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Abstract

A two server private information retrieval (PIR) scheme allows a userU to retrieve thei-th bit of ann-bit
string x replicated between two servers while each server individually learns no information abouti. The main
parameter of interest in a PIR scheme is its communication complexity, namely the number of bits exchanged by
the user and the servers. A large amount of effort has been invested by researchers over the last decade in search
for efficient PIR schemes. A number of different schemes [6, 4, 19]have been proposed, however all of them ended
up with the same communication complexity ofO(n1/3). The best known lower bound to date is5 log n by [17].
The tremendous gap between upper and lower bounds is the focus of ourpaper. We show anΩ(n1/3) lower bound
in a restricted model that nevertheless captures all known upper boundtechniques.

Our lower bound applies to bilinear group based PIR schemes. A bilinear PIR scheme is a one round PIR
scheme, where user computes the dot product of servers’ responses to obtain the desired value of thei-th bit.
Every linear scheme can be turned into a bilinear one. A group based PIRscheme, is a PIR scheme, that involves
servers representing database by a function on a certain finite groupG, and allows user to retrieve the value of
this function at any group element using the natural secret sharing scheme based onG. Our proof relies on some
basic notions of representation theory of finite groups. We also discuss the approaches one may take to obtain a
general lower bound for bilinear PIR.

1 Introduction

Private information retrieval (PIR) was introduced in a seminal paper by Chor, Goldreich, Kuzhelevitz and
Sudan [6]. In such a scheme a server holds ann-bit stringx representing a database, and a user holds an index
i ∈ [n]. At the end of the protocol the user should learnxi and the server should learn nothing abouti. A trivial
PIR protocol is to send the whole databasex to the user. While this protocol is perfectly private, its communication
complexity is prohibitively large. Note that, in a non-private setting, there is a protocol with onlylog n + 1 bits of
communication. This raises the question of how much communication is necessaryto achieve privacy. It has been
shown in [6] that in case information-theoretic privacy is required the above trivial solution is in fact optimal. To
go around this Choret al. suggested replicating the database amongk > 1 non-communicating servers.

For the case of two servers [6] obtained a PIR protocol withO(n1/3) communication complexity. In spite of
the large amount of subsequent research this bound remains the best known to date. For generalk [6] achieved
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the complexity ofO(n1/k). Their bound was later improved by Ambainis [1] toO(n1/(2k−1)). Finally in a break-

through result [5] Beimelet al. achieved the communication complexity ofn
O

(

log log k

k log k

)

.
On the lower bounds side the progress has been scarce. We list the known results for the two server case. The

first nontrivial lower bound of4 log n is due to Mann [15]. Later it was improved to4.4 log n by Kerenidis and
de Wolf [13] using the results of Katz and Trevisan [14]. The current record of5 log n is due to Wehner and de
Wolf [17]. The proofs of the last two bounds use quantum arguments.

To date PIR literature is extensive. There is a number of generalizations ofthe basic PIR setup that have been
studied. Most notably those are: computational PIR (i.e. PIR based on computational assumptions), PIR with
privacy against coalitions of servers, PIR with fixed answer sizes, robust PIR, etc. Private information retrieval
schemes are also closely related to locally decodable codes (LDC). For a survey of PIR and LDC literature see [7].

In the current paper we study communication complexity of PIR in the most basictwo server case. There are
two reasons why this case in especially attractive. Firstly, determining the communication complexity of optimal
two server PIR schemes, is arguably the most challenging problem in the area of PIR research. There has been no
quantitative progress for this case since the problem was posed. Although to date a number of different two server
PIR schemes are known [6, 4, 19] all of them have the same communication complexity ofO(n1/3). Secondly, the
work of [5] implies that any improvement of the upper bound for two serverPIR, yields better PIR protocols for
all other values ofk.

1.1 Our results

Our main result is anΩ(n1/3) lower bound for a restricted model of two server PIR. Our restrictions revolve
around a novel, though quite natural combinatorial view of the problem. We show that two server PIR essentially is
a problem regarding the minimal size of aninduced universal graphfor a family of graphs with certain property.1

This view allows us to identify two natural models of PIR, namely,bilinear PIR, andbilinear group basedPIR.
A bilinear PIR scheme is a one round PIR scheme, where user computes the dot product of servers’ responses
to obtain the desired value of thei-th bit. A group based PIR scheme, is a PIR scheme, that involves servers
representing database by a function on a certain finite groupG, and allows user to retrieve the value of this
function at any group element using the natural secret sharing scheme based onG.

We establish anΩ(n1/3) lower bound for communication complexity of any bilinear group based PIR scheme,
that holds regardless of the underlying groupG and regardless of the algorithms run by the servers. The model
of bilinear group based PIR generalizes all PIR protocols known to date,thus our lower bound demonstrates a
common shortcoming of the existing upper bound techniques.

It turns out that communication complexity of bilinear group based PIR over agroupG can be estimated in
terms of the number of low dimensional principal left ideals in the group algebraFq[G]. Our main technical result
is an upper bound for this quantity obtained by an argument relying on some basic notions of representation theory
of finite groups.

