
Testing Convexity Properties of Tree Colorings

Eldar Fischer ∗ Orly Yahalom †

Abstract

A coloring of a graph is convex if it induces a partition of the vertices into connected sub-

graphs. Besides being an interesting property from a theoretical point of view, tests for convexity

have applications in various areas involving large graphs. Our results concern the important

subcase of testing for convexity in trees. This problem is linked with the study of phylogenetic

trees, which are central in genetic research, and are used in linguistics and other areas. We give

a 1-sided, non-adaptive, distribution-free ε-test for the convexity of tree colorings. The query

complexity of our test is O
(

k

ε

)
, where k is the number of colors, and the additional computa-

tional complexity is O(n). On the other hand, we prove a lower bound of Ω
(

√

k
√

ε

)
on the query

complexity of tests for convexity in the standard model, which applies even for (unweighted)

paths. We also consider whether the dependency on k can be reduced in some cases, and provide

an alternative testing algorithm for the case of paths. Then we investigate a variant of convex-

ity, namely quasi-convexity, in which all but one of the colors are required to induce connected

components. For this problem we provide a 1-sided, non-adaptive ε-test with query complexity

O
(

k

ε2

)
. Finally, we show how to test for the convexity and quasi-convexity where the maximum

number of connectivity classes of each color is allowed to be a constant value other than 1.

∗Computer Science Department, Technion - IIT, Haifa 32000, Israel. Email: eldar@cs.technion.ac.il
†Computer Science Department, Technion - IIT, Haifa 32000, Israel. Email: oyahalom@cs.technion.ac.il

Electronic Colloquium on Computational Complexity, Report No. 53 (2006)

ISSN 1433-8092

1 Introduction

Property testing deals with the following relaxation of decision problems: Given a fixed property P
and an input f , one wants to decide whether f has the property or is ‘far’ from having the property.
Formally, two input functions f : D → F and f ′ : D → F are said to be ε-close (to each other) if
they differ in no more than ε|D| places (D is assumed to be finite). f is called ε-close to satisfying
a property P (or simply ε-close to P) if there exists an input f ′ that is ε-close to f and satisfies P .
If f is not ε-close to P then we say that f is ε-far from satisfying P (or ε-far from P).

Property testing normally deals with functions with large domains and/or costly retrieval pro-
cedures. We assume here that the number of queries of the function values is the most limited
resource, rather than the computation time.

A property P is said to be (ε, q)-testable if there exists a (randomized) algorithm that, for every
input function f : D → F , queries the values of f on at most q points of D, and with probability
no smaller than 2

3 distinguishes between the case where f has the property P and the case where
f is ε-far from having the property P . If a property P is (ε, q)-testable with q = q(ε) (i.e. q is a
function of ε only, and is independent of n) then we say that P is ε-testable. If P is ε-testable for
every fixed ε > 0 then we say that P is testable. We refer to the (asymptotic) number of queries
required by a given test as its query complexity.

Furthermore, a test is called 1-sided if an input which has the property is accepted with prob-
ability 1. Otherwise, it is called 2-sided. A test is said to be adaptive if some of the choices of the
locations for which the input is queried may depend on the values (answers) of previous queries.
Otherwise, if only the final decision to accept or reject depends on the query values, then the test
is called non-adaptive.

The general notion of property testing was first formulated by Rubinfeld and Sudan [13], who
were motivated mainly by its connection to the study of program checking. The study of this notion
for combinatorial objects, and mainly for labelled graphs, was introduced by Goldreich, Goldwasser
and Ron [3]. Property testing has since become quite an active research area, see e.g. the surveys
[12] and [2].

1.1 Convex colorings

Given a graph G = (V, E) and a vertex coloring c : V → {1, . . . , k} of G, define Vi as the set
of vertices v in V such that c(v) = i. We say that c is a convex coloring of G if all the Vi’s are
connected sets (i.e., induce connected subgraphs of G).

Determining whether a graph coloring is convex is easy to solve in linear time with standard
graph search techniques. However, when working with large data sets, a test which reads only a
small part of the input would be desired, also at the cost of having some error probability and
giving only an approximate answer. A possible application for testing convexity is considering the
Internet graph, where the language in which a web page is written is regarded as its “color”. We
then may wish to determine whether the pages written in each language form a connected subgraph.

In this paper we consider testing for convexity as defined above, and several variants of this
problem, on trees. A central motivation for this subcase is the study of phylogenetic (evolutionary)
trees, which originated in genetics [10, 14], but appears also in other areas, such a historical linguis-
tics (see [11]). Whether our subjects of interest are biologic species, languages, or other objects, a
phylogenetic tree specifies presumed hereditary relationships, representing different features with
different colors. A convex coloring is a positive indication for the reliability of a phylogenetic tree,

1

as it shows a reasonable evolutionary behavior.
Moran and Snir [8] studied recoloring problems, where the input is a colored tree and one has

to find a close convex coloring of the tree. They gave several positive and negative results on exact
and approximate algorithms. Our paper is the first, to the best of our knowledge, which approaches
the property testing aspect of this topic.

Our input is always a fixed and known tree T = (V, E). We test colorings c of T , where each
query is a vertex v ∈ V and the answer is its color c(v). Note that the problems we deal with
cannot be solved using connectivity testers such as those of Goldreich and Ron [4], as instead of
looking at the structure of the graph we consider the values of the coloring function, while the
graph structure is assumed to be known in advance.

1.2 Variants of convexity

We provide tests for several variants of the convexity property defined above, the first of which is
quasi-convexity. A coloring c : V → {0, . . . , k} is called quasi-convex if the color components Vi are
connected for colors i ≥ 1, while V0 is not necessarily connected. This property arises in various
cases in which we are interested only in the connectivity of some of the color classes (and all the
others may be considered as colored with 0). For example, regarding the connectivity of Internet
pages written in the same languages, we may not care about the connectivity of pages written in
an unclear or esoteric language (e.g. Klingon).

In addition, we consider convexity and quasi-convexity properties, where we relax our require-
ment of having at most one color component from every color. A coloring c : V → {1, . . . , k} is
called `-convex if the total number of color components that it induces is at most `. Similarly, a
coloring c : V → {0, . . . , k} is called `-quasi-convex if it induces at most ` color components for
all colors i > 0. Similarly we discuss list convexity (and list quasi-convexity) where we have lists
of upper bounds on the numbers of connected components of every color (or some of the colors).
In testing all these relaxed properties we use generalizations of our tests for convexity and quasi-
convexity, where a set D of “constraint” vertices is given. A coloring c is considered close to a
property P under the set D if it is close to a coloring c′ satisfying P that also agrees with c on the
values of the vertices in D.

1.3 Weighted and distribution-free property testing

Some distance functions, including the Hamming distance, have generalized weighted versions. For
example, the cost of modifying the color of a vertex, which is constant under the Hamming distance,
may be a function of the specific vertex. Such distance functions are discussed in [8] for convex
colorings of phylogenetic trees. There, a high cost assigned to a vertex may imply a hypothesized
high reliability of the color attributed to that vertex. Thus, if a “heavy” vertex must be recolored
in order to acquire a convex coloring, then the presumed phylogenetic tree is more likely to be false.
In other contexts, the cost function may represent the importance of certain vertices or the cost of
modifying them.

A strict model for testing over the vertex-weighted distance is to consider a cost function
which is unknown. This model, known as the distribution-free model, was introduced in [3] in the
context of learning theory, and developed for property testing by Halevy and Kushilevitz [5, 6]. A
distribution-free test may attain a sample of the points of the domain of the input according to a
fixed yet unknown distribution function (where each value obtained this way counts as a query).

2

The cost of modifying a point in the input is equal to the probability of that point according to
this distribution. Thus, the distance between two inputs is equal to the probability of querying
a point on which they differ. Halevy and Kushilevitz provided efficient distribution-free tests for
testing polynomiality and monotonicity of functions [5] and connectivity of graphs [6].

1.4 Our results

We show that convexity of tree colorings is testable, providing a 1-sided, non-adaptive, distribution-
free ε-test for every ε > 0. The query complexity of our test is O(k/ε), where k is the number of
colors, and the additional time complexity is O(n). We further provide an alternative 1-sided, non-
adaptive test for the standard (not weighted) model where the tree is a path, with query complexity
O(

√
k/ε3) and additional time complexity Õ(

√
k/ε3). On the negative side, we prove a lower bound

of Ω(
√

k/
√

ε) on the query complexity of testing convexity of paths in the standard model.
For quasi-convexity of trees, we discuss the weighted, but not distribution-free case. For every

ε > 0, we provide a 1-sided, non-adaptive ε-test with query complexity O(k/ε2), and additional
time complexity O(n).

As for testing for convexity and quasi-convexity with constraints, we show that for both prop-
erties, it is enough to augment the query set of our regular tests with the constraint vertices, and
therefore, the addition to the query and computational complexity is O(D).

Finally, we provide 1-sided tests for the relaxed convexity problems for the weighted, though
not distribution-free case. For `-convexity we give a test with query complexity Õ(`/ε) and time
complexity O(`n). For `-quasi-convexity we provide a test with query complexity Õ(`/ε2) and time
complexity O(`n). Given a list of integers ci, let ` denote their sum. Our test for list convexity
has query complexity Õ(`/ε) and computational complexity O(`n). For list quasi-convexity, ` is
the sum of ci’s only for the colors for which they are defined. For that property we give a test with
query complexity Õ(`/ε2) and computational complexity O(`n).

The rest of the paper is organized as follows: In Section 2 we give our test for convexity on
trees. In Section 3 we present our lower bound for this problem. Section 4 is dedicated to testing
quasi-convexity, and in Section 5 we consider relaxed convexity properties. The appendices contain
proofs missing in the body of the paper, as well the a test for convexity on paths.

Throughout the paper, we make no attempt to optimize the coefficients.

2 A distribution-free convexity test for trees

In this section we assume that µ : V → R is a fixed yet unknown weight function satisfying
µ(v) ≥ 0 for every v ∈ V and

∑
v∈V µ(v) = 1. For convenience, define µ(U) =

∑
v∈U µ(v) for

any U ⊆ V . The distance between two colorings c and c′ of T is defined as µ(∆c1,c2), where
∆c1,c2 = {v ∈ V |c1(v) 6= c2(v)}.

Vertices u, w, v in T form a forbidden subpath if w is on the (simple) path between u and v
and c(u) = c(v) 6= c(w). Clearly, c is a convex coloring of T if and only if it does not contain any
forbidden subpath.

Our test samples vertices according to the distribution function on V defined by µ and then
queries their values. We note that most models of distribution-free testing allow in addition queries
of determined vertices. However, our test will only need to use sample vertices. To reject the input,
the sample does not necessarily need to contain a forbidden subpath. Instead, the algorithm uses

3

the information supplied by the queried vertices, together with the knowledge of the structure of
the tree, to infer the existence of a forbidden subpath. The main idea behind the algorithm is that
if a coloring is ε-far from being convex, then, with high probability, either a forbidden subpath is
sampled or there exists a vertex that is a “crossroad” of sampled subpaths with conflicting colors.

Algorithm 2.1

1. Query
⌈

8k ln 12
ε

⌉
vertices, where each vertex is independently chosen according to the distribu-

tion defined by µ. Let X denote the sample.

2. If X includes a forbidden subpath, reject.

3. Otherwise, if there exists w ∈ V such that any value of c(w) implies a forbidden subpath,
reject. In other words, reject if there exist w ∈ V and u1, u2, v1, v2 ∈ X such that c(u1) =
c(u2) 6= c(v1) = c(v2), and w belongs to both the path between u1 and u2 and the path between
v1 and v2.

4. Otherwise, accept.

Theorem 2.2 For every ε > 0, Algorithm 2.1 is a 1-sided ε-test for convexity with query complexity
O(k/ε) and time complexity O(n).

It is easy to see that the query complexity is as stated. We show how to implement the
computational steps in time O(n) in Appendix A.1. Clearly, a convex coloring is always accepted
by Algorithm 2.1, as it does not contain forbidden subpaths. Thus, it remains to show that every
k-coloring which is ε-far from being convex is rejected with probability at least 2

3 .

For neighboring vertices u and v, we denote the connected component of V \{u} that contains v

by C
(v)
u . Note that C

(v)
u and C

(u)
v form a partition of V . For any subset U ⊆ V let the i-weight of U

be the total weight of all i-vertices in U , and denote it by µi(U)
def
= µ(Vi∩U). A color i ∈ {1, . . . , k}

is called abundant if µ(Vi) ≥ ε/2k. For an abundant color i, we say that a vertex u ∈ V is i-balanced

if the set {C(v)
u |v ∈ V } may be partitioned into two subsets, where the i-weight of the union of each

subset is at least ε/8k. We say that a vertex v is heavy if µ(v) ≥ ε/8k.

