments.

To date PIR literature is extensive. There is a number of generalizatidhe basic PIR setup that have been
studied. Most notably those are: computational PIR (i.e. PIR based onutatigmal assumptions), PIR with
privacy against coalitions of servers, PIR with fixed answer sizdsistaPIR, etc. Private information retrieval
schemes are also closely related to locally decodable codes (LDC). &ivey f PIR and LDC literature see [7].

In the current paper we study communication complexity of PIR in the most tvsiserver case. There are
two reasons why this case in especially attractive. Firstly, determining the coitation complexity of optimal
two server PIR schemes, is arguably the most challenging problem in thefdPéR research. There has been no
guantitative progress for this case since the problem was posed. Atthodate a number of different two server
PIR schemes are known [6, 4, 19] all of them have the same communicatigriecaty of O(n'/3). Secondly, the
work of [5] implies that any improvement of the upper bound for two seRI&, yields better PIR protocols for
all other values of.

1.1 Our results

Our main result is af2(n'/3) lower bound for a restricted model of two server PIR. Our restrictionslve
around a novel, though quite natural combinatorial view of the problem.héig that two server PIR essentially is
a problem regarding the minimal size of iauced universal grapfor a family of graphs with certain property.
This view allows us to identify two natural models of PIR, naméljinear PIR, andbilinear group base®IR.
A bilinear PIR scheme is a one round PIR scheme, where user computest theduct of servers’ responses
to obtain the desired value of thieh bit. A group based PIR scheme, is a PIR scheme, that involves servers
representing database by a function on a certain finite gtaupnd allows user to retrieve the value of this
function at any group element using the natural secret sharing scresee brG.

We establish af(n!/3) lower bound for communication complexity of any bilinear group based Ptierse,
that holds regardless of the underlying grabi@and regardless of the algorithms run by the servers. The model
of bilinear group based PIR generalizes all PIR protocols known to ttaie,our lower bound demonstrates a
common shortcoming of the existing upper bound techniques.

It turns out that communication complexity of bilinear group based PIR oggpap G can be estimated in
terms of the number of low dimensional principal left ideals in the group adgedtz]. Our main technical result
is an upper bound for this quantity obtained by an argument relying on sasi@rntions of representation theory
of finite groups.

1.2 Related work

Apart from the work on general lower bounds for PIR protocols thaswveyed above, there has been some
effort to establish (stronger) lower bounds for various restricted larfePIR. In particular Itoh [12] obtained
polynomial lower bounds on communication complexity of one round PIR,uhéeassumption that each server
returns a multilinear or affine function of its input. Goldreith al.[8] introduced the notion dinear PIR proto-
cols, i.e. protocols where the servers are restricted to return linear catiolis1 of the database bits to the user, and
also the notion oprobe complexityi.e. the maximal number of bits the user needs to read from servers’ answer

We actually prefer to use language of matrices rather then graphst totirse graph formulations are easy to obtain. A gr&pis
called induced universal for a graph famifyif every graphF” € F is an induced subgraph 6f.



in order to compute;. Goldreichet. al. obtained polynomial lower bounds for communication complexity of two
server linear PIR schemes whose probe complexity is constant. Latergbaliis were extended by Wehner and
de Wolf [17] who showed that the restriction of linearity can in fact be deap

Itis not easy to match the restricted models surveyed above againstatheraand against our model, because
the restrictions are quite different. We do not impose any restriction on ti@idms computed by the servers
as [12], and do not restrict the user to read only a small number of bitsfesvers’ answers as [8]. We show that
our bilinearity restriction is weaker than the linearity restriction of [8], singerg linear protocol can be easily
turned into a bilinear one. However we insist that the PIR scheme shouldegrplap based secrete sharing, and
that the user should be able to privately reconstruct not only the dataiiasut also some extra functions of the
database (given by the values at group elements that do not cordespaatabase bits).

1.3 Outline

In section 2 we introduce our notation and provide some necessary defnitio section 3 we present our
combinatorial interpretation of two server PIR, and identify the models of hitiR¢éR and bilinear group based
PIR. Section 4 contains the main technical contribution of the current. pafeaantroduce necessary algebraic tools
and establish aft(n'/3) lower bound for communication complexity of any bilinear group based Phgrae. In
section 5 we discuss possible interpretations of our results and posempi@blem. In the appendix we review
currently known two server PIR schemes and demonstrate that all of tieeliliaear group based.

