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Abstract

Diagonalization is a powerful technique in recursion the-
ory and in computational complexity [2]. The limits of this
technique are not clear. On the one hand, many people ar-
gue that conflicting relativizations mean a complexity ques-
tion cannot be resolved using only diagonalization. On the
other hand, it is not clear that diagonalization arguments
necessarily relativize. In [5], the authors proposed a def-
inition of “separation by strong diagonalization” in which
to separate class

�
from � � �

a proof is required that
�

contains auniversal languagefor � .
However, in this paper we show that such an argument

does not capture every separation that could be considered
to be by diagonalization. Therefore, we consider various
weakenings of the notion of universal language and corre-
sponding formalizations of separation by diagonalization.
We introduce four notions ofinfinitely-often universal lan-
guage. For each notion, we give answers or partial answers
to the following questions:

1. Under what conditions does the existence of a variant
of a universal language for� in

�
show� �� �

?
More precisely, what closure properties are needed on�

and�?

2. Can any separation be reformulated as this kind of
diagonalization argument? More precisely, are there
complexity classes� � �

with nice closure proper-
ties, so that

�
has no such variant of a universal lan-

guage for�?

3. Are these variants of universal language different from
the other notions we have defined?

The main examples of a separation by diagonalization are
the time and space hierarchy theorems. We explore the fol-

lowing question: is any separation of a� from
�

where
�

is closed under polynomial-time Turing reducibility essen-
tially a separation by the time hiearchy theorem?

1. Introduction

This paper continues a line of research started in [5]
where we explored some of the limits of the power of diag-
onalization to separate complexity classes. In general, tobe
able to obtain any limitative results on the power of diago-
nalization to separate classes of languages it is necessaryto
formalize what constitutes a separation by diagonalization.
However, it is often hard to define what constitutes use of
a specific proof technique in a way that is general enough
to state limitative results of such a technique. A possible
“structural” approach is to define a proof technique in terms
of objects which are explicitly or implicitly shown to ex-
ist within the proof. For example, such structural approach
was used by Razborov and Rudich [6] to define “natural
proofs.” They define a “natural combinatorial property” to
be a certain set of Boolean functions, define the notion of
“useful,” and define a “natural proof” to be one which “con-
tains, more or less explicitly, the definition of a natural com-
binatorial property�� which is useful against��	
��.”

In [5] we provided such a structural definition of “sepa-
ration by strong diagonalization” and initiated the study of
the power of such separations. We took the point of view
that the key object involved in such separations is a univer-
sal language. Auniversal language for � is a language
which enumerates all languages in�. That is,

��� � ������  �� � � � � � ��� �
We write  �� � if  is a universal language for�. If
 �� � enumerates only the languages in� we say that
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is exactfor �.1 For aseparation by strong diagonalization
of

�
and� we require:

1. a definition of ,
2. a proof that �� � ,
3. a proof that � �

, and
4. a proof2 that

�
or � is closed under����� .

The separation follows by the following result, where� is
the empty language and� its complement.

Theorem 1 ([5]). If � is a set of computable languages
closed under����� and � �� �� � and � �� �� �, then
� ��� �.

In [5], we showed that in constrast to Kozen’s result [3],
not all complexity classes can be separated by strong diag-
onalization.

Of course, the question is whether our notion of strong
diagonalization is broad enough to capture all known diag-
onalization arguments. The answer is no; we shall show
that the following strong forms of the time and space hi-
erarchy theorems (see, e.g, [1])—which are separations by
what most people would agree is diagonalization—are not,
in general, separations by strong diagonalization.

Theorem 2. If 	 and 	
 are space-constructible and	
 ��� �	�, then���� �	
� �� ���� �	�.
Theorem 3. If � and�
 are time-constructible and�
 �� � �� �
�
� ��, then���� ��
� �� ���� ���.

That is, we show in Theorem 8 that we can find	 � 	
 � � � �

satisfying the hypotheses of Theorems 2 and 3 for which

���� �	
� ��� ���� �	� and ���� ��
� ��� ���� ��� �
This suggests that there are interesting formalizations of

diagonalizations that lie between the notion of weak diag-
onalization implicit in [3] and strong diagonalization. The
proof of Theorem 2 suggests one such form of diagonaliza-
tion: it shows that that���� �	
� contains what we call
an effectively io universal language for���� �	� and the
same holds for���� ��
� and ���� ���. An effectively io
universal language3  for �, is a language which, for every
index, agrees with a computable universal language� for �
on infinitely many lengths. That is,

� ���� ��� � �� � � � �  �� � � � � � �� � � � �
To establish a separation, it is often enough to require the

weaker condition of agreement with a computable universal
language on infinitely many inputs; this gives aneffectively

1In [5] we called such universal languagesstrict.
2In [5] we required the more conservative “a proof that (a)

�
is closed

under���� or (b)� is closed under����! .”
3‘io’ stands for “infinitely often” (on lengths)

iv universal language(‘iv’ stands for “infinitely (many) val-
ues”)4 for �. Furthermore, we could drop the requirement
of effectiveness and simply require agreement on infinitely
many lengths or inputs with every language in�, without re-
gard to some computable enumeration of them. This gives
four flavors of such weakenings of the notion of universal
language: (1) effectively io, (2) io, (3) effectively iv, and
(4) iv. We mention this last flavor for completeness only
since it seems quite useless. Any universal language which
enumerates the empty language and its complement is an iv
universal language for every set of languages.