Lemma 2.3 For every abundant color i, either there exists u ∈ V such that u is i-balanced, or
there exists a heavy i-vertex (or both).

Proof. Assume that there exists an abundant color i such that every u ∈ V is not i-balanced
and there are no heavy i-vertices. Note that in this case every u ∈ V has a neighboring vertex

v such that C
(v)
u is of i-weight larger than ε/4k (as otherwise u is easily seen to be i-balanced).

Consider u and v such that C
(v)
u is of minimum i-weight among those whose i-weight is larger than

ε/4k. There exists a neighbor w of v such that C
(w)
v is of i-weight larger than ε/4k. Due to the

minimality of C
(v)
u , we must have w = u. Thus C

(u)
v is of i-weight larger than ε/4k, and, since

there are no heavy i-vertices, the i-weight of C
(u)
v \ {u} is at least ε/8k. Therefore, both C

(v)
u and

V \ {C(v)
u ∪ {u}} have i-weight of at least ε/8k, and hence u is i-balanced. A contradiction. 2

For every abundant color i, define the set Bi as the union of i-balanced vertices and heavy
i-vertices. By the lemma above, Bi is non-empty for every abundant color i.

4

Lemma 2.4 Bi is a connected set for every abundant color i.

Proof. Assume that there exist two vertices u, v ∈ Bi, and let w be on the path between u and
v. Assuming that w is not a heavy i-vertex, we show that w is i-balanced. If u is a heavy i-vertex,

then clearly µi(C
(u)
w) ≥ ε/8k. Otherwise, u is i-balanced, and thus, V \ {u} may be partitioned

into two sets of connected components, the i-weight of each of which is at least ε/8k. One of these

sets does not contain C
(w)
u . Thus, µi(C

(u)
w) ≥ ε/8k. Similarly, it follows that µi(C

(v)
w) ≥ ε/8k, and

hence w is i-balanced. 2

Proposition 2.5 For every k-coloring c of T which is ε-far from being convex, there exist two
different abundant colors i and j and a vertex u, such that u ∈ Bi and u ∈ Bj.

Proof. Notice first that there must be at least two abundant colors. Otherwise, the total weight
of the vertices of non-abundant colors is smaller than ε, and we may obtain a convex coloring of T
by recoloring all of them with the only abundant color.

Suppose that the connected sets Bi are disjoint. We show that there exists a convex coloring
c′ of T that is ε-close to c, which leads to a contradiction. Define c′ as follows. For every vertex v
and abundant color i, let d(v, Bi) denote the “walking” distance on T between v and Bi, i.e. the
length of the path from v to (the connected) Bi. Color every vertex v with i such that d(v, Bi) is
minimal, choosing the minimal index i in case of a tie. In particular, we color all the vertices in Bi

with i.
We claim that c′ is a convex coloring. First, consider two neighboring vertices u and w such that

c′(u) = i and c′(w) = j for i 6= j. We have d(u, Bi)−d(u, Bj) < d(w, Bi)−d(w, Bj). By Lemma 2.4,

Bi is connected. Assume that Bi ⊆ C
(w)
u . Then d(u, Bi) = d(w, Bi)+1 and d(u, Bj) ≤ d(w, Bj)+1,

a contradiction. Hence, Bi ⊆ C
(u)
w , as Bi is connected and w /∈ Bi. Now, assume that the set of

vertices colored with i is not connected. Then there exist vertices u and v (by taking them as the
endpoints of the shortest forbidden subpath) such that c′(u) = c′(v) = i and c′(w1), c

′(w2) 6= i,
where w1 is the neighbor of u on the path between u and v and w2 is the neighbor of v on the path

between u and v (w1 could be equal to w2). By the above, we have Bi ⊆ C
(u)
w1 and Bi ⊆ C

(v)
w2 , a

contradiction.
We now show that c′ is ε-close to c. For an abundant color i, we have only recolored vertices

in Vi which are in C
(v)
u for some edge (u, v) in (Bi, V \ Bi), where C

(v)
u contains a set Bj for some

j 6= i. Let (u, v) be such an edge in (Bi, V \ Bi). Suppose that µi(C
(v)
u) ≥ ε/4k. By the definition

of Bi, v is not a heavy i-vertex, and thus µi(C
(v)
u \ {v}) > ε/8k. Since v is not i-balanced, we have

µi(C
(u)
v) < ε/8k, but this is impossible, as u is i-balanced. We thus conclude that µi(C

(v)
u) < ε/4k

for every edge (u, v) in (Bi, V \ Bi).
Let T ′ be the tree created from T by contracting every set Bi into a single vertex and removing

all vertices which do not belong to a path between two Bi’s. Let Di be the degree of Bi in T ′.

Clearly, for every abundant color i, Di is the number of edges (u, v) in (Bi, V \ Bi), where C
(v)
u

contains a set Bj for some j 6= i. Assume, without loss of generality, that the abundant colors are
numbered i = 1, . . . , ` for ` ≤ k. The following claim is proved by induction on `. See Appendix A.

Claim 2.6
∑`

i=i Di ≤ 2(` − 1) ≤ 2(k − 1).

5

From the discussion above, it follows that the total weight of recolored vertices among those
whose original color was abundant is less than

∑`
i=i Di(ε/4k) ≤ 2(k − 1)(ε/4k) < ε

2 . As non-
abundant colors are of weight smaller than ε/2k each, their total weight is smaller than ε/2. Thus,
c′ is ε-close to c. 2

Proof of Theorem 2.2. We have shown that for every coloring that is ε-far from being convex,
there exist i, j and a vertex w such that w ∈ Bi ∩ Bj . Clearly w must be i-balanced or j-
balanced or both. Suppose that w is not balanced with respect to one of the colors, say, i. Then
w must be a heavy i-vertex and j-balanced. In such a case µ(w) ≥ ε/8k and there exist two
disjoint sets W j

1 , W j
2 ⊆ Vj , each of weight at least ε/8k, such that every path between vertices

v1 ∈ W j
1 and v2 ∈ W j

2 passes through w. Hence, if the sample X contains w and at least one

vertex from each of the sets W j
1 and W j

2 , then Algorithm 2.1 rejects the input in Step 2. Now,

the probability for any of the sets W j
1 and W j

2 or of w to not intersect the sample set X, is at

most (1 − ε/8k)
8k ln 12

ε . Thus, by the union bound, the algorithm will fail with probability at most

3(1 − ε/8k)
8k ln 12

ε < 3 exp(− ln 12) = 1/4.
Otherwise, if w is both i-balanced and j-balanced, then there exist two disjoint sets W i

1, W
i
2 ⊆ Vi,

each of weight at least ε/8k, and two disjoint sets W j
1 , W j

2 ⊆ Vj , each of weight at least ε/8k, where
every path between vertices u1 ∈ W i

1 and u2 ∈ W i
2 passes through w and every path between vertices

v1 ∈ W j
1 and v2 ∈ W j

2 passes through w. Hence, if the sample X contains at least one vertex from

each of the sets W i
1, W

i
2, W

j
1 , W j

2 , Algorithm 2.1 rejects the input in Step 3. The probability for any

given set of the above, to not intersect X, is at most (1 − ε/8k)
8k ln 12

ε . Thus, by the union bound,
the algorithm will fail with probability at most 4(1 − ε/8k)8k ln 12/ε < 4 exp(− ln 12) = 1/3. 2

2.1 Testing convexity on trees with constraints

In Appendix A.2 we consider a variant of the convexity problem where a set D ⊆ V is specified,
such that a coloring c is considered ε-closed to being convex only if there exists an ε-close convex
coloring c′ that agrees with c on all the values of the vertices in D. We show that in order to test
for convexity with constraints, the only change required from the original test for convexity is to
add D to the set of queries.

3 A lower bound for testing convexity

Theorem 3.1 Every (adaptive) ε-test for convexity for every ε < 1/8 must use more than

√
3 (k−1)

64ε

queries in the worst case. This is specifically true for trees which are (unweighted) paths.

Let T be a path of length n. According to Yao’s theorem [15], it is enough to provide a
distribution of inputs, such that any deterministic algorithm whose inputs are chosen according to

that distribution and uses q ≤
√

3(k−1)
64ε queries will fail to give the correct answer with probability

larger than 1
3 . More precisely, we will present two distributions of inputs. DP will be a distribution

of convex colorings of T and DN will be a distribution of colorings of T which are ε-far from being

convex. We will prove that any deterministic algorithm using q ≤
√

3(k−1)
64ε queries has an error

probability larger than 1
3 when trying to distinguish between DP and DN .

6

Assume that k divides n. In both distributions we divide T into k intervals of size n/k each,
such that all the vertices in each interval are colored with the same color. Without loss of generality,
we can assume that the testing algorithm queries at most one vertex from every interval.

Definition 3.2 Let DP be the distribution of inputs defined by uniformly choosing a permutation
of all k colors and coloring the intervals accordingly.

Clearly, all inputs in DP are convex. To define the distribution DN of ε-far inputs, we use an
auxiliary distribution.

Definition 3.3 Let D̃N be the distribution where the inputs are selected by uniformly choosing
(1−8ε)k colors to appear in one interval and 4εk colors to appear in two intervals. The placements
of the colors are then chosen uniformly at random.

Definition 3.4 Let DN be the conditional distribution of D̃N on the event that the coloring chosen
by D̃N is ε-far from being convex.

The complete proof that a test cannot distinguish DP from DN appears in Appendix C. We
note that the proof shows that our test for convexity on paths, given in Appendix B, is optimal up
to a power of 1

ε .

4 Quasi-convexity of trees

We now formalize the notion of quasi-convexity. Let k be the number of colors whose vertices are
required to induce connected components. Without loss of generality, we may refer to all other
vertices as having the same color, which we denote by 0. Given a tree T = (V, E) and a vertex
coloring c : V → {0, 1, . . . , k} of T , we define Vi, as before, as the set of vertices v in V such that
c(v) = i. If c(v) > 0 we say that v is colored. Otherwise, we say that v is uncolored. c is said to be
quasi-convex if Vi is connected for i = 1, . . . , k. Alternatively, vertices u, w, v in T form a forbidden
subpath if w is on the (simple) path between u and v, c(u) = c(v) > 0 and c(w) 6= c(v). Clearly, c
is a quasi-convex coloring of T if and only if it contains no forbidden subpaths as defined above.

We assume that µ : V → R is a fixed and known weight function satisfying µ(v) ≥ 0 for every
v ∈ V and

∑
v∈V µ(v) = 1. For every set U ⊆ V we let µ(U) =

∑
v∈U µ(v). The distance between

two colorings of T , and the components C
(v)
u , are defined as in Section 2.

Algorithm 4.1

1. Query d48k/εe vertices, where each vertex is independently chosen according to the distribution
defined by µ. Let X denote the sample.

2. If X includes a forbidden subpath, reject.

3. Otherwise, if there exists w ∈ V such that any value of c(w) implies a forbidden sub-
path, reject. In other words, reject if there exist w ∈ V and u1, u2, v1, v2 ∈ X such that
c(u1), c(u2), c(v1), c(v2) > 0 and c(u1) = c(u2) 6= c(v1) = c(v2), where w belongs both to the
path between u1 and u2 and to the path between v1 and v2.

4. Otherwise, repeat the following d146/εe times independently:

7

• Choose a vertex w ∈ X uniformly at random. If w is colored, do nothing.

• Otherwise, if w is uncolored, let T i
w

def
= C

(w)
vi for every neighbor vi of w, which is on a

path from w to an i-colored vertex in X (if vi exists then it is unique, as X does not
contain a forbidden subpath). Query log1/(1−ε/8) 8 vertices in each T i

w, where each vertex

is independently chosen according to the distribution defined by µ conditioned on T i
w.

• Reject if the union of X and the recently queried vertices includes a forbidden subpath.

5. Otherwise, accept.

Theorem 4.2 For every ε > 0, Algorithm 4.1 is a 1-sided ε-test for quasi-convexity with query
complexity O

(
k
ε2

)
and time complexity O(n).

Notice that for ε small enough, we have log1/(1−ε/8) 8 < ln 8
ε/16 . Thus, it is easy to see that the

query complexity is as stated. We show how to implement the computational steps in time O(n)
in Appendix D.1. Clearly, a quasi-convex coloring is accepted by Algorithm 4.1 with probability 1,
as it does not contain any forbidden subpaths. Therefore, it remains to show that every k-coloring
which is ε-far from being quasi-convex is rejected with probability at least 2

3 .

For any subset U ⊆ V we define the i-weight of U , as in Section 2, as µi(U)
def
= µ(Vi ∩ U). We

say that a color i > 0 is abundant if µ(Vi) ≥ ε/4k. For an abundant color i, we say that a vertex

u ∈ V is i-balanced if the set {C(v)
u |v ∈ V } may be partitioned into two subsets, where the i-weight

of the union of each subset is at least ε/16k. We say that a vertex v is heavy if µ(v) ≥ ε/16k.
For every abundant color i, we define the set Bi as the union of i-balanced vertices and heavy

i-vertices. The following lemma is proved similarly to Lemma 2.3 and Lemma 2.4.