2 Preliminaries

Let [s] def {1,...,s}. We assume that is a prime power and use the notatiBpto denote a finite field of
elements. We assume that database contains entries from alpfjatsher then just a binary alphabet. We also
assume some implicit bijection betwegihandF,. Everywherdog stands for théog baseg. Notationa o b stands
for concatenation of stringsandb.

A two-server PIR scheme involves two servéisandSs each holding the same-bit string x (the database),
and uset/ who knowsn and wants to retrieve some hi, i € [n], without revealing the value aof We restrict
our attention to one round information-theoretic PIR protocols. The followafition is a non-uniform variant
of the definition from [5].

Definition 1 A two server PIR protocol is a triplet of non-uniform algorithifBs= (Q, A,C). We assume that
each algorithm is givem as an advice. At the beginning of the protocol, the ugdosses random coins and
obtains a random string. Nextl{ invokesQ(i, ) to generate a pair of queriggues, ques). U sendsjue; to Sy
andques to Sy. Each serverS; responds with an answeinhs; = A(j, z, que;). (We can assume without loss of
generality that servers are deterministic; hence, each answer is a funotia query and a database.) Finally,
U computes its output by applying the reconstruction algorith(@:s;, anssa, i, ). A protocol as above should
satisfy the following requirements:

e Correctness :For anyn, = € [¢]" andi € [n], the user outputs the correct valueafwith probability 1
(where the probability is over the random strings

e Privacy : Each server individually learns no information abaufo formalize this leQ; denote the of-th
output of Q, j = 1, 2. We require that forj = 1,2 and anyn, i1, € [n] the distributionsQ,(i;,r) and
Qj(i2, ) are identical.

The communication complexitgf a PIR protocolP, is a function ofn measuring the total number of bits
communicated between the user and the servers, maximized over all chbices @]", i € [n], and random
inputs.



Definition 2 [8] A linear PIR scheme is a PIR scheme, where the answer funetigne, que;) is linear inx for
arbitrary fixed values of andque;. In other words every bit of an answer is a certain linear combination of the
database bits.

3 A combinatorial view of two server PIR

Definition 3 A generalized latin squar® = GLSn,T] is a square matrix of siz& by 7' over an alphabet
[n] U {x}, such that:

e Foreveryi € [n] andj € [T, there exists a unique € [T'] such thatQ) ;;, = 1;
e Foreveryi € [n] and;j € [T, there exists a uniquk € [T'] such thatQ); = .

In particular, every row (or column) of a GIg 7’| contains preciselyl’ — n) stars. We call the ratio /7" the
densityof a generalized latin square. It is easy to see that generalized latiresmfatensityl are simply latin
squares.

Let @ = GLS[n, T}, and leto : [n] — [g] be an arbitrary map. Bg), we denote a matrix of siZ€ by T" over
the alphabelqg| U {x}, which is obtained front) by replacing every non-star entiyn @ by o (7). We say that a
matrix ¢(Qo,) € [¢]"*" is acompletionof Q, if ¢(Q,)ij = (Qr);; WheneverQy),; € [g.

For matricesA € [¢]"™*! andB € [¢]®*" we say thatB reducedo A if there exist two maps : [b] — [I] and
mp ¢ [b] — [I] such that for any, k € [b] : Bjr = Ar (j),r)- NOte that we do not impose any restrictions on
mapsm; andmy, in particularb can be larger theh

Definition 4 Let Q = GLYn,T], and A € [¢]'*!. We say thatA coversQ, (notationQ — A) if for every
o : [n] — [q], there exists a completianof Q,,, such thaie(Q, ) reduces toA.

Theorem 5 The following two implications are valid:

e ApairQ — A, whereQ = GLn,T], A € [¢]'*!, yields a two server PIR protocol with communication
log T fromi/ to eachS; and communicatioitbg [ from S;’s back toif.

e A two server PIR protocol with queries of lendim) and answers of lengtta(n), where the user tosses at
mostr(n) random coins yields a paif) — A, where@Q = GLS[n,ng!™*7("] and A is ag-ary square
matrix of sizeng!(™+a(m)

Proof:  We start with the first part. We assume that matdixs known to all parieg/,S; and Ss. At the
preprocessing stage, servers use the databasg|”, to define the map : [n] — [¢], settingo (7) 4 .. Also,
they find an appropriate completie(Q),, ), and obtain maps, : [T] — [/] andws : [T] — [I], such for allj, k
c (Qg)jk = Az (j),m(k)- The following protocol is further executed.