We show in Proposition 1 and Theorem 4 that each of
these notions is strictly stronger than the next in case� has
a computable universal language, except possibly for eio
and io. We show in Theorem 11 that if� is closed under
����" , then� does not contain an effectively iv universal lan-
guage for itself and in Theorem 12 that this does not hold if
we replace����" with ����� even for effectively io universal
languages.

This motivates the following definition. For aseparation
by, respectively, (a) effectively io, (b) io, (c) effectively iv
diagonalizationof

�
and� we require:

1. a definition of ,
2. a proof that is, respectively, an (a) effectively io, (b)

io, (c) effectively iv universal language for� ,
3. a proof that � �

, and
4. a proof that

�
or � is closed under����" .

On one hand, we show in Theorem 14 that effectively iv di-
agonalization separates virtually everything. On the other
hand, we show in Theorems 4 and 16 that there are distinct
classes with strong closure properties that can not be sepa-
rated by io diagonalization. In summary:

# iv universal languages do not provide separation of
classes,# eiv diagonalization is essentially “all separating,” and# io and eio diagonalization are both interesting, have
different power, can separate more than strong diago-
nalization, yet can not separate everything.

Finally, we investigate the following question. If$
is superpolynomial and time constructible, then we know
that ���� �$ � �� �. Does the converse hold? That is
given  �� � , is there always a superpolynomial, time-
constructible function$ such that���� �$ � � �% ? We
have been unable to settle this question. However, we shall
show that if �� � and we can effectively enumerate
the -indexes of a certain class of languages in� , then we
there is a superpolynomial, time-constructible function$
such that���� �$ � � �% . Formally,we shall define a class
of universal languages, which we callgraded, for which the

4i.e., infinitely often on inputs rather than lengths



answer to our question is yes. We shall also show that there
are universal langues of� which are not graded.

To simplify the presentation of the results, we focus on
many-one reducibilities����� (linear time) and��� (poly-
nomial time) and their corresponding Turing reducibilities
����" (linear time) and��" (polynomial time). Clearly most
of our results can be easily adapted to a variety of different
reducibilities.

The outline of this paper is as follows. In section 2 we es-
tablish the notation and introduce basic concepts. In section
3 we introduce our four new variants of universal languages:
eio, io, eiv, and iv and show that each of these notions is
strictly stronger than the next (except for io vs. eio). In
section 4 we define separation by diagonalization in terms
of these variants and analyze the power of such separations.
In section 5 we present structural results on these variants
of universal languages for a fixed class of languages. In
section 6 we explore the relationship between universal lan-
guages of P and superpolynomial time classes.

2. Preliminaries

In this section we fix some notation. We view languages
as either sets of strings or their corresponding characteristic
functions, so we write

� � �
or

� ��� � � depending on
which is more convenient. We use� for the empty language
and� for its complement. That is,� �� � � � and� �� � � �
for all

�
.

We denote concatenation of strings by simple juxtaposi-
tion so, for example�� �� corresponds to the string obtained
by concatenating 0,

�
, 1, and� in that order. We write��

for a string of� zeros and similarly�� for a string of�
ones. We fix a correspondence between strings and positive
integers as follows: a string	 corresponds to the number� obtained by reading�	 as a binary number. This makes
strings empty, ‘0’, ‘1’, ‘00’, ‘01’, ‘10’, ‘11’, ... correspond
to the numbers 1, 2, 3, 4, 5, 6, 7, ... We look at inputs as
either strings or numbers, again depending on convenience.
It should be clear from context whether we refer to a string
or the corresponding number.

In some proofs we use the function��� �� � which gives
the� -th string where� is the binary number encoded by

�
.

For example, lex(‘01’) = lex(‘001’) = empty and lex(‘101’)
= lex(‘00101’) = ‘01’. Notice that lex is linear-time com-
putable: all it needs to do is strip the prefix�� � from its
input string (we also set��� ��� � = empty so that lex is de-
fined on all inputs). The property of lex which we need is

����� ��� � �� � � � � ���� �� � � � � �
We fix a linear-time pairing function�# � #� and write

 �� � � � for  ��� � � ��. We write 	 for  �� � #� and �� �
in case is a universal language for�, that is if��� � ���� � 	 � �� �

We set � � �� � 	 � � � 
� �; therefore �� � iff
� � � �. We write

� �� � if there exists � �
such

that  �� � . We fix a second computableonto pair-
ing function

�# � #� � 
� � 
� � 
�
, which we need for

some of the proofs. We say that$ is superpolynomial if
for every polynomial� ,

��� �$ �� � � � �� �� and we say
that $ is weakly superpolynomial if for every polynomial
� , ��� �$ �� � � � �� ��

We write

# �	 for the�th deterministic Turing machine,# � 	 for the�th deterministic decision Turing machine,# � 	�� for the�th deterministic decision Turing machine
restricted to	 steps,# � 	�� �� � where� is a function for� 	�� ��� �� �� �, and# � 	�� �� � for � 	��� �� �� �.# � 	�� �� � � if the �th deterministic decision Turing ma-
chine terminates on input

�
in 	 steps or less,# � �  ! for

��� �� �� � � ! �� ��,# � �� ! for
��� � �� � � � � �� �� � � ! �� ��,

# � �"� ! for ��� �� �� ! �, and
# #
� for �� � ��� 
 � ���� �"� � 
��.
We write$%�&#�' �( ) �� �� for the set of queries that or-

acle Turing machine
(

makes of* on input
�
.