1.2 Related work

Apart from the work on general lower bounds for PIR protocols that we surveyed above, there has been some
effort to establish (stronger) lower bounds for various restricted models of PIR. In particular Itoh [12] obtained
polynomial lower bounds on communication complexity of one round PIR, under the assumption that each server
returns a multilinear or affine function of its input. Goldreichet. al.[8] introduced the notion oflinear PIR proto-
cols, i.e. protocols where the servers are restricted to return linear combinations of the database bits to the user, and
also the notion ofprobe complexity,i.e. the maximal number of bits the user needs to read from servers’ answers

1We actually prefer to use language of matrices rather then graphs, but of course graph formulations are easy to obtain. A graphG is
called induced universal for a graph familyF if every graphF ∈ F is an induced subgraph ofG.



in order to computexi. Goldreichet. al.obtained polynomial lower bounds for communication complexity of two
server linear PIR schemes whose probe complexity is constant. Later, theirresults were extended by Wehner and
de Wolf [17] who showed that the restriction of linearity can in fact be dropped.

It is not easy to match the restricted models surveyed above against one another and against our model, because
the restrictions are quite different. We do not impose any restriction on the functions computed by the servers
as [12], and do not restrict the user to read only a small number of bits from servers’ answers as [8]. We show that
our bilinearity restriction is weaker than the linearity restriction of [8], since every linear protocol can be easily
turned into a bilinear one. However we insist that the PIR scheme should employ group based secrete sharing, and
that the user should be able to privately reconstruct not only the database bits but also some extra functions of the
database (given by the values at group elements that do not correspond to database bits).

1.3 Outline

In section 2 we introduce our notation and provide some necessary definitions. In section 3 we present our
combinatorial interpretation of two server PIR, and identify the models of bilinear PIR and bilinear group based
PIR. Section 4 contains the main technical contribution of the current paper. We introduce necessary algebraic tools
and establish anΩ(n1/3) lower bound for communication complexity of any bilinear group based PIR scheme. In
section 5 we discuss possible interpretations of our results and pose an open problem. In the appendix we review
currently known two server PIR schemes and demonstrate that all of them are bilinear group based.

2 Preliminaries

Let [s]
def
= {1, . . . , s}. We assume thatq is a prime power and use the notationFq to denote a finite field ofq

elements. We assume that database contains entries from alphabet[q], rather then just a binary alphabet. We also
assume some implicit bijection between[q] andFq. Everywherelog stands for thelog baseq. Notationa◦b stands
for concatenation of stringsa andb.

A two-server PIR scheme involves two serversS1 andS2 each holding the samen-bit stringx (the database),
and userU who knowsn and wants to retrieve some bitxi, i ∈ [n], without revealing the value ofi. We restrict
our attention to one round information-theoretic PIR protocols. The followingdefinition is a non-uniform variant
of the definition from [5].

Definition 1 A two server PIR protocol is a triplet of non-uniform algorithmsP = (Q,A, C). We assume that
each algorithm is givenn as an advice. At the beginning of the protocol, the userU tosses random coins and
obtains a random stringr. NextU invokesQ(i, r) to generate a pair of queries(que1, que2). U sendsque1 to S1

andque2 to S2. Each serverSj responds with an answeransj = A(j, x, quej). (We can assume without loss of
generality that servers are deterministic; hence, each answer is a function of a query and a database.) Finally,
U computes its output by applying the reconstruction algorithmC(ans1, ans2, i, r). A protocol as above should
satisfy the following requirements:

• Correctness : For anyn, x ∈ [q]n and i ∈ [n], the user outputs the correct value ofxi with probability1
(where the probability is over the random stringsr).

• Privacy : Each server individually learns no information abouti. To formalize this letQj denote the ofj-th
output ofQ, j = 1, 2. We require that forj = 1, 2 and anyn, i1, i2 ∈ [n] the distributionsQj(i1, r) and
Qj(i2, r) are identical.

The communication complexityof a PIR protocolP, is a function ofn measuring the total number of bits
communicated between the user and the servers, maximized over all choices of x ∈ [q]n, i ∈ [n], and random
inputs.



Definition 2 [8] A linear PIR scheme is a PIR scheme, where the answer functionA(j, x, quej) is linear inx for
arbitrary fixed values ofj andquej . In other words every bit of an answer is a certain linear combination of the
database bits.

3 A combinatorial view of two server PIR

Definition 3 A generalized latin squareQ = GLS[n, T ] is a square matrix of sizeT by T over an alphabet
[n] ∪ {∗}, such that:

• For everyi ∈ [n] andj ∈ [T ], there exists a uniquek ∈ [T ] such thatQjk = i;

• For everyi ∈ [n] andj ∈ [T ], there exists a uniquek ∈ [T ] such thatQkj = i.

In particular, every row (or column) of a GLS[n, T ] contains precisely(T − n) stars. We call the ration/T the
densityof a generalized latin square. It is easy to see that generalized latin squares of density1 are simply latin
squares.

Let Q = GLS[n, T ], and letσ : [n]→ [q] be an arbitrary map. ByQσ we denote a matrix of sizeT by T over
the alphabet[q] ∪ {∗}, which is obtained fromQ by replacing every non-star entryi in Q by σ(i). We say that a
matrix c(Qσ) ∈ [q]T×T is acompletionof Qσ if c(Qσ)ij = (Qσ)ij whenever(Qσ)ij ∈ [q].