U . Picks alocatiory, k in @ such that);;, = 7 uniformly at random
U—358 : j
U-—-38 : k

U—8 : m@)
U—S : m(k)
U : OutputsA

m1(4),me (k)

It is straightforward to verify that the protocol above is private, sinaeiéormly random choice of a locatiofn &
such that) j;, = 4, induces uniformly random individual distributions gand onk. Correctness follows from the
fact thatc(Q, ) reduces tod. Total communication is given b3(log T + log ).



Now we proceed to the second part. Consider a two server prakeo( Q, A, C). First we show that one can
modify P to obtain a new PIR protocd? = (Q’, A’,C’), such thaC’ depends only omans] andans), but not
oni or r. The transformation is simple:

e First Q' obtains a random stringand invokeQ(i, ) to generatdque;, ques). Next Q' tossedog n extra
random coins to represehas a random sum= i; +iz mod (n), setsque} = que; oi1, quely = ques oy
and sendgue] to S; andques to Ss.

o Forj = 1,2 A’ extractsgue; from que’;, runs.A on (j, z, que;) and returnsins; o que’;.

e Finally,C’ extractsjues, ques, ansy, anse andi from ans} andans!, and performs a brute force search over
all possible random coin tosses @fto find some random input such thatQ(i, ") = (que, ques). C’
runsC on (ans1, anss, i,r') and returns the answer. Note that the strihmay in fact be different from the
stringr however the correctness property@implies that even in this cagk outputs the right value.

Now consider the protocaP’. Let Q;- denote the range of queries to seryeand Ag» denote the range of
answers from serveit Variableque’; ranges ove@)’;, and variableins’ ranges overl’. Let R(que, i) denote the
set of random strings that lead to queryue} to serverj on inputi. Formally,

R(que},i) = {r € [q]™ | Squel, : Q(i,r) = (que}, queb)}
R(queh,i) = {r € [q]™™ | 3que] : Q(i,r) = (quel, queh) }

Note that the privacy property of the protod@l implies that the cardinalities dR(que}, i) are independent af

We denote these cardinalities bfgue). It is easy to see that(que]) is always an integer betweearandq™(™.
Now we are ready to define matric@sand A.

Rows of @ are labelled by possible paitgue), s), wheres € [r(que])]. Similarly columns of@ are labelled
by possible pairgques, s), wheres € [r(quey)]. We S€tQue; s1),(quey,s») = @ if there exists a string €
R(que’, i) N R(queh, i) such that- is the string numbes; in R(que), ) and the string numbew, in R(quel, )
with respect to lexicographic ordering of these sets; otherwise WRSEL <)) (quel,sn) = *-

Consider an arbitrary paifi, (que}, s1)), wheres; € [r(que})]. Let r be the unique random string that has
numbers; in lexicographic ordering oRR(que}, ). Let Q'(i,r) = (quel, quel), and letss be the number of
r in lexicographic ordering oRR(quel,, ¢). The column ofQ labelled (quel, s2) is the unique column such that
Q(que),s1),(quep,s2) = @ We demonstrated that every row @f contains exactly one entry labellédA similar
argument proves this claim for columns. ThHQ$s a generalized latin square.

Now we proceed to matrixl. Rows of A are labelled by possible values @i s}, similarly columns ofA are
labelled by possible values afisy. We SetAq,q ans, = C'(ansy, ansy). The unspecified entries of are set
arbitrarily. Matrix A defined above may not be a square, however one can always padsifuai® shape.

It remains to show thap — A. Given a map : [n] — [¢] we consider a databasewherez; = o(i). We use
protocol P’ to define mapsr; from the row set ofy to the row set ofd, andn, from the column set of) to the
column set ofA. We setr; (quel, s1) = A'(1, x, que) andma(queh, s2) = A'(2, x, quel,). Correctness property
of P’ implies that maps, 72 reduce certain completion ¢j,, to A. |

The theorem above presents our combinatorial view of two server Rileqmis. A PIR protocol is just a pair
@ — A, where( is a generalized latin square adds ag-ary matrix. Every PIR protocol can be converted into
this form, and in case the number of user’s coin tosses is linear in the queth kuch conversion does not affect
the asymptotic communication complexity.