We write � ����� ! if � is linear-time many-one re-
ducible to! , � ��� ! if � is polynomial-time many-one
reducible to! , and� ����" ! and� ��" ! for the cor-
responding case for Turing reducibility. We set�� ����� ��
�� � ��� � � � �� ����� � �� and similarly for the other re-
ducibilities.

3. Variants of Universal Languages

In this section we introduce four variants of universal lan-
guages: eio, io, eiv, and iv. The strongest of these, eio uni-
versal languages, are sufficient to obtain the strong forms
of the space and time hierarchy theorems (Theorems 6 and
7). In contrast, plain universal languages are not sufficient
to obtain these hierarchy theorems (Theorem 8). These four
variants, together with plain universal languages, form a hi-
erarchy (Proposition 1). The hierarchy is strict, except for
eio and io universal languages for which strict separation
is open (Theorem 4) although we know that these notions
do not coincide completely (Theorem 5). It is natural to

wonder how the condition (1)
� �"�� � is related to (2)#
� �� � . This question only makes sense for universal

languages defined in terms of restricted pairing functions
which we calllength-regular. If we limit ourselves to such
universal languages, (1) implies (2) (Theorem 9), but (2)
does not imply (1) (Theorem 10).

Definition 1. We say that is an effectively io universal



languagefor � which we write � �"�� � if there exists a

computable� �� � such that
� � � 	 �"� � 	 �.

Definition 2. We say that is an io universal languagefor

� which we write �"�� � if
��� � ���� � 	 �"� ��.

Definition 3. We say that is an effectively iv universal

languagefor � which we write � �
�

�� � if there exists a
computable� �� � such that

� ���� � 	 �� � � �	 �� �� �
Definition 4. We say that is an iv universal language

for � which we write ���� � if
��� � ����� � 	 �� � �� �� �� �

We include this last definition for completeness, but no-

tice that if  �� �� � � �, then  ���� � for any set of
languages�. We have defined these to correspond to uni-
versal languages which are not necessarily exact. There are
four additional flavors which correspond to exact universal
languages, but we do not consider them here in the interest
of brevity and because they are not relevant to separations.

Proposition 1. If
�

is closed under����� and there is a com-
putable� �� � , then:

1. If
� �� � , then

� � �"�� � .

2. If
� � �"�� � , then

� �"�� � .

3. If
� �"�� � , then

� � �
�

�� � .

4. If
� � �

�
�� � , then

� ���� � .

Proof.

1. If
�

is a set of computable languages, it follows from

the definitions that
� � �"�� � . However, it may be that

 � �
,  �� � , and is not computable, in which

case we may have �� �"�� � (see Theorem 5).

Assume � �
and  �� � . Set

� 	 �� � ��
 ��

� � �� �� �� �. Since
�

is closed under����� ,
� � �

.
Now pick � �� . Since �� � , there is� such that
 � � �	 and� � � large enough so that there exists�

with
�� � � � and��� � �� �� � �. Then

� 	 �� � ����  ��
� ��� �� � ����  � �� � �	�� �	 �� �

(a) by definition of ,
(b) by choice of

�
, and

(c) since � � �	
as desired.

2. Follows directly from the definitions without any con-
ditions on

�
and� .

3. Assume � �
and  �"�� � . Set

� 	 �� � ��
 ��

� ��� �� �. Since
�

is closed under����� ,
� � �

.

Now pick � � �. Since �"�� � , there is� and� � �
large enough so that � �� � 	 and there exists

�
with�� � � � and��� �� � � �. Then

� 	 �� � ����  ��
� ��� �� � ����  � �� � �	�� �	 �� �

(a) by definition of ,
(b) by choice of

�
, and

(c) since � �� �	
as desired.

4. Follows directly from the definitions without any con-
ditions on

�
and� .

Lemma 1. There exists a computable universal language�
such that, for all�, � 	 � �  ���� �� 	 �.

Theorem 4. For any set of languages� 
 � with com-
putable� �� �, there exists �,  � , and 	 such that

1.  � � �"�� � and�% � ��� �.

2.  � � �
�

�� � and�% � ��"�� �.

3.  	 ���� � and�%  �� �
�

�� �.

Proof. The proof uses Theorem 11 from the next section for
 � and 	.

1. We will construct � in stages. At each stage	 we
will have the characteristic function � ��, which will
be zero outside of� � . We will have� � � �� for � ��

and�� � � � 
�
. We set � �� � �� �#����  � �� �� �. It

will be clear that this limit exists for all
�
.

To ensure that � � �"�� �, we satisfy the following re-
quirements for all� � � :

� �	 �� � � ��� � � � � 	 �� � 	 � �
To ensure that�% � ��� �, we satisfy the following
requirements for all� � �:

� �	 ��� � � ��� �� % �	�	 �� � � � �� � 	 �� ��
for some computable universal language

�
with the

properties given in Lemma 1. We proceed as follows.

At stage 0, we set�� � � and � �� �� � � � for all
�
.

At stage	 � � with 	 � � �� � � �  � we satisfy require-
ment

� �	 �� � as follows. We find the smallest� such



that� � � � 	 �� � � where� 	 �� �� � �� � � � � �� � � � �.
We set� �� � �� � � � � 	 �� � �� � �� � � 	� and

 � ��� � �� � ��
��
�
 � �� �� � if

� � � �
� �� � if

� � � 	 ��� otherwise

Then � ��� �	 �� �	 , as desired.

