Electronic Colloquium on Computational Complexity, Report No. 51 (2006) Eode

Infinitely-Often Universal Languages and Diagonalization

Alan Nash Russell Impagliazzo
Department of Mathematics Department of Computer Science and Engineering
anash@math.ucsd.edu russell@cs.ucsd.edu

Jeff Remmel
Department of Mathematics
remmel@math.ucsd.edu

University of California, San Diego, CA 92093

Abstract lowing question: is any separation offafrom A where A
is closed under polynomial-time Turing reducibility essen
Diagonalization is a powerful technique in recursion the- tially a separation by the time hiearchy theorem?
ory and in computational complexity [2]. The limits of this
technique are not clear. On the one hand, many people ar-
gue that conflicting relativizations mean a complexity gues 1 . |ntroduction
tion cannot be resolved using only diagonalization. On the

other hand, it is not clear that diagonalization arguments Tpis paper continues a line of research started in [5]
necessarily relativize. In [5], the authors proposed a def- \yhere we explored some of the limits of the power of diag-
inition of “separation by strong diagonalization” in which gnajization to separate complexity classes. In generakto
to separate 9'35-‘75[fromB C A a proof is required thal able to obtain any limitative results on the power of diago-
contains auniversal languagr B. nalization to separate classes of languages it is necessary
However, in this paper we show that such an argument tormajize what constitutes a separation by diagonalinatio
does not capture every separation that could be consideredyowever, it is often hard to define what constitutes use of
to be b)_/ dlagonahzatl(_)n. Ther_efore, we consider various g gpecific proof technique in a way that is general enough
weakenings of the notion of universal language and corre- 1 state limitative results of such a technique. A possible
sponding formalizations of separation by diagonalization «styctural” approach is to define a proof technique in terms
We introduce four r)otions dl_hfinitely—often univgrsal lan- of objects which are explicitly or implicitly shown to ex-
guage For e*’f‘Ch notion, we give answers or partial answers st within the proof. For example, such structural approach
to the following questions: was used by Razborov and Rudich [6] to define “natural

1. Under what conditions does the existence of a variant Proofs.” They define a “natural combinatorial property” to
of a universal language foB in A showB # A? be a certain set of Boolean functions, define the notion of

More precisely, what closure properties are needed on “USeful,”and define a “natural proof” to be one which “con-
A andB? tains, more or less explicitly, the definition of a naturaico
binatorial propertyC;, which is useful againgt /poly.”

2. Can any separation be reformulated as this kind of In [5] we provided such a structural definition of “sepa-
diagonalization argument? More precisely, are there ration by strong diagonalization” and initiated the study o
complexity classe® C .A with nice closure proper- the power of such separations. We took the point of view
ties, so thatd has no such variant of a universal lan- that the key object involved in such separations is a univer-
guage forB? sal language. Ainiversal languagé’ for € is a language

3. Are these variants of universal language different from which enumerates all languagesinThatis,

the other notions we have defined? (VL € C)JeVz Ule,xz) = L(x).

The main examples of a separation by diagonalization are We writeU —o C if U is a universal language fd@. If
the time and space hierarchy theorems. We explore the fol-U — € enumerates only the language<imwe say thal/

ISSN 1433-8092

is exactfor €.> For aseparation by strong diagonalization iv universal languag€iv’ stands for “infinitely (many) val-
of A andB we require: ues”)* for €. Furthermore, we could drop the requirement
of effectiveness and simply require agreement on infinitely
many lengths or inputs with every languag€ijrwithout re-
gard to some computable enumeration of them. This gives
four flavors of such weakenings of the notion of universal
language: (1) effectively io, (2) io, (3) effectively iv, @n

(4) iv. We mention this last flavor for completeness only
since it seems quite useless. Any universal language which
enumerates the empty language and its complement is an iv
Theorem 1 ([5]). If C is a set of computable languages universal language for every set of languages.

closed under<)™ and € # {E} andC # {F}, then We show in Proposition 1 and Theorem 4 that each of
€ 4 C. these notions is strictly stronger than the next in cbas

a computable universal language, except possibly for eio
and io. We show in Theorem 11 that@fis closed under
<lin thenC does not contain an effectively iv universal lan-
guage for itself and in Theorem 12 that this does not hold if
we replacecti® with <lin even for effectively io universal
languages.

1. adefinition ofU,

2. aproofthall — B,

3. aproofthal/ € A, and

4. aproof thatA or B is closed undeg!in.

The separation follows by the following result, whdtes
the empty language arfd its complement.

In [5], we showed that in constrast to Kozen'’s result [3],
not all complexity classes can be separated by strong diag
onalization.

Of course, the question is whether our notion of strong
diagonalization is broad enough to capture all known diag-

onalization arguments. The answer is no; we shall show This motivates the following definition. Forseparation

that the following strong forms of the time and space hi- : : : : s
erarchy theorems (see, e.g, [1])—which are separations byby’ respectively, (a) effectively io, (b io, (c) effecviy

. o diagonalizatiorof A andB we require:
what most people would agree is diagonalization—are not,
in general, separations by strong diagonalization. 1. a definition of/,
2. aproofthal is, respectively, an (a) effectively io, (b)
i0, (c) effectively iv universal language f@,
3. aproofthal/ € A, and
Theorem 3. If t andt’ are time-constructible antd ¢ O(¢- 4. aproof thatd or B is closed undeghr.
logt), thenTIME[t'] € TIMEJ¢].

