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Abstract

We show that the Closest Vector Problem with Preprocessing over
`∞ norm (CVPP∞) is NP-hard to approximate to within a factor of
(log n)1/2−ε, unless NP⊆ DTIME (2polylog(n)). The result is the same
as that in [19] by Regev and Rosen, but our proof methods are different
from theirs. Their reductions are based on norm embeddings. However,
our reductions are based on the reduction of [2] and the property of
Hadamard matrix.

Keywords: Closest Vector Problem, Computational Complexity, NP-
hardness, Label Cover.

1 Introduction

Let B = {v1, . . . ,vn} be a set of linearly independent vectors in Rm. The n-dimensional lattice L
generated by B is the set of vectors {∑n

i=1 aivi|ai ∈ Z} where B is called the basis for the lattice
L. The lattice L is also an additive group. The same lattice could be generated by many different
bases. Given a basis for an n-dimensional lattice L and an arbitrary vector t, the Closest Vector
Problem (CVP) is to find a vector in L closest to t in a certain norm. The Shortest Vector Problem
(SVP) is a homogeneous analog of CVP, and is defined to be the problem of finding the shortest
non-zero vector in L. These lattice problems have a long history and we present some of the results
below. The more comprehensive list of references can be found in [12] and [16].

These lattice problems have been studied since they were introduced in the 19th century. Gauss
gave an algorithm that works for 2-dimensional lattices ([10], 1801). In 1842, Dirichlet formulated
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the general problem for arbitrary dimensions. The existence of short non-zero vectors in lattices
was dealt with by Minkowski in a field called Geometry of Numbers [17]. Lattices have many
applications in various fields of mathematics, such as convex analysis, number theory and computer
science. The famous LLL algorithm [13] can be used to construct efficient algorithms for many other
problems, such as breaking knapsack cryptosystem, factoring polynomials over rationals.

The first intractability results for lattice problems date back to 1981. In [20], van Emde Boas
proved that CVP in any `p norm and SVP in `∞ norm are NP-hard. The interest in lattice
problems has been renewed due to Ajtai’s discovery [1] of worst-case to average-case reduction and
subsequent construction of a lattice-based public key cryptosystem by Ajtai and Dwork [3]. Their
work implies that if it is hard to approximate SVP within some polynomial factor nc, then a secure
cryptosystem can be constructed.

CVP has received much attention in the recent years. CVP was proved to be NP-hard by van
Emde Boas [20]. Arora et al. [4] used the PCP characterization of NP to show that approximating
CVP within factor 2(log n)1−ε

is NP-hard unless NP⊆ DTIME (2polylog(n)) and approximating CVP
within any constant factor is NP-hard unless P = NP . Assuming P 6= NP , Dinur et al. [7] proved
that it is hard to approximate CVP within factor nc/ log log n for some constant c > 0. All above
results for CVP work in all `p norms. It was showed by Dinur et al. that both CVP in `∞ norm
and SVP in `∞ norm are hard to approximate within factor nc/ log log n for some constant c > 0 [6].

In this paper we investigate the inapproximability of the Closest Vector Problem with Prepro-
cessing over `∞ norm (CVPP∞). This is a variant of the Closest Vector Problem over `∞ norm
(CVP∞) in which the basis B of the lattice depends only on the input length, and hence can be
assumed to be specified in advance. This means that the basis can be preprocessed arbitrarily and
the computed information can be used to solve CVP∞ on the input (B, t).

Bruck and Naor [5] showed that the Nearest Codeword with Preprocessing (NCPP) is NP-hard,
which is the analog problem of CVPP in coding theory. In this problem, a binary code C is specified
in advance and the goal is find the closest codeword in C to a given binary vector v in the Hamming
metric. Later Micciancio proved that CVPP over any `p (p ≥ 1) norm is NP-hard [17]. The first
inapproximability result was obtained by Feige and Micciancio [8], who proved that it is NP-hard
to approximate CVPP over `p norm within a (5/3)1/p − ε for any ε > 0. In the same paper they
also proved that approximating NCPP within a 5/3− ε factor is NP-hard. In [18], Regev improved
these inapproxiability factor to 3− ε and 31/p − ε respectively for any ε > 0. Recently, Alekhnovich
et al.[2] proved that it is NP-hard to approximate CVPP over `p norm within any constant factor
and within a factor of (log n)1/p−ε. They also proved that NCPP is NP-hard to approximate within
(log n)1−ε unless NP⊆ DTIME (2polylog(n)).