At stage	 � � with 	 � � �� �� �  � we satisfy require-
ment

� �	 �� � as follows. We find the smallest
�

such

that � % ���	�	 �� � � � �� � �� � and we set � ��� � ��  � ��
and� �� � �� � � � $%�&#�' �� % � ��	�	 �� � � ��.

2. Define � as follows: Set �	 ���	 � � �	 ���	 � if � �
� and set � to zero elsewhere. Then � � �

�
�� �, since

for every� and�,
� � ��	 satisfies �	 �� � � � 	 �� �.

Now assume, to get a contradiction, that
� � � % �

and
� �"�� �. From

�
, we construct
 � � such that


 � �
�

�� � 
 �, which contradicts Theorem 11.

We have
� � � % �� �� for some�. On input �� � � �,� % �� �� can only query� on strings of length at most��� � � � �� . Since we have assumed that�� � � � is com-

putable in linear time from� and
�
, we must have��� � � � � � � � �� � � �� �� for some�.

 � is very sparse. It contains at most�
� � �� � strings
of length � �. Therefore,� % �� �� can only query� on

� � �
� � �� � �� � � �� ��� such strings. Define

 � � �� � �� � ��	 � � bit �� �� � of  is one� �
We use � � to specify an initial segment of �. The
calculation above shows that on input�� � � �, it is suf-
ficient to provide of length� � �
�� �� � �� � � �� ��� to

guarantee� % �� �� �� � � � � � % �� �
� �� �� � � �.

For every
�
, if

� � � �	 ��� , we set


 �� � � � � �� �� �
� �� �� � � �

and we set
 to zero elsewhere. We have
 � � since
we do not need oracle � to compute
 . We show that

� � �� ��� � �� � � � � �
 	 �� � � � 	 �� ��
as follows. Pick� ��. Since

� �"�� �, there must be�
such that

�� �"� � 	. Pick � � � such that
�� �� � 	

and� � �
� � �� � �� � � � �� � �  � �� �  �.
Then there is such that for

� � � �� ��� with
�� � � �

we have


 	 �� � ���� � � �� �
� �� �� � � � ���� � % �� �� �� � � � ���� �� �� � ���� � 	 �� �

(a) by definition of
 ,
(b) by choice of ,
(c) by choice of�, and
(d) since

�� � � �
as desired.

3. Pick any 	 � � satisfying� � � �� � � � where� is
the empty language and� its complement. For exam-

ple, set 		 �� � �� � � 
� �. Then 	 ���� � for any�,

yet� %  � � �� �
�

�� � � � by Theorem 11.

We have been unable to prove the corresponding strong

separation of� �"�� from �"�� , but we have the following.

Theorem 5. There exists a (non-computable) �� � (and

therefore also �"�� �) such that �� �"�� �.

Proof. Pick any� �� � and set

 	 �� � ��
���
��

�	�� �� � if � is even�  � �	� ���� �� � � � if � is odd and� �	� ���� is total� otherwise

Now if
� � �, then since� �� �,

� � � 	 for some�
and therefore

� � �	. This shows that �� �. On the
other hand, for every computable

� �� �, we must have� � �� for some and therefore for all
�
,

�� �� �� � � �  �� ��  � � � � � �  ��� �� �� � �

This shows that
�

does not witness � �"�� �.

The proofs of the strong forms of the hierarchy theorems
mentioned in the introduction give the following.

Theorem 6. If 	 and 	
 are space-constructible and	
 ��� �	�, then���� �	
 � � �"�� ���� �	�.
Theorem 7. If � and�
 are time-constructible and�
 �� � �� �
�
� ��, then���� ��
� � �"�� ���� ���.
Theorem 8.

1. For every space-constructible	 satisfying	 �� � � � � ,
there exists space-constructible	
 such that 	
 ��� �	� (and therefore���� �	
� �� ���� �	�) and
���� �	
� ��� ���� �	�.

2. For every time-constructible� satisfying� �� � � � � ,
there exists time-constructible�
 such that�
 �� � �� �
�
� �� (and therefore���� ��
 � �� ���� ���) and
���� ��
 � ��� ���� ���.



Proof. We prove (2); the proof for (1) is similar.
We pick a language

� � ���� ���  ���� �� ��, which
we know exists by the time hierarchy theorem.

We will construct time-constructible�
 such that�
 ��� �� � �
� �� and���� ��
� ��� ���� ��� in stages using de-
layed diagonalization. At stage� we define�
 �� � and at-
tempt to satisfy a requirement given by� �� �. We will make
sure that computing� �� � and attempting to satisfy the re-
quirement given by� �� � takes no more time than�
 �� � to
ensure that�
 is time constructible.

To ensure that�
 �� � �� � �
� �� we satisfy the following
requirements for all�:

� 	 � ��� � �� ��
 �� � � �� �� ��
To ensure that���� ��
� ��� ���� ��� we satisfy the fol-
lowing requirements for all� � �:

� �	 ��� � �� � 	��� �� � � � �� � ���
That is, the�th Turing machine running in time�
 fails to
index

�
at �.

If � �� � � ��  �, we set�
 �� � � �� �� � which satisfies
requirement

� 	 . If � �� � � � �� � ��, we set�
 �� � � � � �� �,
which is an attempt to satisfy requirement

� �	 ���. We
will succeed for large enough�, since

� � ���� ��� 
���� �� ��.