Theorem 2. If s and s’ are space-constructible and ¢
O(s), thenSPACE[s'] € SPACE]s].

On one hand, we show in Theorem 14 that effectively iv di-

That is, we show in Theorem 8 that we can find', ¢, ¢/ agonalization separates virtually everything. On the iothe
satisfying the hypotheses of Theorems 2 and 3 for which hand, we show in Theorems 4 and 16 that there are distinct
classes with strong closure properties that can not be sepa-

SPACE[s'] /o SPACE[s] and TIME[t'] /o TIME[t]. rated by io diagonalization. In summary:
This suggests that there are interesting formalizations of jv universal languages do not provide separation of
diagonalizations that lie between the notion of weak diag- classes,
onalization implicit in [3] and strong diagonalization. &h « eiv diagonalization is essentially “all separating,” and
proof of Theorem 2 suggests one such form of diagonaliza- o io and eio diagonalization are both interesting, have
tion: it shows that thaSPACE[SI] contains what we call different power, can Separate more than Strong diago-
an effectively io universal language fSPACE[s] and the nalization, yet can not separate everything.
same holds foTIME[t'] and TIME[t]. An effectively io
universal languag&U for C, is a language which, for every Finally, we investigate the following question. #f
index, agrees with a computable universal languader € is superpolynomial and time constructible, then we know
on infinitely many lengths. That is, that TIME[g] — P. Does the converse hold? That is
givenU —o P, is there always a superpolynomial, time-
Ved*n(Vz: |z| = n) Ule,z) =V (e, x). constructible functiory such thatTIME[g] C PY? We

) o) have been unable to settle this question. However, we shall
To establish a separation, it is often enough to require theg, o\ that ift7 — P and we can effectively enumerate

weaker condi_tio_n _of agreement with a_computable gniversal the U-indexes of a certain class of language®irthen we
language on infinitely many inputs; this giveseifectively here s a superpolynomial, time-constructible functipn
1in [5] we called such universal languagasict. such thafTIME[g] C PY. Formally,we shall define a class

2In [5] we required the more conservative “a proof thatfh)s closed of universal languages, which we cghaded for which the
under<i® or (b) B is closed undes(lin
3o’ stands for “infinitely often” (on lengths) 4i.e., infinitely often on inputs rather than lengths

answer to our question is yes. We shall also show that therewe set[U] := {U.:e € Nt}; thereforeU — € iff

are universal langues & which are not graded. C C [U]. We write A — B if there existsU € A such
To simplify the presentation of the results, we focus on thatU — B. We fix a second computablento pair-
many-one reducibilitiesc!i* (linear time) and<?, (poly- ing function(e,e): Nt x N* — N*t, which we need for

nomial time) and their corresponding Turing reducibitie some of the proofs. We say thatis superpolynomial if
<hin (linear time) and<¥. (polynomial time). Clearly most ~ for every polynomialp, ¥V*°z(g(z) > p(z)) and we say
of our results can be easily adapted to a variety of differentthat g is weakly superpolynomial if for every polynomial
reducibilities. p, 3%z(g(z) > p(z))

The outline of this paper is as follows. In section2we es- We write
tablish the notation and introduce basic concepts. In@ecti o))
3we introduce our four new variants of universal languages: ® ¥e for theeth deterministic Turing machine, _
eio, io, eiv, and iv and show that each of these notions is ® e for theeth deterministic decision Turing machine,
strictly stronger than the next (except for io vs. eio). In ® Ye,s for theeth deterministic decision Turing machine
section 4 we define separation by diagonalization in terms ~ restricted tos steps, _
of these variants and analyze the power of such separations. ® ¥e.7 () wheref is a function for,, z (4 (z), and
In section 5 we present structural results on these variants ® Yes () fof%,\wl’“(”’)' L . _
of universal languages for a fixed class of languages. In ® Ye.s(z){ if the eth deterministic decision Turing ma-
section 6 we explore the relationship between universal lan chine terminates on inputin s steps or less,
guages of P and superpolynomial time classes. A =" B for V> (A(z) = B(z)),
A = Bfor (Vz: |z| = n)(A(z) = B(z)),
2. Preliminaries e A= Bfor3*n(A = B), and
io€ for {L: (AL’ € €)(L = L")}.

In this section we fix some notation. We view languages

as either sets of strings or their corresponding charatiteri We write queries(M ?(z)) for the set of queries that or-
functions, so we writer € L or L(z) = 1 depending on acle Turing machin@d/ makes ofQ) on inputz.

which is more convenient. We ug&for the empty language We write A < B.if A is Iinear-ti.me.many—one re-
andF for its complement. That i (z) = 0 andF(z) = 1 ducible toB, A <, B if A is polynomial-time many-one
for all . reducible toB, andA <i* B and A <% B for the cor-

lin

We denote concatenation of strings by simple juxtaposi- 'esponding case for Turing reducibility. We sgt),,;' :=
tion so, for exampl@z1y corresponds to the string obtained {L: (34 € A)(L < A)} and similarly for the other re-
by concatenating Gz, 1, andy in that order. We write)” ducibilities.
for a string ofn zeros and similarlyi™ for a string ofn
ones. We fix a correspondence between strings and positive8 . \Variants of Universal Languages
integers as follows: a string corresponds to the number

m obtained by readings as a binary number. This makes |, this section we introduce four variants of universal lan-