Lemma 4.3 Bi is no-empty and connected for every abundant color i.

Assume, without loss of generality, that the abundant colors are numbered i = 1, . . . , `.

Observation 4.4 If ` = 0 then c is ε-close to being quasi-convex.

Proof. Clearly, in such a case, the total weight of colored vertices is at most ε/4, and hence we
may obtain an ε/4-close quasi-convex coloring by setting all colored vertices to be uncolored. 2

Suppose now that ` > 0 and the Bi’s are all disjoint. We say that a vertex is an outsider if it
is not in any Bi nor on a path between two Bi’s. For every abundant color i, let Mi be the union
of Bi and of all the outsider vertices whose closest Bj is Bi. Clearly, all Mi’s are connected and
disjoint. The proof for the following lemma is based on ideas similar to those used in the proof of
Proposition 2.5, and is provided in Appendix D.

Lemma 4.5
∑`

i=1 µi(V \ Mi) ≤ ε/4.

Let F be the rooted forest consisting of all outsider vertices, such that the root of every tree is
the vertex r adjacent to some Bi. We say that such a vertex r is associated with i. We also say
that i is the color associated with every descendant v of such an r in F . An outsider vertex is said
to be an i-satellite, for some abundant color i, if it is an i-colored vertex associated with i. We call
a vertex a satellite if it is an i-satellite for some abundant color i.

8

F is said to be monotone if it contains only uncolored and satellite vertices, and furthermore no
uncolored vertex is an ancestor of a satellite vertex. If F can be made monotone by changing the
color of satellite and uncolored vertices of weight at most ε/4, and any amount of other vertices in
F , then we say that F is good. Otherwise, we say that F is bad.

Lemma 4.6 If ` > 0 and all of the following conditions apply:

(a) The Bi’s are all disjoint.

(b) The total weight of uncolored vertices inside Bi’s is at most ε/4.

(c) F is good.

then the input coloring c is ε-close to being quasi-convex.

Proof. We show that in such a case, there exists a quasi-convex coloring c′ of T that is ε-close to
c. Define c′ as follows. For every abundant color i, color all the vertices of Bi with i. Then choose
a monotone coloring for F which changes a minimum weight of uncolored and satellite vertices.
Finally, set the rest of the vertices to be uncolored. One can see that c′ is quasi-convex.

We now show that c′ is ε-close to c. First, consider vertices of abundant colors, excluding
satellites, whose color has been changed. From Lemma 4.5, the total weight of such vertices is at
most ε

4 . Now consider uncolored vertices inside Bi’s. From Condition (b), the total weight of such
vertices is at most ε/4. As for satellites and uncolored vertices in F , from Condition (c), the total
weight of these is at most ε/4. Finally, for non-abundant colors, since they are of weight smaller
than ε/4k each, their total weight is smaller than ε/4. We conclude that c′ is ε-close to c. 2

The next three lemmas are proved in Appendix D.

Lemma 4.7 If ` > 0 and the Bi’s are not disjoint, then the input is rejected by Step 2 or Step 3
of Algorithm 4.1 with probability at least 2/3.

Lemma 4.8 If ` > 0 and the total weight of uncolored vertices inside Bi’s is larger than ε/4, then
the input is rejected by Step 2 of Algorithm 4.1 with probability at least 2/3.

Lemma 4.9 If ` > 0, the Bi’s are disjoint, F is bad, and the input is not rejected in Step 2 or 3
of Algorithm 4.1, then it is rejected in Step 4 with probability at least 2/3.

Proof of Theorem 4.2. The three lemmas above, together with Observation 4.4 and Lemma
4.6, yield that every ε-far input is rejected by the algorithm with probability at least 2/3, completing
the proof. 2

5 Relaxed convexity properties

Given a graph G = (V, E) and an integer ` > 0, we say that a vertex coloring c : V → {1, . . . , k} of G
is `-convex if it induces at most ` color components. We say that a vertex coloring c : V → {0, . . . , k}
of G is `-quasi-convex if it induces at most ` components of colors i > 0. Given a list c1, . . . , ck, of
integers we say that a vertex coloring of G is convex with respect to the list 〈c1, . . . , ck〉 if it induces
at most ci color components of every color i. If we allow some of the ci’s to be ∞, we say that the
coloring is quasi-convex with respect to the list 〈c1, . . . , ck〉.

In the next subsection we present a 1-sided test for `-convexity on trees, and later we explain
how to transform it into a test for `-quasi-convexity, list convexity and list quasi-convexity.

9

5.1 `-convexity of trees

Theorem 5.1 There exists a 1-sided test for `-convexity on trees with query complexity Õ(`/ε)
and time complexity O(`n).

Assume that we are given a tree T = (V, E) and an integer ` > 0. Our algorithm maintains
a set X of queried vertices and uses it to decompose T into “interesting” subtrees which intersect
each other only on vertices of X. We build X in such a way that each interesting tree has either
two vertices in X, both as leaves, or one vertex in X, which we consider as a root. Using the values
of the vertices of X we can infer a lower bound CC on the number of color components in T .

In order to discover more color components, we test the interesting subtrees for homogeneity or
convexity of two colors, where the choice depends on the colors of vertices defining each particular
subtree. More precisely, we test for convexity under constraints (see Appendix A.2), where the
constraint vertices for an interesting subtree T ′ are its defining vertices, whose color is known. In
each of the cases, our test of T ′ attempts to find a witness, or witnesses, to the fact that T ′ contains
more color components than implied by its defining vertices. If such witnesses are found, we add
them to X, remove T ′ from the set of interesting trees and replace it with subtrees of T ′ defined
by the newly found witnesses. We now accordingly increment our lower bound CC on the color
components in T . On the other hand, if the test for T ′ has accepted, we just remove T ′ from the
set of interesting trees, as it is unlikely to hold information on additional color components. If
at some point we have discovered more than ` color components, the algorithm rejects the input.
Otherwise, the algorithm halts and accepts when there are no interesting trees left.

The details of the algorithm and the full proof are given in Appendix E.1. In the proof we
show that CC is a tight lower bound for the number of color components in T , and that for an
ε-far coloring, more than ` color components are detected with high probability. In addition, since
CC is incremented in every iteration where a new color component is detected, we obtain the
corresponding upper bounds for the query and computational complexity.

5.2 `-quasi-convexity of trees

Theorem 5.2 There exists a 1-sided test for `-quasi-convexity on trees whose query complexity is
Õ(`/ε2) and whose time complexity is O(`n).

The proof is given in Appendix E.2.

5.3 List convexity and list quasi-convexity of trees

Theorem 5.3 Given a list L = 〈c1, . . . , ck〉 of integers, there exists a 1-sided test for convexity
with respect to L for trees, with query complexity Õ(`/ε) and computational complexity O(`n),
where ` =

∑
i=1,...,k ci.

Theorem 5.4 Given a list L = 〈c1, . . . , ck〉 where every ci is either an integer or ∞, there exists
a 1-sided test for quasi-convexity with respect to L for trees, with query complexity Õ(`/ε2) and
computational complexity O(`n), where ` =

∑
1≤i≤k, ci<∞ ci.

The tests used to prove both theorems above are almost identical to our tests for `-convexity
and `-quasi-convexity, respectively. The only difference is that instead of the counter CC of the
total number of color components discovered, we maintain a counter CCi for every color i for which
ci < ∞.

10

Acknowledgements

We thank Sagi Snir for introducing us to the topic of phylogenetic trees. We also thank Ronitt
Rubinfeld for helpful comments.

References

[1] N. Alon, M. Krivelevich, Ilan Newman and M. Szegedy, Regular languages are testable with a
constant number of queries, Siam Journal on Computing 30(6):1842–1862, 2001.

[2] E. Fischer, The art of uninformed decisions: A primer to property testing, Bulletin of the
European Association for Theoretical Computer Science, 75:97–126, Section 8, 2001.

[3] O. Goldreich, S. Goldwasser and D. Ron, Propery testing and its connection to learning and
approximation, Journal of the ACM, 45(4):653–750, 1998.

[4] O. Goldreich and D. Ron, Property testing in bounded degree graphs, Algorithmica, 32, 302–
343, 2002.

[5] S. Halevy and E. Kushilevitz, Distribution-free property testing, In Proceedings of the 7th

RANDOM and the 6th APPROX: 302–317, 2003.

[6] S. Halevy and E. Kushilevitz, Distribution-free connectivity testing, In Proceedings of the 8th

RANDOM and the 7th APPROX: 393–404, 2004.

[7] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-
Wesley, 1968. Second edition, 1973.

[8] S. Moran and S. Snir, Convex recolorings of phylogenetic trees: definitions, hardness results
and algorithms, Workshop on Algorithms and Data Structures (WADS), 2005, to appear.

[9] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld and A. Samorodnitsky,
Monotonicity testing over general poset domains, Proceedings of the 34th STOC, pages 474–
483, 2002.

[10] B.M.E. Moret and T. Warnow, Reconstructing optimal phylogenetic trees: A challenge in
experimental algorithmics, In: Experimental Algorithmics, Lecture Notes in Computer Science
2547, Springer Verlag, 2002, 163–180.

[11] L. Nakhleh, T. Warnow, D. Ringe, and S.N. Evans, A comparison of phylogenetic reconstruc-
tion methods on an IE dataset, Transactions of the Philological Society, 2005, to appear.

[12] D. Ron, Property testing (a tutorial), In: Handbook of Randomized Computing (S. Rajasekaran,
P. M. Pardalos, J. H. Reif and J. D. P. Rolim eds), Kluwer Press, 2001.

[13] R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applications to pro-
gram testing, SIAM Journal of Computing, 25(2):252–271, 1996.

[14] C. Semple and M. Steel, Phylogenetics, Oxforx University Press, 2003.

[15] A. C. Yao, Probabilistic computation, towards a unified measure of complexity, In Proceedings
of the 18th IEEE FOCS: 222–227, 1977.

11

A Appendices for Section 2

Proof of Claim 2.6. Note that by the definition of T ′, all its leaves are Bi’s. We now prove
the claim by induction on `. For ` = 1, T ′ consists of a single Bi, and the claim is trivially true.
Assume that the claim is true for every `′ < ` where ` > 2. Now remove one of the leaves of T ′.
If the resulting tree has a new leaf which is not a Bi, remove it, and repeat this operation until
yielding a tree, T ′′, whose leaves are all Bi’s. By the induction hypothesis, the sum of the degrees
of Bi’s in T ′′ is at most 2(`− 2). Now, in creating T ′′ from T ′ we have removed one Bi of degree 1,
and, possibly, reduced the degree of another Bi by 1 (as after removing an edge adjacent to an Bi

we stop removing leaves). Thus,
∑`

i=i Di ≤ 2(` − 2) + 2 = 2(` − 1). 2

A.1 Implementation of the computation step in Algorithm 2.1

We specify a computationally efficient implementation of Steps 2 and 3 of Algorithm 2.1. For every
color i = 1, . . . , k, let qi be the number of vertices of color i in the sample X. Clearly, the qi’s can
be computed in time O(n). Next, we arbitrarily select a root r for T and obtain a topological order
of the vertices using Depth First Search from r, which can be done in time O(n) (see eg. [7]). We
now consider the nodes of T in reverse topological order. This can be viewed as “trimming” leaves
from the tree one by one. For each vertex v we hold a variable m(v), which can receive either the
value “null” or the value of a color. Initially, if v ∈ X then m(v) holds its color, and if v /∈ X then
m(v) is null. m(v) will receive the value i if and only if i is the only color for which X contains
i-colored vertices both inside and outside the subtree rooted in v. If there is more than one such
color, we deduce that a forbidden subpath exists and reject. In addition, we assign for every vertex
v a variable a(v) which will be 0 if m(v) is null, and otherwise will hold the number of vertices of
color m(v) in the subtree rooted in v.

Procedure A.1 For every v in reverse topological order, do:

• If v ∈ X then set a(v) = 1; otherwise set a(v) = 0.

• If v ∈ X then set m(v) = c(v); otherwise set m(v) to be null.

• For every child u of v such that m(u) is not null:

1. If m(v) is not null and m(v) 6= m(u) then reject the input and terminate.

2. Otherwise, set m(v) = m(u) and a(v) = a(v) + a(u).

• If m(v) is not null and a(v) = qm(v) then set m(v) to be null and a(v) = 0.

If the algorithm did not reject after going over all vertices, then accept.

Since for every vertex v the running time is proportional to the number of its children, the total
running time is O(n). We now prove that Procedure A.1 implements Steps 2 and 3 of Algorithm
2 correctly.