More recently, Regev and Rosen [19] prove that it is NP-hard to approximate CVPP∞ within
(log n)1/2−ε for any ε > 0. They give a deterministic Karp reduction from CVPP2 to CVPP∞

and a deterministic Cook reduction from from CVPP2 to CVPP∞. Their reduction are based on
embeddings of normed spaces.

Our Result

In this paper, we also show that the Closest Vector Problem with Preprocessing over `∞
norm (CVPP∞) is NP-hard to approximate within a factor of (log n)1/2−ε, unless NP⊆ DTIME
(2polylog(n)). But our proof methods are different from Regev and Rosen’s methods which are based
on norm embeddings.

Technique
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In order to obtain our result, we give a reduction from the Label Cover Problem with Prepro-
cessing (LCPP) to CVPP∞. LCPP is introduced and it is proved to be NP-hard in [2]. In [2], a
polynomial time reduction from LCPP to MISPP over `2 norm is given. Combine the reduction
method with the property of Hadamard matrix, we give a polynomial time reduction from LCPP
to MISPP over `∞ norm. Since there exist a polynomial time reduction from MISPP over `∞ norm
to CVPP∞, we obtain the hardness result of CVPP∞.

Structure of the Paper

In section 2, we introduce some definitions. In section 3 we propose a weaker hardness result of√
2 − ε for CVPP∞ by reducing Label Cover Problem to it. In section 4 we describes a reduction

from the Label Cover Problem with Preprocessing to CVPP∞, which gives a stronger hardness
result of (log n)1/2−ε. Finally, in section 5 we present some conclusions and some open problems.

2 Preliminaries

In this section we present formal description of the problems which are used in our reductions.
Let B = {v1, . . . ,vn} be a set of linearly independent vectors in Rm. The n-dimensional lattice

L generated by B is the set of vectors {∑n
i=1 aivi|ai ∈ Z} where B is called the basis for the lattice

L. The lattice L is also an additive group. The closest vector problem over `∞ norm is defined as
follows.

Definition 1 The Closest Vector Problem over `∞ norm (CV P∞) is the problem in which one is
given a lattice basis B and a target vector y and must find a lattice vector Bx (x ∈ Zn) such that
‖Bx−y‖∞ is minimum. In the decisional version of CV P∞ one is also given a real number t, and
must decide whether there exist an integer vector x such that ‖Bx − y‖∞ ≤ t.

The decisional and search version of CVP∞ can be easily proved equivalent [17]. The CVPP∞

is defined as follows.

Definition 2 The Closest Vector Problem over `∞ norm with preprocessing (CVPP∞) asks for a
function P(the preprocessing function) and an algorithm D(the decoding algorithm) with the follow-
ing properties:

• On input a lattice basis B, P(B) returns a new description L of the lattice L(B) whose size
is polynomially related to the size of B, i.e. there exists a constant c such that size(L) <
size(B)c for all bases B and L = P (B).

• Given L and a target vector y, D(L, y) computes a lattice point Bx such that ‖Bx− y‖∞ is
minimum. In the decision version of CVPP∞, D is also given a distance t, and D(L, y, t)
decides whether there exists a lattice vector Bx such that ‖Bx − y‖∞ ≤ t.

As for CVPP∞, the search and decision versions are also equivalent which is showed in [17].
Since no complexity assumption is made on the preprocessing function P , one may think of

P as a preprocessing algorithm with unlimited computational resources. Only the running of D
is used to measure the complexity of the decoding process, i.e. we say that CVPP∞ is solvable
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in polynomial time if there exists a function P and a polynomial time algorithm D such that
D(P(B),y, t) solves the CVP∞ instance (B, y, t).

In our reductions we need the following NP-hard problems [2].