strings empty, ‘0", ‘1, ‘00", ‘01’, "10", "11’, ... correspnd g 5q6: eio, io, eiv, and iv. The strongest of these, eio uni-
to the numbers 1, 2, 3, 4,5, 6, 7, ... We look at inputs as qrg5| [anguages, are sufficient to obtain the strong forms
either strings or numbers, again depending on convenienceqs ihe space and time hierarchy theorems (Theorems 6 and
It should be clear from context whether we refer to a string 7). In contrast, plain universal languages are not sufficien
or the corresponding number. _ . to obtain these hierarchy theorems (Theorem 8). These four
In some proofs we use the functidax(z) which gives 3rjants. together with plain universal languages, forma h
them-th string wheran is the binary number encoded by — grarchy (Proposition 1). The hierarchy is strict, except fo
For e>fample: Iex‘(01) = 1ex(001’) = empty and [ex("101) gj and jo universal languages for which strict separation
= 1ex(00101) = ‘01'. Notice that lex is linear-time com- s ghen (Theorem 4) although we know that these notions

putable:_ all it needs to do is strip the prefiX'l from its do not coincide completely (Theorem 5). It is natural to
input string (we also seétx(0™) = empty so that lex is de- i

. i0)
fined on all inputs). The property of lex which we needis Wonder how the condition (1L — B is related to (2)
ioA —o B. This question only makes sense for universal

Vyv>m(3z: |z| = m)(lex(z) =y). languages defined in terms of restricted pairing functions
We fix a linear-time pairing functiorfe,) and write ~ Which we calllength-regular If we limit ourselves to such
Ule, z) for U((e, z)). We writeU, for U(e, ») andU —o € universal languages, (1) implies (2) (Theorem 9), but (2)
in casel is a universal language f@, that is if does notimply (1) (Theorem 10).

(VL € €)3e(U, = L). Definition 1. We say thalU is an effectively io universal

languagefor € which we writeU 25 € if there exists a 3.

computabld” —o € such thaWe(U, & Ve).

Definition 2. We say thal/ is anio universal languagtor
€ which we writell —o € if (VL € €)3e(U, 2 L).
Definition 3. We say thaU is an effectively iv universal
languagefor € which we writeU % e if there exists a
computabld/ — € such thatve3>x(U, (z) = Ve(z)).
Definition 4. We say thatJ is aniv universal language

for @ which we writeU —o € if (VL € €)3%%(U.(z) =
L(z)).

We include this last definition for completeness, but no- 4.

tice that if U — {E,F}, thenU = e for any set of
language€. We have defined these to correspond to uni-
versal languages which are not necessarily exact. There are
four additional flavors which correspond to exact universal L

em

AssumeU € A andU “ B SetW,(z) :=
Ulex(z)(z). SinceA is closed undex!i*, W € A.

Now pick e, n. SinceU 2 B, there isi andm > n
large enough so thdf; = V, and there exists with
|z| = m andlex(z) = i. Then

1 2 3
We(w) (:) Ulex(w) (.Z') (:) U,(ZC) (:) Vve(m)
(a) by definition ofU,
(b) by choice ofx, and
(c) sincel; £V,

as desired.

Follows directly from the definitions without any con-
ditions onA andB.

O

ma 1. There exists a computable universal language

languages, but we do not consider them here in the interesk such that, for alk, L, € P — TIME[n¢]
) 1 e .

of brevity and because they are not relevant to separations.

p ition 1. If A is closed unde<!™ and there i Theorem 4. For any set of language€ O P with com-
roposition 1. IS closed undex,,,” andthereis acom- 1, iaple) —o €, there existd/!, U2, andU® such that

putableV — B, then:

ei

i 1 2 Ut

1. IfA — B, thend 23 B. = U2 ¢ andPUz z €.
2. IfA = B, thend —o B. > U3 e aanU3 s

i iv . —0 P .
3. IfA % B, thend =6 B. 3. U7 — CandP™ 7 €
4. 1fA 25 B, thend — B. Proof. The proof uses Theorem 11 from the next section for

U? andU?.
Proof.
1. We will constructU! in stages. At each stagewe

1. If A is a set of computable languages, it follows from

the definitions tha#l = ‘B. However, it may be that
U € A, U — B, andU is not computable, in which

case we may hav&é ;14% B (see Theorem 5).

AssumeU € A andU — B. SetW.(z) :=
Utex(|z|)(z). SinceA is closed unde!l*, W € A.
Now pick e,n. SinceU —o B, there isi such that
U; = V, andm > n large enough so that there exists
x with |z| = m andlex(|z|) = 4. Then

1

(:) Ulex(w) (.’L’)
(a) by definition ofU,
(b) by choice ofr, and
(c) sincelU; =V,

D () ©

We(z) Ui(z) = Ve(2)

as desired.

2. Follows directly from the definitions without any con-
ditions onA andB.

will have the characteristic functiofi'-*, which will

be zero outside ab*. We will haveD? C DJ fori <

jand{J D* = N*. We setU!(z) := lim UY#(z). It
§—00

E
will be clear that this limit exists for ali.

To ensure thal/! —o €, we satisfy the following re-
quirements for ale, n:

P(e,n): (Hm = n)(Ue = Vve)

To ensure thaPV" —o @, we satisfy the following
requirements for ak, i:

. 1 .
N(e,i): V13$(¢ge(la$) 7£ Le(x))
for some computable universal languaBewith the
properties given in Lemma 1. We proceed as follows.
At stage 0, we seb? = () andU"*(z) = 0 for all z.