3.1 Bilinear PIR

Combinatorial interpretation of PIR suggested above, views PIR as &epralf reducing certain special fami-
lies of matrices to some fixed matrix. A nice example of a nontrivial matrix wheeecan say a lot about matrices
that reduce to it is a Hadamard matrix.

Definition 6 A Hadamard matrixt,,, is a ¢ by ¢" matrix where rows and columns are labelled by elements of
[y and matrix cells contain dot products of corresponding labels. (&) v, v, = (v1,v2).

Lemma 7 Let M be a square matrix with entries frolfy; then A/ reduces to Hadamard matrii,,, if and only
if the F, rank of M is at mostm.

Proof: Clearly, theF, rank of H,, is m therefore the rank of any matrix that reduceg#g is at most that much.
To prove the converse observe tiddtcan be written as a sum ot matricesM = M; + ...+ M,,, where each
M; is of rank at most one. Letbe the size of\/. For everyi € [m] set thei-th coordinate ofn long vectors
V1, .., U UL, ..., Uy SO thatvj(1)uy (i) = (M;);x. Now the mapsr : [t] — [¢™], w2 : [t] — [¢™] defined by
m1(j) = vj, ma(k) = uy, embedM into H,,. |

The above lemma is important since it allows to reduce the proof@hat H,, for some generalized latin
square( to showing that for every : [n] — F,, Q, can be completed to a low rank matrix.

Definition 8 We say that a two server PIR schefe— A is bilinear if A = H,,, for some value oifn.

Another way to formulate the above definition is to say that a PIR scheme is bilfnidacomputes the dot
product of servers’ answers to obtain valuergf Next lemma shows that the restriction of bilinearity is weaker
than that of linearity.

Lemma 9 Every linear PIR protocol can be turned into a bilinear PIR protocol with saene asymptotic com-
munication complexity.

Proof: In alinear PIR protocol user receives two strings, anss Of linear combinations of database bits from
servers, and the unit vector corresponding tostitie bit of the database is guaranteed to be in the joint span of
combinations fronans; andanss. The final output of{ is a sum of two dot productg; , ansi)+(co, anss) = x;,
for some vectors; andc, that are computed by user along with quefigse;, ques). The idea behind turning a
linear protocol into a bilinear one is simple.

After generating(que1, ques) along withe; andey, U represents; andce as sums of random strings =
€11 + €12, co = co1 + 29, and sendgue; o 11 0 co1 10 Sy andques o ¢12 0 coo 10 So. Each server responds with a
string of2+|ans; |+|ansz| bits. S; sends backo(c11, ansy)ocaioansy. So sends backess, ansg)oloanssocys.
Itis easy to see that the dot product of servers answers yigldsid that the procedure above increases the overall
communication only by a constant factor. |

3.2 Group based PIR

Finite groups are a natural source of generalized latin sqUaresGLS|n, T']. Consider a finite groug: =
{91,..., 97} of sizeT, and an ordered subs6t= {si,...,s,} C G of sizen. A generalized latin squa@¢ s
is a7 by T square matrix whose rows and columns are labelled by elemegtsafd(y, 4, = i if glggl = s,
while all other locations contain stars.



In case PIR protocal) — A uses a generalized latin squdpe; s we say that such protoceimploys a group
based secret sharing schemEssentially, this means that given an indei maps it to a group elemet,
represents; as a random product in the grosp= glggl and sendg; t0 S;.

The notion of agroup basedPIR protocol (for that we later prove a lower bound) is more restrictivet
M € [q)"™*T andG be finite group. Assume that rows and columngbfare labelled by, . .., gr. We say that
M respects if for every g1, g2, g3, g4 € G such thay g, * = g3g; *, we haveM,, ,, = M,, 4,

Definition 10 We say that PIR protocd) — A is group based if it employs a secret sharing scheme based on
some group and for everys : [n] — F, there exists a completiof((),) such thatc(Q,) reduces to4d and
c(Qo) respectss.