Definition 3 (MISP∞). The Minimum Integral Solution Problem over `∞ norm is the following
problem. For a non-negative function f, an instance of GapMISPf (.) is denoted by (Bf ,Bv , t, d),
where Bf ∈ Zk1×n, Bv ∈ Zk2×n, t ∈ Zk1 and d ∈ Z+. It is a YES instance if there exists a x ∈ Zn

such that Bfx = t and ‖Bvx‖∞ ≤ d, and a NO instance if for all x ∈ Zn satisfying Bfx = t,
‖Bvx‖∞ > f(n) · d. Bf will be referred to as the fixed linear forms on the variables, while Bv will
be referred to as the variable linear forms.

Definition 4 (Label Cover Problem) For a non-negative function f, an instance of GapLCPf(·)

is
U(G(V,W,E), [R], [S], n,m, {πe}e∈E , {Pw, Pw}w∈W ),

where G = (V,W,E)) is a bipartite graph, with |V | = n, |W | = m, E is the set of edges, [S] is
the set of labels for vertices in V , for every w ∈ W , Pw ∈ {Rw,l} is a set in the partition that
represents all permissible labels from which a label can be assigned to w ∈ W , and for every e ∈ E,
πe : [R] 7→ [S]. A labeling is a pair of maps LW : W 7→ [R], LV : V 7→ [S]. An edge e = (v,w) is
satisfied by a labeling (LV , LW ) if LW (w) ∈ Pw and πe(LW (w)) = LV (v). U is a YES instance if
there is a labeling that satisfies all its edges. It is a NO instance if no labeling satisfies more than
f(n) fraction of the edges.

Typically, m � n and R � S. We note that in the standard definition of this problem, the
partition is trivial: P = [R] for all w ∈ W , and thence, the set of permissible labels Pw = [R] for
all w ∈ W .

Definition 5 (MISPP∞) Minimum Integral Solution Problem with Pre-processing is the following
problem. From the input to MISP∞, which is a tuple (Bf ,Bv, t, d), (Bf ,Bv) is the uniform input
to MISPP∞ (i.e, depends only on the input length).

Definition 6 ( Label Cover Problem with Pre-processing) From the input to GapLCPf(·),
which is a tuple U :

(G(V,W,E), [R], [S], n,m, {πe}e∈E , {Pw, Pw}w∈W ).

The uniform part consist of G(V,W,E), n, m, the set of candidate labels [R] for vertices in W , [S],
and the projection maps πe. Further, for every w ∈ W , a partition of [R], Pw = ∪lRw,l is fixed,
which also depends just on the length of the input. The input to GapLCPPf(·) now consists of a
set Pw ∈ {Rw,l}l, for every w ∈ W . Recall that this is the set of permissible labels for w, and w is
supposed to be assigned a label only from Pw.

The following proposition states that the MISPP∞ can be reduced to CVPP∞.

Proposition 1 There exist a polynomial time reduction from MISPP∞ to CVPP∞.

The proof of Proposition 1 is similar to that of Proposition 2.7 in [2], which can be obtained by
a slight modification of Lemma 10 in [7]. We omit it here.
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3 Hardness of
√

2 − ε

In this section we first present a weaker hardness result. We show that CVPP∞ is NP-hard to
approximate within

√
2 − ε. Our proof is by the reduction from the PCP theorem to MISPP∞.

This reduction combine Regev’s reduction in [18] and the property of Hadamard matrix. In [18],
Regev give a reduction from PCP to GapMLD (Maximum Likelihood Decoding). Their instance
(C, v, t) of GapMLD can be viewed an instance (Bf , I, v, t) of MISPP over Hamming distance.
We find that if we replace the matrix I with another matrix, we can show that it is NP-hard to
approximate MISPP∞ within

√
2 − ε. The reduction details are as follows. The start point of

reduction is the following PCP theorem which is the Lemma 3.1 summarized by Regev in [18].