At stages + 1 with s = 2(e, n) — 2 we satisfy require-
ment P) as follows. We find the smallest such

thatD* N S, ., = O whereS. ,,, ;= {{e, z): |z| = m}.
We setD**+! := D*U S, , U{z: |2| < s} and

Uls(z) if z€D?*
ULt (2) :=< V(2) if 2€ Sem
0 otherwise

ThenUl#+! = V,, as desired.

At stages + 1 with s = 2(e, n) — 1 we satisfy require-

mentN(.) as follows. We find the smallest such
1

that@bg’; (i,z) # L(z) and we se/b**! .= Uhs

andD*t! := DU queries(ng;’s (i,2)).

. DefineU? as follows: SeU/?(12") = V,(12") if e <

n and se/? to zero elsewhere. Thdi2 —o €, since

for everye andn, z = 12" satisfied/2(z) = V,(z).

Now assume, to get a contradiction, thét € pU*

andW =% . FromW, we construc € P such that

z% e D P, which contradicts Theorem 11.

We haveW = ,’{z for somek. On input{e, z),

zﬁ,‘{z can only queryA on strings of length at most

|{e,z)|F. Since we have assumed tHatz) is com-

putable in linear time frome and z, we must have

|{e,z)| < c(|e| + |z|) for somec.

U? is very sparse. It contains at mdsg®(n) strings

of length< n. Therefore,ngz can only queryA on

k2 log(c(|e| + |z|)) such strings. Define

U(w) := {(e,1*"): bit (e,n) of w is one}.

We uselU (w) to specify an initial segment @f2. The
calculation above shows that on inget z), it is suf-
ficient to providew of lengthk? log?(c(le| + |z])) to
guaranteezi;,’cfj9 (e,z) = ,gg”) (e,).

For everyj, if z = 0l¢/1lew, we set

Z(j,z) = Yy (e, 2)

and we se¥ to zero elsewhere. We havee P since
we do not need oraclé? to computeZ. We show that

Ve,n(3z, |z| = n)(Z.(z) = Ve(z))

as follows. Picke, n. SinceW Y C, there must be
such that¥; =2 V,. Pickm > n such that¥; = V,
andk?log? (c(|i| + m)) < m — 2|e| — 1.

Then there igv such that for: = 014 14w with |z| = m
we have

(a) w) . (] 2, (c) (d)
Ze() 2 g (i, 2) 2 9 (i, 2) E Wile) € Ve(o)

(a) by definition ofZ,
(b) by choice ofw,

(c) by choice ofk, and
(d) sincelz| =m

as desired.

3. Pick anyU? € P satisfying[U] = {E, F'} whereFE is
the empty language anfd its complement. For exam-

ple, setV3(z) := e mod 2. ThenU? 5 efor anye,
yetPU’ = P 5% P C € by Theorem 11.

O

We have been unable to prove the corresponding strong
separation of=% from LOo, but we have the following.

Theorem 5. There exists a (hon-computabié)— € (and
therefore alsd/ —o @) such thaty ;‘l% C.

Proof. Pick anyV —o € and set

Veya(z) if e iseven
_) 1=%eq1)/2(e,x) if e isodd and
Ue (m) o 1!)(54_1)/2 is total
0 otherwise

Now if L € @, then sincel — G, L = V, for somee
and thereford, = Us,. This shows thall — €. On the
other hand, for every computabl# — €, we must have
W =4, for somew and therefore for alt,

Usy—1(2) =1 = 92w —1,2) =1 — Woy_1(2).

This shows that¥’ does not witnes# i% C. O

The proofs of the strong forms of the hierarchy theorems
mentioned in the introduction give the following.
Theorem 6. If s and s’ are space-constructible and ¢
O(s), thenSPACE[s'] —o SPACE][s].

Theorem 7. If t andt’ are time-constructible and ¢ O(¢-
logt), thenTIME[t'] —o TIME[{].

Theorem 8.

1. For every space-constructibdesatisfyings(n) > n?,
there exists space-constructibk® such thats’ ¢
O(s) (and thereforeSPACE[s'] ¢ SPACE][s]) and
SPACE[s'] -4 SPACE]s].

2. For every time-constructible satisfyingt(n) > n?,
there exists time-constructibté such thatt’ ¢ O(t -
logt) (and thereforeTIME[t'] ¢ TIME[t]) and
TIME[t'] -0 TIMEJt].

Proof. We prove (2); the proof for (1) is similar.

We pick a languagé € TIME[t] — TIME[/#], which
we know exists by the time hierarchy theorem.

We will construct time-constructiblé such thatt’ ¢
O(t - logt) andTIME[t'] 4o TIME][t] in stages using de-
layed diagonalization. At stage we definet’(n) and at-
tempt to satisfy a requirement given pgn). We will make
sure that computing(n) and attempting to satisfy the re-
quirement given by(n) takes no more time thati(n) to
ensure that’ is time constructible.

To ensure that' ¢ O(t - logt) we satisfy the following
requirements for alh:

P.: (3m > e)(t'(m) = t*(m))

To ensure thaTIME[t'] -/ TIME]t] we satisfy the fol-
lowing requirements for aH, i

3 e (i,) # L)

That is, theeth Turing machine running in timg fails to
indexL ats.

If p(n) = 2e — 1, we sett’(n) = t?>(n) which satisfies
requirement?,. If p(n) = 2(e, 1), we sett'(n) = \/t(n),
which is an attempt to satisfy requiremen. ;. We
will succeed for large enough, sinceL € TIME[t] —
TIME[V3].