Lemma A.2 For every vertex v the following holds:

12

1. If Procedure A.1 rejects in the iteration of v, then v is a middle vertex of a forbidden subpath,
where if v ∈ X then the forbidden subpath appears in X, and, otherwise, there exist vertices
a1, a2, b1, b2 ∈ X such that c(a1) = c(a2) 6= c(b1) = c(b2) and v belongs to the path between a1

and a2 as well as to the path between b1 and b2.

2. If Procedure A.1 completes the iteration of v without rejecting it, then v is not a middle vertex
of a forbidden path as above.

3. If the processing of v is completed, then, in its end, m(v) = i if and only if X includes i-
colored vertices both inside and outside the subtree rooted in v. In such a case, a(v) is equal to
the number of i-colored vertices of X in the subtree rooted in v. If m(v) is null then a(v) = 0.

Proof. The claim is easily proved for the case where v is a leaf. Let v be a vertex and assume
the correctness of the claim for all the children of v.

1. For the proof of the first part, notice that if v ∈ X, then the procedure rejects if and only
if there exists a child u of v such that m(u) is not null and m(u) 6= c(v). By Part 3 of
the induction hypothesis, this implies that X includes m(u)-colored vertices both inside and
outside the subtree rooted in v. Thus, v is a middle vertex of a forbidden subpath of X. If
v /∈ X, then the procedure rejects if and only if there exist children u1, u2 of v such that m(u1)
and m(u2) are both not null with m(u1) 6= m(u2). By Part 3 of the induction hypothesis, this
implies that there exist a1, a2 ∈ X such that c(a1) = c(a2) = m(u1), where a1 is a descendant
of u1 and a2 is not. Similarly, there exist b1, b2 ∈ X such that c(b1) = c(b2) = m(u2), where
b1 is a descendant of u2 and b2 is not. Clearly, v belongs both to the path between a1 and a2

and to the path between b1 and b2.

2. Suppose that v is a middle vertex in a forbidden subpath in X. Then there exist two vertices
a, b ∈ X such that c(a) = c(b) 6= c(v) and v is on a simple path between a and b. It must
be the case that at least one of a and b, say a, is a descendant of v. Therefore, unless the
algorithm has already rejected before reaching v, for the child u of v which is an ancestor
of a, we have m(u) = c(a) by Part 3 of the induction hypothesis (note that b cannot be a
descendant of u so qm(u) > a(u)). However, as m(v) is set to c(v), we are ensured that the
procedure will reject when the child u is examined (if not earlier). Similarly, suppose that
v /∈ X and that there exist vertices a1, a2, b1, b2 ∈ X such that c(a1) = c(a2) 6= c(b1) = c(b2)
and v belongs to the path between a1 and a2 as well as to the path between b1 and b2. Then
at least one of a1 and a2 and at least one of b1 and b2 are descendants of v, and therefore,
v has two children u1 and u2 such that m(u1) 6= m(u2) (noting that qm(u1) > a(u1) and
qm(u2) > a(u2)). One can now see that the procedure will reject in the iteration of v.

3. If m(v) is null after examining all the children of v, then v /∈ X and m(u) is null for every child
u of v. By the induction hypothesis, there exists no color i such that X contains i-colored
vertices both inside and outside subtrees rooted in v’s children. As v /∈ X, it follows that
there is no color i such that X contains i-colored vertices both inside and outside the subtree
rooted in v. Therefore, m(v) and a(v) correctly attain their initial values. If after examining
v’s children we have m(v) = i for some color i, then m(u) = i for every child u of v such
that m(u) is not null, and, if v ∈ X then c(v) = i. Thus one can see that after examining
v’s children, a(v) correctly holds the number of i-colored vertices in X in the subtree rooted

13

in v. In that case, a(v) = qi if and only if there are no i-colored vertices in X outside the
subtree rooted in v, and so, the last step in the iteration provides the correct value for m(v).

2

From the lemma above, it follows that Procedure A.1 is correct, as it rejects any sample X
containing or implying a forbidden subpath, and accepts otherwise.

A.2 Testing convexity on trees with constraints

Given a graph G = (V, E), a weight function µ : V \ D → R, a vertex coloring c : V → {1, . . . , k}
and a set D ⊆ V of “constraints”, we say that c is ε-close under D to being convex if there exists
a convex coloring c′ : V → {1, . . . , k} which agrees with c on the values of the vertices in D and
whose restriction to V \ D is ε-close to that of c. If c is not ε-close under D to being convex, we
say that c is ε-far under D from being convex.

We now show that for a tree T = (V, E), it is enough to test for convexity under a set of
constraints D by simply adding D to the query set and then searching for a forbidden subpath as
in Algorithm 2.1.

Algorithm A.3 Identical to Algorithm 2.1, except that in the end of Step 1 we also query all the
constraint vertices in D.

Note that Algorithm A.3 still follows the common definition of being distribution-free.

Proposition A.4 Algorithm A.3 is a 1-sided ε-test for convexity under a set of constraints D with
query complexity O(k/ε + |D|) and time complexity O(n).

Proof. Clearly, the complexity demands are satisfied. The computational complexity is the
same as for Algorithm 2.1, as it does not depend on the size of the query set but on the number of
vertices in the tree (see Appendix A.1). Clearly, Algorithm A.3 always accepts a convex coloring.
We now show that every coloring which is ε-far under D from being convex is rejected by the
algorithm with probability at least 2/3.

Define the sets Bi of i-balanced vertices and big i-vertices as in the proof of Theorem 2.2. Note
that the weight function is defined only on V \D. We have seen that for every i-balanced vertex w,
with high probability we sample two i-colored vertices u and v such that w is on the path between
u and v. Therefore, if the Bi’s are not disjoint, then Algorithm 2.1 rejects with high probability, as
shown in its proof of correctness. In addition, if there exists an i-colored vertex w ∈ D such that
w ∈ Bj for i 6= j, then, clearly, with high probability, Algorithm 2.1 finds a forbidden subpath and
rejects.

Assume now that the Bi’s are disjoint, and that every constraint vertex w ∈ D∩Bi is i-colored.
Consider the tree T ′ created from T by contracting every set Bi into a single vertex and removing
all vertices which do not belong to a path between Bi’s and/or constraint vertices. We refer to Bi’s
and constraint vertices as special vertices in T ′. Suppose that T ′ contains either (a) a forbidden
subpath comprised of special vertices; or (b) a “critical” vertex w and special vertices u1, u2, v1,
v2 such that c(u1) = c(u2), c(v1) = c(v2) and w is both on the path between u1 and u2 and on the
path between v1 and v2. Then at most two of the special vertices in any of the above cases are Bi’s,
and the other vertices will certainty be queried. Therefore, in similar techniques to those used in

14

the proof of Theorem 2.2, one can see that in either case, Algorithm 2.1 rejects with probability at
least 2/3.

On the other hand, suppose that T ′ does not contain a forbidden subpath of special vertices or
a critical vertex as above. Then we may enlarge the Bi’s by adding to every Bi all the i-colored
constraint vertices and the vertices on the paths to them. For constraint vertices colored with a
non-abundant color i, we create a new set Bi containing all the i-colored constraint vertices and
the paths between them. We now have at most one set Bi for every color i, and all the sets are
disjoint. Thus, we can define a convex coloring c′ of T in the same way as was done in the proof of
Proposition 2.5.

To prove that the restriction of c′ to V \D is ε-close to that of c, we again use the fact that for

every Bi, we have only recolored vertices in Vi which are in C
(v)
u for some edge (u, v) in (Bi, V \Bi),

where C
(v)
u contains a set Bj for some j 6= i. For abundant colors i, we have shown that for such an

edge (u, v) we have µi(C
(v)
u) < ε/4k. Note that in the proof we have only used the fact that each Bi

contains all the i-balanced vertices and the big i-vertices, and, therefore, we may also apply it here,
regardless of whether j is an abundant color or not. Hence, we obtain the same upper bounds for
the weight of recolored vertices of both abundant and non abundant colors, and thus, c′ is ε-close
to c. We conclude that if c is ε-far under D from being convex then Algorithm 2.1 rejects with
probability at least 2/3. 2

B A convexity test for paths

We now present a standard property test for the special case where the tree T is a path, whose
performance is better than that of Algorithm 2.1 when k is large with respect to 1/ε3. We note
that a colored path is essentially a string. The convexity property on strings is a special case
of a regular language, and thus is known to be testable by Alon et. al [1]. However, the query
complexity obtained there, though polynomial in 1

ε , is exponential in the size of the DFA accepting
the language, and in the case of the convexity of a string over k colors, it can be seen that the size
of the DFA must be exponential in k. We provide a more efficient algorithm for this property.

Algorithm B.1

1. Query q ≥ 256
√

k
ε2

vertices independently, uniformly at random.

2. Query x ≥ 5
ε ln 12 vertices in every interval between two consecutive vertices queried in Step 1.

3. Reject if and only if the resulting sample contains a forbidden subpath.

Notice that Algorithm B.1 is non-adaptive, since the distribution of the queries in Step 2 depends
only on the positions of the queries of Step 1, rather than on their answers.

Theorem B.2 For every ε > 0, Algorithm B.1 is a 1-sided ε-test for convexity with query complex-
ity O(

√
k/ε3) and time complexity Õ(

√
k/ε3), in addition to the time it takes to make the queries.

The query complexity is clearly as stated. To implement Step 3, we sort the vertices queried in
Steps 1 and 2 and then we scan them in a linear order while searching for a forbidden path. Each
time we arrive at the end of a segment of a certain color, we add it to a list. A forbidden subpath

15

exists in the sample if and only if we read a vertex in a color already in the list. Thus the time
complexity requirement is fulfilled.

Clearly, a convex coloring of T is accepted by the algorithm with probability 1, as it does not
contain any forbidden subpaths. Therefore, it remains to show that every coloring which is ε-far
from being convex is rejected with probability at least 2

3 .
For every i = 1, . . . , k, let ci be the number of vertices colored with i according to the given

coloring c. For brevity, we refer to vertices colored with i as i-vertices and to other vertices as
non-i-vertices.

We view one of the two leaves of T as the “leftmost” vertex and the other one as the “rightmost”
vertex, thereby defining a linear left-to-right order on the vertices of T . For every color i, we define
i’s left side to be the minimal segment of T beginning in the leftmost vertex and containing at least
εci/4 i-vertices. Equivalently, we define i’s right side to be to be the minimal segment of T ending
in the rightmost vertex and containing at least εci/4 i-vertices. We refer to the (possibly empty)
segment of T between i’s left and i’s right as i’s middle. We say that i is bad if i’s middle contains
at least εci/4 non-i-vertices. Otherwise, we say that i is good. Denote the rightmost vertex in i’s
left side by li. Denote the leftmost vertex in i’s right side by ri. Notice that li and ri are both
i-vertices. Define i’s extended middle to be the interval [li, ri]. Notice that due to the minimality
of i’s left side and right side, i’s extended middle contains more than (1 − ε/2)ci i-vertices.

Lemma B.3 For every ε-far coloring c of T ,
∑

i is bad

ci >
εn

4
.

Proof. Assume by contradiction that
∑

i is bad

ci ≤
εn

4
.

We define a convex coloring c̃ of T in two phases. In Phase 1 we color all the vertices that belong
to i’s extended middle for some good color i. We do so by examining all the li’s from left to right.
For every i we color with i all the vertices in i’s extended middle that have not yet been colored
in earlier stages. These vertices must belong to one consecutive interval. Otherwise, there exists a
color j such that j’s extended middle is contained within i’s extended middle and is colored before
i’s extended middle. However, this is impossible, since we consider the li’s from left to right and lj
is to the right of li. Hence, by the end of Phase 1 we have a partial convex coloring defined on all the
extended middles of good colors. In Phase 2 we extend this partial convex coloring into a complete
convex coloring, by assigning to each uncolored segment one of the colors of its neighboring colored
segments.

We now show that c̃ is ε-close to c, which contradicts the fact that c is ε-far from being convex.
By definition, i’s extended middle contains less than εci/4 non-i-vertices for every good color i.
Hence, every interval colored with i in Phase 1 contains at most εci/4 non-i-vertices. Therefore,
the total number of vertices colored in Phase 1 differently than in c is at most εn/4. To calculate
the number of vertices colored in Phase 1, notice that for every good color i, i’s extended middle
contains more than (1 − ε/2)ci i-vertices (with respect to c). Thus the total number of vertices in
the union of i’s extended middles for all good colors i is greater than

∑

i is good

(1 − ε/2)ci = (1 − ε/2)
∑

i is good

ci ≥ (1 − ε/2)(1 − ε/4)n >

(
1 − 3ε

4

)
n.