Lemma 1 For any fixed ε > 0 the following problem is NP-hard. Let RX , RY be the two sets and
dX , dY two integers depending only on ε. For any size parameter n there exist two sets of variables
Y, X̂ and a set of tests Φ̂, i.e., functions from RX to RY indexed by variables x ∈ X̂ and y ∈ Y .
Each variable x ∈ X̂ has dX tests in Φ̂ associated with it. For i ∈ [dX ] we denote by zi(x) the i’th
variable in Y with which x have a test for some ordering of the variables . Then, an instance of
the problem of size parameter n is specified with by a subset X ⊆ X̂. Let Φ ⊆ Φ̂ be the set of tests
associated with X. Each variable y ∈ Y has dY tests in Φ associated to it. An assignment A is a
function from X to RX and from Y to RY . A test ϕx,y ∈ Φ is satisfied by A if ϕx,y(A(x)) = A(y).
The problem is to distinguish between the case where there exists an assignment that satisfies all
the tests Φ and the case where no assignment satisfies more than ε of the tests.

From an instance of Lemma 1, we construct an instance (Bf ,Bv, t, d) of MISPP∞. In fact Bv

and t have been constructed by Regev in [18]. For completeness we repeat the construction of Bf

and t as follows.
For any given size parameter let dY , dX , RX , RY , Y, X̂, Φ̂ as described in lemma 1. Let S

denote the set [dY ]dX . For a given an PCP instance X ⊆ X̂ we define a function s∗ : X → S such
that for every variable y ∈ Y and for each j ∈ [dY ] there exist a unique pair (x, i) ∈ X × [dX ] such
that zi(x) = y and s∗i (x) = j. Intuitively, for each y ∈ Y we can label the dY tests that contain y
with 1, . . . , dY and then s∗(x) as the dX labels that the tests that contain x got. More formally,
such an s∗ exists and can be efficiently computed, say by the following process: for every y ∈ Y let
α(y) be a value initially set to 0. For each value x ∈ X in an arbitrary order we increment α(zi(x))
by one for each i ∈ [dX ] and define s∗(x) as (α(zi(x)), . . . , α(zdX

(x))). The process ends when α(y)
is dY for all y ∈ Y .

We describe the set of equations Bfr = t given by MISPP∞ as follows. Let T denote the set

X̂ × [dX ] × S × RX . The vector r is |T |-dimensional and we index its coordinates by r(x,i,s,a) for
(x, i, s, a) ∈ T .

∀x ∈ X̂, i1, i2 ∈ [dX ], s ∈ S, a ∈ RX r(x,i1,s,a) = r(x,i2,s,a) (1)

∀y ∈ Y, j1, j2 ∈ [dY ], b ∈ RY ,
∑

(x,i,s,a)∈T |
(zi(x),si)=(y,j1)

ϕx,y(a)=b

r(x,i,s,a) =
∑

(x,i,s,a)∈T |
(zi(x),si)=(y,j2)

ϕx,y(a)=b

r(x,i,s,a) (2)
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∀x ∈ X, i ∈ [dX ]
∑

a∈RX

r(x,i,s∗(x),a) = 1 (3)

∀x ∈ X, i ∈ [dX ], s 6= s∗(x)
∑

a∈RX

r(x,i,s,a) = 0 (4)

∀x ∈ X̂\X, i ∈ [dX ], s ∈ S
∑

a∈RX

r(x,i,s,a) = 0 (5)

The variable linear forms are as follows:
Hr(x,i,s) for every (x, i, s)

Where r(x,i,s) = (r(x,i,s,a1), . . . , r(x,i,s,a|RX |)) and H is a |RX |× |RX | Hadamard matrix. Thus we

get Bv =







H · · · 0
... H

...
0 · · · H






, where H is a |RX | × |RX | Hadamard matrix and for every (x, i, s) we

have a Hadamard matrix.
It is easy to know that the set of equations has the property that the matrix Bf are independent

of the instance X; Only the target vector depends on X.

Lemma 2 (Completeness) If there exists an assignment A that satisfies all the tests in Φ then
there exists a solution r to Bfr = t with ‖Bvr‖∞ = 1.

Proof: Give an assignment A, let r be the vector which is 1 in the coordinates (x, i, s∗(x), A(x))
for x ∈ X and i ∈ [dX ] and 0 elsewhere. In [18], Regev have show that Bfr = t. In the following,
we show that ‖Bvr‖∞ = 1.