We computep(n) as follows. We use a total of steps

Ne,iy:

|(e,0™)| such that/ 2 V. There must be such because

U 2 V. Then, sincd” is regularl/, = V, for somen’ > n,
as desired. -

Theorem 10.If V. — B is length-regular, then there exists
length-regularU such that

U 2 B and iol/ - B.
Furthermore, ifV is computable then

U 2% B and ol o B.

Proof. Pick disjoint infinite setsSy, Sy, . . ., for example by
setting
Se ={(e,p): p € N}.
Set
[Ve(x) if |{e,z)| €S,
Ue(z) = { 1 — Viex(2)(x) oOtherwise

For everye andn, there ism > n such thatn € S, and
thereforel, Z V,. This show; that/ —o B and, ifVis
computable, also shows thdt—o B.

Now assuméV 2 U. SetCy.y = {m: W 2 U}. Pick
any? so thatCw,y — S¢ is infinite. There must be sudh

to check what requirements have already been satisfied, onéecaus€y, s is infinite and ifCy,y — S is finite, then for

at a time, in orderP;, Ny, P», Na,.... To check that re-
quirementN, ; has been satisfied, we computg (i, z)
andL(z) forz = 1,2,3,... until we find a difference. To

anyl # e, S¢ N Cw,y is finite (becausé, is disjoint from
S.) and therefor&w,y — S, must be infinite.
ThenVe(W, # Vy)—which impliesW —£ B—as fol-

check that requiremerft, has been satisfied, we compute lows. For anye, pick m € Cw,y — S, large enough so

t'(e),t'(e + 1),...until we find#'(m) = t*(m) form > e.

that there is, by length-regularity 6f, somez satisfying

If the last requirement which have so determined to be sat-|{e, z)| = m andlex(z) = ¢.

isfied is P., we setp(n) := 2e. If the last requirement
which have so determined to be satisfiedVig ;), we set
p(n) := 2(e,i) + 1. Otherwise, we sei(n) := 1. O

We have not assumed much from the pairing function

For suchm andz,

1 2 3
We(z) L Uu(2) 2 1= Viewy (@) €1 - Vi)

1. sincem € Cw,u,

(e, ®) used to define universal languages. We say that a pair- o by def. oft/, sincem ¢ S., and

ing function(e, e) is length-regularf it satisfies
VeV manVz(|{e, z)| = m < |z| = n).
For example, the pairing function given b, z) :=

0'¢l1lex is length-regular. We say that is length-regular
if it is defined in terms of a length-regular pairing function

Theorem 9. If V' is length-regular then

Veiod and V — B = A —o B.

Proof. Assume the hypotheses. Pitke A such thal/ L
V. ThenU —% B as follows. Pick any,n. Findm >

3. sincelex(z) = ¢£.
and therefordV, # V; as desired.

4. Separation by Diagonalization

We have seen in the previous section (Theorems 6, 7, and 8)
that separation by strong diagonalization, as defined in [5]
is insufficient to establish the strong forms of the space and
time hierarchy theorems (Theorems 2 and 3). In this section
we introduce three additional kinds of separations by diag-
onalization: eio, io, and eiv corresponding to three of the

four variants of universal languages introduced in the pre-

vious section. The fourth variant, iv universal languages,

Proof. We will construct computabl& in stages. At each
stages we will have the characteristic functidi®, which

too weak to obtain separations. For the other three variantswill be zero outside oD?. We will haveD? C D7 fori < j

itis enough to require closure undgk® to obtain a separa-
tion (Theorem 11). On the other hand, closure urnd#ris

not enough even for the strongest kind, eio diagonalization
(Theorem 12). Separation by eiv diagonalization separates
most classes that can be separated by other means (Theore
14). On the other hand, the structural result from the next

section (Theorem 16) together with the results from the pre-

and{J D* = N*t. We setU(z)

clearsthat this limit exists for al.

We will set€ := (U)!in. We pick a computable enumer-
ation fi, fo,of the linear-time functions and therefdre
Egnven byV.(z) := U(fe(x)) will be computable and will
satisfyV —o C.

lim U*(z). It will be
§—00

vious section (Theorem 4), show that there are distinct sets T0 ensure tha€ =5 © we satisfy the following require-

of languagesi andB which can not be separated by eio or
io diagonalization.

Definition 5. We say that aeparation by, respectively, (a)
effectively io, (b) io, or (c) effectively iv diagonalizatn of
A and B requires:

1. adefinition ofU,

2. aproof thatU is, respectively, an (a) effectively io, (b)
i0, (c) effectively iv universal language ft,

3. aproof thatU € A, and
4. aproof that4 or B is closed undegin.

The separation follows from the following theorem and its
easy corollary.

Theorem 11. If € is closed undek!i®, then@ ;12:: C.

Proof. AssumelU g € witnessed by computablé —o

€. We construct. <!in U by delayed diagonalization such
thatZ ¢ €. Itfollows that if € is closed undeg!i® thenU ¢

€. We setL(x) := 1 — U,(,(x) wherep(z) is computed
by “looking back” and gives the smallest numhefor a
languagéeV, for which we have not yet found a difference
with L. We compute(z) by using a total ofz| steps, first
to look for the smallest: such thatL(z) # Vi(z), then
for the smallestc such thatL(z) # Va(z) and so on.p

is not eventually constant since otherwise we would have

1-U, =* L =* V, which contradictd/ % e witnessed
by V. Notice that we need” to be computable in order to
computep. O

Corollary 1. If A or B are closed undeg!i andA bt B,
thenA # B.