16

The number of vertices colored in Phase 2 is thus smaller than 3εn/4. We conclude that c̃ is
different than c in no more than εn vertices. 2

Lemma B.4 Suppose that c is ε-far from being convex. Then with probability greater than 3
4 there

exists a bad color i such that Step 1 of Algorithm B.1 queries at least one vertex from each of i’s
sides.

Proof. For every i, let Ci
def
= d εci

4 e be the number of vertices in any of i’s sides. Notice that for
every bad color i, i’s left side and i’s right side are disjoint. Let the left side refer to the union of
the i-vertices in i’s left side for all bad colors i, and the right side refer to the union of the i-vertices
in i’s right sides for all bad colors i. Let M be the number of vertices in each side. By Lemma B.3,

M ≥
∑

i is bad

ε

4
ci >

ε2

16
n.

We first prove the lemma for k ≤ 8. Clearly, in this case there exists a bad color i such that
Ci > ε2

128n. The probability of not sampling a vertex from i’s left side in Step 1 is therefore

(1 − ε2

128
)

256
√

k
ε2 ≤ (1 − ε2

128
)

256
√

2
ε2 < exp(−2

√
2) < 0.06

and the probability of not sampling a vertex from any of i’s sides is smaller than 0.12, concluding
the proof for the first case.

We henceforth assume that k ≥ 9. For every bad color i with Ci ≥
⌈

M
2k

⌉
, we define in each of

i’s sides disjoint sets ij for j = 1, . . . ,
⌊
Ci/
⌈

M
2k

⌉⌋
, each containing

⌈
M
2k

⌉
i-vertices. For every ij , we

view the sets of i-vertices indexed ij on both sides as representing the same subcolor. We refer to
vertices belonging to some subcolor set as subcolor vertices. We show that with probability larger
than 3

4 , there exists a subcolor ij such that we query at least one ij-vertex from each side. Clearly,
this is a stronger claim than required.

Notice that in either of the left and right side, the number of vertices that are not subcolor
vertices is at most k

(⌈
M
2k

⌉
− 1
)

< M
2 . Hence, the expected number of queries of subcolor vertices

(with repetitions) from each side is at least M/2
n q ≥ ε2

32q ≥ 8
√

k. Hence, using the Chernoff Bound,

the probability of performing less than 4
√

k queries of subcolor vertices from any of the sides is at
most p1 = 2 exp(−8

√
k/8) ≤ 2 exp(−3) < 0.1.

Assume that we have queried subcolor vertices at least 4
√

k times from each of the sides. Notice
that the probability of querying a subcolor conditioned on the above event is equal for all subcolors.
Therefore, we view a query of a subcolor vertex as uniformly choosing one of the subcolors (of all
colors). We give an upper bound on the probability of not choosing the same subcolor on both
sides, which is clearly an upper bound on the probability of not querying vertices from the same
bad color from both sides.

Let k̃ be the number of subcolors. We have

k̃ ≥
M
2⌈
M
2k

⌉ >
M
2

M
2k + 1

.

As M is proportional to the input size n, for a sufficiently large n we have k̃ > k − 1 and therefore
k̃ ≥ k. Now, the probability of choosing less than

√
k subcolors on the left side given that we have

17

queried subcolor vertices 4
√

k times is at most

p2 =

(ek√
k

)√
k

4
√

k

k̃4
√

k
≤

(
eek√

k

)√k √
k

4
√

k

k̃4
√

k
=

(
e1/3

√
k

k̃

)3
√

k

≤
(

e1/3

√
k

)3
√

k

≤
(

e1/3

3

)9

< 0.01.

Assume that we have queried at least
√

k subcolors on the left side. It can easily be seen that

k̃ ≤ 2k, and therefore, a fraction of at least
√

k
ek

≥ 1
2
√

k
of the subcolor vertices in the right side

belong to subcolors chosen on the left side. Since we queried at least 4
√

k times from subcolors on
the right side, the probability of not choosing any vertices from subcolors chosen on the left side is
at most

p3 =

(
1 − 1

2
√

k

)4
√

k

< exp(−2) < 0.14.

By summing up the probabilities p1, p2, p3 above we have that the probability of not sampling
vertices of some subcolor from both sides is smaller than 1

4 . 2

Proof of Theorem B.2. Assume that there exists a bad color i such that two i-vertices are
queried in Step 1, belonging to two different i-sides. Call the interval between them the special
interval. If the vertices queried in Step 1 do not include a forbidden subpath (in which case c is
clearly rejected) then we may have only queried i-vertices in the special interval. Notice that the
interval contains i’s middle, and thus includes at least εci/4 non-i-vertices. Obviously, the interval
contains at most ci i-vertices. Therefore, the percentage of non-i vertices in the special interval is
at least ε/(4(1 + ε/4)) ≥ ε/5. In the case that in the first step of the algorithm we have queried
i-vertices from i’s middle, then still there exists a pair of consecutive i-vertices in the sample, the
percentage of non-i-vertices between which is at least ε/5. Since we uniformly query x ≥ 5

ε ln 12
vertices between every pair of consecutive vertices, the probability of not discovering a non-i vertex
in any such interval is at most 1/12.

Combining all the above, we have that an ε-far coloring is accepted with probability smaller
than 1/3. 2

C Proof of Theorem 3.1

Consider a (possibly adaptive) deterministic algorithm A that uses q queries. For any coloring
c of T , let PrP [c] be the probability of c according to DP , and let PrN [c] be the probability of
c according to DN . Every deterministic algorithm with q queries takes the shape of a decision
tree, which is a complete k-ary tree of height q, where every non-leaf node corresponds to a query
location with its children being labelled according to the possible outcomes of the query. Every leaf
node corresponds to an answer sequence g ∈ {1, . . . , k}q with its acceptance or rejection decision.
For a coloring c, we denote the answer sequence of our algorithm by A(c). For any answer sequence
g ∈ {1, . . . , k}q, let PrA,P [g] be the probability that the answer sequence is g for a coloring selected

from DP . Formally, PrA,P [g]
def
=
∑

c:A(c)=g PrP [c]. Define PrA,N [g] similarly as the probability that

the answer sequence is g for a coloring selected from DN , or PrA,N [g]
def
=
∑

c:A(c)=g PrN [c]. Now
let aP denote the probability that the algorithm accepts an input chosen according to DP , and let
aN be the probability that the algorithm accepts an input chosen according to DN . To prove the
theorem, it is enough to show that |aP − aN | < 1

3 . See [2] for details.

18

Lemma C.1 A coloring chosen from D̃N is ε-far from being convex with probability larger than 3
4 .

Proof. For the analysis, we tag differently each appearance of colors that appear twice in a
coloring chosen from D̃N . The total number of possible colorings in this distribution is k!. In
colorings that are ε-close to convexity, however, at least 2εk colors that appear twice must appear
on adjacent intervals. Otherwise, there are more than 2εk pairs of intervals of the same color which
are separated by interval(s) of different colors. Thus, at least one interval must be recolored for
every such pair to achieve a convex coloring. It is easy to see that, in the best case, changing the
color of an interval from i to j can solve the problem for both colors i and j, but not for any other
color ` 6= i, j. Hence, if there are more than 2εk colors that appear on two non-adjacent intervals,
then the coloring is ε-far from being convex. The number of colorings in D̃N that are ε-close to
convexity is thus at most

(
4εk

2εk

)
22εk((1 − 2ε)k)! = exp(k)((1 − 2ε)k)!

for choosing the 2εk colors which appear consecutively among those who appear twice, choosing
the order of the intervals in every such pair, and choosing the order of the intervals, where each
consecutive pair is now counted as a single interval. Hence the probability of a coloring in D̃N to
be ε-close to convexity is at most

exp(k)((1 − 2ε)k)!

k!
≤ exp(k)

((1 − 2ε)k)2εk
,

which is smaller than 1
4 assuming a sufficiently large k. 2

Let Pr eN
[c] denote the probability of a coloring c when chosen from the distribution D̃N and let

PrA, eN
[g]

def
=
∑

c:A(c)=g Pr eN
[c]. We complete the proof by showing that the distributions DP and DN

satisfy the required condition |aP −aN | < 1
3 . The main idea is to show that with high probability, an

answer sequence of size q will not contain two appearances of the same color for both distributions,
and in such a case, the algorithm will be unable to distinguish between them. We note that the
proof of the farness of inputs drawn according to D̃N also holds for quasi-convexity, and so the
proof here provides a lower bound for testing quasi-convexity as well.

Observation C.2 For any answer sequence g we have

PrA,N [g] <
4

3
PrA, eN

[g].

Proof. Let C be the set of all colorings which are chosen with positive probability according to
D eN

. Let Cε be the subset of C containing colorings which are ε-far from being convex.
By definition,

PrA,N [g] =
∑

c∈Cε:A(c)=g

Pr N [c].

Since D eN
is a uniform distribution over C and DN is a uniform distribution over Cε, and, by

Lemma C.1, |Cε| > 3
4 |C|, for every coloring c ∈ Cε we have PrN [c] < 4

3 Pr eN
[c]. Therefore,

PrA,N [g] <
4

3

∑

c∈Cε:c(A)=g

Pr eN
[c] ≤ 4

3
PrA, eN

[g].

19

2

Let g ∈ {1, . . . , k}q be an answer sequence. We say that g is colorful if there exists no color that
appears twice in g. Otherwise, we say that g is degenerate.

Lemma C.3 Let αN be the probability that the answer sequence is degenerate when the input is
chosen from DN . In other words, let αN =

∑
g is degenerate PrA,N [g]. Then αN < 1

4 .

Proof. We first compute α eN
, namely, the probability that the answer sequence is degenerate

when the input is chosen from D̃N . From symmetry arguments, as long as the algorithm has
not queried two segments of the same color, we may perceive the querying process as choosing
elements, one by one, without repetitions, from the set of colors (some of which appear twice).
Therefore, the probability that at least one color is queried twice within q queries is no larger than
the probability of choosing a color twice when the set of q locations is predetermined. Thus, the
number of possibilities in which at least one color appears twice in the answer sequence is at most
4εkq(q− 1)

(
k−2
q−2

)
(q− 2)!, as there are 4εk colors with two segments, and after choosing such a color

and choosing its positions in the answer sequence, we are left to choose the other (q − 2) positions
among (k − 2) other segments. We have that the probability of having a color appearing twice in
the answer sequence is at most

4εkq(q − 1)
(
k−2
q−2

)
(q − 2)!

(
k
q

)
q!

=
4εq(q − 1)

k − 1
.

As q(q − 1) < q2 ≤ 3(k−1)
64ε , we obtain α eN

< 3
16 .

From Observation C.2, for any answer sequence g we have PrA,N [g] < 4
3 PrA, eN

[g]. Thus, by

summing for all degenerate answer sequences, we have that αN < 4
3α eN

< 1
4 . 2

Lemma C.4 For any colorful answer sequence g ∈ {1, . . . , k}q,

PrA,N [g] ≤ PrA,P [g] <
4

3
PrA,N [g].

Proof. From symmetry arguments, the probabilities of all colorful answer sequences are equal
when the input is chosen from DN , as well as when the input is chosen from DP (for which the
answer sequence is always colorful). Thus

Pr P [g] = Pr N [g| the answer sequence is colorful] =
Pr N [g]

1 − αN
.

Hence the first inequality is trivially correct, and the second is derived from Lemma C.3. 2

We now complete the proof of Theorem 3.1 by showing that |aP − aN | < 1
3 . Let ac

N be the
probability that an input from DN is accepted based on a colorful answer sequence. Let ad

N be
the probability that an input from DN is accepted based on a degenerate answer sequence. Thus
aN = ac

N + ad
N . From Lemma C.4, 0 ≤ PrA,P [g] − PrA,N [g] < 1

3 PrA,N [g] for any colorful answer
sequence. Thus, 0 ≤ aP − ac

N < 1
3 . In addition, from Lemma C.3, 0 ≤ ad

N ≤ αN < 1
4 . Hence

|aP − aN | < 1
3 .

20

D Appendices for Section 4

Proof of Lemma 4.5. First notice that if ` = 1 then for the only abundant color we have
V \ M1 = ∅, so the lemma is trivially true. We thus assume that ` > 1.

Let (u, v) be an edge in (Mi, V \ Mi). Notice that, as Bi ⊆ Mi, u cannot be an outsider, since,

in such a case v would also be an outsider in Mi. Thus, u ∈ Bi and C
(v)
u contains a set Bj for some

j 6= i. Suppose that µi(C
(v)
u) ≥ ε/8k. By the definition of Bi, v is not a heavy i-vertex, and thus

µi[C
(v)
u \ {v}] > ε/16k. Since v is not i-balanced, we have µi[C

(u)
v] < ε/16k, but this is impossible,

as u is i-balanced. We conclude that µi(C
(v)
u) < ε/8k for every edge (u, v) in (Mi, V \ Mi).