For the vector r(x,i,s) = (r(x,i,s,a1), . . . , r(x,i,s,a|RX |)), when x ∈ X, i ∈ [dX ] and s = s∗(x), it is

an unit vector; Otherwise, it is an all-0 vector. Thus Hr(x,i,s) is one column of H or all-0 vector.
So ‖Hr(x,i,s)‖∞ ≤ 1. Thus ‖Bvr‖∞ = max

i
‖Hr(x,i,s)‖∞ = 1.

Lemma 3 (Soundness) For any ε > 0, if there exists a solution r to Bfr = t with ‖Bvr‖∞ is
less than

√
2 − ε, then there exists an assignment that satisfies at least a 1

2ε fraction of tests.

Proof: Let r be a vector such that Bfr = t with ‖Bvr‖∞ ≤
√

2 − ε. Let ∆r denotes the weight
of r. Then ∆r ≤ ‖Hr‖2

∞. Thus for every vector r(x,i,s), ∆r(x,i,s) ≤ 2 − ε. According to the

equations (4) and (5), for every x ∈ X, i ∈ [dX ], s 6= s∗(x) and every x ∈ X̂\X, i ∈ [dX ], s ∈ S, if
∆r(x,i,s) 6= 0, then ∆r(x,i,s) ≥ 2. Thus for all these vector ∆r(x,i,s) = 0. Thus the weight of r is at
most (2 − ε) · dX · |X| = (2 − ε) · |Φ|.

Associate each quadruple (x, i, s, a) ∈ T for which r(x,i,s,a) is non-zero with the pair (zi(x), si) ∈
Y × [dY ]. Since the weight of r is at most (2 − ε) · |Φ|, there exist at most (1 − 1

2ε)|Φ| pairs with
which we associate at least 2 quadruples. Therefore, there exist 1

2ε|Ψ| pairs with which we associate
1 quadruples. The following process is similar to the proof of lemma 3.4 in [18]. Thus by Regev’s
proof, there exist an assignment that satisfies at least 1

2ε fraction of tests.

By lemma 2, lemma 3 and the PCP of lemma 1, we get the following theorem.

Theorem 1 For any ε > 0, it is NP-hard to approximate MISPP∞ within a factor
√

2 − ε.
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By the proposition 1, we get the hardness of approximating CVPP∞ as follows.

Theorem 2 For any ε > 0, it is NP-hard to approximate CVPP∞ within a factor
√

2 − ε.

4 Hardness of (log n)1/2−ε

In this section, we give a reduction from GapLCPP problem to MISPP∞. The reduction essentially
combines the ideas from [2] and the property of Hadamard matrix. In [2], Aleckhnovich et al give
a reduction from GapLCPP to MISPP over `2 norm. The following lemma has been proved in [2].

Lemma 4 GapLCPP2−γk is NP-complete, for some γ and k, where 0 < γ < 1 and k is an integer.

From an instance of GapLCPP2−γk , we construct an instance (Bf ,Bv, t, d) of MISPP∞. In fact
Bv and t have been constructed [2]. We construct a new matrix Bv. For completeness we repeat
the construction of Bf and t as follows.

Consider following the instance UT,k of GapLCPP2−γk from lemma 4:

(G(V,W,E), [R], [S], n,m, {πe}e∈E , {Pw, Pw}w∈W ),

where n = |V |,m = |W | are nO(Tk) and R′, S′ are 2O(Tk). The only part of the input which is
not uniform (or does not depend on on) is {Pw}w∈W . Recall that for every w ∈ W , Pw = ∪lRw,l

a partition of |R|, while the input is the set of permissible labels for each w,Pw ∈ {Rw,l}l. The
instance is δ = 1/T smooth. Recall that this means that for any w ∈ W and any pair of distinct
label i, i′ ∈ [R],

Pr
v∈RN(w)

[π(v,w)(i) = π(v,w)(i
′)] ≤ δ.