We compute� �� � as follows. We use a total of� steps
to check what requirements have already been satisfied, one
at a time, in order

�� �� � � �� ��� � � � �. To check that re-
quirement

� �	 ��� has been satisfied, we compute� 	��� �� � � �
and

� ��� for
� � � � � � � � � � � until we find a difference. To

check that requirement
� 	 has been satisfied, we compute

�
 ��� � �
 �� � �� � � � � until we find �
 �� � � �� �� � for � � �.
If the last requirement which have so determined to be sat-
isfied is

� 	 , we set� �� � �� ��. If the last requirement
which have so determined to be satisfied is

� �	 ��� , we set� �� � �� � �� � �� � �. Otherwise, we set� �� � �� �.
We have not assumed much from the pairing function

�# � #� used to define universal languages. We say that a pair-
ing function�# � #� is length-regularif it satisfies

����� ���� � ��� � � � � � � �� �� � � � � �
For example, the pairing function given by�� � � � ��
� �	 ���� is length-regular. We say that is length-regular
if it is defined in terms of a length-regular pairing function.

Theorem 9. If � is length-regular then

� � #
� and � �� � �� � �"�� � �
Proof. Assume the hypotheses. Pick � �

such that �"�
� . Then �"�� � as follows. Pick any� � �. Find � �

��� � �� � � such that �� � . There must be such� because

 �"� � . Then, since� is regular, 	 � �� �	 for some� 
 � � ,
as desired.

Theorem 10. If � �� � is length-regular, then there exists
length-regular such that

 �"�� � and #
 ��� � �
Furthermore, if� is computable then

 � �"�� � and #
 ��� � �
Proof. Pick disjoint infinite sets�� � � � � � � �, for example by
setting � 	 � � �� �� � � � � 
 � �
Set

 	 �� � �� � � 	 �� � if
��� � � � � � � 	�  ���

� ��� �� � otherwise

For every� and�, there is� � � such that� � � 	 and

therefore 	 �� �	 . This shows that �"�� � and, if � is

computable, also shows that � �"�� � .

Now assume
� �"�  . Set�	 �% � �� � � ��  �. Pick

any 
 so that�	 �%
 �� is infinite. There must be such
,

because�	 �% is infinite and if�	 �%
 � 	 is finite, then for

any
 �� �, �� � �	 �% is finite (because�� is disjoint from� 	) and therefore�	 �%
 �� must be infinite.

Then
�� �� 	 �� �� �—which implies

� ��� �—as fol-
lows. For any�, pick � � �	 �%

 � 	 large enough so
that there is, by length-regularity of� , some

�
satisfying��� � � � � � � and��� �� � � 
.

For such� and
�
,

� 	 �� � ����  	 �� � ���� �  ���
� ��� �� � �	�� �  �� �� �

1. since� � �	 �% ,
2. by def. of , since� �� � 	, and
3. since��� �� � � 
.

and therefore
� 	 �� �� as desired.

4. Separation by Diagonalization

We have seen in the previous section (Theorems 6, 7, and 8)
that separation by strong diagonalization, as defined in [5]
is insufficient to establish the strong forms of the space and
time hierarchy theorems (Theorems 2 and 3). In this section
we introduce three additional kinds of separations by diag-
onalization: eio, io, and eiv corresponding to three of the



four variants of universal languages introduced in the pre-
vious section. The fourth variant, iv universal languages,is
too weak to obtain separations. For the other three variants,
it is enough to require closure under����" to obtain a separa-
tion (Theorem 11). On the other hand, closure under����� is
not enough even for the strongest kind, eio diagonalization
(Theorem 12). Separation by eiv diagonalization separates
most classes that can be separated by other means (Theorem
14). On the other hand, the structural result from the next
section (Theorem 16) together with the results from the pre-
vious section (Theorem 4), show that there are distinct sets
of languages

�
and� which can not be separated by eio or

io diagonalization.

Definition 5. We say that aseparation by, respectively, (a)
effectively io, (b) io, or (c) effectively iv diagonalizationof�

and� requires:

1. a definition of ,

2. a proof that is, respectively, an (a) effectively io, (b)
io, (c) effectively iv universal language for� ,

3. a proof that � �
, and

4. a proof that
�

or � is closed under����" .

The separation follows from the following theorem and its
easy corollary.

Theorem 11. If � is closed under����" , then� �� �
�

�� �.

Proof. Assume � �
�

�� � witnessed by computable� ��
�. We construct

� ����"  by delayed diagonalization such
that

� �� �. It follows that if � is closed under����" then ��
�. We set

� ��� �� �  � ��� �� � where� �� � is computed
by “looking back” and gives the smallest number� for a
language�	 for which we have not yet found a difference
with

�
. We compute� �� � by using a total of

�� �
steps, first

to look for the smallest
�

such that
� ��� �� � � �� �, then

for the smallest
�

such that
� �� � �� �� �� � and so on.�

is not eventually constant since otherwise we would have
�   	 �  � �  � 	 which contradicts � �

�
�� � witnessed

by � . Notice that we need� to be computable in order to
compute�.

Corollary 1. If
�

or � are closed under����" and
� � �

�
�� � ,

then
� �� � .

We can not weaken����" here to����� as we did in our
definition of separation by strong diagonalization in [5] due
to the following result, which stands in contrast to Theorem
1, where� is the empty language and� its complement.