Now, let T ′ be the tree created from T by contracting every set Mi into a single vertex. Let
Di be the degree of Mi in T ′. Note that by the definition of T ′, all its leaves are Mi’s. Clearly, for
every abundant color i, Di is the number of edges in (Mi, V \Mi) in the original tree T . Similarly
to Claim 2.6, we have that

∑̀

i=i

Di ≤ 2(` − 1) ≤ 2(k − 1).

From the discussion above,

∑̀

i=1

µi(V \ Mi) ≤
∑̀

i=1

Di(ε/8k) ≤ 2(k − 1)(ε/8k) <
ε

4
.

2

Proof of Lemma 4.7. The proof is similar to the main proof of Theorem 2.2. Let w be a vertex
such that w ∈ Bi∩Bj for i 6= j. Clearly, w must be i-balanced or j-balanced or both. Suppose that
w is not balanced with respect to one of the colors, say, i. Then w must be a heavy i-vertex and
j-balanced. In such a case µ(w) ≥ ε/16k and there exist two disjoint sets W j

1 , W j
2 ⊆ Vj , each of

weight at least ε/16k, such that every path between vertices v1 ∈ W j
1 and v2 ∈ W j

2 passes through

w. Hence, if the sample X contains w and at least one vertex from each of the sets W j
1 and W j

2 ,

then Algorithm 4.1 rejects the input in Step 2. Now, the probability for any of W j
1 , W j

2 , or w to

not intersect X is at most (1 − ε/16k)
48k

ε < exp(−3). By the union bound, the algorithm will fail
with probability at most 3 exp(−3) ≤ 1/4.

Otherwise, if w is both i-balanced and j-balanced, then there exist two disjoint sets W i
1, W

i
2 ⊆ Vi,

each of weight at least ε/16k, and two disjoint sets W j
1 , W j

2 ⊆ Vj , each of weight at least ε/16k,
where every path between vertices u1 ∈ W i

1 and u2 ∈ W i
2 passes through w and every path between

vertices v1 ∈ W j
1 and v2 ∈ W j

2 passes through w. Therefore, if the sample X contains at least one

vertex from each of the sets W i
1, W

i
2, W

j
1 , W j

2 , Algorithm 4.1 rejects the input in Step 3. Now, the

probability for any specific set of the above to not intersect X is at most (1− ε/16k)
48k

ε = exp(−3).
Thus, by the union bound, the algorithm will fail with probability at most 4 exp(−3) ≤ 1/3. 2

Proof of Lemma 4.8. For the analysis, we partition X into two sets, a set X1 with 16k/ε
vertices, and a set X2 with 32k/ε vertices. Note that X1 and X2 are independently random.

The probability that X1 does not contain any uncolored vertex inside some Bi is at most
(1 − ε/4)16k/ε < exp(−4). Suppose that X1 contains an uncolored vertex w inside a Bi. There
exist two disjoint sets V1, V2 ⊆ Vi, each of weight at least ε/16k, such that every path between two

21

vertices v1 ∈ V1 and v2 ∈ V2 passes through w. It is enough to sample one vertex from each of
these sets in order to reject the input in Step 2. The probability that at least one of these sets does

not intersect X2 is at most 2(1− ε/16k)
32k

ε < 2 exp(−2). Thus, by the union bound, the algorithm
will fail with probability at most exp(−4) + 2 exp(−2) < 1/3. 2

Proof of Lemma 4.9. We call an uncolored vertex w in F good if µi(Tw) ≤ ε
8µ(Tw), where Tw

is the subtree of F rooted in w and i is the abundant color associated with w. Otherwise, we say
that such an uncolored w is bad.

Claim D.1 If the total weight of bad vertices in F is at most ε/8, then F is good.

Proof. The proof is very similar to the one presented in [9] for the test of monotonicity over
rooted trees. Define a monotone coloring of F as follows. Let U be the set of all good uncolored
vertices in F . Let Ur be the set of topmost vertices in U . Set all the descendants of vertices in Ur

to be uncolored. Color the rest of the vertices in F with the color associated with them. Clearly,
in the obtained coloring, all the vertices in F are either uncolored or satellites, and no uncolored
vertex is an ancestor of a satellite vertex. Thus, F is monotone.

Now, the only uncolored vertices we have colored are bad ones, whose weight is at most ε/8.
As for satellite vertices, we have only changed the color of ones within subtrees of good uncolored
vertices whose roots are in Ur. Since these subtrees are disjoint, and the weight of satellite vertices
is a fraction of at most ε/8 of the weight of any good subtree, the total weight of satellite vertices
changed is at most ε/8. Hence, we have changed a weight of at most ε/4 uncolored and satellite
vertices, and therefore F is good. 2

We now return to the Proof of Lemma 4.9. Since F is bad, by Claim D.1, the weight of bad
vertices in F vertices is at least ε/8. Thus, their expected weight in X is at least 6k. Applying the
Chernoff bound, the probability of having less than k bad vertices in X is at most exp(−25k/12) ≤
exp(−25/12) < 1

8 . Assuming that X contains at least k bad vertices, the probability of not sampling

such a vertex in Step 4 is at most (1 − ε/48)146/ε < exp(−3) < 1
20 .

Suppose now that we have chosen a bad vertex w in Step 4. Let i be the abundant color
associated with w and let Tw be the subtree in F whose root is w. Notice that Bi ⊆ V \ Tw.
Hence, the i-weight of V \Tw is at least ε/8, as otherwise w would have been i-balanced. Thus, the
probability that X does not contain an i-vertex outside Tw is at most (1−ε/8)48k/ε < exp(−6) < 1

400 .
Suppose that X contains an i-vertex outside Tw. Then Tw is one of the trees T i

w sampled in
Step 4. As w is bad, the probability that the sample of Tw does not contain an i-vertex is at most
(1 − ε/8)log1/(1−ε/8) 8 = 1

8 .
To conclude, we can expect a bad vertex w associated with an abundant color i to be chosen

in Step 4, with an i-vertex queried outside Tw in Step 1 and an i-vertex queried inside Tw in Step
4. In such a case the algorithm will detect a forbidden subpath and reject the input. By the union
bound, the probability of failure is at most 1

8 + 1
20 + 1

400 + 1
8 < 1

3 . 2

D.1 Implementation of the computation step in Algorithm 4.1

The procedure for detecting forbidden subpaths with respect to quasi-convexity is very similar to
that presented in Appendix A.1 for the convexity test. The only difference is that an uncolored
vertex can only be a middle vertex in a forbidden subpath. Therefore, when considering a vertex
v, we only need to check its colored children. In the following, a null value and a value of 0 for

22

m(v) are not the same. A null value of m(v) means that the color of v is unknown or irrelevant,
whereas m(v) = 0 indicates that v was queried and found to be uncolored.

Procedure D.2 For every v in reverse topological order, do:

• If v ∈ X then set a(v) = 1; otherwise set a(v) = 0.

• If v ∈ X then set m(v) = c(v); otherwise set m(v) to be null.

• For every child u of v such that m(u) is not null and m(u) > 0:

1. If m(v) is not null and m(v) 6= m(u) then reject the input and terminate.

2. Otherwise, set m(v) = m(u) and a(v) = a(v) + a(u).

• If m(v) is not null and a(v) = qm(v) then set m(v) to be null and a(v) = 0.

If the algorithm did not reject after going over all vertices, then accept.

It is not hard to prove the correctness of this procedure using a lemma very similar to Lemma
A.2

D.2 Testing quasi-convexity on trees with constraints

We now discuss the problem of testing for quasi-convexity with constraints, as we did for convexity
in Appendix A.2.

Given a graph G = (V, E), a weight function µ : V \D → R, a vertex coloring c : V → {0, . . . , k}
and a set D ⊆ V of “constraints”, we say that c is ε-close under D to being quasi-convex if there
exists a quasi-convex coloring c′ : V → {0, . . . , k} which agrees with c on the values of the vertices
in D and whose restriction to V \ D is ε-close to that of c. If c is not ε-close under D to being
quasi-convex, we say that c is ε-far under D from being convex.

Similarly to testing convexity under constraints, we show that for a tree T = (V, E), it is enough
to test for quasi-convexity under a set of constraints D by adding D to the query set of the quasi-
convexity algorithm (Algorithm 4.1). We also need to increase our sample sizes by constant factors,
since the presence of uncolored constraint vertices makes testing for farness a bit more delicate.

Algorithm D.3 Identical to Algorithm 4.1, except for the following:

• The size of the sample in Step 1 is d96k/εe.

• At the end of Step 1 we also query all the constraint vertices in D.

• In Step 4, for every uncolored vertex w, we sample log1/(1−ε/16)8 vertices in each tree T i
w.

Proposition D.4 For every ε > 0, Algorithm D.3 is a 1-sided ε-test for quasi-convexity under a
set of constraints D with query complexity O

(
k
ε2

+ |D|
)

and time complexity O(n).

Clearly, the complexity demands are satisfied. The computational complexity is the same as
for Algorithm 4.1, as it does not depend on the size of the query set but on the number of vertices
in the tree (see Appendix D.1). Also, Algorithm D.3 never rejects a quasi-convex coloring.

23

The proof that every coloring which is ε-far under D from being quasi-convex is rejected by the
algorithm with probability at least 2/3 is similar to that of Theorem 4.2, while using ideas from
the proof of Proposition A.4. Define the sets Bi of balanced vertices as in the proof of Theorem
4.2. Note that the weight function is defined only on V \ D. Lemma 4.3 and Observation 4.4 are
clearly true also here.

Now, as in the proof of Proposition A.4, one can see that Algorithm D.3 rejects with high
probability if the sets Bi are not disjoint or if there exists an i-colored vertex w ∈ D such that
w ∈ Bj for i 6= j. Also similar to that proof, the algorithm rejects with high probability if the
set of Bi’s and constraint vertices implies a forbidden subpath (now in its quasi-convexity sense).
Otherwise, we augment every Bi with all the i-colored constraint vertices and the vertices on the
paths from Bi to them. For constraint vertices colored with a non-abundant color i, we create a
new set Bi containing all the i-colored constraint vertices and the paths between them. Note that
we do not do this for uncolored constraint vertices. We now have at most one set Bi for every color
i, where the sets are disjoint and every Bi contains only i-colored constraint vertices.

Lemma D.5 If the total weight of uncolored vertices inside the extended Bi’s is larger than ε/4,
then the input is rejected by Step 2 with probability at least 2/3.

Proof. Similar to that of Lemma 4.8. Again we show that with high probability, an uncolored
vertex w in Bi is sampled. If w is i-balanced, then the proof is identical to that of Lemma 4.8.
Otherwise, w is on a path between two i-colored constraint vertices, or between an i-balanced
vertex and an i-colored constraint vertex, which can only increase the probability of discovering a
forbidden subpath, leading to rejection. 2

Now, enumerate the Bi’s as B1, . . . , B`. Clearly, if ` = 0 then c is ε-close to the quasi-convex
coloring in which all the vertices are uncolored. For every Bi, define Mi as in the proof of Algorithm
D.3, as the extension of Bi with “outsider” vertices. We have

Lemma D.6 ∑

i is abundant

µi(V \ Mi) ≤ ε/4.

The proof is essentially the same as that of Lemma 4.5 (See the beginning of this appendix).
Note that the proof relies only on the fact that for every abundant color i, Mi contains all the
i-balanced vertices and big i-vertices. Therefore, the proof applies also here.

We now define the forest F as in the proof of Theorem 4.2, as the forest consisting of all outsider
vertices. We define good uncolored vertices in F and monotonicity of F as we did there. However,
when considering whether F can be made monotone, we must take the uncolored constraint vertices
possibly in F into account (recall that colored constraint vertices are all contained in the Bi’s and
not in F). Therefore, F is called good if it can be made monotone by changing the color of satellite
and uncolored vertices of weight at most ε/4, and any amount of other vertices in F , excluding
constraint vertices. Otherwise, we say that F is bad.

We say that an uncolored vertex w in F is good if µi(Tw) ≤ ε
16µ(Tw), where Tw is the subtree

of F rooted in w and i is the color associated with w. Otherwise we say that w is bad. We say that
a satellite vertex w in F is an obstacle if has a constraint uncolored vertex in F as an ancestor.

Lemma D.7 If the total weight of bad uncolored vertices in F is at most ε
16 and the total weight

of obstacle vertices is at most ε
8 then F is good.

24

Proof. Define a monotone coloring of F as follows. Let U be the set of all constraint (uncolored)
vertices and good uncolored vertices in F . Let Ur be the set of topmost vertices in U . Set all the
descendants of vertices in Ur to be uncolored. Color the rest of the vertices in F with the color
associated with them. Clearly, in the obtained coloring, all the constraint vertices remain uncolored,
all the vertices in F are either uncolored or satellites, and no uncolored vertex is an ancestor of a
satellite vertex. Thus, F is monotone.