We can not weakerch® here to<!i® as we did in our
definition of separation by strong dlagonallzatlon in [5gdu
to the following result, which stands in contrast to Theorem
1, whereFE is the empty language arfdits complement.

Theorem 12. There exists a sét of computable languages

closed undek!i» such thal® # {E}, € # {F}, and€ o
C.

ments for alle, n:

P(e,n): (Elm 2 n)(Ue = Vve)

At stage 0 we set/?(1) = 1, UY(2) = 2, andD° =
{(1,1),(2,2)}. This ensure€ # {E} andC # {F'}.

At stages+ 1 with s+1 = (e, n) we satisfy requirement
P n) as follows. We sef. ,,, := {{e,): |z| = m} and
find the smallestn such thatS. ,, N D* = . Now we
define the grapliy = (V, E) with vertex set

Vi=Sem U{fe(x): (€,z) € Se.m}
and edge set

E = {(f6($)7<ea
We break this graph

x)): (e,x) € Se,m }-

into connected components
C1,...,Cr. Notice that there are no edges going into
V — Sem. It follows that every component; has at
most one vertex outside &, ., and therefore at most one
vertex in D*. For every componenf; we pick a value

z; as follows. IfC; N D® # 0, we setz; to the unique

z € C; N D*. Otherwise, we set; to somez € D*. Now

we setD**t1 .= DS UV and
Us(z) if zeD*-V
Ut (2) = Us(z) if z€C;
0 otherwise

If |z| = m then(e, z) € C; for somei and therefore

©)

Ut (@) Q Ur(z) @ UL(£(2)) L UL ()

1. by definition ofU*+1,

2. sincef.(z) € C;,

3. sinceU andU**! agree onD**! andf.(z) €
and

4. by definition ofV.

e(x)

Ds+1

ThereforelJ, = V, as desired. O

On the other hand the following result is a straightfor-
ward adaptation of Theorem 6 in [5], which is itself an adap-
tation of a result oZak [7].

Theorem 13. If B is a set of computable languages closed
underglin, B # {E}, B # {F}, U —o € with Ve(U, 2
Ve) for V. — € computable, and there is a linear-time
|z] |f(2)] V.. then

function f for which U,
U & C.

V. implies U,

The following result shows that eiv-diagonalization can
essentially separate everything.

Theorem 14. If A is closed undek!i?, B is closed under
finite variations,B C A, andV — B is computable, then

eiv

A —o B.

Proof. Pick L € A—B and, for alle, setU,(z) = 1—L(xz).

ThenU € A becaused is closed undegi® andU =B
as follows. For ang, L #* V, € B becauseB is closed
under finite variations and — B and therefore

%% (U (z) = 1 — L(z) = Ve (2)).

5. Structural Results

Here we give two results on the structure of io universal lan-

guages for a fixed set of language8. We show thaP?

has infinitely descending chains of io universal languages

(Theorem 15) but that these chains do not apprd@detar-
bitrarily close (Theorem 16).

Theorem 15 (Density). If U 2% PB andw <. U, then
WW <EV <EU and V — P5).

Proof. Assume thall — PP witnessed by computable
Y — PB. By Ladner’s density theorem [4], we know
there is a languagpk such that¥ <% L <% U.

We will constructV in stages using delayed diagonal-
ization. At each stage we definel’(z) for all z satisfying
|z| = n and we attempt to satisfy requiremeitt).

To ensure that —o PP we satisfy the following re-
quirements for ale:

Pleny: (3m = n)(Ve = Ye).

To ensure that/' % V we satisfy the following require-
ments for alle:
Ne: Fz(Xe(z) #U(2)).

To ensure thalV’ <% V we ensure thak <F. V at stage 0.
We will show thatV” <! U which impliesV <% U.

To satisfy these requirements we set

Le) if z2=/{e,1)
V(z):= { U(z) if p(]z]) isodd
0 if p(|z]) is even

If p(n) = 2(e,n) — 1, we attempt to satisfy requirement
Pe.,n). We succeed eventually sine2 Y. If p(n) = 2e,
we attempt to satisfy requiremen,. We succeed eventu-
ally sinceL <% U.

We computep(n) as follows. We use a total of steps
to check what requirements have already been satisfied, one
at a time, in orderP;, N1, P>, N»,.... To check that re-
quirementP, has been satisfied, we look for the smallest
m > n such thatV, Z Y,. To check that requirement
N,y has been satisfied, we compate(y),.(z) # U(2))
for z = 1,2,3,... If, during the computation ofpge(z),
V' is queried for some string of length n, we abort that
computation and move on to the nextlf the last require-
ment which have so determined to be satisfieRis,), we
setp(n) := 2(e,n). If the last requirement which have so
determined to be satisfied 1¥., we setp(n) := 2e + 1.
Otherwise, we sei(n) := 1. O

Theorem 16 (Gap). YB3A(B <} A and P4 7120 PB).