For matricesA ∈ [q]l×l andB ∈ [q]b×b we say thatB reducesto A if there exist two mapsπ1 : [b] → [l] and
π2 : [b] → [l] such that for anyj, k ∈ [b] : Bjk = Aπ1(j),π2(k). Note that we do not impose any restrictions on
mapsπ1 andπ2, in particularb can be larger thenl.

Definition 4 Let Q = GLS[n, T ], and A ∈ [q]l×l. We say thatA coversQ, (notationQ ↪→ A) if for every
σ : [n]→ [q], there exists a completionc of Qσ, such thatc(Qσ) reduces toA.

Theorem 5 The following two implications are valid:

• A pair Q ↪→ A, whereQ = GLS[n, T ], A ∈ [q]l×l, yields a two server PIR protocol with communication
log T fromU to eachSj and communicationlog l fromSj ’s back toU .

• A two server PIR protocol with queries of lengtht(n) and answers of lengtha(n), where the user tosses at
mostτ(n) random coins yields a pairQ ↪→ A, whereQ = GLS

[

n, nqt(n)+τ(n)
]

, andA is a q-ary square
matrix of sizenqt(n)+a(n).

Proof: We start with the first part. We assume that matrixA is known to all pariesU ,S1 andS2. At the

preprocessing stage, servers use the databasex ∈ [q]n, to define the mapσ : [n] → [q], settingσ(i)
def
= xi. Also,

they find an appropriate completionc(Qσ), and obtain mapsπ1 : [T ] → [l] andπ2 : [T ] → [l], such for allj, k
c (Qσ)jk = Aπ1(j),π2(k). The following protocol is further executed.

U : Picks a locationj, k in Q such thatQjk = i uniformly at random.
U → S1 : j
U → S2 : k
U ← S1 : π1(j)
U ← S2 : π2(k)
U : OutputsAπ1(j),π2(k).

It is straightforward to verify that the protocol above is private, since auniformly random choice of a locationj, k
such thatQjk = i, induces uniformly random individual distributions onj and onk. Correctness follows from the
fact thatc(Qσ) reduces toA. Total communication is given by2(log T + log l).



Now we proceed to the second part. Consider a two server protocolP = (Q,A, C). First we show that one can
modify P to obtain a new PIR protocolP ′ = (Q′,A′, C′), such thatC′ depends only onans′1 andans′2, but not
on i or r. The transformation is simple:

• FirstQ′ obtains a random stringr and invokesQ(i, r) to generate(que1, que2). NextQ′ tosseslog n extra
random coins to representi as a random sumi = i1 + i2 mod (n), setsque′1 = que1 ◦ i1, que′2 = que2 ◦ i2
and sendsque′1 to S1 andque′2 to S2.

• For j = 1, 2 A′ extractsquej from que′j , runsA on (j, x, quej) and returnsansj ◦ que′j .

• Finally,C′ extractsque1, que2, ans1, ans2 andi from ans′1 andans′2 and performs a brute force search over
all possible random coin tosses ofQ to find some random inputr′ such thatQ(i, r′) = (que1, que2). C

′

runsC on (ans1, ans2, i, r
′) and returns the answer. Note that the stringr′ may in fact be different from the

stringr however the correctness property ofP implies that even in this caseC′ outputs the right value.

Now consider the protocolP ′. Let Q′
j denote the range of queries to serverj, andA′

j denote the range of
answers from serverj. Variableque′j ranges overQ′

j , and variableans′j ranges overA′
j . Let R(que′j , i) denote the

set of random stringsr that lead to queryque′j to serverj on inputi. Formally,

R(que′1, i) =
{

r ∈ [q]τ(n) | ∃que′2 : Q(i, r) = (que′1, que′2)
}

R(que′2, i) =
{

r ∈ [q]τ(n) | ∃que′1 : Q(i, r) = (que′1, que′2)
}

Note that the privacy property of the protocolP ′ implies that the cardinalities ofR(que′j , i) are independent ofi.

We denote these cardinalities byr(que′j). It is easy to see thatr(que′j) is always an integer between1 andqτ(n).
Now we are ready to define matricesQ andA.

Rows ofQ are labelled by possible pairs(que′1, s), wheres ∈ [r(que′1)]. Similarly columns ofQ are labelled
by possible pairs(que′2, s), wheres ∈ [r(que′2)]. We setQ(que′1,s1),(que′2,s2) = i if there exists a stringr ∈
R(que′1, i) ∩ R(que′2, i) such thatr is the string numbers1 in R(que′1, i) and the string numbers2 in R(que′2, i)
with respect to lexicographic ordering of these sets; otherwise we setQ(que′1,s1),(que′2,s2) = ∗.

Consider an arbitrary pair(i, (que′1, s1)) , wheres1 ∈ [r(que′1)]. Let r be the unique random string that has
numbers1 in lexicographic ordering ofR(que′1, i). Let Q′(i, r) = (que′1, que′2), and lets2 be the number of
r in lexicographic ordering ofR(que′2, i). The column ofQ labelled(que′2, s2) is the unique column such that
Q(que′1,s1),(que′2,s2) = i. We demonstrated that every row ofQ contains exactly one entry labelledi. A similar
argument proves this claim for columns. ThusQ is a generalized latin square.