Now, the only uncolored vertices we have colored are bad ones, whose weight is at most ε/16.
As for satellite vertices, we have only changed the color of ones within subtrees of uncolored vertices
whose roots are in Ur. Among these, the weight of obstacle vertices is at most ε/8. The others are
in subtrees rooted in good uncolored vertices. Since these subtrees are disjoint, and the weight of
satellite vertices is a fraction of at most ε/16 of the weight of any good subtree, the total weight of
satellite vertices thus changed is at most 3ε/16. Hence, we have changed a total weight of at most
ε/4 of uncolored and satellite vertices, and therefore F is good. 2

Lemma D.8 If ` > 0, the Bi’s are disjoint, and F is bad, then the algorithm rejects with probability
at least 2/3.

Proof. By Lemma D.7, either the weight of obstacle vertices in F is larger than ε/8 or the
weight of bad uncolored vertices in F is larger than ε/16.

If the weight of obstacle vertices in F is larger than ε/8, then clearly an obstacle vertex u is
sampled in Step 1 with probability larger than 2/3. Recall that there exists an uncolored constraint
vertex w, which is an ancestor of u in F , that is sampled in Step 1 with probability 1. Let i be
the color of u. Notice that if i is a non-abundant color then w is on the path between u and
an i-colored constraint vertex v, and thus the algorithm will certainly reject the input in Step 2,
after discovering the forbidden subpath 〈u, w, v〉. Therefore, the presence of obstacle vertices of
non-abundant colors only increases the probability for rejection.

Now, assume that all the obstacle vertices are of abundant colors. For the analysis, we partition
the sample set of Step 1 (excluding constraint vertices), X, into two sets, a set X1 with 48k/ε
vertices, and a set X2 with 48k/ε vertices. Note that X1 and X2 are independently random. The
probability that X1 does not contain any obstacle vertex is at most (1 − ε/8)48k/ε < exp(−6k) ≤
exp(−6). Suppose that X1 contains an obstacle vertex u, and let w be an uncolored constraint
vertex which is an ancestor of u in F . Then, clearly, since w is an outsider vertex of a Bi of an
abundant color, µi(T \Tw) > ε/8. Therefore, the probability that X2 does not contain an i-colored
vertex v outside Tw is at most exp(−6). Hence, with probability at least 2/3, a forbidden subpath
〈u, w, v〉 is discovered and the algorithm rejects in Step 2.

If the weight of bad uncolored vertices in F is larger than ε/16, then the lemma is proved
similarly to Lemma 4.9. 2

We now establish a lemma similar to Lemma 4.6, which completes the proof of Proposition D.4.

Lemma D.9 If ` > 0 and all of the following conditions apply:

(a) The Bi’s are all disjoint

(b) There is no uncolored constraint vertex inside a Bi

(c) The set of extended Bi’s and constraint vertices does not imply a forbidden subpath

25

(d) The total weight of uncolored vertices inside extended Bi’s is at most ε/4

(e) F is good,

then the input coloring c is ε-close to being quasi-convex.

Proof. The proof is very similar to that of Lemma 4.6.
We show that there exists a quasi-convex coloring c′ of T that is ε-close to c. Define c′ as follows.

For every extended Bi, color all the vertices of Bi with i. Then choose a monotone coloring of F
which changes a minimum weight of uncolored and satellite vertices without coloring constraint
vertices. Finally, set the rest of the vertices to be uncolored. One can see that c′ is quasi-convex.

We now show that c′ is ε-close to c. First, consider vertices of abundant colors, excluding
satellites, whose color has been changed. From Lemma D.6, the total weight of such vertices is at
most ε/4. Now consider uncolored vertices inside Bi’s. From Condition (d), the total weight of such
vertices is at most ε/4. As for satellites and uncolored vertices in F , from Condition (e), the total
weight of these is at most ε/4. Finally, for non-abundant colors which may have changed, since
they are of weight smaller than ε/4k each, their total weight is smaller than ε/4. We conclude that
c′ is ε-close to c. 2

E Appendices for Section 5

E.1 Proof of Theorem 5.1

A graph is called i-homogenous if all its vertices are colored with color i, and homogenous if it is i-
homogenous for some color i. We say that a graph is {i, j}-homogenous if all its vertices are colored
with either i or j (if i = j, then clearly the graph is i-homogenous). Given a graph G = (V, E)
and two vertices u, v ∈ V , we say that G is {u, v}-compatible if it is {c(u), c(v)}-homogenous and
convex.

Restricting our discussion to trees, a vertex w is said to be between the vertices u and v if it is an
intermediate vertex on the (only) path between u and v. For any three distinct vertices u, v, w ∈ V ,
we define the junction Junc(u, v, w) of u, v, and w as follows. If any of the vertices in {u, v, w} is
between the other two, then Junc(u, v, w) is defined to be that vertex. Otherwise, Junc(u, v, w) is
the vertex that lies in the intersection of the three simple paths between u and v, v and w, and u
and w, respectively. A set U is closed under junctions if for any three distinct vertices u, v, w ∈ U
we also have Junc(u, v, w) ∈ U . We say that two vertices are adjacent in a set U if they are both in
U and there are no other vertices in U between them. Note that if a set U is closed under junctions
then all paths between pairs of adjacent vertices in U intersect only on members of U .

Throughout the algorithm we maintain a set IT of interesting trees, containing subtrees of T
to be examined. We define the interesting trees using a set X of queried vertices. We create X in
such a way that it is always closed under junctions. We ensure that the intersection between every
two subtrees in IT is either empty or consists of a single vertex in X. Let TX be the spanning tree
of X, that is, the tree comprised of all the simple paths between vertices in X. We use TX to define
interesting trees of two types: A pinned tree is defined by two vertices u, v which are adjacent in
X but not in V . It contains the path between u and v, as well as all the vertices whose nearest

neighbor in TX is between u and v. Equivalently, T(u,v)
def
=
(
C

(v)
u ∩ C

(u)
v

)
∪ {u, v}. A dangling tree

26

is defined by a vertex u ∈ X, and it contains u as well as all the vertices not in TX whose nearest

neighbor in TX is u. Namely: Tu
def
=
(
V \⋃v∈X,v 6=u C

(v)
u

)
∪ {u}.

Using the set X we can infer a lower bound on the number of color components in T , by
assuming that every two adjacent vertices in X belong to the same color component if and only if
they are colored with the same color. This could be the case since we may e.g. extend the coloring
of X into a coloring of V by coloring every vertex with the color of its nearest neighbor in X.
On the other hand, it can be easily seen that no coloring of V would give a smaller number of
components for any of the colors.

In order to discover more color components, we examine pinned and dangling interesting sub-
trees of T one by one. For u, v which are adjacent in X and colored with the same color, we test
T(u,v) for being c(u)-homogenous. If the test accepts, we remove T(u,v) from the set of interesting
trees, as it is unlikely to provide us with more information on the color components in T (we shall
later see that, in such a case, T(u,v) is “irrelevant”). Otherwise, we augment X with a witness for
the non-homogeneity of T(u,v) (while keeping it closed under junctions), and replace T(u,v) in IT
with its subtrees. Similarly, we test dangling subtrees Tu for c(u)-homogeneity. For u and v which
are adjacent in X and colored with different colors, we test T(u,v) for being {u, v}-compatible under
the constraint set D = {u, v}. That is, we test whether there is an ε-close convex coloring of T(u,v)

that agrees with c on the colors of u and v. Again, if the test accepts, we discard T(u,v), and oth-
erwise, we proceed and divide it into smaller interesting trees. If at some point we have discovered
more than ` color components, the algorithm rejects the input. Otherwise, the algorithm halts and
accepts when there are no interesting trees left.

As in Section 2, we assume that the distance between colorings is defined by a weight function
µ : V → [0, 1]. However, since we use the convexity algorithm as a subroutine for determined
subtrees, we loose its distribution-free quality.

We next introduce the subroutines used for testing interesting trees.

Observation E.1 Given a subtree T ′ of T , a color i and 0 < p < 1, there exists an algorithm whose
query and computational complexity are both O(log(1/p)ε−1), such that: If T ′ is i-homogenous then
the algorithm accepts with probability 1; and if T ′ is ε-far from being i-homogenous then, with
probability at least 1− p, the algorithm rejects and finds a witness for the non homogeneity (i.e., a
vertex colored with a color other than i).

Proof. Given T ′, ε and p as above, query 2ln(1/p)ε−1 vertices in T ′ independently and uniformly
at random. If a vertex w has been found such that c(w) 6= i, reject and return w as a witness.
Otherwise, accept. It is trivial to see that this algorithm satisfies the stated requirements. 2

Lemma E.2 Given a pinned subtree T(u,v) of T with c(u) 6= c(v) and 0 < p < 1, there exists an
algorithm with query complexity O(log(1/p)ε−1) and computational complexity linear in the size of
T(u,v) such that: If T(u,v) is {u, v}-compatible, then the algorithm accepts with probability 1; if T(u,v)

is ε-far under {u, v} from being {u, v}-compatible, then, with probability at least 1−p, the algorithm
rejects and finds a witness for the incompatibility. Furthermore, the witness is either a vertex w
with c(w) 6= c(u), c(v) or a pair of vertices (x, w) such that x is between u and v, w has the same
color as u or v, and c(x) 6= c(w).

Proof. We use Algorithm A.3 with k = 2 and D = {u, v}. For clarity, we first give a multi-phase
algorithm, and later show how to perform it in one phase.

27

Given T(u,v) and p as above, repeat the following for log3(1/p) times:

1. Query 8 ln 12ε−1 vertices independently uniformly at random. Let W be the union of {u, v}
and the set of queried vertices.

2. If W includes a vertex w such that c(w) 6= c(u), c(v), then reject and return w.

3. Otherwise, if W includes a forbidden subpath 〈w1, w2, w3〉, then for every i we have either
c(wi) = c(u) or c(wi) = c(v), for otherwise, Case 2 applies.

(a) Assume that one of the vertices in the forbidden subpath is either u or v. Since u and
v are leaves and c(u) 6= c(v), we can only have one of the end vertices in the subpath
be u or v. Assume w.l.o.g. that w1 = u. Let x = Junc(u, v, w2). Since u and v are not
adjacent, x is between u and v. Query x.

• If c(x) 6= c(u), c(v) then set w = x and return w as in Case 2.

• Otherwise, if c(x) = c(w2) then clearly 〈u, x, w3〉 is a forbidden subpath and thus
we set w = w3.

• Otherwise, c(x) = c(u) 6= c(v), and thus 〈v, x, w2〉 is a forbidden subpath. We
therefore set w = w2.

• Return x and w.

(b) Otherwise, if both w1 and w3 are between u and v then so is w2. Without loss of
generality, assume that w1 is between u and w2 and w3 is between w2 and v.

• If c(w2) = c(u) then 〈u, w1, w2〉 is a forbidden subpath, and thus we set x = w1 and
w = w2.

• If c(w2) 6= c(u) then 〈u, w2, w3〉 is a forbidden subpath, and thus we set x = w2 and
w = w3.

• Return x and w.

(c) Now assume that both w1 and w3 are different from u and v and either w1 or w3 is not
between u and v. Let x = Junc(u, v, w2). Since u and v are not adjacent, x is between
u and v. Query x.

• If c(x) = c(w2) then c(x) 6= c(w1) = c(w3). Let w be either w1 or w3 such that w is
not between u and v. Then either 〈u, x, w〉 or 〈v, x, w〉 is a forbidden subpath.

• If c(x) 6= c(w2) then, in particular, x 6= w2 and hence, x is both between u and w2

and between v and w2. Either 〈u, x, w2〉 or 〈v, x, w2〉 is a forbidden subpath. We
therefore set w = w2.

• Return x and w.

4. Otherwise, if W includes vertices w1, w2, w3, w4 such that c(w1) = c(w2) 6= c(w3) = c(w4)
and there exists a vertex w̃ which is both between w1 and w2 and between w3 and w4, then
let w̃ = Junc(w1, w2, w3) be such a vertex. Query it.

• If c(w̃) 6= c(u), c(v) then set w = w̃ and return w as in Case 2.

• Otherwise, either 〈w1, w̃, w2〉 or 〈w3, w̃, w4〉 is a forbidden subpath. Perform the same
operations done with a forbidden subpath as in Case 3.

28

If the input has not been rejected in any of the iterations, accept. In this case T is marked as “not
interesting”.