Proof. SetA’ := {1%: ¢ 2, (1%") = 0} which ensures’ ¢
PB. Setd := A’ ® B. Now assume, to get a contradiction,
thatU € PA andU — P&, FromU, we construcl” €

PP such tha” — PB, which contradicts Theorem 11.
We haveU = ¢y}, for somek. On input(e,z), ¢7,
can only queryA’ on strings of length at moste, z)|*.
Since we have assumed tHat z) is computable in linear
time frome andz, we must have{e,z)| < c(le| + |z|)
for somec. Since there are at moststrings inA’ of the
form 12° and of length< 27, 1/1,?‘* can only query4’ on
klog(c(le] + |z|)) < klogc+ klog(|e| + |z|) such strings.
Define A(w) := {1%: bit i of w isone}. We
use A(w) to specify an initial segment oft’. We have
seen above that on inpye, z), it is sufficient to provide
w of lengthklog ¢ + klog(le| + |2]) so thatyy, (e, x) =
A(w)®B
k;k :
For everyj, if z = Ol¢llew, we setV(j,z) =
,‘ig")@B(e,x) and we sel/(z) = 0 elsewhere. We have
V € PE since we do not need oracl to compute/. We
show that

Ve, n(3z, 2| > n)(Ve(z) = ¥ (2))
as follows. Picke,n. SinceU X PB, there must bésuch
thatU; = zbge. Pickm > n so that(Vz, |z| = m)(Ui(z) =
oo (z)) and so thak log ¢+ k log([i| +m) < m—2e|—1.

Then there isv such that for: = 0115w with |z| = m
satisfying

2 42, (@)

1) | A(w . (2) . 3)
Vie,z) 2 ¢ (i,2) 2 g (i,0) 2 Uia)

1. by definition ofV/,
2. by choice ofr,

3. by choice oft, and
4. by choice otn.

6. Universal Languages for P

The proof of the time hierarchy theorem shows:

Proposition 2. If g is superpolynomial and time-
constructible, theMIME[g] —o P.

In this section, we investigate the converse:

Question 1. If U —o P is computable, is there a superpoly-

nomial, time-constructible functionsuch thatfTIME[g] C
pU?

To ensure thal — [V], we satisfy the following re-
quirements for ale:
P.: 3jU; =Ve).
To ensure thaP? N [W] = 0, we satisfy the following
requirements for all, j:
Nijy: o # W
At stage 0 we seU%(z) := 0 for all z and we set
D% = (. Atstages + 1 with s = 2e — 2 we sat-
isfy P, as follows. We look for the smallegt such that
j &€ Rs. SinceR; is finite, there must be such We set
D3t = DS U {{j,z): z € N* } U {2: |2] < s} and

Us(z) if zeD?
Ustl(z) :={ Vo(z) if 2= (j,2)
0 otherwise

At stages + 1 with s = 2(i,5) — 1 we satisfyN; ;) as
follows. We look for the smallest such tha‘rzp{{; () #
W;(z). SinceR? is finite, U? is equivalent to the join of
finitely many languages froii, and therefore, sind@’] is
closed under joinsl/® € [V]. Since[V] is closed under

If the converse were to always holds, then we would have <P, V" € [V] and therefore, sindd’] n [W] = 0, 4. #

that any separation & from a larger class closed undg¥,

by strong diagonalization could also be obtained by the time

hierarchy theorem.

W;. We setD**! := D* U queries(yY; (z)) andU*+! :=

45

Us. O

We were unable to settle this question, but we give Sev- Theorem 18. There is a (non-computablgf] — P so

eral partial results. First we prove a technical result Whic hat for any time-constructible superpolynomial functign
allows us to show that the converse fails if we do not re- TIME[g] PV.

quireU to be computable (Theorem 18). If we require some

extra, computable information abolit, then the converse

Proof. Takegy, g1, - - - to be a (non-computable) enumera-

does hold (Theorem 19). We call universal languages fortion of time-constructible superpolynomial functions. rFo

which such information is availablgraded(see definition

eache, pick W, to be a language ifIME[g.] — P. Then

below). We define graded time-constructible functions sim- by Theorem 17PY N [W] = § so for everye, we have

ilarly. However, there are non-graded time-constructile

perpolynomial functions and non-graded computable uni-

L. € TIME[g,] — PV. O

versal languages (Theorems 20 and 21), and therefore the 1he universal languag€ in Theorem 18 is not com-

guestion above remains open.

Theorem 17. If V and W are universal languages satis-
fying [V] N [W] = 0, [V] is closed under joinsd) and
<%, then there is a universal languagé — [V] so that
PUN[W] = 0. 1f V andW are computable, theti can be
made computable.

Proof. We will constructU in stages. At each stagewe
will have the characteristic functidii®, which will be zero
outside of D*. We will have D! C DJ fori < j and
U D% = Nt. We setlU(z) := slggo Us(z). It will be clear

tﬂat this limit exists for alk. Furthermore, we will guaran-
tee that for any, the setR; := {e: 3z({e,z) € D?*)} is
finite.

putable and we can not apply Theorem 17 to obtain a com-
putable universal language in Theorem 18 due to the fol-
lowing result.

Proposition 3. There is no computablé” such that

1. for every time-constructible superpolynomial function
g, there is some such thai¥, € TIME[g] — P, and
2. for everye, W, & P.

Proof. AssumeWW is computable and satisfies (2). We will
show thatiW fails by constructing a time-constructible su-
perpolynomial functiory for which (1) fails in stages using
delayed diagonalization. At stagewe defineg(n) and at-
tempt to satisfy the requirement given pyn). We will
make sure that computing(n) and attempting to satisfy

the requirement given by(n) takes no more time than lin-
ear time to ensure thatis time constructible.