Stated in other words a PIR scheme is group based if servers repiasspase by a function on a certain finite
groupG and the scheme allows user to retrieve the value of this function at any gleent using the natural
secret sharing based 6h

4 Communication complexity of bilinear group based PIR

Consider a bilinear group based PIR sché&pme> H, based on a grouf, with answer length. Clearly, query
length islog |G|. Let A(q, G, ) denote the number ¢&| by |G| matrices oveff, that respect (for some fixed
labelling{g1,...,gr} or rows and columns) and have rank at medt is easy to see that

q" < A, G,r), )

since by lemma 7 every database yields such a matrix and distinct databddedistiact matrices. In sec-
tion 4.2 we obtain an equivalent algebraic definition i, G, r), and in section 4.3 we prove an upper bound
for A(q, G,r). Our final result is a constraint on the range of possible valuésed€|, . This constraint implies
anQ(n'/3) lower bound for total communication of any bilinear group based PIR scheme

4.1 Algebraic preliminaries

Our proof relies on some basic notions of representation theory of firotgpgr The standard references for
this subject are [18], [9]. For a general algebra backgroundisge [

Let G be a finite (not necessarily abelian) group, and.. ., gr be all elements of;y. General linear group
GL,(F,) is a multiplicative group of all non-degeneratby r matrices ovef,.

e An [, representatiorof G of degree- is an homomorphism : G — GL,(F,).
e A group algebrdF,[G] of G over a fieldF, is an algebra ovel, consisting of all possible formal linear
T

combinations) | «;g;, o; € IF,. The algebraic operations Iy, [G] are defined by:
=1

(ZZ: ;igi> * (Zz: ﬁz‘%) :Z %(aiﬂj)(gigj);

by (2 aigi> =S (\aw)gi, AeF,

1

o igi + - Bigi = > (i + Bi)gis



e Aleft F,[G] module)M is anF, linear space that has left multiplication by the element8§¢], such that
for anym;, my € M and anye, 5 € Fy[G]:

a(my + me) = amy + ams;
(a4 B)m1 = amy + pmy;
(afB)my = a(Bmy).

Dimension of a module is its dimension asIaplinear space. Twd,[G] modules are called isomorphic if
there exists an isomorphism between them as linear spaces that preseltygication by the elements of
FqG].

e There is a one to one correspondence betwedimensional leftf,[G] modules)M considered up to iso-
morphism and, representations @¥ of degree- considered up to inner automorphisms of e, (F,).

4.2 Algebraic formulation

Let A = F,[G]. Fora € A, let rk(a) = dim(Aa), wheredim(Ac) is the dimension ofia as a linear space
overlF,. Consider theegular representatiom of G, ¢ : G — G L |(F,), defined by

. 1, g1g2_1 =g,
(@(9))g1,9 = { 0, otherwise. @

Extendg to A by linearity. Note that is an injective algebra homomorphism and that imaggisftheF, algebra
R of all matrices that respe¢t. Observe that for any/ € R,

kM = dim{M'M | M’ € R}. ©)

To verify formula (3) one needs to notice that the first row of a matfixc R can be arbitrary. Therefore products
M’ M contain all possible linear combinations of rowsMdfas their first row. Also notice that matrices fhare
uniquely determined by their first row. Formula (3) follows. It implies an atgetdefinition forA(q, G, r) :

A(q,G,r) = #{a € F4[G] | rk(ar) < 7} (4)
4.3 Low dimensional principal ideals in group algebras

Let V be anFF, linear subspace ofl. Left annihilator ofV" is defined byAnnr (V') e {B e A|pBV =0}.

Similarly, right annihilatorAnn g (V) e {B € A| V3 =0}.Clearly,Ann (V) is aleftideal inA andAnng(V)

is arightideal inA. Let M be a leftA module. Kernel of\/ is defined byKer(M) ey {eA|BM =0}.ltis

straightforward to verify thaiCer(M) is a two sided ideal. Our main technical result is given by
Theorem 11 For arbitrary finite groupG and arbitrary values oy andr

A(q, G,r) < qOoslGI),
Lemma 12 The number of dimensional leftd modules counted up to isomorphism is at mﬁ§t|G‘7“2.

Proof: The fourth bullet from subsection 4.1, implies that it suffices to c@ymepresentations d@¥ of degreer.
Letgi,...,gs be the set of generators fof, wheres < log |G|. Note that every representation G — GL,(F,)
is uniquely specified by matricesp(g1), - . ., ¢(gs) each of size by r. |



Clearly, isomorphic modules have identical kernels. Now we show thaekefa low dimensional module has
high dimension.