The above is the same as repeatedly running Algorithm A.3 with k = 2 and D = {u, v},
except for the steps taken in order to find a witness of the desired form once the tree is known
not to be {u, v}-compatible. Clearly, these modifications do not change the fact that the algorithm
always accepts a {u, v}-compatible input. It is easy to see that if T(u,v) is ε-far from {c(u), c(v)}-
homogeneity, then it is rejected with probability at least 2/3 in any given iteration. Assume that
T(u,v) is ε-close to {c(u), c(v)}-homogeneity but ε-far under {u, v} from convexity. Then, clearly,
by Proposition A.4, T(u,v) is rejected with probability at least 2/3 in any given iteration. As the
iterations are independent, an ε-far input is rejected with probability at least 1 − p. One can see
that in Steps 3 and 4 of the algorithm, a forbidden subpath is found with either u or v as an
endpoint.

Notice that using a single sample of 8 log3(1/p) ln 12ε−1 vertices selected uniformly and indepen-
dently, one can only increase the probability of finding a witness for farness, while still maintaining
the 1-sidedness of the algorithm. Performing a single sample enables us to check for a forbidden
subpath only once with time complexity linear in the size of T(u,v) (See Appendix A.1). More-
over, it can be seen that the junction of every 3 vertices in T(u,v) may be computed using a naive
DFS algorithm in time linear in the size of T(u,v). Since we compute at most two junctions, the
computational upper bound hold. 2

We now present our main test for `-convexity.

Algorithm E.3

• Let X = {u}, where u is any vertex in V . Set IT = {Tu} = {T}. Set CC = 1.

• While IT 6= ∅ and CC ≤ `, repeat:

1. Consider a tree T ′ ∈ IT . Set IT = IT \ {T ′}.
2. Perform a test with error probability p = 1/3` as follows:

– If T ′ = T(u,v) for u, v ∈ X such that c(u) 6= c(v), perform a {u, v}-compatibility test.

– Otherwise, if T ′ = T(u,v) for u, v ∈ X such that c(u) = c(v), perform a c(u)-
homogeneity test.

– Otherwise, if T ′ = Tu for u ∈ X, perform a c(u)-homogeneity test.

3. If the test has accepted, return to Step 1.

4. Otherwise,

(a) If T ′ = T(u,v) for u, v ∈ X such that c(u) = c(v) and a witness w has been found
such that c(w) 6= c(u):

– Let x = Junc(u, v, w). Query x, add x and w to X.

– If c(x) 6= c(u) set CC = CC + 2.

– If c(x) 6= c(w) set CC = CC + 1 (independently of the previous step).

– If x is not a leaf, add Tx to IT .

– If w is not a leaf, add Tw to IT .

– If u and x are not adjacent in T , add T(u,x) to IT .

29

– If v and x are not adjacent in T , add T(v,x) to IT .

– If w 6= x and w and x are not adjacent in T , add T(w,x) to IT .

(b) If T ′ = T(u,v) for u, v ∈ X such that c(u) 6= c(v) and a witness w has been found
such that c(w) 6= c(u), c(v):

– Let x = Junc(u, v, w). Query x, add x and w to X.

– If c(x) 6= c(u) and c(x) 6= c(v) set CC = CC + 1.

– If c(x) 6= c(w) set CC = CC + 1 (independently of the previous step).

– Add the new (non-degenerate) interesting trees into IT similarly to Case (a).

(c) Otherwise, if T ′ = T(u,v) for u, v ∈ X and witnesses x, w were found such that x is
between u and v, c(x) 6= c(w) and either c(w) = c(u) or c(w) = c(v):

– Add x and w to X.

– Set CC = CC + 1.

– If c(x) 6= c(u) and c(x) 6= c(v) set CC = CC + 1.

– Add the new (non-degenerate) interesting trees into IT similarly to Case (a).

(d) Otherwise, T ′ = Tu for u ∈ X and a witness w has been queried such that c(w) 6=
c(u):

– Add w to X.

– Set CC = CC + 1.

– If w is not a leaf, add Tw to IT .

– If u and w are not adjacent in T , add T(u,w) to IT .

• If CC > `, reject. Otherwise, if CC ≤ ` and IT = ∅, accept.

To prove the correctness of the algorithm, we need several lemmas.

Lemma E.4 Consider an iteration of the while loop in Algorithm E.3. Let `′ be the value of CC
when the iteration begins. Then:

1. Given X, `′ is the minimum number of color components in V .

2. Suppose that:

• All the pinned trees T(u,v) (u, v ∈ X) with c(u) 6= c(v) are ε-close under {u, v} to being
{u, v}-compatible.

• All the pinned trees T(u,v) (u, v ∈ X) with c(u) = c(v) are ε-close to being c(u)-
homogenous .

• All the dangling trees Tu (u ∈ X) are ε-close to being c(u)-homogenous.

Then c is ε-close to being `′-convex.

Proof. Part 1 of the lemma is easily proved by induction on `′. As for Part 2, consider colorings
of the interesting trees which are ε-close under their defining vertices. The intersections between
the interesting trees consist only of vertices in X, which are not recolored by any of theses close
colorings. Therefore, we may combine them into a coloring of our entire tree T , which is ε-close to
c and can be easily seen to be `′-convex. 2

30

Lemma E.5 The while loop of Algorithm E.3 runs at most 5` times.

Proof. Since in every time the test of Step 2 rejects, CC is incremented, Step 4 can be applied
at most ` times. Note that at most 5 new interesting trees are added in any single iteration of Step
4. Therefore, we may perform the test in Step 2 on at most 5` trees. 2

By the first part of Lemma E.4, CC is a tight lower bound for the number of color components
in T , and therefore, the algorithm never rejects an `-convex input.

Assume now that T is ε-far from being `-convex. Then, by the second part of Lemma E.4, in
any stage of the algorithm where CC ≤ `, at least one of the interesting dangling trees Tu is ε-far
from being c(u)-homogenous or at least one of the pinned trees T(u,v) is ε-far under {u, v} from
being {u, v}-compatible. After discovering the farness of ` interesting trees, the algorithm rejects.
As the probability of not discovering the farness of a certain interesting tree is at most 1/3`, the
total failure probability is at most 1/3. Therefore, Algorithm E.3 is a 1-sided test for `-convexity.

By Observation E.1 and Lemma E.2, the test in Step 2 can be implemented with query com-
plexity O(log(`)/ε). Therefore, the total query complexity of the algorithm is O(` log(`)/ε). The
computational complexity follows from Observation E.1 and Lemmas E.2 and E.5.

E.2 Proof of Theorem 5.2

Our test for `-quasi-convexity is similar to that for `-convexity. However, instead of using the test
for convexity with constraints or the test for homogeneity as a subroutine, we use the test for
quasi-convexity with constraints (see Appendix D.2) with k = 2 when we have two different colors
in the vertices defining the subtree, and with k = 1 when we have only one defining color. We
only use the homogeneity test for interesting trees defined by uncolored vertices. We refer to the
quasi-convexity property for k = 1 as monotonicity. In particular, we say that a dangling tree Tu

is monotone if it is {c(u), 0}-homogenous and quasi-convex. Such a tree has only c(u)-colored and
uncolored vertices, where no colored vertex is a descendant of an uncolored vertex. This complies
with the common notion of monotonicity over trees for functions with two values, where an i-colored
vertex is considered “smaller” than an uncolored vertex.

Observation E.6 Given a dangling subtree Tu of T and 0 < p < 1, there exists an algorithm whose
query and computational complexity are both O(log(1/p)ε−2), such that: If T ′ is monotone then the
algorithm accepts with probability 1; if T ′ is ε-far from being monotone then, with probability at least
1− p, the algorithm rejects and finds a witness for the lack of monotonicity. Moreover, the witness
is either a vertex w such that c(w) > 0 and c(w) 6= c(u), or vertices u, x, w such that 〈u, x, w〉 is a
forbidden subpath.

Proof. As in the proof of Lemma E.2, we run Algorithm 4.1 for k = 1 with a sample set whose
size is increased by a factor of O(log(1/p)). The algorithm rejects or accepts as required, due to
Proposition D.4. Finding the required witnesses is done with techniques similar to those used in
Lemma E.2. 2

We say that a tree T ′ is {i, j}-quasi-homogenous if all its vertices are either uncolored or colored
with either i or j. Given two vertices u and v in T ′, we say that T ′ is {u, v}-quasi-compatible if
it is {c(u), c(v)}-quasi-homogenous and quasi-convex under the constraint set {u, v} (clearly, if
c(u) = c(v) then T(u,v) is monotone).

31

Lemma E.7 Given a pinned subtree T(u,v) of T and 0 < p < 1, there exists an algorithm with
query complexity O(log(1/p)ε−2) and computational complexity linear in the size of T such that:
If T(u,v) is {u, v}-quasi-compatible, then the algorithm accepts with probability 1; if T(u,v) is ε-far
under {u, v} from being {u, v}-quasi-compatible, then, with probability at least 1− p, the algorithm
rejects and finds a witness for the incompatibility. Furthermore, a witness for the fact that T(u,v) is
not {u, v}-quasi-compatible will be either a colored vertex w with c(w) 6= c(u) and c(w) 6= c(v), or
a pair of vertices x, w such that x is between u and v, w is colored and has the same color as u or
v, and c(x) 6= c(w).

Proof. Follows from Proposition D.4. in a similar manner as Lemma E.2 follows from Proposition
A.4. As before we select only the desired witnesses, although others may be discovered. 2

Note that here when rejecting an interesting tree, some of the witnesses may be uncolored.
In such a case we do not account for the newly discovered uncolored components in our color
components counter. However, we do add trees defined by uncolored vertices to our set of interesting
trees, as we need to test them further in order to search for additional colored components.

Algorithm E.8 The algorithm is the same as Algorithm E.3, except for the following:

• In the initialization step, if u is uncolored we set CC to 0 rather than 1.

• In Step 2 of the while loop:

– For a pinned tree T(u,v) with colored u and v and c(u) 6= c(v) we perform a test for
{u, v}-quasi-compatibility.

– For a tree defined by uncolored vertices, i.e., a pinned tree T(u,v) with uncolored u and v
or a dangling tree Tu with u uncolored, we perform a 0-homogeneity test.

– For other interesting trees (i.e., a pinned tree T(u,v) with colored u and v and c(u) = c(v),
a pinned tree T(u,v) with colored u and uncolored v, or a dangling tree Tu with colored u)
we perform a monotonicity test.

• We update our counter CC differently, so it is a lower bound for the number of color com-
ponents of colored vertices only. That is, when our witness for rejecting an interesting tree
includes an uncolored vertex, we do not increment CC to account for the newly discovered
uncolored components, but only for components of colored vertices.

Lemma E.9 Consider an iteration of the while loop in Algorithm E.8. Let `′ be the value of CC
when the iteration begins. Then:

1. Given X, `′ is the minimum number of color components of colored vertices in V .

2. Suppose that:

• All the interesting trees defined by uncolored vertices are ε-close to being 0-homogenous.

• All the dangling trees Tu (c(u) > 0) are ε-close to being monotone.

• All the trees T(u,v) with c(u) 6= c(v) and c(u), c(v) > 0 are ε-close under {u, v} to being
{u, v}-quasi-compatible.

• All the other pinned trees T(u,v) are ε-close to being monotone.

32

Then c is ε-close to being `′-quasi-convex.

Proof. Similar to the proof of Lemma E.4. 2

Lemma E.10 The while loop of Algorithm E.3 runs at most 5` times.

Proof. As in the case of Algorithm E.3, at most 5 new interesting trees are added in any single
iteration of Step 4, so CC is linear in the number of iterations. Moreover, CC is incremented every
time the test in Step 2 rejects. To see this, note that in every rejection we either have a colored
witness defining a new colored component inside an interesting tree, or a forbidden subpath with
respect to quasi-convexity. In the latter case, the endpoints of the forbidden subpath originally
belonged to the same presumed color component. Finding the forbidden subpath reveals that there
are at least two color components instead of the original presumed one. Hence, CC is incremented
after discovering the forbidden subpath.

Concluding, Step 4 may be applied only 5` times before CC exceeds ` and the loop ends. 2

We now complete the proof of Theorem 5.2 by showing that Algorithm E.8 satisfies the stated
requirements.

By the first part of Lemma E.9, CC is a tight lower bound for the number of color components
(of colored vertices) in T , and therefore, the algorithm never rejects an `-quasi-convex input.

Assume that T is ε-far from being `-quasi-convex. Then, by the second part of Lemma E.9,
in any stage of the algorithm where CC ≤ `, at least one of the interesting subtrees is ε-far from
the property it is being tested for in Step 2 of the algorithm. After discovering the farness of `
interesting trees, the algorithm rejects. As the probability of not discovering the farness of a certain
interesting tree is at most 1/3`, the total failure probability is at most 1/3. Therefore, Algorithm
E.8 is a 1-sided test for `-quasi-convexity.

By Observation E.6 and Lemma E.7, the test in Step 2 can be implemented in query complex-
ity O(log(`)/ε2). Therefore, the total query complexity of the algorithm is O(` log(`)/ε2). The
computational complexity follows from Observation E.6 and Lemmas E.7 and E.10.

33

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