Theorem 12. There exists a set� of computable languages

closed under����� such that� �� �� �, � �� �� �, and� � �"��
�.

Proof. We will construct computable in stages. At each
stage	 we will have the characteristic function �, which
will be zero outside of� �. We will have� � � �� for � � �
and�� � � � 
�

. We set �� � �� �#����  � �� �. It will be

clear that this limit exists for all
�
.

We will set� �� � ����� . We pick a computable enumer-
ation�� � �� � � � �.of the linear-time functions and therefore�
given by� 	 �� � ��  ��	 �� �� will be computable and will
satisfy� �� �.

To ensure that� � �"�� � we satisfy the following require-
ments for all� � �:

� �	 �� � � ��� � � � � 	 �� � 	 � �
At stage 0 we set �� ��� � �,  �� ��� � �, and� � �

� �� � �� � �� � ���. This ensures� �� �� � and� �� �� �.
At stage	� � with 	 � � � �� � � � we satisfy requirement� �	 �� � as follows. We set� 	 �� �� � �� � � � � �� � � � � and

find the smallest� such that� 	 �� � � � � �. Now we
define the graph

� � �� �� � with vertex set

� �� � 	 �� � ��	 �� � � �� � � � � � 	 �� �
and edge set

� �� � ��	 �� � � �� � � �� � �� � � � � � 	 �� � �
We break this graph into connected components
� � � � � � � � � . Notice that there are no edges going into
�  � 	 �� . It follows that every component� � has at
most one vertex outside of� 	 �� and therefore at most one
vertex in � �. For every component� � we pick a value�� as follows. If � � � � � �� �, we set

�� to the unique� � � � � � � . Otherwise, we set
�� to some

� � � �. Now
we set� �� � �� � � � � and

 �� � �� � ��
��
�
 � �� � if

� � � �  �
 � ��� � if

� � � �� otherwise

If
�� � � � then �� � � � � � � for some� and therefore

 �� �	 �� � ����  � ��� � ����  �� � ��	 �� �� �	��  ��	 �� �� �� �� �	 �� �
1. by definition of �� �,
2. since�	 �� � � � �,
3. since and �� � agree on� �� � and�	 �� � � � �� �,

and
4. by definition of� .

Therefore, 	 �� � 	 as desired.

On the other hand the following result is a straightfor-
ward adaptation of Theorem 6 in [5], which is itself an adap-
tation of a result of̆Zàk [7].



Theorem 13. If � is a set of computable languages closed

under����� , � �� �� �, � �� �� �,  � �"�� � with
� � � 	 �"�

�	 � for � �� � computable, and there is a linear-time

function � for which  	 �� �� � 	 implies  	 �� ��� �� �	 , then
 �� �.

The following result shows that eiv-diagonalization can
essentially separate everything.

Theorem 14. If
�

is closed under����" , � is closed under
finite variations,� �

�
, and� �� � is computable, then� � �

�
�� � .

Proof. Pick
� � � � and, for all�, set 	 �� � � �� �� �.

Then � �
because

�
is closed under����" and � �

�
�� �

as follows. For any�, � ��  � 	 � � because� is closed
under finite variations and� �� � and therefore

��� � 	 �� � � �  � �� � � � 	 �� �� �

5. Structural Results

Here we give two results on the structure of io universal lan-
guages for a fixed set of languages�� . We show that��
has infinitely descending chains of io universal languages
(Theorem 15) but that these chains do not approach�� ar-
bitrarily close (Theorem 16).

Theorem 15 (Density). If  �"�� �� and
� ��"  , then

�� �� ��" � ��"  and � �"�� �� � �

Proof. Assume that �"�� �� witnessed by computable� �� �� . By Ladner’s density theorem [4], we know
there is a language

�
such that

� ��" � ��"  .
We will construct� in stages using delayed diagonal-

ization. At each stage� we define� �� � for all
�

satisfying�� � � � and we attempt to satisfy requirement� �� �.
To ensure that� �"�� � �

we satisfy the following re-
quirements for all�:

� �	 �� � � ��� � � � �� 	 �� � 	 � �
To ensure that ���" � we satisfy the following require-
ments for all�:

� 	 � �� �� �	�	 �� � ��  �� �� �
To ensure that

� ��" � we ensure that
� ��" � at stage 0.

We will show that� �����  which implies� ��"  .

To satisfy these requirements we set

� �� � ��
��
�

� ��� if
� � �� � ��

 �� � if � � �� �� is odd� if � � �� �� is even

If � �� � � � �� � � �  �, we attempt to satisfy requirement� �	 �� �. We succeed eventually since �"� �
. If � �� � � ��,

we attempt to satisfy requirement
� 	. We succeed eventu-

ally since
� ��"  .

We compute� �� � as follows. We use a total of� steps
to check what requirements have already been satisfied, one
at a time, in order

�� �� � � �� ��� � � � �. To check that re-
quirement

� 	 has been satisfied, we look for the smallest� � � such that� 	 �� � 	. To check that requirement� �	 ��� has been satisfied, we compute�� �� �	 �	 �� � ��  �� ��
for

� � � � � � � � � � � If, during the computation of� �	�	 �� �,
� is queried for some string of length� �, we abort that
computation and move on to the next

�
. If the last require-

ment which have so determined to be satisfied is
� �	 �� �, we

set� �� � �� � �� � � �. If the last requirement which have so
determined to be satisfied is

� 	, we set� �� � �� �� � �.
Otherwise, we set� �� � �� �.
Theorem 16 (Gap).