Lemma 13 Let M be anr dimensional leftd module; then the dimension &fer(M) as anF, linear space is at
least|G| — 2.

Proof: Note that multiplication by an element df induces a linear transformation #f. Such transformation
can be expressed by arby » matrix. Multiplication by a linear combination of elements 4fcorresponds to
linear combination of corresponding matrices. Therefbre Ker(M) > |G| — r2. |

Lemma 14 Supposé/ is an[F, linear subspace ofi; thendim(Anng(V)) < |G| — dim(V').

Proof: Consider a bilinear map: A ® A — F,, settingl(z ® y) equal to the coefficient af in the expansion
of zy in the group basis. Clearlyhas full rank (since in the group basis defined by an identity matrix up to a
permutation of columns). HowevéfV @ Anng(V)) = 0. Thusdim(Anng(V)) < |G| — dim(V). |

Proof of theorem 11: Leta € A be such that rler) < r. ConsiderAa as a leftA module. Ker(Aa) is a
two-sided ideall = Anny(A«). Note thate € Anng(I). By lemma 12 everyd module of dimension up to
has its kernel coming from a family of at mos;tlog‘c”’"2 ideals. Also by lemmas 13 and 14 there are at rr:)t")zst
elements indnng(I) for everyl. |

Combining equation (1) with theorem 11 we obtain our main result.

Theorem 15 Let Q — H, be a bilinear group based PIR scheme over a gréu_ett = log |G| denote the
query length and denote the answer length; then

n < O(tr?).

In particular total communication of any such schem@is!/?).
5 Conclusion

We introduced a novel, though quite natural combinatorial view of the twes@®1R problem, and obtained
a lower bound for communication complexity of PIR in a restricted model. Statedniafly, our main result
is that as long as servers represent database by a function on a fitge grotocol allows user to retrieve the
value of this function at any group element, and user computes the datgprafdservers responses to obtain the
final answer communication complexity has to Sbewl/i‘). Clearly, our result admits two interpretations. On
the one had it can be viewed as a witness in support of conjecture ofeChak. from [6] saying that their PIR
protocol WithO(n1/3) communication is asymptotically optimal. On the other hand our result exhibits a common
shortcoming of the existing upper bound technigues and thus hopefully roaigle some directions for future
work on upper bounds. We would like to stress the first interpretationrafeswilt by revisiting and discussing all
restrictions that we introduced in order to prove the lower bound:

1. We restricted ourselves to bilinear protocols. l.e. protocols wifezemputes the dot product of servers’
responses. Bilinearity is a weaker assumption then linearity, therefore ibeeves that linear PIRs come
close to optimal, so do bilinear.

2. We restricted/ to toss linearly many coins in the length of his queries. Although this restrictiemse
a technicality, so far we do not know how to go around it. The only justificatiat we have is that it
would seem quite surprising if indeed optimal PIR schemes require very garpunt of randomness. If
one accepts restrictions 1-2; then PIR protocol is just a@air H, such that for every : [n] — Fy, Q,
can be completed to a matrix of rank at mast



3. We further restrict generalized latin squgré¢o be of the form GLg s for certain subse$ of a finite group
G. Generalized latin squares of this form constitute a rich and natural dtasther terms this restriction
states that/ employs a group based secret sharing scheme to shareiibdexeen the servers.

4. Our last restriction is a restriction on the structure of low rank completibmsatrices@,,. We require that
for everyo there exists a completionof (), to a matrix of rank at most subject to an extra constraint that
¢(Q.) respectgs. Our only evidence for this restriction is that so far we are unaware ofipkes of matrices
Q. (with parameters suitable for nontrivial PIR) whose minimal rank with resipelocations labelled by
stars would be substantially smaller than the minimal rank subject to an extrtaatonsf respecting-.

We proved that communication complexity of any PIR scheme that satisfidstiests 1-4 is)(n!/3). We leave
reader to choose whether to accept each of the restrictions 1-4 agabbls We hope that ideas and techniques
that we introduced may lead to further progress towards understandexgdmmunication complexity of private
information retrieval. In particular the following problem is intriguing:

Open problem: Let Q = GLS[n,n’] be a generalized latin square of inverse polynomial density. Show that
there exists a map : [n] — Fy, such that the minimal', rank of @, (with respect to locations containing stars in
Qo) iIsw(logn).