Now we proceed to matrixA. Rows ofA are labelled by possible values ofans′1, similarly columns ofA are
labelled by possible values ofans′2. We setAans′1,ans′2

= C′(ans′1, ans′2). The unspecified entries ofA are set
arbitrarily. MatrixA defined above may not be a square, however one can always pad it to asquare shape.

It remains to show thatQ ↪→ A. Given a mapσ : [n]→ [q] we consider a databasex, wherexi = σ(i). We use
protocolP ′ to define mapsπ1 from the row set ofQ to the row set ofA, andπ2 from the column set ofQ to the
column set ofA. We setπ1(que′1, s1) = A′(1, x, que′1) andπ2(que′2, s2) = A′(2, x, que′2). Correctness property
of P ′ implies that mapsπ1, π2 reduce certain completion ofQσ to A.

The theorem above presents our combinatorial view of two server PIR protocols. A PIR protocol is just a pair
Q ↪→ A, whereQ is a generalized latin square andA is aq-ary matrix. Every PIR protocol can be converted into
this form, and in case the number of user’s coin tosses is linear in the query length such conversion does not affect
the asymptotic communication complexity.



3.1 Bilinear PIR

Combinatorial interpretation of PIR suggested above, views PIR as a problem of reducing certain special fami-
lies of matrices to some fixed matrix. A nice example of a nontrivial matrix where one can say a lot about matrices
that reduce to it is a Hadamard matrix.

Definition 6 A Hadamard matrixHm is a qm by qm matrix where rows and columns are labelled by elements of
F

m
q and matrix cells contain dot products of corresponding labels. I.e.(Hm)v1,v2

= (v1, v2).

Lemma 7 Let M be a square matrix with entries fromFq; thenM reduces to Hadamard matrixHm if and only
if theFq rank ofM is at mostm.

Proof: Clearly, theFq rank ofHm is m therefore the rank of any matrix that reduces toHm is at most that much.
To prove the converse observe thatM can be written as a sum ofm matricesM = M1 + . . . + Mm, where each
Mj is of rank at most one. Lett be the size ofM. For everyi ∈ [m] set thei-th coordinate ofm long vectors
v1, . . . , vt u1, . . . , ut so thatvj(i)uk(i) = (Mi)jk. Now the mapsπ1 : [t] → [qm], π2 : [t] → [qm] defined by
π1(j) = vj , π2(k) = uk embedM into Hm.

The above lemma is important since it allows to reduce the proof thatQ ↪→ Hm for some generalized latin
squareQ to showing that for everyσ : [n]→ Fq, Qσ can be completed to a low rank matrix.

Definition 8 We say that a two server PIR schemeQ ↪→ A is bilinear if A = Hm for some value ofm.

Another way to formulate the above definition is to say that a PIR scheme is bilinear if U computes the dot
product of servers’ answers to obtain value ofxi. Next lemma shows that the restriction of bilinearity is weaker
than that of linearity.

Lemma 9 Every linear PIR protocol can be turned into a bilinear PIR protocol with thesame asymptotic com-
munication complexity.

Proof: In a linear PIR protocol user receives two stringsans1, ans2 of linear combinations of database bits from
servers, and the unit vector corresponding to thei-th bit of the database is guaranteed to be in the joint span of
combinations fromans1 andans2. The final output ofU is a sum of two dot products(c1, ans1)+(c2, ans2) = xi,
for some vectorsc1 andc2 that are computed by user along with queries(que1, que2). The idea behind turning a
linear protocol into a bilinear one is simple.

After generating(que1, que2) along withc1 andc2, U representsc1 andc2 as sums of random stringsc1 =
c11 + c12, c2 = c21 + c22, and sendsque1 ◦ c11 ◦ c21 to S1 andque2 ◦ c12 ◦ c22 to S2. Each server responds with a
string of2+|ans1|+|ans2| bits.S1 sends back1◦(c11, ans1)◦c21◦ans1. S2 sends back(c22, ans2)◦1◦ans2◦c12.
It is easy to see that the dot product of servers answers yieldsxi, and that the procedure above increases the overall
communication only by a constant factor.

3.2 Group based PIR

Finite groups are a natural source of generalized latin squaresQ = GLS[n, T ]. Consider a finite groupG =
{g1, . . . , gT } of sizeT, and an ordered subsetS = {s1, . . . , sn} ⊆ G of sizen. A generalized latin squareQG,S

is aT by T square matrix whose rows and columns are labelled by elements ofG, andQg1,g2
= i if g1g

−1
2 = si,

while all other locations contain stars.



In case PIR protocolQ ↪→ A uses a generalized latin squareQG,S we say that such protocolemploys a group
based secret sharing scheme.Essentially, this means that given an indexi U maps it to a group elementsi,
representssi as a random product in the groupsi = g1g

−1
2 and sendsgj to Sj .