To ensure that (1) fails we satisfy the following require-
ments for alle:

Rieny: Fo(We(x) & ng(2)).

We setg(n) = n*(™ to attempt to satisfy requirement
R n) wherep(n) = (e,n). We will eventually succeed
sinceW, & P.

We computep(n) as follows. We use a total af steps to

Therefore,L <!i* U is witnessed by the reduction —
(hog'(|z]), e, z). This shows that (2) holds. O

Theorem 20. There exists a time-constructible non-graded
superpolynomial function.

Proof. We setg(n) = p(n). We compute(n) in quadratic
time and ensure that(n) > 2; therefore,g is time-
constructible. Furthermore, we make sure that for every
the set{n: p(n) = k} is finite; thereforeg is superpoly-
nomial. To compute(n) we proceed as follows. First we

check what requirements have already been satisfied, one egompute

atime, in orderR;, R», R3, - . .. To check that requirement
R, has been satisfied, we compUit& (z) andz,, 4(x) for
z =1,2,3,...until we find a difference. If the last require-
ment which have so determined to be satisfiel is,,, we
setp(n) := (e,n) + 1. Otherwise, we sgi(n) :=1. O

Definition 6. We say thall --- P is gradedif there is a
gradingfunctionh satisfyingUy) (e,) = 9e;x () With h
computable. In particulaf/,xy — TIME[n*].

Definition 7. We say that a superpolynomial functigris
gradedf there is a computablgradingfunctionh satisfying

VE(¥n 2 h(k))(n* < f(n)).

E, :={e:en(e+1)] ande < n}

which we can do irO(n?) steps. Next we use at most
steps to compute an approximatif) of

R, := {e € E,: (Om < n)(We(e+1) < mAg(m) < m*TH)}.
Finally, we set

if B, —R,#0

_ [nele € B, — R))
pn) = { otherwise

n+ 2

Notice that ifm < n thenE,, C E,, R,, C R,, and
R, C R!,. Furthermore, it € E,, thenthereis’ such that

If fis computable, nondecreasing, and unbounded, there € R!, since otherwise consider the fiksfor which this

f given by f(n) := nf (") is graded superpolynomial.

Theorem 19. If A is closed undeglir, then the following
are equivalent:

1. There is a computable, gradéd— P in A

2. There is a graded time-constructible superpolynomial

functiong such thafTIME][g] C A.

Proof. If (2) holds, then the proof of the time hierarchy the-
orem shows that (1) holds.

Conversely, assume (1) holds alids graded bys. De-
fine g as follows. On input:, computeh(1), h(2),. .. for

a total ofn steps. Assume the largest value so computed is

¢ = h(k). Setg’(n) = k. By the definition ofg’, we can
computeh o g'(n) in O(n) steps sincé o g'(n) = h(k) =
£. Sinceg' is nondecreasing and unboundgdgiven by

fails. For suche, we havev®>n(g(n) = n®), yet we know
thaty.(e + 1)) andm®*! dominatesn¢, so for somer”,
e € R, and therefore for some’, e € R),, which is a
contradiction. Since

{n:p(n) =k} C{k}U{n:k € E, — R}

and the the right hand set is finite, the left hand side set is
also finite, as desired. O

Lemma 2. If g is a time-constructible non-graded super-
polynomial functionf is time-constructible and superpoly-
nomial, andTIME[f] C TIME]g], thenf is not graded.

Theorem 21. There exists a computablé — P such that
(U)lin does not contain a graded universal languageRor

g(n) = n? () is graded, time-constructible, and superpoly- proof. Pick a time-constructible non-graded superpolyno-

nomial.
Now assumeL € TIME[g].
V."L'(L(:E) = ’Lﬁe’g(|z|)($)) and so

Then, for somee,

(1) (2) ()
L(z) = teg(a)) (@) = Yeig () (%) = Uhog(jz)) (€,)

1. by choice ok,
2. sinceg(n) = n¢' (™ and
3. sincel is graded by.

mial functiong, guaranteed to exist by Theorem 20. The
proof of the time hierarchy Theorem shows that there ex-
ists U € TIME[g] such thatU — P. Now assume,
to get a contradiction, thdt € (U)li" is a graded uni-

versal language foP. Then, since(U)li" C TIME[g],

V € TIME][g]. But then, by Theorem 19, we would have a
graded time-constructible superpolynomial functjpsat-
isfying TIME[f] C (U)li» C TIME[g], which contradicts
Lemma 2. O

References

[1] J. L. Balcazar, J. Diaz, and J. Gabar&iructural Complexity
|. 2nd edition, 1995.

[2] L. Fortnow. DiagonalizationBulletin of the European Asso-
ciation for Theoretical Computer Scienc&l:102—-112, 2000.

[3] D. Kozen. Indexings of subrecursive classegheoretical
Comput. Scj.11:277-301, 1980.

[4] R. E. L. Ladner. On the structure of polynomial time re-
ducibility. J. ACM 22(1):155-171, 1975.

[5] A. Nash, R. Impagliazzo, and J. Remmel. Universal lan-
guages and the power of diagonalization, 2003.

[6] A. A. Razbhorov and S. Rudich. Natural proofs. ACM
Symposium on Theory of Computing (STQ@pes 204-213,
1994.

[7] S.Zak. Aturing machine time hierarchJheoretical Comput.
Sci, 26(3):327-333, 1983.

ECCC

http://eccc.hpi-web.de/

ISSN 1433-809