Comment: If true this implies anv(log n) lower bound for every bilinear PIR scheme, whéféosses a linear
number of coins in the length of his queries. If false, this yields a PIR pobtith ¢ log » communication. It may
also be interesting to see if there is any formal connection between this iprabl@ well-knownmatrix rigidity
problem.
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6 Appendix: Current PIR schemes are bilinear group based

A number of two server PIR schemes are known to date [6, 1, 10, 4, 19].5The goal of this section is to show
that all of them can be easily turned into bilinear group based. We restrisélves to schemes from [6, 4, 19]
since every other scheme is a variant of one of them. We do not follow tlemalogical order in which the
schemes were proposed.

It was observed in [4] that all known PIR schemes rely (implicitly or explicity) the idea of polynomial
interpolation.? Specifically, the retrieval of;, where the servers hold databasand the user holds index is
reduced to an evaluation of a cubic multivariate polynomfi@dy, . .., z,,) € Fy[z1,. .., z], held by the servers,
on a pointE (i), which the user determines basediolVe refer toF (i) as the encoding of

We use the encoding functidii: [n] — [y, that has been previously used in [6, 4]. Without loss of generality
assume that’ = n'/? is an integer. Consider an arbitrary bijectipn [n] — [m/] x [m/] x [m/]. Lete, € {0,1}™
denote a vector whose unique nonzero coordinateSstm = 3m’. Put

E(i) = €5, © €(i), © € i)a-
Note that for every, E(i) has three nonzero coordinates. Define

F(zl,...,zm)zzﬁw H 21,

(E(i); is thel-th coordinate of(i).) Since eaclE(q) is of weight three, the degree #fis three. Each assignment
E(i) to the variables; satisfies exactly one monomial in (whose coefficient is;); thus,F(E (7)) = z;.

6.1 Monomial distribution scheme of [4]

For simplicity we restrict ourselves to the case when the underlying fielt}.issiven a cubic polynomial
F(z1,...,2m) € Fo[z1,..., zn] Servers compute a new polynomialam variables

A~

F(viy..o o Um, w1, ...y wp) = F(v1 + w1, ..., Uy + Wip)-

Servers rewrité”’ as a sum of two polynomials

F(viy..o U, W, ..., W) :FU(Ul,...,vm,wl,...,wm)—I—Fw(vl,...,vm,wl,...,wm),

where F}, is the sum of all monomials front' that contain at least two variables, and F, is the sum of all
monomials fromF that contain at least two variablas. Note that every monomial of’ goes either td", or to
F,,. Servers further rewrité;,, and F,,, to obtain

3

Fv(vl,...,vm,wl,...,wm) =F(v1,...,0m) + Y vl ..., om)wy

Il
—

l

()

N

Fy(viy.. o Um,wi, ... ywp) = F(wy, ..., wn) +

NE

c(wi, ..., wp)y

~

=1
The formal description of the scheme is below. Recall that user HoldsF:* and wants to retrievé’(P).

U : Represent® as arandom su® =V + W for V, W e F7".
U—-38 : (vi,...,0n)
U—S  (wi,...,wp)

U—S : F(V),a(V),....,em(V)
U—S : FW),ct(W),...,cpn(W)
U : OutputsE' (V) + F(W) + (V, (ci(W), ..., com(W))) + (W, (c1(V), ..., em(V)))

2This claim remains true although a number of new PIR schemes apmteeft] was published.



Note that the protocol above is group based, since the user can réfigydor any P € F7', and user’s secret
sharing scheme is based Bff. Unfortunately, in the current form the protocol is not bilinear. It is natchto
modify the protocol to achieve bilinearity.

U : Represent$’ as arandom sur® =V + W for V, W ¢ F7".
U—-8 : (v1,...,0m)

U—-S : (w,...,wp)

U—S : F(V)oloci(V)o...ocp(V)ovio...oupy

U—Sy + 1ToFW)owjo...owpmoci(W)o...ocy(W)

U :  Outputs the dot product of servers’ responses.

6.2 Combinatorial scheme of [6]

Unlike the PIR schemes of [4, 19] the scheme of [6] does not explicitly metdi@miegree multivariate poly-
nomials (or any other functions on groups), therefore it is not immediatety blew to make it bilinear group
based. However it was observed in [4] that in fact this scheme can alsadb in terms of polynomial evaluation.
We now sketch the description of the scheme and show that it is essentiallicéden the scheme of [4], and
therefore can be turned into a bilinear group based form.