The notion of agroup basedPIR protocol (for that we later prove a lower bound) is more restrictive.Let
M ∈ [q]T×T andG be finite group. Assume that rows and columns ofM are labelled byg1, . . . , gT . We say that
M respectsG if for everyg1, g2, g3, g4 ∈ G such thatg1g

−1
2 = g3g

−1
4 , we haveMg1,g2

= Mg3,g4
.

Definition 10 We say that PIR protocolQ ↪→ A is group based if it employs a secret sharing scheme based on
some groupG and for everyσ : [n] → Fq there exists a completionc(Qσ) such thatc(Qσ) reduces toA and
c(Qσ) respectsG.

Stated in other words a PIR scheme is group based if servers representdatabase by a function on a certain finite
groupG and the scheme allows user to retrieve the value of this function at any groupelement using the natural
secret sharing based onG.

4 Communication complexity of bilinear group based PIR

Consider a bilinear group based PIR schemeQ ↪→ Hr based on a groupG, with answer lengthr. Clearly, query
length islog |G|. Let A(q, G, r) denote the number of|G| by |G| matrices overFq that respectG (for some fixed
labelling{g1, . . . , gT } or rows and columns) and have rank at mostr. It is easy to see that

qn ≤ A(q, G, r), (1)

since by lemma 7 every database yields such a matrix and distinct databases yield distinct matrices. In sec-
tion 4.2 we obtain an equivalent algebraic definition forA(q, G, r), and in section 4.3 we prove an upper bound
for A(q, G, r). Our final result is a constraint on the range of possible values oflog |G|, r. This constraint implies
anΩ(n1/3) lower bound for total communication of any bilinear group based PIR scheme.

4.1 Algebraic preliminaries

Our proof relies on some basic notions of representation theory of finite groups. The standard references for
this subject are [18], [9]. For a general algebra background see [16].

Let G be a finite (not necessarily abelian) group, andg1, . . . , gT be all elements ofG. General linear group
GLr(Fq) is a multiplicative group of all non-degenerater by r matrices overFq.

• An Fq representationof G of degreer is an homomorphismφ : G→ GLr(Fq).

• A group algebraFq[G] of G over a fieldFq is an algebra overFq consisting of all possible formal linear

combinations
T
∑

i=1
αigi, αi ∈ Fq. The algebraic operations inFq[G] are defined by:

∑

i
αigi +

∑

i
βigi =

∑

i
(αi + βi)gi;

(

∑

i
αigi

)

∗

(

∑

i
βigi

)

=
∑

i,j
(αiβj)(gigj);

λ

(

∑

i
αigi

)

=
∑

i
(λαi)gi, λ ∈ Fq.



• A left Fq[G] moduleM is anFq linear space that has left multiplication by the elements ofFq[G], such that
for anym1, m2 ∈M and anyα, β ∈ Fq[G]:

α(m1 + m2) = αm1 + αm2;
(α + β)m1 = αm1 + βm1;

(αβ)m1 = α(βm1).

Dimension of a module is its dimension as anFq linear space. TwoFq[G] modules are called isomorphic if
there exists an isomorphism between them as linear spaces that preservesmultiplication by the elements of
Fq[G].

• There is a one to one correspondence betweenr dimensional leftFq[G] modulesM considered up to iso-
morphism andFq representations ofG of degreer considered up to inner automorphisms of theGLr(Fq).

4.2 Algebraic formulation

Let A = Fq[G]. For α ∈ A, let rk(α) = dim(Aα), wheredim(Aα) is the dimension ofAα as a linear space
overFq. Consider theregular representationφ of G, φ : G→ GL|G|(Fq), defined by

(φ(g))g1,g2
=

{

1, g1g
−1
2 = g,

0, otherwise.
(2)

Extendφ to A by linearity. Note thatφ is an injective algebra homomorphism and that image ofφ is theFq algebra
R of all matrices that respectG. Observe that for anyM ∈ R,

rkM = dim{M ′M |M ′ ∈ R}. (3)

To verify formula (3) one needs to notice that the first row of a matrixM ′ ∈ R can be arbitrary. Therefore products
M ′M contain all possible linear combinations of rows ofM as their first row. Also notice that matrices inR are
uniquely determined by their first row. Formula (3) follows. It implies an algebraic definition forA(q, G, r) :

A(q, G, r) = #{α ∈ Fq[G] | rk(α) ≤ r}. (4)

4.3 Low dimensional principal ideals in group algebras

Let V be anFq linear subspace ofA. Left annihilator ofV is defined byAnnL(V )
def
= {β ∈ A | βV = 0}.

Similarly, right annihilatorAnnR(V )
def
= {β ∈ A | V β = 0}. Clearly,AnnL(V ) is a left ideal inA andAnnR(V )

is a right ideal inA. Let M be a leftA module. Kernel ofM is defined byKer(M)
def
= {β ∈ A | βM = 0}. It is

straightforward to verify thatKer(M) is a two sided ideal. Our main technical result is given by

Theorem 11 For arbitrary finite groupG and arbitrary values ofq andr

A(q, G, r) ≤ qO(log |G|r2).

Lemma 12 The number ofr dimensional leftA modules counted up to isomorphism is at mostqlog |G|r2

.

Proof: The fourth bullet from subsection 4.1, implies that it suffices to countFq representations ofG of degreer.
Let g1, . . . , gs be the set of generators forG, wheres ≤ log |G|. Note that every representationφ : G→ GLr(Fq)
is uniquely specified bys matricesφ(g1), . . . , φ(gs) each of sizer by r.