�! �� �! ��" � and �� ��"�� �� �.
Proof. Set� 
 �� ���� � � �	�	 ���� � � � � which ensures� 
 ��
�� . Set� �� � 
 � ! . Now assume, to get a contradiction,

that  � �� and �"�� �� . From , we construct� �
�� such that� � �

�
�� �� , which contradicts Theorem 11.

We have � ��� �� for some�. On input �� � � �, � �� ��
can only query� 
 on strings of length at most

��� � � � �� .
Since we have assumed that�� � � � is computable in linear
time from � and

�
, we must have

��� � � � � � � � �� � � �� ��
for some�. Since there are at most� strings in� 
 of the
form �� � and of length� �� , ��� �� can only query� 
 on
� �
� �� � �� �� �� ��� � � �
� � � � �
� � �� �� �� �� such strings.
Define � � � �� ��� � � bit � of  is one �. We
use � � � to specify an initial segment of� 
. We have
seen above that on input�� � � �, it is sufficient to provide of length� �
� � � � �
� � �� � � �� �� so that��� �� �� � � � �
�� �� ���
� �� .

For every
�
, if

� � � �	 ��� , we set � �� � � � �
�� �� ���
� �� �� � � � and we set� �� � � � elsewhere. We have

� � �� since we do not need oracle� 
 to compute� . We
show that

� � � � ��� � �� � � � � ��	 �� � � � �	�	 �� ��
as follows. Pick� � � . Since �"�� �� , there must be� such

that � �"� � �	�	 . Pick� � � so that
��� � �� � � � � � � �� � ���	�	 �� �� and so that� �
� �� � �
� � �� ��� � � �  � �� � �.



Then there is such that for
� � � �� ��� with

�� � � �
satisfying

� �� � � � ���� �� �� ���
� �� �� � � � ���� ��� �� �� � � � �	��  � �� � ���� � �	�	 �� �

1. by definition of� ,
2. by choice of

�
,

3. by choice of�, and
4. by choice of� .

6. Universal Languages for P

The proof of the time hierarchy theorem shows:

Proposition 2. If $ is superpolynomial and time-
constructible, then���� �$ � �� �.

In this section, we investigate the converse:

Question 1. If  �� � is computable, is there a superpoly-
nomial, time-constructible function$ such that���� �$ � �
�% ?

If the converse were to always holds, then we would have
that any separation of� from a larger class closed under��"
by strong diagonalization could also be obtained by the time
hierarchy theorem.

We were unable to settle this question, but we give sev-
eral partial results. First we prove a technical result which
allows us to show that the converse fails if we do not re-
quire to be computable (Theorem 18). If we require some
extra, computable information about , then the converse
does hold (Theorem 19). We call universal languages for
which such information is available,graded(see definition
below). We define graded time-constructible functions sim-
ilarly. However, there are non-graded time-constructiblesu-
perpolynomial functions and non-graded computable uni-
versal languages (Theorems 20 and 21), and therefore the
question above remains open.

Theorem 17. If � and
�

are universal languages satis-
fying �� � � �� � � �, �� � is closed under joins (�) and
��" , then there is a universal language �� �� � so that� % � �� � � �. If � and

�
are computable, then can be

made computable.

Proof. We will construct in stages. At each stage	 we
will have the characteristic function �, which will be zero
outside of� �. We will have� � � �� for � � �

and
�� � � � 
�

. We set �� � �� �#����  � �� �. It will be clear

that this limit exists for all
�
. Furthermore, we will guaran-

tee that for any	, the set� � �� �� � �� ��� � � � � � � �� is
finite.

To ensure that �� �� �, we satisfy the following re-
quirements for all�:

� 	 � �� �� � � 	 � �
To ensure that

� % � �� � � �, we satisfy the following
requirements for all� � � :

� �� �� �
� � %� �� �� �

� �
At stage 0 we set � �� � �� � for all

�
and we set

�� � �. At stage 	 � � with 	 � ��  � we sat-
isfy

� 	 as follows. We look for the smallest
�

such that� �� � � . Since� � is finite, there must be such
�
. We set

� �� � �� � � � � �� � � � � � � 
� � � �� � �� � � 	� and

 �� � �� � ��
��
�
 � �� � if

� � � �
�	 �� � if

� � �� � � �
� otherwise

At stage	 � � with 	 � � �� � � �  � we satisfy
� �� �� � as

follows. We look for the smallest
�

such that� % �� �� �� � ���
�
�� �. Since� � is finite,  � is equivalent to the join of

finitely many languages from� , and therefore, since�� � is
closed under joins, � � �� �. Since �� � is closed under
��" , � % �� �� � �� � and therefore, since�� � � �� � � �, � % �� �� ���
� . We set� �� � �� � � � $%�&#�' �� % �� �� �� �� and �� � ��

 �.
Theorem 18. There is a (non-computable) �� � so
that for any time-constructible superpolynomial function$ ,
���� �$ � �� � % .

Proof. Take$� � $ � � � � � to be a (non-computable) enumera-
tion of time-constructible superpolynomial functions. For
each�, pick

� 	 to be a language in���� �$ 	 �  �. Then
by Theorem 17,�% � �� � � � so for every�, we have� 	 � ���� �$ 	 �  � % .

The universal language in Theorem 18 is not com-
putable and we can not apply Theorem 17 to obtain a com-
putable universal language in Theorem 18 due to the fol-
lowing result.