Recall thatn’ = n'/3 is an integer and : [n] — [m/] x [m/] x [m’] is bijective. ForS C [m/] andj € [m/] let
_ S\ ifjes,
S0J= { SuU{j}, otherwise.
FOI’Sl, SQ, Sg C [m’] let
T(S1, S, 83) = > ;.
ViE[3]: ¢(i);€S;
We say that a triple of set$|, S5, S5 C [m/] is at distance one from a tripl§, S, S5 if there exist unique € [3]
andk € [m'] suchthatS; = S; fort # jandS; = S @ k. Let B(S1, 52, S3) denote them’ long vector of values

of T'(S1, S5, 5%) at triplesSy, S5, S5 that are at distance one froff1, Sz, S3. Below is the formal description of
the messages exchanged by the user and the servers:

u : PicksSy, Sy, S3 C [m/] uniformly at random.

U—-38 : 51,5,

U—S : S1®¢(i)1,S2® ¢(i)2, S3® ¢(i)s

U—S8 : T(5,5,5S5s3),B(S1,S2,53)

U—SE : T(S1® o)1, @ (i), 53 ® ¢(i)3), B(S1 ® ¢(i)1, 52 @ ¢(i)2, 53 ® ¢(i)3)

Now note thafl'(S1, Sz, S3) = F(S10S52083). Let P = E(i) € F3'. Recall that; € {0, 1}™ denotes a vector
whose unique nonzero coordinaté.i§Ve rewrite the protocol above in a different notation:
U : Represent$’ as arandom sur® =V + W for V, W e FJ".
U—-S8  (vi,...,0m)
U—S : (w,...,wp)
U—S : FV),FV+e),...,F(V+en)
U—Sy « FIW),F(W+e1),...,F(W +en)

Let ¢; denote the polynomial that has been previously used in formula (5). It isand to verify that
aV)=F(V +e¢e)+ F(V). (6)

Taking formula (6) into account we conclude that the combinatorial schéineds essentially identical to the
scheme from the previous subsection. Thus it can also be turned into abdimeip based form.




6.3 Partial derivatives scheme of [19]

An important difference of this scheme is that it requires field size to berltiga2. Fix two distinct nonzero
elements\;, A2 € Fy,. Let f(\) € F,[A] be a univariate cubic polynomial. Note that

f(0) = crf(A1) + caf (M) + esf(X2) + eaf'(A2),

for some constants that are independent gt

Protocol description : We use standard mathematical notat@jlq‘w to denote the value of the partial deriva-
tive of F" with respect toy; at pointW. Let P = E(i). The user wants to retrievé(P).

U : PicksV € Fg* uniformly at random.
U—-38 : P+NV
U-—-8 : P+\V

U8 + FP+MV), 5~ Pinv’ 8ZW‘P+)\1V
‘ oF OF
u — 82 . F(P+)\2v) 8_21 P+>\2V tt 8Zm P+)\2V
U : Outputsci F(P 4+ A\ V) + ¢2 Z 6Zl by Vi+asF(P+XV)+ca Z le Piagy L
) 2

Note that in the protocol above servers represent database bytfufic F;* — F, on a group and user can
retrievel'(P) for arbitrary element” € Fi*. However the protocol is not bilinear group based, since the user does
not secret share according to the group law (i.e. the difference oésfisdifferent fromP), and the user does not
output the dot product of servers’ responses. It is not hard to mdwfprotocol to achieve the desired properties.

Bilinear group based form:

U . PicksV € F* uniformly at random.
Uu—3§ (P + )\1V))\2/()\2 — )\1)
U—-S : (P+XV)A1 /(A2 — A1)
. 2 NN OF oF OF

U—S : F(P+XMV)ocso [)\12/\2 l; | poay (P+M\V), ] o P+,\1VO“'O o P+>\1Vo

olo =4 (P+AMV)io Ho (P MV )m
U—S8 : 1OF(P+)\2V>010 _62 (P+)\2V> _C2 (P+)\2V)

c 3 OF P+ V)| o 2F o 2L

o |:>\2_>\1 l; 0z, PV ( + Ag ):| 021 PV (e} o Do Py

U : Outputs the dot product of servers’ responses.
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