Clearly, isomorphic modules have identical kernels. Now we show that kernel of a low dimensional module has
high dimension.

Lemma 13 LetM be anr dimensional leftA module; then the dimension ofKer(M) as anFq linear space is at
least|G| − r2.

Proof: Note that multiplication by an element ofA induces a linear transformation ofM. Such transformation
can be expressed by anr by r matrix. Multiplication by a linear combination of elements ofA corresponds to
linear combination of corresponding matrices. Thereforedim Ker(M) ≥ |G| − r2.

Lemma 14 SupposeV is anFq linear subspace ofA; thendim(AnnR(V )) ≤ |G| − dim(V ).

Proof: Consider a bilinear mapl : A ⊗ A → Fq, settingl(x ⊗ y) equal to the coefficient of1 in the expansion
of xy in the group basis. Clearly,l has full rank (since in the group basisl is defined by an identity matrix up to a
permutation of columns). Howeverl(V ⊗AnnR(V )) = 0. Thusdim(AnnR(V )) ≤ |G| − dim(V ).

Proof of theorem 11: Let α ∈ A be such that rk(α) ≤ r. ConsiderAα as a leftA module. Ker(Aα) is a
two-sided idealI = AnnL(Aα). Note thatα ∈ AnnR(I). By lemma 12 everyA module of dimension up tor
has its kernel coming from a family of at mostrqlog |G|r2

ideals. Also by lemmas 13 and 14 there are at mostqr2

elements inAnnR(I) for everyI.

Combining equation (1) with theorem 11 we obtain our main result.

Theorem 15 Let Q ↪→ Hr be a bilinear group based PIR scheme over a groupG. Let t = log |G| denote the
query length andr denote the answer length; then

n ≤ O(tr2).

In particular total communication of any such scheme isΩ(n1/3).

5 Conclusion

We introduced a novel, though quite natural combinatorial view of the two server PIR problem, and obtained
a lower bound for communication complexity of PIR in a restricted model. Stated informally, our main result
is that as long as servers represent database by a function on a finite group, protocol allows user to retrieve the
value of this function at any group element, and user computes the dot product of servers responses to obtain the
final answer communication complexity has to beΩ(n1/3). Clearly, our result admits two interpretations. On
the one had it can be viewed as a witness in support of conjecture of Choret. al. from [6] saying that their PIR
protocol withO(n1/3) communication is asymptotically optimal. On the other hand our result exhibits a common
shortcoming of the existing upper bound techniques and thus hopefully may provide some directions for future
work on upper bounds. We would like to stress the first interpretation of our result by revisiting and discussing all
restrictions that we introduced in order to prove the lower bound:

1. We restricted ourselves to bilinear protocols. I.e. protocols whereU computes the dot product of servers’
responses. Bilinearity is a weaker assumption then linearity, therefore if one believes that linear PIRs come
close to optimal, so do bilinear.

2. We restrictedU to toss linearly many coins in the length of his queries. Although this restriction seems
a technicality, so far we do not know how to go around it. The only justificationthat we have is that it
would seem quite surprising if indeed optimal PIR schemes require very large amount of randomness. If
one accepts restrictions 1-2; then PIR protocol is just a pairQ ↪→ Hr such that for everyσ : [n]→ Fq, Qσ

can be completed to a matrix of rank at mostr.



3. We further restrict generalized latin squareQ to be of the form GLSG,S for certain subsetS of a finite group
G. Generalized latin squares of this form constitute a rich and natural class.In other terms this restriction
states thatU employs a group based secret sharing scheme to share indexi between the servers.

4. Our last restriction is a restriction on the structure of low rank completions of matricesQσ. We require that
for everyσ there exists a completionc of Qσ to a matrix of rank at mostr subject to an extra constraint that
c(Qσ) respectsG. Our only evidence for this restriction is that so far we are unaware of examples of matrices
Qσ (with parameters suitable for nontrivial PIR) whose minimal rank with respect to locations labelled by
stars would be substantially smaller than the minimal rank subject to an extra constraint of respectingG.

We proved that communication complexity of any PIR scheme that satisfies restrictions 1-4 isΩ(n1/3). We leave
reader to choose whether to accept each of the restrictions 1-4 as reasonable. We hope that ideas and techniques
that we introduced may lead to further progress towards understanding true communication complexity of private
information retrieval. In particular the following problem is intriguing:

Open problem: Let Q = GLS[n, nδ] be a generalized latin square of inverse polynomial density. Show that
there exists a mapσ : [n]→ Fq, such that the minimalFq rank ofQσ (with respect to locations containing stars in
Qσ) is ω(log n).

Comment: If true this implies anω(log n) lower bound for every bilinear PIR scheme, whereU tosses a linear
number of coins in the length of his queries. If false, this yields a PIR protocol with c log n communication. It may
also be interesting to see if there is any formal connection between this problem and well-knownmatrix rigidity
problem.
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6 Appendix: Current PIR schemes are bilinear group based

A number of two server PIR schemes are known to date [6, 1, 10, 4, 11, 5, 19]. The goal of this section is to show
that all of them can be easily turned into bilinear group based. We restrict ourselves to schemes from [6, 4, 19]
since every other scheme is a variant of one of them. We do not follow the chronological order in which the
schemes were proposed.