Now we define the corresponding GapMISP instance. The variable are:

xw,i : ∀w ∈ W,∀i ∈ [R]

yw,i : ∀v ∈ V,∀j ∈ [S]

The fixed linear forms are as follows:

∑

i∈Pw

xw,i = 1 ∀w ∈ W (6)

∑

i∈Rw,l

xw,i = 0 ∀w ∈ W,Rw,l 6= Pw (7)

∑

j∈[S]

yv,j = 1 ∀v ∈ V (8)

(
∑

i:π(v,w)[i]=j

xw,i) − yv,j = 0 ∀e = (v,w) ∈ E,∀j ∈ [S] (9)

The variable linear forms are as follows:

Hxw ∀w ∈ W (10)
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Hyv ∀v ∈ V (11)

Where H of (10) are R ×R Hadamard matrixes (orthonormal ±1 matrix), H of (11) are S × S
Hadamard matrixes, xw is an vector (xw,1, . . . , xw,R) and yv is an vector (yw,1, . . . , xw,S), i.e. Bv =






H · · · 0
... H

...
0 · · · H






.

Since the partition Pw = ∪lRw,l depends only on n, the only part that depends on {Pw}w∈ is
the r.h.s of (6) and (7), and hence, this is an instance of GapMISPP. Now we analyze the gap of
this reduction and its tradeoff with the size of the instance produced.

Completeness

If UT,k is a YES instance, then there is an assignment to the variables of the corresponding GapMISP
instance such that ‖Bvx‖∞ = 1. Consider a labeling which satisfies all the edges of UT,k. Now
we construct a solution to the GapMISP with ‖Bvx‖∞ = 1 as follows. If the label i is assigned
to the vertex w ∈ W , then assign 1 to xw,i, and assign 0 to all xw,i, for i 6= i′. This makes sure
that the constraints (6) and (7) are satisfied. Similarly, if the label j is assigned to the vertex
v ∈ V , then assign 1 to yv,j , and assign 0 to yv,j′, for j 6= j′. This makes sure that the constraints
(8) are satisfied. Further, if labels i and j are assigned to w and v respectively in this satisfying
assignment, then for the (v,w), π(v,w)[i] = j, and hence, the constraints (9) are also satisfied.

Since every vertex is assigned to one label, xw and yv are an unit vector. Thus Hxw and Hyv

are one column of H. So ‖Hxw‖∞ = 1 and ‖Hyv‖∞ = 1. So ‖Bvx‖∞ = 1.

Soundness

We will establish factor h hardness, where h, as well as other parameters, are fixed below. Assume
that there is a solution to the GapMISP with ‖Bvr‖∞ = h. Then ‖Hxw‖∞ ≤ h and ‖Hyv‖∞ ≤ h.
Thus ‖xw‖2 ≤ ‖Hxw‖∞ ≤ h and ‖yv‖2 ≤ ‖Hyv‖∞ ≤ h. Hence

∑

i∈[R]

x2
w,i ≤ h2 and

∑

j∈[S]

y2
v,j ≤ h2

for all w and v.
We define blocks of variables by Bw = {xw,i : 1 ≤ i ≤ R} and Av = {yv,j : 1 ≤ j ≤ S}. Thus

the number of non-zero variables in the B-blocks, as well as the A blocks are at most h2. The
rest of the proof is similar to the proof of the soundness in [2]. By their argument, we obtain the
hardness factor is (log n)1/2−ε. We omit them.

Thus we get the following theorem.

Theorem 3 For any ε > 0, it is NP-hard to approximate MISPP∞ within a factor (log n)1/2−ε

unless NP⊆ DTIME (2polylog(n)).

By the proposition 1, we get the hardness of approximating CVPP∞ as follows.

Theorem 4 For any ε > 0, it is NP-hard to approximate CVPP∞ within a factor (log n)1/2−ε

unless NP⊆ DTIME (2polylog(n)).
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5 Conclusion

In this paper, we have proved that there is no polynomial time algorithm solving CVPP∞ within a
factor (log n)1/2−ε, unless NP⊆ DTIME (2polylog(n)). We obtain the result by a polynomial time
reduction from Label Cover Problem with preprocessing to CVPP∞ via MISPP∞. Our reduction
method is the combination of the reduction method [2] with property of Hadamard matrix.

In [6], I. Dinur proved that it is NP-hard to approximate CVP∞ within almost-polynomial
factors, could we obtain the same hardness factor ? Furthermore, could we obtain polynomial
factor hardness of approximating CVPP∞ (i.e. nε for some ε > 0).
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