Proposition 3. There is no computable
�

such that

1. for every time-constructible superpolynomial function
$ , there is some� such that

� 	 � ���� �$ �  �, and
2. for every�, � 	 �� � .

Proof. Assume
�

is computable and satisfies (2). We will
show that

�
fails by constructing a time-constructible su-

perpolynomial function$ for which (1) fails in stages using
delayed diagonalization. At stage� we define$ �� � and at-
tempt to satisfy the requirement given by� �� �. We will
make sure that computing� �� � and attempting to satisfy



the requirement given by� �� � takes no more time than lin-
ear time to ensure that$ is time constructible.

To ensure that (1) fails we satisfy the following require-
ments for all�:

� �	 �� � � �� �� 	 �� � �� �� �� �� �� �
We set $ �� � � � � �� � to attempt to satisfy requirement
� �	 �� � where� �� � � �� �� �. We will eventually succeed
since

� 	 �� �.
We compute� �� � as follows. We use a total of� steps to

check what requirements have already been satisfied, one at
a time, in order� � �� � �� 	 � � � �. To check that requirement
� 	 has been satisfied, we compute

� 	 �� � and�� �� �� � for� � � � � � � � � � �until we find a difference. If the last require-
ment which have so determined to be satisfied is� �	 �� �, we
set� �� � �� �� �� � � �. Otherwise, we set� �� � �� �.
Definition 6. We say that � � �� � is gradedif there is a
gradingfunction

�
satisfying� ��� �� � � � � �	�� �� � with

�

computable. In particular,� ��� �� ���� �� � �.
Definition 7. We say that a superpolynomial function� is
gradedif there is a computablegradingfunction

�
satisfying

� � ��� � � �� �� �� � � � �� �� �
If � 
 is computable, nondecreasing, and unbounded, then

� given by� �� � �� � � � �� � is graded superpolynomial.

Theorem 19. If
�

is closed under����� , then the following
are equivalent:

1. There is a computable, graded �� � in
�

2. There is a graded time-constructible superpolynomial
function$ such that���� �$ � � �

.

Proof. If (2) holds, then the proof of the time hierarchy the-
orem shows that (1) holds.

Conversely, assume (1) holds and is graded by
�
. De-

fine $ as follows. On input� , compute
� ��� � � ��� � � � � for

a total of� steps. Assume the largest value so computed is
 � � �� �. Set$ 
 �� � � �. By the definition of$ 
, we can
compute

� � $ 
 �� � in
� �� � steps since

� � $ 
 �� � � � �� � �
. Since$ 
 is nondecreasing and unbounded,$ given by
$ �� � � � � � �� � is graded, time-constructible, and superpoly-
nomial.

Now assume
� � ���� �$ �. Then, for some�,�� �� ��� �� � 	�� � �� �� �� �� and so

� �� � ���� � 	�� � �� �� �� � ���� � 	�� � � �� �� �� � �	�� ��� � � �� �� �� � � �
1. by choice of�,
2. since$ �� � � � � � �� � , and
3. since is graded by

�
.

Therefore,
� �����  is witnessed by the reduction

� ��
�� � $ 
 � �� �� � � � � �. This shows that (2) holds.

Theorem 20. There exists a time-constructible non-graded
superpolynomial function.

Proof. We set$ �� � � � �� �. We compute� �� � in quadratic
time and ensure that� �� � � �; therefore, $ is time-
constructible. Furthermore, we make sure that for every� ,
the set�� � � �� � � � � is finite; therefore,$ is superpoly-
nomial. To compute� �� � we proceed as follows. First we
compute

�� �� �� � �	 �� �� � �� � and � � � �
which we can do in

� �� � � steps. Next we use at most� �
steps to compute an approximation� 
� of

�� �� �� � � � � ��� � � � �� 	 ��� �� � ��$ �� � � � 	� � �� �
Finally, we set

� �� � �� � �� �� � ��  � 
� � if � �  � � �� �
� � � otherwise

Notice that if� � � then�� � �� , �� � � � , and
� 
� � � 
� . Furthermore, if� � �� then there is� 
 such that
� � � 
� � since otherwise consider the first� for which this
fails. For such�, we have

��� �$ �� � � � 	 �, yet we know
that� 	 �� � �� � and� 	� � dominates� 	, so for some� 

,
� � � � �� and therefore for some� 
, � � � 
� � , which is a
contradiction. Since

�� � � �� � � � � � �� � � �� � � � � �  � 
� �
and the the right hand set is finite, the left hand side set is
also finite, as desired.

Lemma 2. If $ is a time-constructible non-graded super-
polynomial function,� is time-constructible and superpoly-
nomial, and���� �� � � ���� �$ �, then� is not graded.

Theorem 21. There exists a computable �� � such that
� ����� does not contain a graded universal language for� .

Proof. Pick a time-constructible non-graded superpolyno-
mial function$ , guaranteed to exist by Theorem 20. The
proof of the time hierarchy Theorem shows that there ex-
ists  � ���� �$ � such that �� � . Now assume,
to get a contradiction, that� � � ����� is a graded uni-
versal language for�. Then, since� ����� � ���� �$ �,
� � ���� �$ �. But then, by Theorem 19, we would have a
graded time-constructible superpolynomial function� sat-
isfying ���� �� � � � ����� � ���� �$ �, which contradicts
Lemma 2.
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