It was observed in [4] that all known PIR schemes rely (implicitly or explicitly)on the idea of polynomial
interpolation.2 Specifically, the retrieval ofxi, where the servers hold databasex and the user holds indexi, is
reduced to an evaluation of a cubic multivariate polynomialF (z1, . . . , zm) ∈ Fq[z1, . . . , zm], held by the servers,
on a pointE(i), which the user determines based oni. We refer toE(i) as the encoding ofi.

We use the encoding functionE : [n]→ F
m
q , that has been previously used in [6, 4]. Without loss of generality

assume thatm′ = n1/3 is an integer. Consider an arbitrary bijectionγ : [n]→ [m′]×[m′]×[m′]. Let e′l ∈ {0, 1}m
′

denote a vector whose unique nonzero coordinate isl. Setm = 3m′. Put

E(i) = e′γ(i)1
◦ e′γ(i)2

◦ e′γ(i)3
.

Note that for everyi, E(i) has three nonzero coordinates. Define

F (z1, . . . , zm) =
n

∑

i=1

xi

∏

E(i)l=1

zl,

(E(i)l is thel-th coordinate ofE(i).) Since eachE(i) is of weight three, the degree ofF is three. Each assignment
E(i) to the variableszi satisfies exactly one monomial inF (whose coefficient isxi); thus,F (E(i)) = xi.

6.1 Monomial distribution scheme of [4]

For simplicity we restrict ourselves to the case when the underlying field isF2. Given a cubic polynomial
F (z1, . . . , zm) ∈ F2[z1, . . . , zm] servers compute a new polynomial in2m variables

F̂ (v1, . . . , vm, w1, . . . , wm) = F (v1 + w1, . . . , vm + wm).

Servers rewritêF as a sum of two polynomials

F̂ (v1, . . . , vm, w1, . . . , wm) = F̂v(v1, . . . , vm, w1, . . . , wm) + F̂w(v1, . . . , vm, w1, . . . , wm),

whereF̂v is the sum of all monomials from̂F that contain at least two variablesvj , and F̂w is the sum of all
monomials fromF̂ that contain at least two variableswj . Note that every monomial of̂F goes either tôFv or to
F̂w. Servers further rewritêFv andF̂w to obtain

F̂v(v1, . . . , vm, w1, . . . , wm) = F (v1, . . . , vm) +
m
∑

l=1

cl(v1, . . . , vm)wl

F̂w(v1, . . . , vm, w1, . . . , wm) = F (w1, . . . , wm) +
m
∑

l=1

cl(w1, . . . , wm)vl

(5)

The formal description of the scheme is below. Recall that user holdsP ∈ F
m
2 and wants to retrieveF (P ).

U : RepresentsP as a random sumP = V + W for V, W ∈ F
m
2 .

U → S1 : (v1, . . . , vm)
U → S2 : (w1, . . . , wm)
U ← S1 : F (V ), c1(V ), . . . , cm(V )
U ← S2 : F (W ), c1(W ), . . . , cm(W )
U : OutputsF (V ) + F (W ) + (V, (c1(W ), . . . , cm(W ))) + (W, (c1(V ), . . . , cm(V )))

2This claim remains true although a number of new PIR schemes appearedafter [4] was published.



Note that the protocol above is group based, since the user can retrieveF (P ) for anyP ∈ F
m
2 , and user’s secret

sharing scheme is based onF
m
2 . Unfortunately, in the current form the protocol is not bilinear. It is not hard to

modify the protocol to achieve bilinearity.

U : RepresentsP as a random sumP = V + W for V, W ∈ F
m
2 .

U → S1 : (v1, . . . , vm)
U → S2 : (w1, . . . , wm)
U ← S1 : F (V ) ◦ 1 ◦ c1(V ) ◦ . . . ◦ cm(V ) ◦ v1 ◦ . . . ◦ vm

U ← S2 : 1 ◦ F (W ) ◦ w1 ◦ . . . ◦ wm ◦ c1(W ) ◦ . . . ◦ cm(W )
U : Outputs the dot product of servers’ responses.

6.2 Combinatorial scheme of [6]

Unlike the PIR schemes of [4, 19] the scheme of [6] does not explicitly mentionlow degree multivariate poly-
nomials (or any other functions on groups), therefore it is not immediately clear how to make it bilinear group
based. However it was observed in [4] that in fact this scheme can also be cast in terms of polynomial evaluation.
We now sketch the description of the scheme and show that it is essentially identical to the scheme of [4], and
therefore can be turned into a bilinear group based form.

Recall thatm′ = n1/3 is an integer andγ : [n]→ [m′]× [m′]× [m′] is bijective. ForS ⊆ [m′] andj ∈ [m′] let

S ⊕ j =

{

S \ {j}, if j ∈ S,
S ∪ {j}, otherwise.

ForS1, S2, S3 ⊆ [m′] let
T (S1, S2, S3) =

∑

∀j∈[3]: φ(i)j∈Sj

xi.

We say that a triple of setsS′
1, S

′
2, S

′
3 ⊆ [m′] is at distance one from a tripleS1, S2, S3 if there exist uniquej ∈ [3]

andk ∈ [m′] such thatSt = S′
t for t 6= j andSj = S′

j⊕k. Let B(S1, S2, S3) denote the3m′ long vector of values
of T (S′

1, S
′
2, S

′
3) at triplesS′

1, S
′
2, S

′
3 that are at distance one fromS1, S2, S3. Below is the formal description of

the messages exchanged by the user and the servers:

U : PicksS1, S2, S3 ⊆ [m′] uniformly at random.
U → S1 : S1, S2, S3

U → S2 : S1 ⊕ φ(i)1, S2 ⊕ φ(i)2, S3 ⊕ φ(i)3
U ← S1 : T (S1, S2, S3), B(S1, S2, S3)
U ← S2 : T (S1 ⊕ φ(i)1, S2 ⊕ φ(i)2, S3 ⊕ φ(i)3), B(S1 ⊕ φ(i)1, S2 ⊕ φ(i)2, S3 ⊕ φ(i)3)

Now note thatT (S1, S2, S3) = F (S1 ◦S2 ◦S3). Let P = E(i) ∈ F
m
2 . Recall thatel ∈ {0, 1}m denotes a vector

whose unique nonzero coordinate isl. We rewrite the protocol above in a different notation:

U : RepresentsP as a random sumP = V + W for V, W ∈ F
m
2 .

U → S1 : (v1, . . . , vm)
U → S2 : (w1, . . . , wm)
U ← S1 : F (V ), F (V + e1), . . . , F (V + em)
U ← S2 : F (W ), F (W + e1), . . . , F (W + em)

Let cl denote the polynomial that has been previously used in formula (5). It is not hard to verify that

cl(V ) = F (V + el) + F (V ). (6)

Taking formula (6) into account we conclude that the combinatorial scheme above is essentially identical to the
scheme from the previous subsection. Thus it can also be turned into a bilinear group based form.



6.3 Partial derivatives scheme of [19]

An important difference of this scheme is that it requires field size to be larger than2. Fix two distinct nonzero
elementsλ1, λ2 ∈ Fq. Let f(λ) ∈ Fq[λ] be a univariate cubic polynomial. Note that

f(0) = c1f(λ1) + c2f
′(λ1) + c3f(λ2) + c4f

′(λ2),

for some constantsci that are independent off.

Protocol description : We use standard mathematical notation∂F
∂zl

∣

∣

∣

W
to denote the value of the partial deriva-

tive of F with respect tozl at pointW. Let P = E(i). The user wants to retrieveF (P ).

U : PicksV ∈ F
m
q uniformly at random.

U → S1 : P + λ1V
U → S2 : P + λ2V

U ← S1 : F (P + λ1V ), ∂F
∂z1

∣

∣

∣

P+λ1V
, . . . , ∂F

∂zm

∣

∣

∣

P+λ1V

U ← S2 : F (P + λ2V ), ∂F
∂z1

∣

∣

∣

P+λ2V
, . . . , ∂F

∂zm

∣

∣

∣

P+λ2V

U : Outputsc1F (P + λ1V ) + c2

m
∑

l=1

∂F
∂zl

∣

∣

∣

P+λ1V
Vl + c3F (P + λ2V ) + c4

m
∑

l=1

∂F
∂zl

∣

∣

∣

P+λ2V
Vl

Note that in the protocol above servers represent database by a function F : F
m
q → Fq on a group and user can

retrieveF (P ) for arbitrary elementP ∈ F
m
q . However the protocol is not bilinear group based, since the user does

not secret share according to the group law (i.e. the difference of shares is different fromP ), and the user does not
output the dot product of servers’ responses. It is not hard to modify the protocol to achieve the desired properties.

Bilinear group based form:

U : PicksV ∈ F
m
q uniformly at random.

U → S1 : (P + λ1V )λ2/(λ2 − λ1)
U → S2 : (P + λ2V )λ1/(λ2 − λ1)

U ← S1 : F (P + λ1V ) ◦ c3 ◦

[

c2
λ1−λ2

m
∑

l=1

∂F
∂zl

∣

∣

∣

P+λ1V
(P + λ1V )l

]

◦ ∂F
∂z1

∣

∣

∣

P+λ1V
◦ . . . ◦ ∂F

∂zm

∣

∣

∣

P+λ1V
◦

◦1 ◦ −c4
λ2−λ1

(P + λ1V )1 ◦ . . . ◦ −c4
λ2−λ1

(P + λ1V )m

U ← S1 : c1 ◦ F (P + λ2V ) ◦ 1 ◦ −c2
λ1−λ2

(P + λ2V )1 ◦ . . . ◦ −c2
λ1−λ2

(P + λ2V )m◦

◦

[

c4
λ2−λ1

m
∑

l=1

∂F
∂zl

∣

∣

∣

P+λ2V
(P + λ2V )l

]

◦ ∂F
∂z1

∣

∣

∣

P+λ2V
◦ . . . ◦ ∂F

∂zm

∣

∣

∣

P+λ2V

U : Outputs the dot product of servers’ responses.

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



